WO2018167877A1 - エネルギー源装置 - Google Patents
エネルギー源装置 Download PDFInfo
- Publication number
- WO2018167877A1 WO2018167877A1 PCT/JP2017/010455 JP2017010455W WO2018167877A1 WO 2018167877 A1 WO2018167877 A1 WO 2018167877A1 JP 2017010455 W JP2017010455 W JP 2017010455W WO 2018167877 A1 WO2018167877 A1 WO 2018167877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heater
- phase
- output
- processor
- target
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 239000012636 effector Substances 0.000 claims description 11
- 230000004048 modification Effects 0.000 description 35
- 238000012986 modification Methods 0.000 description 35
- 238000000034 method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 22
- 230000008859 change Effects 0.000 description 11
- 238000009835 boiling Methods 0.000 description 10
- 210000004204 blood vessel Anatomy 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000007789 sealing Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/10—Power sources therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
- A61B18/085—Forceps, scissors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1442—Probes having pivoting end effectors, e.g. forceps
- A61B18/1445—Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/0016—Energy applicators arranged in a two- or three dimensional array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00345—Vascular system
- A61B2018/00404—Blood vessels other than those in or around the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00589—Coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/0063—Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00666—Sensing and controlling the application of energy using a threshold value
- A61B2018/00672—Sensing and controlling the application of energy using a threshold value lower
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00761—Duration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00875—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
Definitions
- the present invention relates to an energy source device used together with a treatment instrument including a bipolar electrode and a heater.
- US2009 / 0248002A1 discloses a treatment instrument that can grasp a treatment target such as a living tissue between a pair of grasping pieces, and an energy source device that supplies electric energy to the treatment instrument.
- a treatment target such as a living tissue between a pair of grasping pieces
- an energy source device that supplies electric energy to the treatment instrument.
- an electrode is provided on each gripping piece, and a heater is provided on one of the gripping pieces.
- the energy source device outputs high frequency power to an electrode (bipolar electrode) and outputs heater power to the heater.
- a high-frequency current flows between the electrodes through the treatment target to be grasped, and heat generated by the heater is applied to the treatment subject to be grasped. That is, both the high-frequency current and the heater heat are applied to the treatment target.
- the treatment target is denatured by applying high-frequency current, heater heat, etc., and the treatment target is sealed or sealed May solidify.
- the moisture of the treatment target boils until the treatment target is dehydrated and dried.
- the treatment for sealing or solidifying the treatment object the longer the time that the treatment object is boiling, the longer the treatment object is welded, that is, the treatment object is fused.
- the sealing property and coagulation property of the treatment target are improved. Therefore, in the treatment for sealing or solidifying the treatment target, it is required that the output from the heater power source to the heater is controlled in accordance with the state of the treatment target so that the time for which the treatment target is welded becomes long.
- An object of the present invention is to provide an energy source device in which the output from the heater power supply is appropriately controlled based on the state of the treatment target, and the sealing property and coagulation property of the treatment target are improved.
- an aspect of the present invention includes an end effector capable of grasping a treatment target between a pair of grasping pieces, and the end effector includes the heater and a bipolar electrode.
- An energy source device used together with a tool, wherein high-frequency power is output to the bipolar electrode, thereby causing a high-frequency current to flow between the bipolar electrodes through the treatment target and outputting heater power to the heater.
- an energy output source for generating heat in the heater, and a processor for controlling the output to the bipolar electrode and the output to the heater, wherein the processor supplies the bipolar electrode in the first phase.
- the output to the bipolar electrode is continued in a state where the treatment target is denatured by the application of the high-frequency current, and it is determined whether the impedance has become a minimum value
- the output to the heater is continued so that the treatment target is denatured by the heat of the heater, and the minimum of the impedance related to at least one of the impedance and the output to the bipolar electrode Obtaining a parameter before detection of a value, and determining, based on the acquired parameter, whether or not the output to the heater is necessary for a third phase immediately after the detection of the minimum value; and At least one of setting of a target value related to output control to the heater is performed.
- FIG. 1 is a schematic view showing a treatment system according to the first embodiment.
- FIG. 2 is a block diagram schematically showing a configuration for supplying electrical energy from the energy source device according to the first embodiment to the treatment instrument.
- FIG. 3 is a flowchart illustrating processing performed by the processor of the energy source device according to the first embodiment.
- FIG. 4 is a flowchart showing processing performed in the output control in the first phase by the processor according to the first embodiment.
- FIG. 5 is a flowchart illustrating processing performed in the output control in the second phase by the processor according to the first embodiment.
- FIG. 6 is a flowchart showing processing performed in the output control in the third phase by the processor according to the first embodiment.
- FIG. 7 is a schematic diagram illustrating an example of a target trajectory of the output voltage from the high-frequency power supply when the processor according to the first embodiment performs processing.
- FIG. 8 is a schematic diagram illustrating an example of a change over time in the impedance of the treatment target when the target trajectory of the output voltage from the high-frequency power source is set as in FIG. 7 in the first embodiment.
- FIG. 9 is a schematic diagram illustrating an example of a target trajectory for the heater temperature when the target trajectory for the output voltage from the high-frequency power source is set as shown in FIG. 7 in the first embodiment.
- FIG. 10 is a flowchart illustrating processing performed by the processor of the energy source device according to the second embodiment.
- FIG. 11 is a flowchart illustrating processing performed in the output control in the fourth phase by the processor according to the second embodiment.
- FIG. 12 is a schematic diagram illustrating an example of a target trajectory of the heater temperature when the processor according to the second embodiment performs processing.
- FIG. 1 is a diagram showing a treatment system 1 of the present embodiment.
- the treatment system 1 includes a treatment tool 2 and an energy source device 3 that supplies electrical energy to the treatment tool 2.
- the energy source device 3 is used together.
- the treatment instrument 2 includes a shaft 5, and the shaft 5 has a longitudinal axis C as a central axis.
- a holdable housing 6 is connected to one end side (base end side) of the shaft 5 in the direction along the longitudinal axis C.
- An end effector 7 is provided at the end of the shaft 5 opposite to the side where the housing 6 is located, that is, at the tip of the shaft 5.
- a grip 11 is provided on the housing 6, and a handle 12 is rotatably attached. When the handle 12 is rotated with respect to the housing 6, the handle 12 is opened or closed with respect to the grip 11.
- the end effector 7 includes a pair of gripping pieces 15 and 16, and in the treatment instrument 2, the movable member 13 extends along the longitudinal axis C through the inside or outside of the shaft 5.
- One end (front end) of the movable member 13 is connected to the end effector 7, and the other end (base end) of the movable member 13 is coupled to the handle 12 inside the housing 6.
- the handle 12 By opening or closing the handle 12 with respect to the grip 11, the movable member 13 moves along the longitudinal axis C of the shaft 5, and the space between the pair of gripping pieces 15 and 16 is opened or closed. Thereby, it becomes possible to grip a living tissue such as a blood vessel as a treatment target between the gripping pieces 15 and 16.
- one of the gripping pieces 15, 16 is integrated with the shaft 5 or fixed to the shaft 5, and the other of the gripping pieces 15, 16 is rotatably attached to the tip of the shaft 5. In another embodiment, both the gripping pieces 15 and 16 are rotatably attached to the distal end portion of the shaft 5.
- an operation member such as a rotary knob is attached to the housing 6. In this case, by rotating the operating member with respect to the housing 6, the shaft 5 and the end effector 7 are rotated around the longitudinal axis C with respect to the housing 6.
- One end of a cable 17 is connected to the housing 6.
- the other end of the cable 17 is detachably connected to the energy source device 3.
- the treatment system 1 is provided with a foot switch 18 as an operation member separate from the treatment instrument 2.
- the foot switch 18 is electrically connected to the energy source device 3.
- An operation for outputting electrical energy from the energy source device 3 to the treatment instrument 2 is input by the foot switch 18.
- an operation button or the like attached to the housing 6 is provided as an operation member instead of or in addition to the foot switch 18. Then, electric energy is output from the energy source device 3 to the treatment instrument 2 by an operation with the operation member.
- FIG. 2 is a diagram showing a configuration for supplying electrical energy (high-frequency power P and heater power P ′ described later in the present embodiment) from the energy source device 3 to the treatment instrument 2.
- the electrode 21 is provided on the grasping piece 15, and the electrode 22 is provided on the grasping piece 16.
- the electrodes 21 and 22 are bipolar electrodes provided on the end effector 7.
- a heater 23 is provided as a heating element on at least one of the gripping pieces 15 and 16.
- the energy source device 3 includes a processor (controller) 25 and a storage medium 26.
- the processor 25 is formed from an integrated circuit including a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field Programmable Gate Array). Only one processor 25 may be provided in the energy source device 3, or a plurality of processors 25 may be provided in the energy source device 3.
- the processing in the processor 25 is performed according to a program stored in the processor 25 or the storage medium 26.
- the storage medium 26 stores a processing program used by the processor 25, parameters, functions, tables, and the like used in the calculation by the processor 25.
- the processor 25 detects whether or not an operation is input through an operation member such as the foot switch 18.
- the energy source device 3 includes a high frequency power source 31 as an energy output source.
- the high-frequency power source 31 includes a waveform generator, a conversion circuit, a transformer, and the like, and converts power from a battery power source or an outlet power source into high-frequency power P.
- the high-frequency power source 31 is electrically connected to the electrode 21 of the gripping piece 15 through the electric supply path 32 and is electrically connected to the electrode 22 of the gripping piece 16 through the electric supply path 33.
- Each of the electricity supply paths 32 and 33 extends through the inside of the cable 17, the inside of the housing 6, and the inside of the shaft 5, and is formed by electrical wiring or the like.
- the high frequency power supply 31 can output the converted high frequency power P.
- the high frequency power P output from the high frequency power supply 31 is supplied to the electrodes 21 and 22 through the electric supply paths 32 and 33, whereby the electrodes (bipolar electrodes).
- a high-frequency current flows through the treatment object between 21 and 22.
- the electrodes 21 and 22 have different potentials with respect to each other.
- the processor 25 controls the output from the high frequency power supply 31 to the electrodes 21 and 22 as described later.
- a current detection circuit 35 and a voltage detection circuit 36 are provided on the electrical path of the high frequency power P output from the high frequency power supply 31 to the electrodes 21 and 22.
- the current detection circuit 35 detects the current value of the output current I from the high frequency power supply 31, and the voltage detection circuit 36 outputs the output voltage V from the high frequency power supply 31.
- the voltage value of is detected.
- the analog signal indicating the current value detected by the current detection circuit 35 and the analog signal indicating the voltage value detected by the voltage detection circuit 36 are converted into a digital signal by an A / D converter (not shown) or the like. Then, the converted digital signal is transmitted to the processor 25.
- the processor 25 acquires information on the output current I and the output voltage V from the high frequency power supply 31.
- the processor 25 detects the impedance of the electrical path of the high-frequency power P output from the high-frequency power source 31 to the electrodes 21 and 22 based on the acquired output current I and output voltage V, and makes the impedance of the electrical path of the high-frequency power P Based on this, the impedance (tissue impedance) Z of the treatment target to be grasped is detected.
- the processor 25 detects the power value of the high-frequency power P, that is, the power value of the output power from the high-frequency power supply 31 to the electrodes 21 and 22 based on the acquired output current I and output voltage V.
- the processor 25 controls the output from the high frequency power supply 31 and the output from the heater power supply 41 as described later, using the acquired output current I and output voltage V, and the detected impedance Z and high frequency power P.
- the energy source device 3 includes a heater power supply 41 as an energy output source.
- the heater power supply 41 includes a conversion circuit, a transformer, and the like, and converts electric power from a battery power supply or an outlet power supply into heater electric power P ′.
- the heater power supply 41 is electrically connected to the heater 23 via the electric supply paths 42 and 43.
- Each of the electric supply paths 42 and 43 extends through the inside of the cable 17, the inside of the housing 6, and the inside of the shaft 5, and is formed by electrical wiring or the like.
- the heater power supply 41 can output the converted heater power P ′.
- the output heater power P ′ is DC power or AC power. Heat is generated in the heater 23 by supplying the heater power P ′ output from the heater power supply 41 to the heater 23 through the electric supply paths 42 and 43.
- the heater heat generated by the heater 23 is applied to the treatment target.
- the treatment object By applying a certain amount of heat to the treatment object as treatment energy, the treatment object is denatured and sealed or solidified. Further, the treatment target is incised by applying a large amount of heat to the treatment target.
- the processor 25 controls the output from the heater power supply 41 to the heater 23 as described below.
- a current detection circuit 45 and a voltage detection circuit 46 are provided in the electrical path of the heater power P ′ output from the heater power supply 41 to the heater 23.
- the current detection circuit 45 detects the current value of the output current I ′ from the heater power supply 41
- the voltage detection circuit 46 outputs from the heater power supply 41.
- the voltage value of the voltage V ′ is detected.
- the analog signal indicating the current value detected by the current detection circuit 45 and the analog signal indicating the voltage value detected by the voltage detection circuit 46 are converted into a digital signal by an A / D converter (not shown) or the like. Then, the converted digital signal is transmitted to the processor 25.
- the processor 25 acquires information on the output current I ′ and the output voltage V ′ from the heater power supply 41.
- the processor 25 detects the impedance of the electric path of the heater power P ′ output from the heater power supply 41 to the heater 23 based on the acquired output current I ′ and the output voltage V ′, and detects the electric path of the heater power P ′.
- the resistance R of the heater 23 is detected based on the impedance.
- the resistance R of the heater 23 changes corresponding to the temperature T of the heater 23, and a function or a table indicating the relationship between the temperature T of the heater 23 and the resistance R is stored in the storage medium 26 or the like. .
- the processor 25 detects the temperature T of the heater 23 based on the detected resistance R and the relationship between the stored temperature T and the resistance R. Further, the processor 25 detects the power value of the heater power P ′, that is, the power value of the output power from the heater power supply 41 to the heater 23 based on the acquired output current I ′ and output voltage V ′. The processor 25 controls the output from the heater power source 41 as described later, using the acquired output current I ′ and output voltage V ′, and the detected temperature T (resistance R) and heater power P ′.
- the treatment tool 2 is connected to the energy source device 3 via the cable 17. Then, the operator holds the housing 6 and inserts the end effector 7 into the body cavity such as the abdominal cavity. Then, the handle 12 is closed with respect to the grip 11 in a state where a treatment target such as a living tissue is positioned between the gripping pieces 15 and 16. Thereby, the space between the gripping pieces 15 and 16 is closed, and the treatment target is gripped between the gripping pieces 15 and 16.
- FIG. 3 is a flowchart showing processing performed by the processor 25 of the energy source device 3.
- the processor 25 determines whether or not an operation is input with an operation member such as the foot switch 18, that is, whether or not an operation input with the operation member is ON or OFF (S ⁇ b> 101). If no operation is input (S101-No), the process returns to S101. That is, the processor 25 stands by until an operation is input with the operation member.
- the processor 25 performs output control in the first phase regarding the output from the high frequency power supply 31 and the output from the heater power supply 41 (S102).
- the processor 25 When the output control in the first phase is completed, the processor 25 performs output control in the second phase with respect to the output from the high frequency power supply 31 and the output from the heater power supply 41 (S103). When the output control in the second phase ends, the processor 25 performs output control in the third phase with respect to the output from the high frequency power supply 31 and the output from the heater power supply 41 (S104). When the output control in the third phase ends, the processor 25 stops the output from the high frequency power supply 31 and the output from the heater power supply 41 (S105).
- FIG. 4 is a flowchart showing processing performed by the processor 25 in the output control (S102) in the first phase.
- the processor 25 starts the output of the high frequency power P from the high frequency power supply 31 to the electrodes 21 and 22 and starts the output of the heater power P ′ from the heater power supply 41 to the heater 23.
- the processor 25 when the output of the high-frequency power P is started, the processor 25 outputs the high-frequency power P from the high-frequency power supply 31 in a state where the high-frequency power P becomes constant over time at the power value Pe (S111).
- the output current I and the output voltage V from the high frequency power supply 31 are adjusted so that the high frequency power P, that is, the output power from the high frequency power supply 31 becomes constant at the power value Pe.
- the power value Pe is a fixed value Pe0.
- the processor 25 sets a target temperature (first target temperature) Ta as a target value for the output from the heater power supply 41 to the heater 23, PID control is performed at the set target temperature Ta (S112). That is, with respect to the output to the heater 23, output control is performed in which the temperature T of the heater 23 reaches the target temperature Ta and is maintained at the target temperature Ta.
- the processor 25 detects the resistance R of the heater 23 based on the output current I ′ and the output voltage V ′ from the heater power supply 41 as described above, and based on the detected resistance R. The temperature T of the heater 23 is detected.
- the processor 25 calculates the temperature deviation between the target temperature Ta and the temperature T of the heater 23, the time integral value of the temperature deviation (integrated value of the temperature deviation), and the time differential value of the temperature deviation (time variation rate of the temperature deviation).
- the output power from the heater 23 (heater power P ′), the output current I ′, and the output voltage V ′ are adjusted to reach the temperature T to the target temperature Ta and maintain the temperature T at the target temperature Ta.
- the processor 25 outputs the heater power P ′ from the heater power supply 41 with a large power value.
- the processor 25 causes the heater power supply 41 to output the heater power P ′ with a small power value.
- the target temperature Ta is a fixed value Ta0, and is set in a range of about 60 ° C. or more and about 100 ° C. In one embodiment, the target temperature Ta is set in a range of 60 ° C. or more and 100 ° C. or less, and in another embodiment, the target temperature Ta is set in a range of 60 ° C. or more and less than 100 ° C.
- the processor 25 detects the impedance Z based on the output current I and the output voltage V from the high frequency power supply 31 (S113). In the first phase, the processor 25 detects an initial value Ze of the impedance Z as a value indicating the impedance Z at the start of output or immediately after the start of output based on the detected impedance Z.
- the initial value Ze of the impedance Z is a parameter before the end of the second phase related to the impedance Z.
- the initial value Ze may be the impedance Z at any point in the first phase, and may be an average value or an intermediate value of the impedance Z in the first phase.
- the initial value Ze changes corresponding to the tissue volume (tissue volume) of the treatment target including the thickness of the blood vessel, and the initial value Ze changes corresponding to the state of the treatment target.
- the processor 25 determines whether or not the time t based on the start of output from the high frequency power supply 31 is equal to or longer than the reference time tref (S114). That is, it is determined whether or not the reference time tref has elapsed since the start of the first phase.
- the process returns to S111, and the processes after S111 are sequentially performed.
- the processor 25 ends the output control in the first phase and starts the output control in the second phase.
- the reference time tref is a fixed value, for example, and is a short time of about 100 ms. For this reason, the time during which the output control in the first phase is performed is short and instantaneous. Therefore, the output control in the first phase ends before the impedance Z decreases from the initial value Ze to a minimum value Zmin described later.
- FIG. 5 is a flowchart showing processing performed by the processor 25 in the output control (S103) in the second phase.
- the processor 25 uses the initial value Ze detected in the first phase as a target value for output control from the high-frequency power supply 31 over time.
- An increase rate ⁇ is set (S121).
- the processor 25 sets the increase rate ⁇ of the output voltage V to be larger as the initial value Ze is smaller.
- the processor 25 sets the target trajectory of the output voltage V for the output control from the high-frequency power supply 31 in the second phase based on the set increase rate ⁇ (S121). In the target trajectory, the output voltage V increases constantly over time at a set increase rate ⁇ .
- the processor 25 sets the inclination of the target trajectory to be larger as the initial value Ze is smaller, and sets the value on the target trajectory to be larger at each time point in the second phase. Then, the processor 25 performs output control from the high frequency power supply 31 to the electrodes 21 and 22 in a state along the target trajectory set by the output voltage V (S122). Also in the second phase, the processor 25 performs PID control at the target temperature (first target temperature) Ta described above with respect to the output from the heater power supply 41 to the heater 23 (S123).
- the processor 25 detects the impedance Z to be treated based on the output current I and the output voltage V from the high frequency power supply 31 (S124).
- the treatment target is denatured by the application of the high-frequency current and the heater heat, and the moisture of the treatment target starts to boil.
- the impedance Z decreases from the initial value Ze over time.
- the moisture to be treated starts to boil, the moisture to be treated begins to evaporate, and thus the impedance Z begins to increase over time.
- a minimum value Zmin of the impedance Z that switches from a state in which the impedance Z decreases with time to a state in which the impedance Z increases with time is generated at or near the time when the water to be treated begins to boil.
- the processor 25 determines whether or not the impedance Z has reached the minimum value Zmin based on the detected impedance Z (S125). In one embodiment, in determining whether the impedance Z has become the minimum value Zmin, the processor 25 detects when the impedance Z is switched from a decreasing state to an increasing state.
- the processor 25 switches off the impedance Z based on the fact that the impedance Z has increased by more than the reference value from the time of switching, or that the impedance Z has continued to be greater than the switching time from the time of switching to the reference time or more. At the time of replacement, it is determined that the impedance Z has reached the minimum value Zmin.
- the process returns to S122, and the processes after S122 are sequentially performed. For this reason, in the second phase, the processor 25 continues the output to the electrodes 21 and 22 and the output to the heater 23 until it detects that the impedance Z has reached the minimum value Zmin, and the high-frequency current and the heater heat.
- the treatment object is continuously denatured by the application of. If it is determined that the impedance Z has reached the minimum value Zmin (S125-Yes), the processor 25 determines the time from the start of the second phase to the detection when the impedance Z has been detected to have the minimum value Zmin. It is detected as the duration Ya of the second phase (S126).
- the processor 25 ends the output control in the second phase and starts the output control in the third phase. Therefore, the detection of the minimum value Zmin of the impedance Z is the end of the second phase and the start of the third phase.
- the minimum value Zmin is detected after the time when the impedance Z becomes the minimum value Zmin, for example, immediately after the time when the impedance Z becomes the minimum value Zmin.
- the duration Ya of the second phase is a parameter before the end of the second phase related to the impedance Z.
- the minimum value Zmin of the impedance Z, the time when the impedance Z becomes the minimum value Zmin, the change mode of the impedance Z until the minimum value Zmin, etc. correspond to the amount of tissue to be treated including the thickness of the blood vessel. Change in response to the condition of the treatment target. For this reason, the duration Ya of the second phase changes in accordance with the amount of tissue to be treated and changes in accordance with the state of the treatment target.
- the processor 25 detects the initial value Ze of the impedance Z and the duration Ya of the second phase as parameters before the detection of the minimum value Zmin related to the impedance Z. .
- the processor 25 determines the amount of tissue to be treated based on the detected initial value Ze and duration Ya. At this time, in an embodiment, the processor 25 determines that the tissue amount is larger as the initial value Ze is smaller. Then, the processor 25 determines that the tissue amount is larger as the duration time Ya is longer.
- FIG. 6 is a flowchart showing processing performed by the processor 25 in the output control (S104) in the third phase.
- the processor 25 receives from the high frequency power supply 31 based on the initial value Ze and the duration Ya detected before the end of the second phase, that is, based on the determination result of the tissue amount to be treated.
- the voltage value Va of the output voltage V is set (S131).
- the processor 25 sets the voltage value Va larger as the initial value Ze is smaller, and sets the voltage value Va larger as the duration Ya is longer. For this reason, the voltage value Va is set larger as the amount of tissue increases.
- the processor 25 sets a target temperature Tb of the heater 23 as a target value related to output control from the heater power supply 41 based on the detected initial value Ze and duration Ya (S132).
- the target temperature Tb for example, a function or a table indicating the relationship between the initial value Ze stored in the storage medium 26 and the duration Ya with respect to the target temperature Tb is used.
- the processor 25 sets the target temperature Tb higher as the initial value Ze is smaller, and sets the target temperature Tb higher as the duration Ya is longer. For this reason, for example, the target temperature Tb is set higher as the blood vessel to be treated is thicker, that is, as the amount of tissue is larger.
- the target temperature Tb may be set to be higher than the target temperature Ta before the end of the second phase, or may be set lower than the target temperature Ta. However, in any case, the set target temperature Tb is lower than the temperature (for example, 200 ° C. or higher) when the treatment target is incised by the heater heat. On the other hand, when it is determined that the tissue amount to be treated is smaller than the reference value based on the initial value Ze and the duration time Ya, the processor 25 sets the target temperature Tb to be lower than the target temperature Ta before the end of the second phase. Set.
- the processor 25 performs constant voltage control for making the output voltage V constant at a set voltage value Va with respect to the output from the high frequency power supply 31 (S133). Further, the processor 25 performs PID control at the set target temperature Tb with respect to the output from the heater power supply 41 (S134). That is, with respect to the output to the heater 23, output control is performed so that the temperature T of the heater 23 reaches the target temperature Tb and is maintained at the target temperature Tb. Then, the processor 25 detects the impedance Z to be treated based on the output current I and the output voltage V from the high frequency power supply 31 (S135).
- the impedance Z increases with time.
- the processor 25 determines whether or not the impedance Z is greater than or equal to the threshold value Zth (S136).
- the threshold value Zth is a fixed value Zth0.
- the processor 25 continues the output to the electrodes 21 and 22 and the output to the heater 23 until the impedance Z becomes equal to or greater than the threshold value Zth, and continues by applying the high-frequency current and the heater heat. To denature the treatment target.
- the processor 25 ends the output control in the third phase.
- the output to the electrodes 21 and 22 and the heater are performed by the process of S105.
- the output to 23 is stopped. Therefore, in the present embodiment, the threshold value Zth is used for determining the end of the third phase. In the state where the impedance Z has increased to the threshold value Zth, the moisture of the treatment target evaporates and the treatment target is dehydrated. For this reason, in the state where the impedance Z has increased to the threshold value Zth, the state in which the treatment target is dried and the moisture in the treatment target is boiling has ended.
- FIG. 7 shows an example of the target trajectory of the output voltage V from the high frequency power supply 31 when the processor 25 performs processing as described above
- FIG. 8 shows the target of the output voltage V from the high frequency power supply 31 as shown in FIG.
- An example of a change with time of the impedance Z of the treatment target when the trajectory is set is shown.
- FIG. 9 shows an example of the target trajectory of the temperature T of the heater 23 when the target trajectory of the output voltage V is set as shown in FIG.
- the horizontal axis indicates the time t based on the start of the first phase.
- the vertical axis indicates the output voltage V from the high frequency power supply 31
- FIG. 8 indicates the impedance Z on the vertical axis
- FIG. 7 shows an example of the target trajectory of the output voltage V from the high frequency power supply 31 when the processor 25 performs processing as described above
- FIG. 8 shows the target of the output voltage V from the high frequency power supply 31 as shown in FIG.
- FIG. 9 shows an example of the target trajectory of the temperature T
- the vertical axis indicates the temperature T of the heater 23.
- changes with time are shown for three states (organizational states) X1 to X3.
- the tissue amounts to be treated are different from each other.
- the amount of tissue of the treatment target such as a thin blood vessel as the treatment target is small.
- the amount of tissue to be treated such as a thick blood vessel to be treated is large.
- the change with time in the state X1 is indicated by a solid line
- the change with time in the state X2 is indicated by a one-dot chain line
- the change with time in the state X3 is indicated by a broken line.
- the change with time in the impedance Z in the state X′1 is indicated by a two-dot chain line as a comparative example.
- the tissue amount is substantially the same as that in the state X1, but the output to the heater 23 in the third phase is different from that in the state X1.
- the initial value Ze of the impedance Z detected in the first phase is smaller as the amount of tissue to be treated is larger.
- the initial value Ze1 in the state X1 is larger than the initial value Ze2 in the state X2
- the initial value Ze3 in the state X3 is the initial value Ze2 in the state X2. Smaller than that.
- the smaller the initial value Ze of the impedance Z is the larger the increase rate ⁇ of the output voltage V in the second phase is set, and the output voltage V in the second phase is increased.
- the inclination of the target trajectory is set large.
- the increase rate ⁇ of the output voltage V and the inclination of the target trajectory in the second phase are set smaller than in the state X2.
- the increase rate ⁇ of the output voltage V and the inclination of the target trajectory in the second phase are set larger than in the state X2.
- the minimum value Zmin of the impedance Z is smaller as the amount of tissue to be treated is larger.
- the time until the impedance Z reaches the minimum value Zmin is longer as the amount of tissue to be treated is larger.
- the duration Ya of the second phase is longer as the amount of tissue to be treated is larger.
- the minimum value Zmin1 in the state X1 is larger than the minimum value Zmin2 in the state X2, and the time until the minimum value Zmin1 in the state X1 becomes smaller than the time until the minimum value Zmin2 in the state X2 is reached. Short. For this reason, the duration Ya1 of the second phase in the state X1 is shorter than the duration Ya2 of the second phase in the state X2.
- the minimum value Zmin3 in the state X3 is smaller than the minimum value Zmin2 in the state X2, and the time until the minimum value Zmin3 in the state X3 becomes smaller than the time until the minimum value Zmin2 in the state X2 is reached. ,long. For this reason, the duration Ya3 of the second phase in the state X3 is longer than the duration Ya2 of the second phase in the state X2.
- the voltage value Va of the output voltage V in the constant voltage control in the third phase is set large.
- the voltage value Va1 in the third phase set in the state X1 is smaller than the voltage value Va2 in the third phase set in the state X2.
- the voltage value Va3 in the third phase set in the state X3 is larger than the voltage value Va2 set in the state X2.
- the target temperature Tb in the PID control in the third phase is set high.
- the target temperature Tb1 in the third phase set in the state X1 is lower than the target temperature Tb2 in the third phase set in the state X2.
- the target temperature Tb3 in the third phase set in the state X3 is higher than the target temperature Tb2 set in the state X2.
- the target temperature Tb set in the state X2 is substantially the same as the target temperature Ta0 before the end of the second phase, and the target temperature Tb set in the state X3 is the second phase.
- the processor 25 determines that the tissue amount to be treated is smaller than the reference value based on the initial value Ze and the duration time Ya. Therefore, in the state X1, the processor 25 sets the target temperature (second target temperature) Tb1 to be lower than the target temperature (first target temperature) Ta0 before the detection of the minimum value Zmin. Therefore, in the state X1, regarding the output from the heater power supply 41 in the third phase, output control is performed in which the heater 23 is lowered from the target temperature Ta0 to the target temperature Tb1 and maintained at the target temperature Tb1.
- the target temperature Tb is set to a fixed value T ′ in the third phase regardless of the initial value Ze of the impedance Z and the duration Ya of the second phase, that is, regardless of the amount of tissue to be treated.
- the fixed value T′b0 of the target temperature Tb in the comparative example is higher than the target temperature Ta0 before the detection of the minimum value Zmin.
- output control is performed from the heater power supply 41 at the target temperature T′b0 in the third phase even in the state X′1 where the tissue amount is small as in the state X1.
- the amount of heater heat applied to the treatment target in the third phase is larger than in the state X1. Since a large amount of heat is applied to the treatment target with a small amount of tissue, in the state X′1, the evaporation amount of water per unit volume of the treatment target increases rapidly after the start of the third phase. For this reason, in the state X′1, the impedance Z rapidly increases after the detection of the minimum value Zmin, and the treatment target is quickly dehydrated and quickly dried.
- the target temperature Tb in the third phase is set lower than the target temperature Ta0 before the detection of the minimum value Zmin.
- output control from the heater power supply 41 is performed at a low target temperature Tb.
- the time until the impedance Z gradually increases and the treatment object is dehydrated that is, the time until the treatment object is dried. Is long.
- the output control from the heater power supply 41 is performed in the third phase as described above, even when the tissue amount to be treated is small, the time during which the moisture to be treated is boiling is long. For this reason, even when the tissue amount of the treatment target is small, the time for which the treatment target is welded and fused becomes long, the treatment target is appropriately welded and fused, and the treatment target is properly sealed and solidified.
- the state of the treatment target such as the tissue amount of the treatment target is appropriately detected based on the initial value Ze of the impedance Z and the duration Ya of the second phase.
- the output from the heater power supply 41 in the third phase is appropriately controlled. That is, in accordance with the state of the treatment target, the time during which the moisture of the treatment target is boiling is long and the time during which the treatment target is welded is long. Output control is performed. For this reason, regardless of the state of the treatment target such as the tissue amount of the treatment target, the treatment target is appropriately sealed and solidified.
- output from the heater power supply 41 is started before the detection of the minimum value Zmin, and output control to the heater 23 at the target temperature Ta is continuously performed in the second phase. .
- the treatment target is denatured by the heater heat. Since the treatment target is continuously denatured by the heater heat in the second phase before the detection of the minimum value Zmin, in this embodiment, after starting output to the electrodes 21 and 22 in the first phase, The object to be treated quickly changes to the above-mentioned state where water boils. By shortening the time from the start of output from the high-frequency power supply 31 until the moisture of the treatment target becomes a boiling state, the sealing performance and the coagulation property of the treatment target are improved, and the energy efficiency in the treatment is improved.
- the processor 25 sets the target temperature as a target value for output control to the heater 23 in the third phase based on the initial value Ze of the impedance Z and the duration Ya of the second phase.
- Tb is set, it is not limited to this.
- the processor 25 uses the minimum value Zmin, minimum time Zmin of the impedance Z instead of the initial value Ze and the duration Ya, or in addition to the initial value Ze and the duration Ya, and Based on the decrease rate of the impedance Z up to the minimum value Zmin, the tissue amount to be treated is determined, and the target temperature Tb of the heater 23 in the third phase is set.
- the minimum value Zmin of the impedance Z, the time when the minimum value Zmin is reached, and the minimum value Zmin are parameters before the end of the second phase related to the impedance Z.
- the processor 25 determines that the tissue amount to be treated is larger as the minimum value Zmin is smaller, and sets the target temperature Tb in the third phase higher. To do.
- the processor 25 performs the third phase based on one of the output power (high-frequency power P), the output current I, and the output voltage V from the high-frequency power supply 31 before the detection of the minimum value Zmin.
- the target temperature Tb of the heater 23 at is set. That is, the target temperature Tb is set based on the parameters before the end of the second phase related to the output from the high frequency power supply 31. For example, when output control from the high frequency power supply 31 is performed in the second phase as in the first embodiment, the higher the amount of tissue to be treated, the larger the high frequency power P that is output in the second phase. . For this reason, in this modification, for example, the processor 25 determines that the amount of tissue to be treated increases as the high-frequency power P output in the second phase increases, and sets the target temperature Tb in the third phase. Set high.
- output to the heater 23 is performed in the first phase.
- the heater power P ′ is output to the heater 23 at the start of the second phase. Is started.
- the processor 25 maintains the output stop to the heater 23 in the first phase.
- output control to the heater 23 at the target temperature Ta is performed by the process of S123. For this reason, in the second phase, the treatment target is continuously denatured by the heat of the heater, and the treatment target is changed to the above-described state in which moisture boils.
- the increase rate ⁇ of the output voltage V that is a target value related to output control from the high-frequency power supply 31 in the second phase. Is a fixed value ⁇ 0.
- the processor 25 does not perform the process of S121 for setting the increase rate ⁇ and the target trajectory based on the initial value Ze.
- the high-frequency power supply in the third phase is independent of the above-described parameters (Ze, Ya, Zmin, etc.) such as the initial value Ze and the duration Ya, that is, regardless of the tissue amount to be treated.
- a voltage value Va, which is a target value related to output control from 31, is a fixed value Va0.
- the processor 25 does not perform the process of S131 for setting the voltage value Va based on the parameters (Ze, Ya, Zmin, etc.).
- constant power control for setting the output power (high frequency power P) from the high frequency power supply 31 to a constant power value Pa, and the output current I to a constant current value Ia.
- the processor 25 may set the power value Pa, which is a target value, to a fixed value Pa0 regardless of the detected parameters (Ze, Ya, etc.), and the detected parameters (Ze, Ya, etc.).
- the power value Pa may be set based on the above.
- the processor 25 sets the power value Pa to be larger as the duration Ya is longer, that is, as the amount of tissue to be treated is larger. To do.
- the processor 25 may set the current value Ia, which is the target value, to the fixed value Ia0 regardless of the detected parameter (Ze, Ya, etc.), and the detected parameter (Ze, Ya, The current value Ia may be set based on Ya or the like.
- the processor 25 sets the current value Ia to be larger as the duration Ya is longer, that is, as the amount of tissue to be treated is larger, for example. To do.
- the processor 25 switches between the above-described constant voltage control, constant power control, and constant current control based on the impedance Z.
- the processor 25 switches between constant voltage control, constant power control, and constant current control based on the switching value Zs1 and the switching value Zs2 larger than the switching value Zs1.
- the processor 25 performs the above-described constant current control for the output from the high frequency power supply 31.
- the processor 25 performs the above-described constant power control on the output from the high frequency power supply 31.
- the processor 25 When the impedance Z is equal to or higher than the switching value Zs2, the processor 25 performs the above-described constant voltage control on the output from the high frequency power supply 31.
- the threshold value Zth of the impedance Z used for determining the end of the third phase is set to be larger than the switching values Zs1 and Zs2.
- the processor 25 sets the target trajectory of the impedance Z for the third phase, and controls the output from the high frequency power supply 31 so that the impedance Z changes along the set target trajectory.
- the high frequency power P, the output voltage V, and the output current I from the high frequency power supply 31 are adjusted so that the impedance Z is along the target trajectory.
- the target trajectory of the impedance Z may be set to a predetermined trajectory regardless of the detected parameters (Ze, Ya, etc.), or may be set based on the detected parameters (Ze, Ya, etc.).
- the processor 25 stops the output from the high frequency power supply 31 in a 3rd phase instead of the process of S133. In this case, in the third phase, the treatment target is continuously denatured by the heater heat, and the moisture of the treatment target continues to boil.
- the processor 25 when it is determined that the tissue amount to be treated is smaller than the reference value based on the parameters (Ze, Ya, etc.), the processor 25 minimizes the target temperature Tb in the third phase. Although it is set lower than the target temperature Ta before the value Zmin is detected, the present invention is not limited to this. In a modification, when it is determined that the tissue amount to be treated is smaller than the reference value based on the parameters (Ze, Ya, etc.), the processor 25 continues to output to the heater 23 in the third phase. Stop.
- the processor 25 uses the third parameter based on the parameters (Ze, Ya, etc.).
- the necessity of output to the heater 23 in the phase is determined. Therefore, in this modification, when the amount of tissue to be treated such as the state X1 is small, the heater power P ′ is not output to the heater 23 in the third phase, and no heat is generated in the heater 23.
- the treatment target is continuously denatured by the heat caused by the high-frequency current, the heater heat generated before the third phase, and the moisture of the treatment target continues. Boiling.
- the output to the heater 23 is continued in the third phase, and the heater 23 generates heat.
- the processor 25 increases the target temperature Tb in the third phase as the duration Ya is longer, that is, as the tissue amount is larger, for example. Set.
- the threshold value Zth of the impedance Z used for determining the end of the third phase is the fixed value Zth0, but is not limited thereto.
- the processor 25 sets a threshold value Zth of the impedance Z as a target value related to output control to the heater 23 in the third phase based on the above-described parameters (Ze, Ya, etc.). In this case, for example, the processor 25 sets the threshold value Zth that is the target value higher as the duration Ya of the second phase is longer, that is, as the tissue amount is larger.
- the threshold value Ybth of the elapsed time Yb from the start of the third phase is set as a target value related to output control to the heater 23 in the third phase. Is done.
- the threshold value Ybth of the elapsed time Yb is used for determining the end of the third phase.
- the threshold value Ybth of the elapsed time Yb may be a fixed value Ybth0, or may be set based on the parameters (Ze, Ya, etc.) described above.
- the processor 25 increases the threshold value Ybth that is the target value as the duration Ya of the second phase is longer, that is, as the tissue amount is larger. Set a longer time.
- FIG. 10 is a flowchart showing processing performed by the processor 25 of the energy source device 3 of the present modification.
- the processor 25 receives the output from the high frequency power supply 31 and the heater power supply 41 when an operation is input through the operation member (Yes in S101). With respect to the output, the output control in the first phase (S102), the output control in the second phase (S103), and the output control in the third phase (S104) are sequentially performed. However, in the present modification, when the output control in the third phase ends, the processor 25 performs the output control in the fourth phase with respect to the output from the high frequency power supply 31 and the output from the heater power supply 41 (S106). ).
- the processor 25 switches to the fourth phase based on the fact that the impedance Z becomes equal to or greater than the aforementioned threshold value Zth in the third phase.
- the processor 25 stops the output from the high frequency power supply 31 and the output from the heater power supply 41 (S105).
- the treatment target is opened by applying the heater heat.
- FIG. 11 is a flowchart showing a process performed by the processor 25 in the output control (S106) in the fourth phase.
- the processor 25 determines the amount of tissue to be treated based on parameters (Ze, Ya, Zmin, etc.) detected before the end of the second phase, such as the initial value Ze and the duration Ya. Based on the determination result, the voltage value Vb of the output voltage V is set as a target value related to output control from the high frequency power supply 31 (S141).
- the processor 25 sets the voltage value Vb to be larger as the initial value Ze is smaller, and sets the voltage value Vb to be larger as the duration Ya is longer. For this reason, the larger the tissue amount, the larger the voltage value Vb is set.
- the processor 25 sets the target temperature Tc of the heater 23 as a target value related to output control from the heater power supply 41 based on the detected parameters (Ze, Ya, Zmin, etc.) (S142). At this time, the processor 25 sets the target temperature Tc higher as the initial value Ze is smaller, and sets the target temperature Tc higher as the duration Ya is longer. For this reason, for example, the target temperature Tc is set higher as the blood vessel to be treated is thicker, that is, as the amount of tissue is larger. In any case, the target temperature Tc is a temperature at which the treatment target can be cut, and is higher than the target temperature Ta in the second phase. Further, the target temperature Tc in the fourth phase is higher than the target temperature Tb set in the third phase. In an embodiment, for example, the target temperature Tc is set in a range of 200 ° C. or higher.
- the processor 25 uses the elapsed time Yc from the start of the fourth phase based on the detected parameters (Ze, Ya, Zmin, etc.) to determine the end of the output control in the fourth phase.
- the threshold value Ycth to be set is set (S143). At this time, the processor 25 sets the threshold Ycth longer as the initial value Ze is smaller, and sets the threshold Ycth longer as the duration Ya is longer. For this reason, the greater the amount of tissue, the longer the threshold Ycth of the elapsed time Yc is set.
- the processor 25 performs constant voltage control for making the output voltage V constant over time at the set voltage value Vb with respect to the output from the high frequency power supply 31 (S144). Further, the processor 25 performs PID control at the set target temperature Tc with respect to the output from the heater power supply 41 (S145). That is, regarding the output to the heater 23, output control is performed in which the temperature T of the heater 23 is raised to the target temperature Tc and maintained at the target temperature Tc. As described above, the target temperature Tc in the fourth phase is higher than the target temperature Tb in the third phase. For this reason, the processor 25 increases the output to the heater 23 by switching from the third phase to the fourth phase.
- the output voltage V ′ from the heater power supply 41, the output power (heater power P ′), and the like increase. Further, at the start of the fourth phase, the impedance Z has risen to the above-described threshold value Zth, the treatment target is dried, and the state in which the moisture of the treatment target is boiling has ended. Therefore, the incision using the heater heat is performed in a state where the treatment target is dried after the treatment target is sealed or coagulated.
- the processor 25 determines whether or not the elapsed time Yc from the start of the fourth phase is equal to or greater than the threshold Ycth (S146). When the elapsed time Yc is shorter than the threshold Ycth (S146-No), the process returns to S144, and the processes after S144 are sequentially performed. For this reason, in the fourth phase, the processor 25 continues the output to the electrodes 21 and 22 and the output to the heater 23 until the elapsed time Yc becomes equal to or greater than the threshold Ycth.
- the processor 25 ends the output control in the fourth phase, and in the present embodiment, the output to the electrodes 21 and 22 is performed by the process of S105. The output to the heater 23 is stopped.
- FIG. 12 shows an example of the target trajectory of the temperature T of the heater 23 when the processor 25 performs the processing as described above.
- the horizontal axis indicates the time t based on the start of the first phase
- the vertical axis indicates the temperature T of the heater 23.
- target trajectories are shown for the three states (organization states) X1 to X3 described above.
- the change with time in the state X1 is indicated by a solid line
- the change with time in the state X2 is indicated by a one-dot chain line
- the change with time in the state X3 is indicated by a broken line.
- the target temperature Tc in the PID control in the fourth phase is set higher than the target temperature Ta0 in the second phase in any of the states X1 to X3. Is done.
- the target temperature Tc is 200 ° C. or higher. Therefore, in any of the states X1 to X3, in the fourth phase, the treatment target is incised by the heater heat.
- the target temperature Tc in the fourth phase is set higher than the target temperature Tb in the third phase. For this reason, in any of the states X1 to X3, the output to the heater 23 increases by switching from the third phase to the fourth phase.
- the target temperature Tc in the PID control in the fourth phase is set high.
- the target temperature Tc1 in the fourth phase set in the state X1 is lower than the target temperature Tc2 in the fourth phase set in the state X2.
- the target temperature Tc3 in the fourth phase set in the state X3 is higher than the target temperature Tc2 set in the state X2.
- the threshold value Ycth of the elapsed time Yc used for determining the end of the phase 4 is set longer.
- the threshold Ycth1 set in the state X1 is shorter than the threshold Ycth2 set in the state X2.
- the threshold value Ycth3 set in the state X3 is longer than the threshold value Ycth3 set in the state X2.
- the state of the treatment target is determined based on parameters before the end of the second phase, such as the initial value Ze of the impedance Z and the duration Ya of the second phase, as in the above-described embodiments. Appropriately detected. Based on the detected state of the treatment target, the output from the heater power supply 41 in the third phase is appropriately controlled. That is, in accordance with the state of the treatment target, the time during which the moisture of the treatment target is boiling is long and the time during which the treatment target is welded is long. Output control is performed. For this reason, regardless of the state of the treatment target such as the tissue amount of the treatment target, the treatment target is appropriately sealed and solidified. In the present embodiment, the treatment target appropriately sealed and coagulated in the third phase is appropriately incised in the fourth phase.
- the output control from the high-frequency power supply 31 in the fourth phase is not limited to the control in the second embodiment.
- the voltage value Vb which is a target value related to output control from the high-frequency power supply 31 in the fourth phase, is a fixed value Vb0 regardless of the amount of tissue to be treated.
- constant power control for setting the output power (high frequency power P) from the high frequency power supply 31 to a constant power value Pb, and the output current I to a constant current value Ib. Perform either constant current control.
- the processor 25 may set the power value Pb and the current value Ib to fixed values regardless of the detected parameters (Ze, Ya, etc.), and based on the detected parameters (Ze, Ya, etc.). May be set.
- the processor 25 switches between the above-described constant voltage control, constant power control, and constant current control based on the impedance Z.
- the processor 25 sets the target trajectory of the impedance Z for the fourth phase, and controls the output from the high frequency power supply 31 so that the impedance Z changes along the set target trajectory.
- the target trajectory is set in a state where the impedance constantly increases with time from the threshold value Zth at the end of the third phase.
- the target trajectory of the impedance Z may be set to a predetermined trajectory regardless of the detected parameter (Ze, Ya, etc.), or may be set based on the detected parameter (Ze, Ya, etc.).
- the processor 25 stops the output from the high frequency power supply 31 in a 4th phase instead of the process of S144. In this case, in the fourth phase, only the heater heat is applied to the treatment target.
- the target temperature Tc in the fourth phase is set to a fixed value Tc0 regardless of the detected parameters (Ze, Ya, etc.). Also in this case, the target temperature Tc0 is a temperature at which a treatment target such as 200 ° C. or higher can be cut, and is higher than the target temperature Ta in the second phase. Further, the target temperature Tc0 in the fourth phase is higher than the target temperature Tb set in the third phase.
- the threshold value Ycth of the elapsed time Yc used for determining the end of the fourth phase may be a fixed value Ycth0.
- the threshold value Zath of the impedance Z different from the threshold value Zth is used for determining the end of the fourth phase.
- the threshold value Zath is higher than the threshold value Zth used for determining the end of the third phase.
- the threshold value Zath of the impedance Z may be a fixed value regardless of the detected parameter (Ze, Ya, etc.), or may be set based on the detected parameter (Ze, Ya, etc.).
- the temperature of the treatment target rises due to the heat of the heater or the like, so the impedance Z increases with time from the threshold value Zth used for determining the end of the third phase.
- the output from the high frequency power supply 31 and the output from the heater power supply 41 are stopped by the process of S105 at the end of the third phase or the fourth phase or immediately after the end.
- the processor 25 continues the output to the heater 23.
- the output from the heater power supply 41 is controlled to be low so that the treatment target is not denatured by the heater heat.
- the processor 25 stops the output from the heater power supply 41 based on the passage of a certain amount of time from the end of the third phase or the end of the fourth phase or the operation of the operator or the like.
- the processor 25 continues the output to the electrodes 21 and 22.
- the output from the high frequency power supply 31 is controlled to be low so that the treatment target is not denatured by the high frequency current.
- the processor 25 stops the output from the high-frequency power supply 31 based on the passage of a certain amount of time from the end of the third phase or the end of the fourth phase, or the operation of the operator or the like.
- the energy output source (31, 41) of the energy source device (3) outputs the high frequency power (P) to the bipolar electrode (21, 22), thereby the bipolar electrode (21, 22).
- a high-frequency current is passed through the treatment target between and the heater power (P ′) is output to the heater (23) to generate heat in the heater (23).
- the processor (25) starts output to the bipolar electrodes (21, 22), and detects an initial value (Ze) of the impedance (Z) to be treated.
- the processor (25) continues the output to the bipolar electrodes (21, 22) so that the treatment target is denatured by applying the high-frequency current, and the impedance (Z) is It is determined whether or not the minimum value (Zmin) has been reached, and in the second phase, the output to the heater (23) is continued in a state where the treatment target is denatured by the heat of the heater (23). Further, the processor (25) is configured to set parameters (Ze, Ya, etc.) before the detection of the minimum value (Zmin) of the impedance (Z) related to at least one of the impedance (Z) and the output to the bipolar electrodes (21, 22).
- At least one of setting of target values (Tc, Zth, Ybth) relating to output control to the heater (23) is performed.
- the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage.
- the embodiments may be appropriately combined as much as possible, and in that case, the combined effect can be obtained.
- the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
エネルギー源装置のプロセッサは、第1のフェーズの直後の第2のフェーズにおいて、バイポーラ電極への出力を継続させ、処置対象のインピーダンスが極小値になったか否かを判断するとともに、ヒータへの出力を継続させる。前記プロセッサは、前記インピーダンス及び前記バイポーラ電極への出力の少なくとも一方に関連する前記極小値の検出時以前のパラメータに基づいて、前記極小値の前記検出時の直後の第3のフェーズについて、前記ヒータへの出力の要否の判断、 及び、前記ヒータへの出力制御に関する目標値の設定の少なくとも一方を行う。
Description
本発明は、バイポーラ電極及びヒータを備える処置具と一緒に用いられるエネルギー源装置に関する。
US2009/0248002A1には、一対の把持片の間で生体組織等の処置対象を把持可能な処置具、及び、その処置具に電気エネルギーを供給するエネルギー源装置が開示されている。この処置具では、把持片のそれぞれに電極が設けられるとともに、把持片の一方にヒータが設けられる。エネルギー源装置は、電極(バイポーラ電極)に高周波電力を出力するとともに、ヒータにヒータ電力を出力する。これにより、把持される処置対象を通して電極の間で高周波電流が流れるとともに、ヒータで発生した熱が把持される処置対象に付与される。すなわち、高周波電流及びヒータ熱の両方が、処置対象に付与される。
US2009/0248002A1に示すように高周波電流及びヒータ熱の両方が処置対象に付与される処置具を用いた処置として、高周波電流、ヒータ熱等の付与によって処置対象を変性させ、処置対象を封止又は凝固させることがある。この場合、高周波電流、ヒータ熱等が処置対象に付与されている状態において、処置対象が脱水され、かつ、乾燥するまで、処置対象の水分が沸騰する。処置対象を封止又は凝固させる処置では、処置対象の水分が沸騰している時間が長いほど、処置対象が溶接される(welded)時間、すなわち、処置対象が融合される(fused)時間が長くなり、処置対象の封止性及び凝固性が向上する。したがって、処置対象を封止又は凝固させる処置では、処置対象が溶接させる時間が長くなる状態に、処置対象の状態に対応させてヒータ電源からヒータへの出力が制御されることが求められる。
本発明の目的とするところは、処置対象の状態に基づいてヒータ電源からの出力が適切に制御され、処置対象の封止性及び凝固性が向上するエネルギー源装置を提供することにある。
前記目的を達成するため、本発明のある態様は、一対の把持片の間で処置対象を把持可能なエンドエフェクタを備え、前記エンドエフェクタはヒータ及びバイポーラ電極を備える処置具の使用時に、前記処置具と一緒に用いられるエネルギー源装置であって、前記バイポーラ電極に高周波電力を出力することにより、前記バイポーラ電極の間で前記処置対象を通して高周波電流を流すとともに、前記ヒータにヒータ電力を出力することにより、前記ヒータで熱を発生させるエネルギー出力源と、前記バイポーラ電極への出力及び前記ヒータへの出力を制御するプロセッサと、を備え、前記プロセッサは、第1のフェーズにおいて、前記バイポーラ電極への前記出力を開始させ、前記処置対象のインピーダンスの初期値を検出し、前記第1のフェーズの直後の第2のフェーズにおいて、前記高周波電流の付与によって前記処置対象が変性する状態に前記バイポーラ電極への前記出力を継続させ、前記インピーダンスが極小値になったか否かを判断し、前記第2のフェーズにおいて、前記ヒータの前記熱によって前記処置対象が変性する状態に前記ヒータへの出力を継続させ、前記インピーダンス及び前記バイポーラ電極への前記出力の少なくとも一方に関連する前記インピーダンスの前記極小値の検出時以前のパラメータを取得し、取得した前記パラメータに基づいて、前記極小値の前記検出時の直後の第3のフェーズについて、前記ヒータへの前記出力の要否の判断、及び、前記ヒータへの出力制御に関する目標値の設定の少なくとも一方を行う。
(第1の実施形態)
本発明の第1の実施形態について、図1乃至図9を参照して説明する。
本発明の第1の実施形態について、図1乃至図9を参照して説明する。
図1は、本実施形態の処置システム1を示す図である。図1に示すように、処置システム1は、処置具2と、処置具2へ電気エネルギーを供給するエネルギー源装置3と、を備える。処置具2の使用時には、エネルギー源装置3が一緒に使用される。処置具2は、シャフト5を備え、シャフト5は、中心軸として長手軸Cを有する。長手軸Cに沿う方向についてシャフト5の一端側(基端側)には、保持可能なハウジング6が連結される。また、シャフト5においてハウジング6が位置する側とは反対側の端部、すなわち、シャフト5の先端部には、エンドエフェクタ7が設けられる。ハウジング6には、グリップ11が設けられるとともに、ハンドル12が回動可能に取付けられる。ハンドル12がハウジング6に対して回動することにより、ハンドル12がグリップ11に対して開く又は閉じる。
エンドエフェクタ7は、一対の把持片15,16を備え、処置具2では、シャフト5の内部又は外部を通って、長手軸Cに沿って可動部材13が延設される。可動部材13の一端(先端)は、エンドエフェクタ7に接続され、可動部材13の他端(基端)は、ハウジング6の内部においてハンドル12に連結される。ハンドル12をグリップ11に対して開く又は閉じることにより、可動部材13がシャフト5の長手軸Cに沿って移動し、一対の把持片15,16の間が開く又は閉じる。これにより、把持片15,16の間で血管等の生体組織を処置対象として把持可能となる。なお、ある実施例では、把持片15,16の一方がシャフト5と一体又はシャフト5に対して固定され、把持片15,16の他方がシャフト5の先端部に回動可能に取付けられる。また、別のある実施例では、把持片15,16の両方がシャフト5の先端部に回動可能に取付けられる。また、ある実施例では、ハウジング6に回転ノブ等の操作部材(図示しない)が取付けられる。この場合、操作部材をハウジング6に対して回転することにより、シャフト5及びエンドエフェクタ7がハウジング6に対して長手軸Cの軸回りに回転する。
ハウジング6には、ケーブル17の一端が接続される。ケーブル17の他端は、エネルギー源装置3に分離可能に接続される。また、処置システム1には、処置具2とは別体の操作部材としてフットスイッチ18が設けられる。フットスイッチ18は、エネルギー源装置3に電気的に接続される。フットスイッチ18によって、エネルギー源装置3から処置具2に電気エネルギーを出力させる操作が入力される。なお、ある実施例では、フットスイッチ18の代わりに、又は、フットスイッチ18に加えて、ハウジング6に取付けられる操作ボタン等が操作部材として設けられる。そして、操作部材での操作によって、エネルギー源装置3から処置具2に電気エネルギーが出力される。
図2は、エネルギー源装置3から処置具2に電気エネルギー(本実施形態では後述の高周波電力P及びヒータ電力P´)を供給する構成を示す図である。図2に示すように、処置具2では、把持片15に電極21が設けられ、把持片16に電極22が設けられる。電極21,22は、エンドエフェクタ7に設けられるバイポーラ電極である。また、エンドエフェクタ7では、把持片15,16の少なくとも一方に、発熱体としてヒータ23が設けられる。
エネルギー源装置3は、プロセッサ(コントローラ)25及び記憶媒体26を備える。プロセッサ25は、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等を含む集積回路等から形成される。プロセッサ25は、エネルギー源装置3において1つのみ設けられてもよく、エネルギー源装置3において複数設けられてもよい。プロセッサ25での処理は、プロセッサ25又は記憶媒体26に記憶されたプログラムに従って行われる。また、記憶媒体26には、プロセッサ25で用いられる処理プログラム、及び、プロセッサ25での演算で用いられるパラメータ、関数及びテーブル等が記憶される。プロセッサ25は、フットスイッチ18等の操作部材において操作が入力されたか否かを、検出する。
エネルギー源装置3は、エネルギー出力源として高周波電源31を備える。高周波電源31は、波形生成器、変換回路及び変圧器等を備え、バッテリー電源又はコンセント電源等からの電力を高周波電力Pに変換する。高周波電源31は、電気供給路32を介して把持片15の電極21に電気的に接続されるとともに、電気供給路33を介して把持片16の電極22に電気的に接続される。電気供給路32,33のそれぞれは、ケーブル17の内部、ハウジング6の内部及びシャフト5の内部を通って延設され、電気配線等から形成される。高周波電源31は、変換された高周波電力Pを出力可能である。把持片15,16の間で処置対象が把持された状態では、高周波電源31から出力された高周波電力Pが電気供給路32,33を通して電極21,22に供給されることにより、電極(バイポーラ電極)21,22の間で処置対象を通して高周波電流が流れる。この際、電極21,22は、互いに対して異なる電位を有する。処置対象に処置エネルギーとしてある程度の大きさの高周波電流が付与されることにより、高周波電流に起因する熱によって、処置対象が変性される。フットスイッチ18等で操作が入力されると、プロセッサ25は、後述のようにして、高周波電源31から電極21,22への出力を制御する。
高周波電源31から電極21,22へ出力される高周波電力Pの電気経路には、電流検出回路35及び電圧検出回路36が設けられる。高周波電源31から高周波電力Pが出力されている状態において、電流検出回路35は、高周波電源31からの出力電流Iの電流値を検出し、電圧検出回路36は、高周波電源31からの出力電圧Vの電圧値を検出する。そして、電流検出回路35で検出された電流値を示すアナログ信号、及び、電圧検出回路36で検出された電圧値を示すアナログ信号は、A/D変換器(図示しない)等でデジタル信号に変換され、変換されたデジタル信号がプロセッサ25に伝達される。これにより、プロセッサ25は、高周波電源31からの出力電流I及び出力電圧Vに関する情報を取得する。プロセッサ25は、取得した出力電流I及び出力電圧Vに基づいて、高周波電源31から電極21,22へ出力される高周波電力Pの電気経路のインピーダンスを検出し、高周波電力Pの電気経路のインピーダンスに基づいて、把持される処置対象のインピーダンス(組織インピーダンス)Zを検出する。また、プロセッサ25は、取得した出力電流I及び出力電圧Vに基づいて、高周波電力Pの電力値、すなわち、高周波電源31から電極21,22への出力電力の電力値を検出する。プロセッサ25は、取得した出力電流I及び出力電圧V、及び、検出したインピーダンスZ及び高周波電力Pを用いて、高周波電源31からの出力及びヒータ電源41からの出力を後述のように制御する。
エネルギー源装置3は、エネルギー出力源としてヒータ電源41を備える。ヒータ電源41は、変換回路及び変圧器等を備え、バッテリー電源又はコンセント電源等からの電力をヒータ電力P´に変換する。ヒータ電源41は、電気供給路42,43を介してヒータ23に電気的に接続される。電気供給路42,43のそれぞれは、ケーブル17の内部、ハウジング6の内部及びシャフト5の内部を通って延設され、電気配線等から形成される。ヒータ電源41は、変換されたヒータ電力P´を出力可能である。ここで、出力されるヒータ電力P´は、直流電力又は交流電力である。ヒータ電源41から出力されたヒータ電力P´が電気供給路42,43を通してヒータ23に供給されることにより、ヒータ23で熱が発生する。把持片15,16の間で処置対象が把持された状態では、ヒータ23で発生したヒータ熱は、処置対象に付与される。処置対象に処置エネルギーとしてある程度の熱量のヒータ熱が付与されることにより、処置対象が変性され、封止又は凝固される。また、大きい熱量のヒータ熱が処置対象に付与されることにより、処置対象は、切開される。フットスイッチ18等で操作が入力されると、プロセッサ25は、後述のようにして、ヒータ電源41からヒータ23への出力を制御する。
ヒータ電源41からヒータ23へ出力されるヒータ電力P´の電気経路には、電流検出回路45及び電圧検出回路46が設けられる。ヒータ電源41からヒータ電力P´が出力されている状態において、電流検出回路45は、ヒータ電源41からの出力電流I´の電流値を検出し、電圧検出回路46は、ヒータ電源41からの出力電圧V´の電圧値を検出する。そして、電流検出回路45で検出された電流値を示すアナログ信号、及び、電圧検出回路46で検出された電圧値を示すアナログ信号は、A/D変換器(図示しない)等でデジタル信号に変換され、変換されたデジタル信号がプロセッサ25に伝達される。これにより、プロセッサ25は、ヒータ電源41からの出力電流I´及び出力電圧V´に関する情報を取得する。プロセッサ25は、取得した出力電流I´及び出力電圧V´に基づいて、ヒータ電源41からヒータ23へ出力されるヒータ電力P´の電気経路のインピーダンスを検出し、ヒータ電力P´の電気経路のインピーダンスに基づいてヒータ23の抵抗Rを検出する。ここで、ヒータ23の抵抗Rは、ヒータ23の温度Tに対応して変化し、記憶媒体26等には、ヒータ23の温度Tと抵抗Rとの関係を示す関数又はテーブル等が記憶される。プロセッサ25は、検出した抵抗R、及び、記憶された温度Tと抵抗Rとの関係に基づいて、ヒータ23の温度Tを検出する。また、プロセッサ25は、取得した出力電流I´及び出力電圧V´に基づいて、ヒータ電力P´の電力値、すなわち、ヒータ電源41からヒータ23への出力電力の電力値を検出する。プロセッサ25は、取得した出力電流I´及び出力電圧V´、及び、検出した温度T(抵抗R)及びヒータ電力P´を用いて、ヒータ電源41からの出力を後述のように制御する。
次に、エネルギー源装置3及び処置システム1の作用及び効果について説明する。処置システム1を用いて処置を行う際には、処置具2を、ケーブル17を介してエネルギー源装置3に接続する。そして、術者は、ハウジング6を保持し、腹腔等の体腔の内部にエンドエフェクタ7を挿入する。そして、把持片15,16の間に生体組織等の処置対象が位置する状態で、ハンドル12をグリップ11に対して閉じる。これにより、把持片15,16の間が閉じ、把持片15,16の間で処置対象が把持される。処置対象が把持される状態においてフットスイッチ18等の操作部材で操作が入力されることにより、後述するように、高周波電源31からの電極21,22への出力、及び、ヒータ電源41からヒータ23への出力が制御される。電極21,22に高周波電力Pが供給されることにより、前述の処置対象に高周波電流が流れ、ヒータ23にヒータ電力P´が供給されることにより、前述のようにヒータ23で発生した熱が処置対象に付与される。そして、高周波電流及びヒータ熱を処置エネルギーとして用いて、処置対象が処置される。本実施形態では、高周波電流及びヒータ熱によって、処置対象が封止又は凝固される。
図3は、エネルギー源装置3のプロセッサ25によって行われる処理を示すフローチャートである。図3に示すように、プロセッサ25は、フットスイッチ18等の操作部材で操作が入力されたか否か、すなわち、操作部材での操作入力がONかOFFかを判断する(S101)。操作が入力されていない場合は(S101-No)、処理はS101 に戻る。すなわち、プロセッサ25は、操作部材で操作が入力されるまで、待機する。操作部材で操作が入力されると(S101-Yes)、プロセッサ25は、高周波電源31からの出力及びヒータ電源41からの出力に関して、第1のフェーズでの出力制御を行う(S102)。そして、第1のフェーズでの出力制御が終了すると、プロセッサ25は、高周波電源31からの出力及びヒータ電源41からの出力に関して、第2のフェーズでの出力制御を行う(S103)。そして、第2のフェーズでの出力制御が終了すると、プロセッサ25は、高周波電源31からの出力及びヒータ電源41からの出力に関して、第3のフェーズでの出力制御を行う(S104)。そして、第3のフェーズでの出力制御が終了すると、プロセッサ25は、高周波電源31からの出力及びヒータ電源41からの出力を停止する(S105)。
図4は、第1のフェーズでの出力制御(S102)においてプロセッサ25によって行われる処理を示すフローチャートである。第1のフェーズでは、プロセッサ25は、高周波電源31から電極21,22への高周波電力Pの出力を開始させるとともに、ヒータ電源41からヒータ23へのヒータ電力P´の出力を開始させる。本実施形態では、高周波電力Pの出力が開始されると、プロセッサ25は、高周波電力Pが電力値Peで経時的に一定になる状態で、高周波電源31から出力させる(S111)。この際、高周波電力P、すなわち、高周波電源31からの出力電力が電力値Peで一定になる状態に、高周波電源31からの出力電流I及び出力電圧Vが調整される。なお、本実施形態では、電力値Peは、固定値Pe0である。
また、ヒータ電源41からヒータ電力P´の出力が開始されると、プロセッサ25は、ヒータ電源41からヒータ23への出力に関して、目標値として目標温度(第1の目標温度)Taを設定し、設定した目標温度TaでのPID制御を行う(S112)。すなわち、ヒータ23への出力に関して、ヒータ23の温度Tを目標温度Taに到達させ、かつ、目標温度Taで維持する出力制御が行われる。目標温度TaでのPID制御では、プロセッサ25は、前述のようにヒータ電源41からの出力電流I´及び出力電圧V´に基づいて、ヒータ23の抵抗Rを検出し、検出した抵抗Rに基づくヒータ23の温度Tを検出する。そして、プロセッサ25は、目標温度Taとヒータ23の温度Tとの温度偏差、温度偏差の時間積分値(温度偏差の積算値)、及び、温度偏差の時間微分値(温度偏差の時間変化率)に基づいて、ヒータ23からの出力電力(ヒータ電力P´)、出力電流I´及び出力電圧V´を調整し、温度Tを目標温度Taに到達させるとともに、温度Tを目標温度Taで維持する。例えば、目標温度Taと温度Tとの温度偏差が大きい状態では、プロセッサ25は、ヒータ電源41から大きい電力値でヒータ電力P´を出力させる。そして、目標温度Taと温度Tとの温度偏差が小さい状態、及び、温度偏差がゼロの状態では、プロセッサ25は、ヒータ電源41から小さい電力値でヒータ電力P´を出力させる。なお、本実施形態では、目標温度Taは、固定値Ta0であり、60℃以上100℃程度の範囲で設定される。ある実施例では、目標温度Taは、60℃以上100℃以下の範囲で設定され、別のある実施例では、目標温度Taは、60℃以上100℃未満の範囲で設定される。
そして、プロセッサ25は、高周波電源31からの出力電流I及び出力電圧Vに基づいて、インピーダンスZを検出する(S113)。第1のフェーズでは、プロセッサ25は、検出したインピーダンスZに基づいて、出力開始時又は出力開始直後のインピーダンスZを示す値として、インピーダンスZの初期値Zeを検出する。インピーダンスZの初期値Zeは、インピーダンスZに関連する第2のフェーズの終了時以前のパラメータである。初期値Zeは、第1のフェーズのいずれかの時点のインピーダンスZであってもよく、第1のフェーズでのインピーダンスZの平均値又は中間値等であってもよい。初期値Zeは、血管の太さを含む処置対象の組織量(tissue volume)に対応して変化し、初期値Zeは、処置対象の状態に対応して変化する。そして、プロセッサ25は、高周波電源31からの出力開始を基準とする時間tが基準時間tref以上であるか否かを、判断する(S114)。すなわち、第1のフェーズの開始から基準時間tref経過したか否かが、判断される。時間tが基準時間trefより小さい場合は(114-No)、処理はS111に戻り、S111以降の処理が順次に行われる。時間tが基準時間tref以上の場合は(S114-Yes)、プロセッサ25は、第1のフェーズでの出力制御を終了し、第2のフェーズでの出力制御を開始する。なお、基準時間trefは、例えば固定値であり、100ms程度の短い時間である。このため、第1のフェーズでの出力制御が行われる時間は、短く、瞬時である。したがって、インピーダンスZが初期値Zeから後述の極小値Zminまで減少する前に、第1のフェーズでの出力制御が終了する。
図5は、第2のフェーズでの出力制御(S103)においてプロセッサ25によって行われる処理を示すフローチャートである。第1のフェーズの直後の第2のフェーズでは、プロセッサ25は、第1のフェーズで検出した初期値Zeに基づいて、高周波電源31からの出力制御に関する目標値として、出力電圧Vの経時的な増加率βを設定する(S121)。この際、プロセッサ25は、初期値Zeが小さいほど、出力電圧Vの増加率βを大きく設定する。そして、プロセッサ25は、設定した増加率βに基づいて、第2のフェーズでの高周波電源31からの出力制御に関して、出力電圧Vの目標軌道を設定する(S121)。目標軌道では、出力電圧Vが、設定された増加率βで経時的に一定に増加する。このため、プロセッサ25は、初期値Zeが小さいほど、目標軌道の傾きを大きく設定し、第2のフェーズのそれぞれの時点において目標軌道上の値を大きく設定する。そして、プロセッサ25は、出力電圧Vが設定した目標軌道に沿う状態に、高周波電源31から電極21,22への出力制御を行う(S122)。また、第2のフェーズでも、プロセッサ25は、ヒータ電源41からヒータ23への出力に関して、前述した目標温度(第1の目標温度)TaでのPID制御を行う(S123)。
そして、プロセッサ25は、高周波電源31からの出力電流I及び出力電圧Vに基づいて、処置対象のインピーダンスZを検出する(S124)。第2のフェーズでは、高周波電流及びヒータ熱の付与によって、処置対象が変性されるとともに、処置対象の水分が沸騰し始める。処置対象の水分が沸騰するまでは、インピーダンスZは、初期値Zeから経時的に減少する。そして、処置対象の水分が沸騰し始めると、処置対象の水分が蒸発し始めるため、インピーダンスZが経時的に増加し始める。このため、処置対象の水分が沸騰し始めた時点又はその直近に、インピーダンスZが経時的に減少する状態から経時的に増加する状態に切替わるインピーダンスZの極小値Zminが発生する。第2のフェーズでは、プロセッサ25は、検出したインピーダンスZに基づいて、インピーダンスZが極小値Zminになったか否かを判断する(S125)。なお、ある実施例では、インピーダンスZが極小値Zminになったか否かの判断において、プロセッサ25は、インピーダンスZが減少する状態から増加する状態への切替わり時を検出する。そして、プロセッサ25は、切替わり時からインピーダンスZが基準値以上増加したこと、又は、切替わり時から基準時間以上の間においてインピーダンスZが継続して切替わり時より大きかったことに基づいて、切替わり時においてインピーダンスZが極小値Zminになったと判断する。
インピーダンスZが極小値Zminになっていないと判断した場合は(S125-No)、処理はS122に戻り、S122以降の処理が順次に行われる。このため、第2のフェーズでは、インピーダンスZが極小値Zminになったことを検出するまで、プロセッサ25は、電極21,22への出力及びヒータ23への出力を継続させ、高周波電流及びヒータ熱の付与によって継続して処置対象を変性させる。インピーダンスZが極小値Zminになったと判断した場合は(S125-Yes)、プロセッサ25は、第2のフェーズの開始からインピーダンスZが極小値Zminになったことを検出した検出時までの時間を、第2のフェーズの継続時間Yaとして検出する(S126)。第2のフェーズの継続時間Yaを検出すると、プロセッサ25は、第2のフェーズでの出力制御を終了し、第3のフェーズでの出力制御を開始する。したがって、インピーダンスZの極小値Zminの検出時が、第2のフェーズの終了時となり、第3のフェーズの開始時となる。なお、極小値Zminの検出時は、インピーダンスZが極小値Zminになった時点以後であり、例えば、インピーダンスZが極小値Zminになった時点の直後である。
また、第2のフェーズの継続時間Yaは、インピーダンスZに関連する第2のフェーズの終了時以前のパラメータである。ここで、インピーダンスZの極小値Zmin、インピーダンスZが極小値Zminになる時間、及び、極小値ZminになるまでのインピーダンスZの変化態様等は、血管の太さを含む処置対象の組織量に対応して変化し、処置対象の状態に対応して変化する。このため、第2のフェーズの継続時間Yaは、処置対象の組織量に対応して変化し、処置対象の状態に対応して変化する。また、本実施形態では、プロセッサ25は、前述のように、インピーダンスZに関連する極小値Zminの検出時以前のパラメータとして、インピーダンスZの初期値Ze及び第2のフェーズの継続時間Yaを検出する。そして、本実施形態では、プロセッサ25は、検出した初期値Ze及び継続時間Yaに基づいて、処置対象の組織量を判断する。この際、ある実施例では、プロセッサ25は、初期値Zeが小さいほど、組織量が多いと判断する。そして、プロセッサ25は、継続時間Yaが長いほど、組織量が多いと判断する。
図6は、第3のフェーズでの出力制御(S104)においてプロセッサ25によって行われる処理を示すフローチャートである。第3のフェーズでは、プロセッサ25は、第2のフェーズの終了時以前に検出した初期値Ze及び継続時間Yaに基づいて、すなわち、処置対象の組織量の判断結果に基づいて、高周波電源31からの出力制御に関する目標値として、出力電圧Vの電圧値Vaを設定する(S131)。この際、プロセッサ25は、初期値Zeが小さいほど、電圧値Vaを大きく設定し、継続時間Yaが長いほど、電圧値Vaを大きく設定する。このため、組織量が多いほど、電圧値Vaは大きく設定される。また、プロセッサ25は、検出した初期値Ze及び継続時間Yaに基づいて、ヒータ電源41からの出力制御に関する目標値として、ヒータ23の目標温度Tbを設定する(S132)。目標温度Tbの設定では、例えば、記憶媒体26に記憶された初期値Ze及び継続時間Yaの目標温度Tbに対する関係を示す関数又はテーブル等が用いられる。この際、プロセッサ25は、初期値Zeが小さいほど、目標温度Tbを高く設定し、継続時間Yaが長いほど、目標温度Tbを高く設定する。このため、例えば、処置対象である血管が太いほど、すなわち、組織量が多いほど、目標温度Tbが高く設定される。なお、目標温度Tbは、第2のフェーズの終了時以前の目標温度Ta以上に設定されることもあれば、目標温度Taより低く設定されることもある。ただし、いずれの場合も、設定される目標温度Tbは、ヒータ熱によって処置対象を切開する際の温度(例えば200℃以上)に比べて、低い。また、初期値Ze及び継続時間Yaに基づいて処置対象の組織量が基準値より少ないと判断した場合は、プロセッサ25は、目標温度Tbを第2のフェーズの終了時以前の目標温度Taより低く設定する。
そして、プロセッサ25は、高周波電源31からの出力に関して、出力電圧Vを設定した電圧値Vaで経時的に一定にする定電圧制御を行う(S133)。また、プロセッサ25は、ヒータ電源41からの出力に関して、設定した目標温度TbでのPID制御を行う(S134)。すなわち、ヒータ23への出力に関して、ヒータ23の温度Tを目標温度Tbに到達させ、かつ、目標温度Tbで維持する出力制御が行われる。そして、プロセッサ25は、高周波電源31からの出力電流I及び出力電圧Vに基づいて、処置対象のインピーダンスZを検出する(S135)。なお、第3のフェーズでも、高周波電流及びヒータ熱の付与によって、第2のフェーズから継続して処置対象の水分が沸騰し、第2のフェーズから継続して処置対象の水分が蒸発する。このため、第3のフェーズでは、インピーダンスZが経時的に増加する。
そして、プロセッサ25は、インピーダンスZが閾値Zth以上であるか否かを判断する(S136)。本実施形態では、閾値Zthは、固定値Zth0である。インピーダンスZが閾値Zthより小さい場合は(S136-No)、処理はS133に戻り、S133以降の処理が順次に行われる。このため、第3のフェーズでは、インピーダンスZが閾値Zth以上になるまで、プロセッサ25は、電極21,22への出力及びヒータ23への出力を継続させ、高周波電流及びヒータ熱の付与によって継続して処置対象を変性させる。インピーダンスZが閾値Zth以上の場合は(S136-Yes)、プロセッサ25は、第3のフェーズでの出力制御を終了し、本実施形態では、S105の処理によって、電極21,22への出力及びヒータ23への出力を停止させる。したがって、本実施形態では、閾値Zthが、第3のフェーズの終了の判断に用いられる。なお、インピーダンスZが閾値Zthまで上昇した状態では、処置対象の水分が蒸発し、処置対象は脱水される。このため、インピーダンスZが閾値Zthまで上昇した状態では、処置対象が乾燥し、処置対象の水分が沸騰する状態は終了している。
図7は、前述のようにプロセッサ25が処理を行う場合の高周波電源31から出力電圧Vの目標軌道の一例を示し、図8は、図7のように高周波電源31からの出力電圧Vの目標軌道が設定された場合での、処置対象のインピーダンスZの経時的変化の一例を示す。また、図9は、図7のように出力電圧Vの目標軌道が設定された場合での、ヒータ23の温度Tの目標軌道の一例を示す。図7乃至図9のそれぞれでは、横軸に、第1のフェーズの開始を基準とする時間tを示す。また、図7では縦軸に高周波電源31からの出力電圧Vを、図8では縦軸にインピーダンスZを、図9では縦軸にヒータ23の温度Tを、それぞれ示す。そして、図7乃至図9のそれぞれでは、3つの状態(組織状態)X1~X3について、経時的変化を示す。状態X1~X3では、処置対象の組織量が互いに対して異なる。ここで、状態X1では、状態X2に比べ、処置対象である血管が細い等の処置対象の組織量が少ない。また、状態X3では、状態X2に比べ、処置対象である血管が太い等の処置対象の組織量が多い。図7乃至図9のそれぞれでは、状態X1での経時的変化を実線で、状態X2での経時的変化を一点鎖線で、状態X3での経時的変化を破線で、それぞれ示す。また、図8及び図9では、状態X´1でのインピーダンスZの経時的変化を、比較例として二点鎖線で示す。状態X´1では、組織量は状態X1と略同一であるが、第3のフェーズでのヒータ23への出力が状態X1とは異なる。
第1のフェーズで検出されるインピーダンスZの初期値Zeは、処置対象の組織量が多いほど、小さい。実際に、図7乃至図9の一例では、状態X1での初期値Ze1は、状態X2での初期値Ze2に比べて大きく、状態X3での初期値Ze3は、状態X2での初期値Ze2に比べて小さい。そして、本実施形態では、前述のように、インピーダンスZの初期値Zeが小さいほど、第2のフェーズでの出力電圧Vの増加率βが大きく設定され、第2のフェーズでの出力電圧Vの目標軌道の傾きが大きく設定される。実際に、状態X1では、状態X2に比べて、第2のフェーズでの出力電圧Vの増加率β及び目標軌道の傾きが小さく設定される。そして、状態X3では、状態X2に比べて、第2のフェーズでの出力電圧Vの増加率β及び目標軌道の傾きが大きく設定される。
また、インピーダンスZの極小値Zminは、処置対象の組織量が多いほど、小さい。インピーダンスZが極小値Zminになるまでの時間は、処置対象の組織量が多いほど、長い。このため、第2のフェーズの継続時間Yaは、処置対象の組織量が多いほど、長い。実際に、状態X1での極小値Zmin1は、状態X2での極小値Zmin2に比べて大きく、状態X1において極小値Zmin1になるまでの時間は、状態X2において極小値Zmin2になるまでの時間に比べて、短い。このため、状態X1での第2のフェーズの継続時間Ya1は、状態X2での第2のフェーズの継続時間Ya2に比べて、短い。また、状態X3での極小値Zmin3は、状態X2での極小値Zmin2に比べて小さく、状態X3において極小値Zmin3になるまでの時間は、状態X2において極小値Zmin2になるまでの時間に比べて、長い。このため、状態X3での第2のフェーズの継続時間Ya3は、状態X2での第2のフェーズの継続時間Ya2に比べて、長い。
また、本実施形態では、前述のように、インピーダンスZの初期値Zeが小さいほど、そして、第2のフェーズの継続時間Yaが長いほど、処置対象の組織量が多いと判断されるため、第3のフェーズでの定電圧制御における出力電圧Vの電圧値Vaが大きく設定される。実際に、状態X1で設定される第3のフェーズでの電圧値Va1は、状態X2で設定される第3のフェーズでの電圧値Va2に比べて、小さい。そして、状態X3で設定される第3のフェーズでの電圧値Va3は、状態X2で設定され電圧値Va2に比べて、大きい。
また、本実施形態では、前述のように、インピーダンスZの初期値Zeが小さいほど、そして、第2のフェーズの継続時間Yaが長いほど、処置対象の組織量が多いと判断されるため、第3のフェーズでのPID制御における目標温度Tbが高く設定される。実際に、状態X1で設定される第3のフェーズでの目標温度Tb1は、状態X2で設定される第3のフェーズでの目標温度Tb2に比べて、低い。そして、状態X3で設定される第3のフェーズでの目標温度Tb3は、状態X2で設定され目標温度Tb2に比べて、高い。なお、ある実施例では、状態X2で設定される目標温度Tbは、第2のフェーズの終了時以前の目標温度Ta0と略同一で、状態X3で設定される目標温度Tbは、第2のフェーズの終了時以前の目標温度Ta0より高い。また、状態X1では、プロセッサ25は、初期値Ze及び継続時間Yaに基づいて、処置対象の組織量が基準値より少ないと判断する。このため、状態X1では、プロセッサ25は、目標温度(第2の目標温度)Tb1を極小値Zminの検出時以前の目標温度(第1の目標温度)Ta0より低く設定する。したがって、状態X1では、第3のフェーズでのヒータ電源41からの出力に関して、ヒータ23を目標温度Ta0から目標温度Tb1まで低下させ、かつ、目標温度Tb1で維持する出力制御が行われる。
ここで、比較例として、インピーダンスZの初期値Ze及び第2のフェーズの継続時間Yaに関係なく、すなわち、処置対象の組織量に関係なく、第3のフェーズにおいて目標温度Tbを固定値T´b0として、ヒータ23の出力に関してPID制御が行われる場合について説明する。比較例での目標温度Tbの固定値T´b0は、極小値Zminの検出時以前の目標温度Ta0より高い。比較例では、状態X1と同様に組織量が少ない状態X´1においても、第3のフェーズにおいて目標温度T´b0でのヒータ電源41から出力制御が行われる。このため、状態X´1では、状態X1に比べて、第3のフェーズにおいて処置対象に付与されるヒータ熱の熱量が大きい。組織量が少ない処置対象に大きい熱量のヒータ熱が付与されるため、状態X´1では、第3のフェーズの開始以後において処置対象の単位体積あたりの水分の蒸発量が急激に増加する。このため、状態X´1では、極小値Zminの検出時以後において、インピーダンスZが急激に上昇し、処置対象は、迅速に脱水され、かつ、迅速に乾燥した状態になる。
これに対し、本実施形態では、状態X1等の処置対象の組織量が少ない場合は、第3フェーズでの目標温度Tbは、極小値Zminの検出時以前の目標温度Ta0より低く設定される。そして、第3のフェーズでは、低い目標温度Tbで、ヒータ電源41からの出力制御が行われる。このため、状態X1等の処置対象の組織量が少ない場合では、処置対象に付与されるヒータ熱の熱量が小さい。したがって、処置対象の組織量が少なくても、第3のフェーズの開始以後においてヒータ熱によって処置対象の単位体積あたりの水分の蒸発量が急激に増加することが、防止される。これにより、処置対象の組織量が少ない場合でも、極小値Zminの検出時以後において、インピーダンスZが緩やかに上昇し、処置対象が脱水されるまでの時間、すなわち、処置対象が乾燥するまでの時間が長い。処置対象が脱水されるまでの時間が長くなることにより、処置対象の水分が沸騰している時間が長くなる。
ここで、処置対象の水分が沸騰している時間が長いほど、処置対象が溶接される(welded)時間、すなわち、処置対象が融合される(fused)時間が長く、処置対象の封止性及び凝固性が向上する。本実施形態では、前述のように第3のフェーズにおいてヒータ電源41からの出力制御が行われるため、処置対象の組織量が少ない場合でも、処置対象の水分が沸騰している時間が長い。このため、処置対象の組織量が少ない場合でも、処置対象が溶接及び融合される時間が長くなり、処置対象が適切に溶接及び融合され、処置対象が適切に封止及び凝固される。
前述のように本実施形態では、処置対象の組織量等の処置対象の状態がインピーダンスZの初期値Ze及び第2のフェーズの継続時間Yaに基づいて、適切に検出される。そして、検出された処置対象の状態に基づいて、第3のフェーズでのヒータ電源41からの出力が適切に制御される。すなわち、処置対象の状態に対応させて、処置対象の水分が沸騰している時間が長くなり、かつ、処置対象が溶接される時間が長くなる状態に、第3のフェーズでのヒータ23への出力制御が行われる。このため、処置対象の組織量等の処置対象の状態に関係なく、処置対象が適切に封止及び凝固される。
また、本実施形態では、最小値Zminの検出時より前に、ヒータ電源41からの出力が開始され、第2のフェーズでは、目標温度Taでのヒータ23への出力制御が継続して行われる。そして、目標温度Taでは、ヒータ熱によって処置対象が変性される。最小値Zminの検出時以前の第2のフェーズにおいてヒータ熱によって処置対象が継続して変性されるため、本実施形態では、第1のフェーズで電極21,22への出力を開始した後において、処置対象は水分が沸騰する前述の状態に迅速に変化する。高周波電源31からの出力開始から処置対象の水分が沸騰する状態になるまでの時間が短くなることにより、処置対象の封止性及び凝固性が向上するとともに、処置におけるエネルギー効率が向上する。
(第1の実施形態の変形例)
なお、第1の実施形態では、プロセッサ25は、インピーダンスZの初期値Ze及び第2のフェーズの継続時間Yaに基づいて、第3のフェーズでのヒータ23への出力制御の目標値として目標温度Tbを設定するが、これに限るものではない。ある変形例では、プロセッサ25は、初期値Ze及び継続時間Yaの代わりに、又は、初期値Ze及び継続時間Yaに加えて、インピーダンスZの極小値Zmin、極小値Zminになった時間、及び、極小値ZminまでのインピーダンスZの減少率等に基づいて、処置対象の組織量を判断し、第3のフェーズでのヒータ23の目標温度Tbを設定する。ここで、インピーダンスZの極小値Zmin、極小値Zminになった時間、及び、極小値Zminは、インピーダンスZに関連する第2のフェーズの終了時以前のパラメータである。例えば極小値Zminに基づく目標温度Tbの設定が行われる場合、プロセッサ25は、極小値Zminが小さいほど、処置対象の組織量が多いと判断し、第3のフェーズでの目標温度Tbを高く設定する。
なお、第1の実施形態では、プロセッサ25は、インピーダンスZの初期値Ze及び第2のフェーズの継続時間Yaに基づいて、第3のフェーズでのヒータ23への出力制御の目標値として目標温度Tbを設定するが、これに限るものではない。ある変形例では、プロセッサ25は、初期値Ze及び継続時間Yaの代わりに、又は、初期値Ze及び継続時間Yaに加えて、インピーダンスZの極小値Zmin、極小値Zminになった時間、及び、極小値ZminまでのインピーダンスZの減少率等に基づいて、処置対象の組織量を判断し、第3のフェーズでのヒータ23の目標温度Tbを設定する。ここで、インピーダンスZの極小値Zmin、極小値Zminになった時間、及び、極小値Zminは、インピーダンスZに関連する第2のフェーズの終了時以前のパラメータである。例えば極小値Zminに基づく目標温度Tbの設定が行われる場合、プロセッサ25は、極小値Zminが小さいほど、処置対象の組織量が多いと判断し、第3のフェーズでの目標温度Tbを高く設定する。
また、ある変形例では、プロセッサ25は、極小値Zminの検出時以前の高周波電源31からの出力電力(高周波電力P)、出力電流I及び出力電圧Vのいずれかに基づいて、第3のフェーズでのヒータ23の目標温度Tbを設定する。すなわち、高周波電源31からの出力に関連する第2のフェーズの終了時以前のパラメータに基づいて、目標温度Tbが設定される。例えば、第2のフェーズにおいて第1の実施形態と同様に高周波電源31からの出力制御が行われる場合、第2のフェーズでは、処置対象の組織量が多いほど、出力される高周波電力Pは大きい。このため、本変形例では、プロセッサ25は、例えば、第2のフェーズにおいて出力される高周波電力Pが大きいほど、処置対象の組織量が多いと判断し、第3のフェーズでの目標温度Tbを高く設定する。
また、前述の実施形態等では、第1のフェーズにおいてヒータ23への出力が行われているが、ある変形例では、第2のフェーズの開始時において、ヒータ23へのヒータ電力P´の出力が開始される。この場合、S112の処理の代わりに、プロセッサ25は、第1のフェーズにおいてヒータ23への出力停止を維持する。本変形例でも、第2のフェーズでは、S123の処理によって目標温度Taでのヒータ23への出力制御が行わる。このため、第2のフェーズでは、ヒータ熱によって処置対象が継続して変性され、処置対象は水分が沸騰する前述の状態に変化する。
また、ある変形例では、初期値Zeに関係なく、すなわち、処置対象の組織量に関係なく、第2のフェーズでの高周波電源31からの出力制御に関する目標値である出力電圧Vの増加率βは、固定値β0である。この場合、プロセッサ25は、初期値Zeに基づいて増加率β及び目標軌道を設定するS121の処理を、行わない。また、ある変形例では、初期値Ze及び継続時間Ya等の前述のパラメータ(Ze,Ya,Zmin等)に関係なく、すなわち、処置対象の組織量に関係なく、第3のフェーズでの高周波電源31からの出力制御に関する目標値である電圧値Vaは、固定値Va0である。この場合、プロセッサ25は、パラメータ(Ze,Ya,Zmin等)に基づいて電圧値Vaを設定するS131の処理を、行わない。
また、ある変形例では、第3のフェーズにおいて、高周波電源31からの出力電力(高周波電力P)を一定の電力値Paにする定電力制御、及び、出力電流Iを一定の電流値Iaにする定電流制御のいずれかを行う。定電力制御を行う場合、プロセッサ25は、検出したパラメータ(Ze,Ya等)に関係なく目標値である電力値Paを固定値Pa0に設定してもよく、検出したパラメータ(Ze,Ya等)に基づいて電力値Paを設定してもよい。そして、パラメータ(Ze,Ya等)に基づいて電力値Paを設定する場合は、プロセッサ25は、例えば継続時間Yaが長いほど、すなわち、処置対象の組織量が多いほど、電力値Paを大きく設定する。同様に、定電流制御を行う場合、プロセッサ25は、検出したパラメータ(Ze,Ya等)に関係なく目標値である電流値Iaを固定値Ia0に設定してもよく、検出したパラメータ(Ze,Ya等)に基づいて電流値Iaを設定してもよい。そして、パラメータ(Ze,Ya等)に基づいて電流値Iaを設定する場合は、プロセッサ25は、例えば継続時間Yaが長いほど、すなわち、処置対象の組織量が多いほど、電流値Iaを大きく設定する。
また、ある変形例では、第3のフェーズにおいて、プロセッサ25は、インピーダンスZに基づいて、前述の定電圧制御、定電力制御及び定電流制御の間を切替える。この場合、プロセッサ25は、切替え値Zs1及び切替え値Zs1より大きい切替え値Zs2に基づいて、定電圧制御、定電力制御及び定電流制御の間を切替える。例えば、インピーダンスZが切替え値Zs1より小さい状態では、プロセッサ25は、高周波電源31からの出力について前述の定電流制御を行う。また、インピーダンスZが切替え値Zs1以上で、かつ、切替え値Zs2より小さい状態では、プロセッサ25は、高周波電源31からの出力について前述の定電力制御を行う。そして、インピーダンスZが切替え値Zs2以上の状態では、プロセッサ25は、高周波電源31からの出力について前述の定電圧制御を行う。なお、本変形例では、第3のフェーズの終了の判断に用いられるインピーダンスZの閾値Zthは、切替え値Zs1,Zs2より大きく設定される。
また、ある変形例では、プロセッサ25は、第3のフェーズについてインピーダンスZの目標軌道を設定し、インピーダンスZが設定した目標軌道に沿って変化する状態に、高周波電源31からの出力を制御する。この場合、インピーダンスZが目標軌道に沿う状態に、高周波電源31からの高周波電力P、出力電圧V及び出力電流Iが調整される。なお、インピーダンスZの目標軌道は、検出したパラメータ(Ze,Ya等)に関係なく既定の軌道に設定されてもよく、検出したパラメータ(Ze,Ya等)に基づいて設定されてもよい。また、ある変形例では、プロセッサ25は、S133の処理の代わりに、第3のフェーズにおいて高周波電源31からの出力を停止する。この場合、第3のフェーズでは、ヒータ熱によって、処置対象が継続して変性され、処置対象の水分が継続して沸騰する。
また、前述の実施形態等では、パラメータ(Ze,Ya等)に基づいて処置対象の組織量が基準値より少ないと判断した場合に、プロセッサ25は、第3のフェーズでの目標温度Tbを極小値Zminの検出時以前の目標温度Taより低く設定するが、これに限るものではない。ある変形例では、パラメータ(Ze,Ya等)に基づいて処置対象の組織量が基準値より少ないと判断した場合に、プロセッサ25は、第3のフェーズにおいて、ヒータ23への出力を継続して停止する。この場合、パラメータ(Ze,Ya等)に基づいて第3のフェーズでの目標温度Tbを設定するS132の処理に加えて、プロセッサ25は、パラメータ(Ze,Ya等)に基づいて、第3のフェーズでのヒータ23への出力の要否を判断する。したがって、本変形例では、状態X1等の処置対象の組織量が少ない場合は、第3のフェーズにおいてヒータ23へヒータ電力P´が出力されず、ヒータ23で熱が発生しない。ただし、この場合でも、第3のフェーズでは、高周波電流に起因する熱及び第3のフェーズより前に発生したヒータ熱等によって、処置対象は継続して変性され、処置対象の水分が継続して沸騰する。また、本変形例でも、状態X2,X3等の処置対象の組織量が基準値以上の場合は、第3のフェーズにおいて、ヒータ23への出力が継続され、ヒータ23で熱が発生する。そして、処置対象の組織量が基準値以上であると判断した場合は、プロセッサ25は、例えば継続時間Yaが長いほど、すなわち、組織量が多いほど、第3のフェーズでの目標温度Tbを高く設定する。
また、前述の実施形態では、第3のフェーズの終了の判断に用いられるインピーダンスZの閾値Zthは固定値Zth0であるが、これに限るものでない。ある変形例では、プロセッサ25は、前述したパラメータ(Ze,Ya等)に基づいて、第3のフェーズでのヒータ23への出力制御に関する目標値として、インピーダンスZの閾値Zthを設定する。この場合、プロセッサ25は、例えば第2のフェーズの継続時間Yaが長いほど、すなわち、組織量が多いほど、目標値である閾値Zthを高く設定する。
また、ある変形例では、インピーダンスZの閾値Zthの代わりに、第3のフェーズの開始からの経過時間Ybの閾値Ybthが、第3のフェーズでのヒータ23への出力制御に関する目標値として、設定される。この場合、経過時間Ybの閾値Ybthが、第3のフェーズの終了の判断に用いられる。経過時間Ybの閾値Ybthは、固定値Ybth0であってもよく、前述したパラメータ(Ze,Ya等)に基づいて設定されてもよい。パラメータ(Ze,Ya等)に基づいて閾値Ybthが設定される場合は、プロセッサ25は、例えば第2のフェーズの継続時間Yaが長いほど、すなわち、組織量が多いほど、目標値である閾値Ybthを長く設定する。
(第2の実施形態)
次に、本発明の第2の実施形態について、図10乃至図12を参照して、説明する。第2の実施形態は、第1の実施形態での処理を次の通り変形したものである。なお、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。
次に、本発明の第2の実施形態について、図10乃至図12を参照して、説明する。第2の実施形態は、第1の実施形態での処理を次の通り変形したものである。なお、第1の実施形態と同一の部分については同一の符号を付して、その説明は省略する。
図10は、本変形例のエネルギー源装置3のプロセッサ25によって行われる処理を示すフローチャートである。図10に示すように、本変形例でも前述の実施形態等と同様に、プロセッサ25は、操作部材で操作が入力されると(S101-Yes)、高周波電源31からの出力及びヒータ電源41からの出力に関して、第1のフェーズでの出力制御(S102)、第2のフェーズでの出力制御(S103)、及び、第3のフェーズでの出力制御(S104)を順次に行う。ただし、本変形例では、第3のフェーズでの出力制御が終了すると、プロセッサ25は、高周波電源31からの出力及びヒータ電源41からの出力に関して、第4のフェーズでの出力制御を行う(S106)。すなわち、例えば、第3のフェーズにおいてインピーダンスZが前述の閾値Zth以上になったことに基づいて、プロセッサ25は、第4フェーズに切替える。そして、第4のフェーズでの出力制御が終了すると、プロセッサ25は、高周波電源31からの出力及びヒータ電源41からの出力を停止する(S105)。なお、本変形例の処置では、前述のように高周波電流及びヒータ熱によって処置対象を封止又は凝固した後に、ヒータ熱の付与によって処置対象を切開する。
図11は、第4のフェーズでの出力制御(S106)においてプロセッサ25によって行われる処理を示すフローチャートである。第4のフェーズでは、プロセッサ25は、初期値Ze及び継続時間Ya等の第2のフェーズの終了時以前に検出したパラメータ(Ze,Ya,Zmin等)に基づいて、すなわち、処置対象の組織量の判断結果に基づいて、高周波電源31からの出力制御に関する目標値として、出力電圧Vの電圧値Vbを設定する(S141)。この際、プロセッサ25は、初期値Zeが小さいほど、電圧値Vbを大きく設定し、継続時間Yaが長いほど、電圧値Vbを大きく設定する。このため、組織量が多いほど、電圧値Vbは大きく設定される。また、プロセッサ25は、検出した前述のパラメータ(Ze,Ya,Zmin等)に基づいて、ヒータ電源41からの出力制御に関する目標値として、ヒータ23の目標温度Tcを設定する(S142)。この際、プロセッサ25は、初期値Zeが小さいほど、目標温度Tcを高く設定し、継続時間Yaが長いほど、目標温度Tcを高く設定する。このため、例えば、処置対象である血管が太いほど、すなわち、組織量が多いほど、目標温度Tcが高く設定される。なお、いずれの場合も、目標温度Tcは、処置対象を切開可能な温度であり、第2のフェーズでの目標温度Taに比べて高い。また、第4のフェーズでの目標温度Tcは、第3のフェーズで設定された目標温度Tbに比べて高い。ある実施例では、例えば、目標温度Tcは、200℃以上の範囲で設定される。
また、プロセッサ25は、検出した前述のパラメータ(Ze,Ya,Zmin等)に基づいて、第4のフェーズの開始からの経過時間Ycについて、第4のフェーズでの出力制御の終了の判断に用いられる閾値Ycthを設定する(S143)。この際、プロセッサ25は、初期値Zeが小さいほど、閾値Ycthを長く設定し、継続時間Yaが長いほど、閾値Ycthを長く設定する。このため、組織量が多いほど、経過時間Ycの閾値Ycthが長く設定される。
そして、プロセッサ25は、高周波電源31からの出力に関して、出力電圧Vを設定した電圧値Vbで経時的に一定にする定電圧制御を行う(S144)。また、プロセッサ25は、ヒータ電源41からの出力に関して、設定した目標温度TcでのPID制御を行う(S145)。すなわち、ヒータ23への出力に関して、ヒータ23の温度Tを目標温度Tcに上昇させ、かつ、目標温度Tcで維持する出力制御が行われる。なお、前述のように第4のフェーズでの目標温度Tcは、第3のフェーズでの目標温度Tbに比べて高い。このため、第3のフェーズから第4のフェーズへ切替えることにより、プロセッサ25は、ヒータ23への出力を上昇させる。したがって、第4のフェーズに切替わることにより、ヒータ電源41からの出力電圧V´及び出力電力(ヒータ電力P´)等が増加する。また、第4のフェーズの開始時においては、インピーダンスZが前述の閾値Zthまで上昇しており、処置対象は乾燥し、処置対象の水分が沸騰する状態は終了している。したがって、ヒータ熱を用いた切開は、処置対象の封止又は凝固が行われた後の処置対象が乾燥した状態で、行われる。
そして、プロセッサ25は、第4のフェーズの開始からの経過時間Ycが閾値Ycth以上であるか否かを判断する(S146)。経過時間Ycが閾値Ycthより短い場合は(S146-No)、処理はS144に戻り、S144以降の処理が順次に行われる。このため、第4のフェーズでは、経過時間Ycが閾値Ycth以上になるまで、プロセッサ25は、電極21,22への出力及びヒータ23への出力を継続させる。経過時間Ycが閾値Ycth以上の場合は(S146-Yes)、プロセッサ25は、第4のフェーズでの出力制御を終了し、本実施形態では、S105の処理によって、電極21,22への出力及びヒータ23への出力を停止させる。
図12は、プロセッサ25が前述のように処理を行う場合での、ヒータ23の温度Tの目標軌道の一例を示す。図12では、横軸に第1のフェーズの開始を基準とする時間tを示し、縦軸にヒータ23の温度Tを示す。そして、図12では、前述の3つの状態(組織状態)X1~X3について、目標軌道を示す。図12では、状態X1での経時的変化を実線で、状態X2での経時的変化を一点鎖線で、状態X3での経時的変化を破線で、それぞれ示す。
図12に示すように、本実施形態では、第4のフェーズでのPID制御における目標温度Tcは、状態X1~X3のいずれにおいても、第2のフェーズでの目標温度Ta0に比べて、高く設定される。例えば、状態X1~X3のいずれにおいても、目標温度Tcは、200℃以上である。このため、状態X1~X3のいずれにおいても、第4のフェーズでは、ヒータ熱によって処置対象が切開される。また、状態X1~X3のいずれにおいても、第4のフェーズでの目標温度Tcは、第3のフェーズでの目標温度Tbに比べて高く設定される。このため、状態X1~X3のいずれにおいても、第3のフェーズから第4のフェーズに切替わることにより、ヒータ23への出力が上昇する。
また、本実施形態では、前述のように、インピーダンスZの初期値Zeが小さいほど、そして、第2のフェーズの継続時間Yaが長いほど、処置対象の組織量が多いと判断されるため、第4のフェーズでのPID制御における目標温度Tcが高く設定される。実際に、状態X1で設定される第4のフェーズでの目標温度Tc1は、状態X2で設定される第4のフェーズでの目標温度Tc2に比べて、低い。そして、状態X3で設定される第4のフェーズでの目標温度Tc3は、状態X2で設定され目標温度Tc2に比べて、高い。また、本実施形態では、前述のように、インピーダンスZの初期値Zeが小さいほど、そして、第2のフェーズの継続時間Yaが長いほど、処置対象の組織量が多いと判断されるため、第4のフェーズの終了の判断に用いられる経過時間Ycの閾値Ycthが長く設定される。実際に、状態X1で設定される閾値Ycth1は、状態X2で設定される閾値Ycth2に比べて、短い。そして、状態X3で設定される閾値Ycth3は、状態X2で設定される閾値Ycth3に比べて、長い。
本実施形態でも、前述の実施形態等と同様に、インピーダンスZの初期値Ze及び第2のフェーズの継続時間Ya等の第2のフェーズの終了時以前のパラメータに基づいて、処置対象の状態が適切に検出される。そして、検出された処置対象の状態に基づいて、第3のフェーズでのヒータ電源41からの出力が適切に制御される。すなわち、処置対象の状態に対応させて、処置対象の水分が沸騰している時間が長くなり、かつ、処置対象が溶接される時間が長くなる状態に、第3のフェーズでのヒータ23への出力制御が行われる。このため、処置対象の組織量等の処置対象の状態に関係なく、処置対象が適切に封止及び凝固される。また、本実施形態では、第3のフェーズにおいて適切に封止及び凝固された処置対象が、第4のフェーズにおいて適切に切開される。
(第2の実施形態の変形例)
なお、第4のフェーズでの高周波電源31からの出力制御は、第2の実施形態での制御に限るものではない。ある変形例では、処置対象の組織量に関係なく、第4のフェーズでの高周波電源31からの出力制御に関する目標値である電圧値Vbは、固定値Vb0である。また、ある変形例では、第4のフェーズにおいて、高周波電源31からの出力電力(高周波電力P)を一定の電力値Pbにする定電力制御、及び、出力電流Iを一定の電流値Ibにする定電流制御のいずれかを行う。この際、プロセッサ25は、電力値Pb及び電流値Ibのそれぞれを、検出したパラメータ(Ze,Ya等)に関係なく固定値に設定してもよく、検出したパラメータ(Ze,Ya等)に基づいて設定してもよい。また、 ある変形例では、第4のフェーズにおいて、プロセッサ25は、インピーダンスZに基づいて、前述の定電圧制御、定電力制御及び定電流制御の間を切替える。
なお、第4のフェーズでの高周波電源31からの出力制御は、第2の実施形態での制御に限るものではない。ある変形例では、処置対象の組織量に関係なく、第4のフェーズでの高周波電源31からの出力制御に関する目標値である電圧値Vbは、固定値Vb0である。また、ある変形例では、第4のフェーズにおいて、高周波電源31からの出力電力(高周波電力P)を一定の電力値Pbにする定電力制御、及び、出力電流Iを一定の電流値Ibにする定電流制御のいずれかを行う。この際、プロセッサ25は、電力値Pb及び電流値Ibのそれぞれを、検出したパラメータ(Ze,Ya等)に関係なく固定値に設定してもよく、検出したパラメータ(Ze,Ya等)に基づいて設定してもよい。また、 ある変形例では、第4のフェーズにおいて、プロセッサ25は、インピーダンスZに基づいて、前述の定電圧制御、定電力制御及び定電流制御の間を切替える。
また、ある変形例では、プロセッサ25は、第4のフェーズについてインピーダンスZの目標軌道を設定し、インピーダンスZが設定した目標軌道に沿って変化する状態に、高周波電源31からの出力を制御する。この場合、例えば、目標軌道は、インピーダンスが第3のフェーズの終了時の閾値Zthから経時的に一定に増加する状態に、設定される。また、インピーダンスZの目標軌道は、検出したパラメータ(Ze,Ya等)に関係なく既定の軌道に設定されてもよく、検出したパラメータ(Ze,Ya等)に基づいて設定されてもよい。また、ある変形例では、プロセッサ25は、S144の処理の代わりに、第4のフェーズにおいて高周波電源31からの出力を停止する。この場合、第4のフェーズでは、ヒータ熱のみが、処置対象に付与される。
また、ある変形例では、第4のフェーズでの目標温度Tcが、検出したパラメータ(Ze,Ya等)に関係なく固定値Tc0に設定される。なお、この場合も、目標温度Tc0は、例えば200℃以上等の処置対象を切開可能な温度であり、第2のフェーズでの目標温度Taに比べて高い。また、第4のフェーズでの目標温度Tc0は、第3のフェーズで設定された目標温度Tbに比べて高い。
また、ある変形例では、第4のフェーズの終了の判断に用いられる経過時間Ycの閾値Ycthが固定値Ycth0であってもよい。また、ある変形例では、経過時間Ycの閾値Ycthの代わりに、閾値Zthとは異なるインピーダンスZの閾値Zathが、第4のフェーズの終了の判断に用いられる。この場合、閾値Zathは、第3のフェーズの終了の判断に用いられる閾値Zthより、高い。また、インピーダンスZの閾値Zathは、検出したパラメータ(Ze,Ya等)に関係なく固定値であってもよく、検出したパラメータ(Ze,Ya等)に基づいて設定されてもよい。なお、第4のフェーズでは、ヒータ熱等によって処置対象の温度が上昇するため、インピーダンスZは、第3のフェーズの終了の判断に用いられた閾値Zthから経時的に増加する。
(その他の変形例)
なお、前述の実施形態等では、第3のフェーズ又は第4のフェーズの終了時又は終了直後に、S105の処理によって、高周波電源31からの出力及びヒータ電源41からの出力が停止されるが、これに限るものではない。ある変形例では、S105の処理の代わりに、プロセッサ25は、ヒータ23への出力を継続させる。ただし、この場合、ヒータ熱によって処置対象が変性されない状態に、ヒータ電源41からの出力が低く制御される。本変形例では、第3のフェーズの終了時又は第4のフェーズの終了時からある程度の時間の経過、又は、術者等の操作に基づいて、プロセッサ25は、ヒータ電源41からの出力を停止させる。
なお、前述の実施形態等では、第3のフェーズ又は第4のフェーズの終了時又は終了直後に、S105の処理によって、高周波電源31からの出力及びヒータ電源41からの出力が停止されるが、これに限るものではない。ある変形例では、S105の処理の代わりに、プロセッサ25は、ヒータ23への出力を継続させる。ただし、この場合、ヒータ熱によって処置対象が変性されない状態に、ヒータ電源41からの出力が低く制御される。本変形例では、第3のフェーズの終了時又は第4のフェーズの終了時からある程度の時間の経過、又は、術者等の操作に基づいて、プロセッサ25は、ヒータ電源41からの出力を停止させる。
また、ある変形例では、S105の処理の代わりに、プロセッサ25は、電極21,22への出力を継続させる。ただし、この場合、高周波電流によって処置対象は変性されない状態に、高周波電源31からの出力が低く制御される。本変形例では、第3のフェーズの終了時又は第4のフェーズの終了時からある程度の時間の経過、又は、術者等の操作に基づいて、プロセッサ25は、高周波電源31からの出力を停止させる。
前述の実施形態等では、エネルギー源装置(3)のエネルギー出力源(31,41)は、バイポーラ電極(21,22)に高周波電力(P)を出力することにより、バイポーラ電極(21,22)の間で処置対象を通して高周波電流を流すとともに、ヒータ(23)にヒータ電力(P´)を出力することにより、ヒータ(23)で熱を発生させる。プロセッサ(25)は、第1のフェーズにおいて、バイポーラ電極(21,22)への出力を開始させ、処置対象のインピーダンス(Z)の初期値(Ze)を検出する。プロセッサ(25)は、第1のフェーズの直後の第2のフェーズにおいて、高周波電流の付与によって処置対象が変性する状態にバイポーラ電極(21,22)への出力を継続させ、インピーダンス(Z)が極小値(Zmin)になったか否かを判断し、第2のフェーズにおいて、ヒータ(23)の熱によって処置対象が変性する状態にヒータ(23)への出力を継続させる。また、プロセッサ(25)は、インピーダンス(Z)及びバイポーラ電極(21,22)への出力の少なくとも一方に関連するインピーダンス(Z)の極小値(Zmin)の検出時以前のパラメータ(Ze,Ya等)を取得し、取得したパラメータ(Ze,Ya等)に基づいて、極小値(Zmin)の検出時の直後の第3のフェーズについて、ヒータ(23)への出力の要否の判断、 及び、ヒータ(23)への出力制御に関する目標値(Tc,Zth,Ybth)の設定の少なくとも一方を行う。
なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。
Claims (9)
- 一対の把持片の間で処置対象を把持可能なエンドエフェクタを備え、前記エンドエフェクタはヒータ及びバイポーラ電極を備える処置具の使用時に、前記処置具と一緒に用いられるエネルギー源装置であって、
前記バイポーラ電極に高周波電力を出力することにより、前記バイポーラ電極の間で前記処置対象を通して高周波電流を流すとともに、前記ヒータにヒータ電力を出力することにより、前記ヒータで熱を発生させるエネルギー出力源と、
前記バイポーラ電極への出力及び前記ヒータへの出力を制御するプロセッサと、
を具備し、
前記プロセッサは、
第1のフェーズにおいて、前記バイポーラ電極への前記出力を開始させ、前記処置対象のインピーダンスの初期値を検出し、
前記第1のフェーズの直後の第2のフェーズにおいて、前記高周波電流の付与によって前記処置対象が変性する状態に前記バイポーラ電極への前記出力を継続させ、前記インピーダンスが極小値になったか否かを判断し、
前記第2のフェーズにおいて、前記ヒータの前記熱によって前記処置対象が変性する状態に前記ヒータへの出力を継続させ、
前記インピーダンス及び前記バイポーラ電極への前記出力の少なくとも一方に関連する前記インピーダンスの前記極小値の検出時以前のパラメータを取得し、取得した前記パラメータに基づいて、前記極小値の前記検出時の直後の第3のフェーズについて、前記ヒータへの前記出力の要否の判断、及び、前記ヒータへの出力制御に関する目標値の設定の少なくとも一方を行う、
エネルギー源装置。 - 前記プロセッサは、前記第2のフェーズにおいて、60℃以上100℃以下の範囲で前記ヒータの第1の目標温度を設定し、前記ヒータへの前記出力に関して、前記ヒータを設定した前記第1の目標温度に到達させ、かつ、前記ヒータを前記第1の目標温度で維持する出力制御を行う、請求項1のエネルギー源装置。
- 前記プロセッサは、前記パラメータに基づいて、前記処置対象の組織量を判断し、
前記プロセッサは、前記組織量が基準値より少ないと判断した場合は、前記第3のフェーズにおいて、前記ヒータへの前記出力を継続して停止する、又は、前記目標値として前記第1の目標温度より低い第2の目標温度を設定するとともに、前記ヒータへの前記出力に関して、前記ヒータを設定した前記第2の目標温度まで低下させ、かつ、前記ヒータを前記第2の目標温度で維持する出力制御を行う、
請求項2のエネルギー源装置。 - 前記プロセッサは、前記第3のフェーズにおいて前記インピーダンスが閾値以上になったこと、又は、前記第3のフェーズの開始からの経過時間が閾値以上になったことに基づいて、前記ヒータへの前記出力を前記第3のフェーズから上昇させ、第4のフェーズに切替える、請求項2のエネルギー源装置。
- 前記プロセッサは、前記第4のフェーズにおいて、前記ヒータへの前記出力に関して、前記ヒータを前記第2のフェーズでの前記第1の目標温度に比べて高い温度まで上昇させる出力制御を行う、請求項4のエネルギー源装置。
- 前記プロセッサは、前記第4のフェーズにおいて、前記ヒータへの前記出力に関して、前記ヒータを200℃以上まで上昇させる出力制御を行う、請求項5のエネルギー源装置。
- 前記プロセッサは、前記パラメータとして、前記インピーダンスの前記初期値、及び、前記第2のフェーズの継続時間の少なくとも一方を検出し、
前記プロセッサは、検出した前記初期値及び/又は前記継続時間に基づいて、前記第3のフェーズでの前記ヒータへの出力制御に関する前記目標値を設定する、
請求項1のエネルギー源装置。 - 前記プロセッサは、前記第3のフェーズでの前記ヒータへの出力制御に関して、前記インピーダンスの前記初期値が小さいほど、前記目標値である前記ヒータの目標温度を高く設定し、前記第2のフェーズの前記継続時間が長いほど、前記目標値である前記ヒータの前記目標温度を高く設定する、請求項7のエネルギー源装置。
- 前記プロセッサは、前記第3のフェーズでの前記ヒータへの出力制御に関する前記目標値として、前記ヒータの目標温度、及び、前記第3のフェーズの終了の判断に用いられる閾値の少なくとも一方を、前記パラメータに基づいて設定する、請求項1のエネルギー源装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/010455 WO2018167877A1 (ja) | 2017-03-15 | 2017-03-15 | エネルギー源装置 |
US16/568,614 US11439456B2 (en) | 2017-03-15 | 2019-09-12 | Energy source apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/010455 WO2018167877A1 (ja) | 2017-03-15 | 2017-03-15 | エネルギー源装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/568,614 Continuation US11439456B2 (en) | 2017-03-15 | 2019-09-12 | Energy source apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018167877A1 true WO2018167877A1 (ja) | 2018-09-20 |
Family
ID=63522852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010455 WO2018167877A1 (ja) | 2017-03-15 | 2017-03-15 | エネルギー源装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11439456B2 (ja) |
WO (1) | WO2018167877A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012115669A (ja) * | 2010-11-29 | 2012-06-21 | Tyco Healthcare Group Lp | 組織密封のためのシステムおよび方法 |
WO2013088891A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
JP2016055172A (ja) * | 2014-09-05 | 2016-04-21 | エルベ エレクトロメディジン ゲーエムベーハーErbe Elektromedizin GmbH | 生体組織の接触凝固用装置 |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558671A (en) * | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US6632221B1 (en) * | 1993-11-08 | 2003-10-14 | Rita Medical Systems, Inc. | Method of creating a lesion in tissue with infusion |
US5683384A (en) * | 1993-11-08 | 1997-11-04 | Zomed | Multiple antenna ablation apparatus |
US6409722B1 (en) * | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US6312428B1 (en) * | 1995-03-03 | 2001-11-06 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US6293942B1 (en) * | 1995-06-23 | 2001-09-25 | Gyrus Medical Limited | Electrosurgical generator method |
US6053937A (en) * | 1995-08-15 | 2000-04-25 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus and method with cooling element |
US6235023B1 (en) * | 1995-08-15 | 2001-05-22 | Rita Medical Systems, Inc. | Cell necrosis apparatus |
US6682501B1 (en) * | 1996-02-23 | 2004-01-27 | Gyrus Ent, L.L.C. | Submucosal tonsillectomy apparatus and method |
US5957920A (en) * | 1997-08-28 | 1999-09-28 | Isothermix, Inc. | Medical instruments and techniques for treatment of urinary incontinence |
ES2353846T3 (es) * | 1997-04-11 | 2011-03-07 | United States Surgical Corporation | Aparato para ablación con rf y controlador del mismo. |
US6312426B1 (en) * | 1997-05-30 | 2001-11-06 | Sherwood Services Ag | Method and system for performing plate type radiofrequency ablation |
US20030171747A1 (en) * | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US6564806B1 (en) * | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
EP1304971A1 (en) * | 2000-07-25 | 2003-05-02 | Rita Medical Systems, Inc. | Apparatus for detecting and treating tumors using localized impedance measurement |
WO2002067798A1 (en) * | 2001-02-26 | 2002-09-06 | Ntero Surgical, Inc. | System and method for reducing post-surgical complications |
US20080125775A1 (en) * | 2001-02-28 | 2008-05-29 | Morris David L | Hemostasis and/or coagulation of tissue |
JP4656755B2 (ja) * | 2001-05-07 | 2011-03-23 | オリンパス株式会社 | 電気手術装置 |
US7344533B2 (en) * | 2001-09-28 | 2008-03-18 | Angiodynamics, Inc. | Impedance controlled tissue ablation apparatus and method |
US20030073987A1 (en) * | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
US20060100620A1 (en) * | 2002-08-21 | 2006-05-11 | Daniel Steven A | Thermal hemostasis and/or coagulation of tissue |
US7341586B2 (en) * | 2002-08-21 | 2008-03-11 | Resect Medical, Inc. | Thermal coagulation of tissue during tissue resection |
US20060167445A1 (en) * | 2002-08-27 | 2006-07-27 | Gal Shafirstein | Selective conductive interstitial thermal therapy device |
US9713730B2 (en) * | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
WO2006092021A1 (en) * | 2005-03-04 | 2006-09-08 | Intervention Technology Pty Ltd | A minimal device and method for effecting hyperthermia derived anaesthesia |
US20090204114A1 (en) * | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US7862565B2 (en) * | 2005-05-12 | 2011-01-04 | Aragon Surgical, Inc. | Method for tissue cauterization |
DE202006021214U1 (de) * | 2005-07-21 | 2013-11-08 | Covidien Lp | Vorrichtung zum Behandeln einer hohlen anatomischen Struktur |
US20080275440A1 (en) * | 2007-05-03 | 2008-11-06 | Medtronic, Inc. | Post-ablation verification of lesion size |
US20160184006A1 (en) * | 2007-09-14 | 2016-06-30 | Lazure Scientific, Inc. | Ablation probe with deployable electrodes |
WO2009036457A1 (en) * | 2007-09-14 | 2009-03-19 | Lazure Technologies, Llc | Multi-layer electrode ablation probe and related methods |
US9622813B2 (en) * | 2007-11-01 | 2017-04-18 | Covidien Lp | Method for volume determination and geometric reconstruction |
US10660690B2 (en) * | 2007-12-28 | 2020-05-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US9642669B2 (en) | 2008-04-01 | 2017-05-09 | Olympus Corporation | Treatment system, and treatment method for living tissue using energy |
US9241762B2 (en) * | 2010-06-03 | 2016-01-26 | Covidien Lp | Specific absorption rate measurement and energy-delivery device characterization using image analysis |
US20120150049A1 (en) * | 2010-12-09 | 2012-06-14 | Medtronic, Inc. | Impedance measurement to monitor organ perfusion or hemodynamic status |
US9486625B2 (en) * | 2011-08-08 | 2016-11-08 | Medamp Electronics, Llc | Method for treating benign prostate hyperplasia |
US9125663B2 (en) * | 2011-11-08 | 2015-09-08 | Olympus Corporation | Treatment instrument system with thermally deformable absorbent member and slidable holding surface |
WO2013088893A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
WO2013088892A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
WO2013187356A1 (ja) * | 2012-06-15 | 2013-12-19 | オリンパスメディカルシステムズ株式会社 | 処置システム |
WO2013187355A1 (ja) * | 2012-06-15 | 2013-12-19 | オリンパスメディカルシステムズ株式会社 | 処置システム |
WO2014195933A1 (en) * | 2013-06-05 | 2014-12-11 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Myocardial ablation by irreversible electroporation |
JP5847358B2 (ja) | 2013-08-02 | 2016-01-20 | オリンパス株式会社 | 生体組織接合システム、および、生体組織接合システムの作動方法 |
EP3154464B1 (en) * | 2014-06-12 | 2025-03-12 | Boston Scientific Scimed, Inc. | Apparatus for rapid and selective tissue ablation with cooling |
US20160242836A1 (en) * | 2015-02-23 | 2016-08-25 | Hemostatix Medical Technologies, LLC | Apparatus, System and Method for Excision of Soft Tissue |
US11129982B2 (en) * | 2015-05-15 | 2021-09-28 | Dasyo Technology Ltd | Apparatus and method of non-invasive directional tissue treatment using radiofrequency energy |
EP3199117A4 (en) * | 2015-07-01 | 2018-07-25 | Olympus Corporation | Thermotherapeutic device and control device thereof |
EP3272302B1 (en) * | 2015-07-30 | 2021-01-13 | Olympus Corporation | Power supply device and high-frequency treatment system |
JPWO2017109832A1 (ja) * | 2015-12-21 | 2018-10-11 | オリンパス株式会社 | 手術器具の制御装置及び手術システム |
-
2017
- 2017-03-15 WO PCT/JP2017/010455 patent/WO2018167877A1/ja active Application Filing
-
2019
- 2019-09-12 US US16/568,614 patent/US11439456B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012115669A (ja) * | 2010-11-29 | 2012-06-21 | Tyco Healthcare Group Lp | 組織密封のためのシステムおよび方法 |
WO2013088891A1 (ja) * | 2011-12-12 | 2013-06-20 | オリンパスメディカルシステムズ株式会社 | 処置システム及び処置システムの制御方法 |
JP2016055172A (ja) * | 2014-09-05 | 2016-04-21 | エルベ エレクトロメディジン ゲーエムベーハーErbe Elektromedizin GmbH | 生体組織の接触凝固用装置 |
Also Published As
Publication number | Publication date |
---|---|
US11439456B2 (en) | 2022-09-13 |
US20200000508A1 (en) | 2020-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018167878A1 (ja) | エネルギー源装置 | |
JP6483878B2 (ja) | 低電力で組織をシーリングする装置及び方法 | |
JP5085143B2 (ja) | インピーダンスフィードバックアルゴリズムにおける処理を終結するためのシステムおよび方法 | |
EP2939616B1 (en) | Electrosurgical instruments including end-effector assembly configured to provide mechanical cutting action on tissue | |
JP5759714B2 (ja) | 電気外科用システム | |
WO2018011972A1 (ja) | エネルギー処置具、制御装置及び処置システム | |
WO2017187524A1 (ja) | エネルギー処置具、処置システム及び制御装置 | |
KR20220007884A (ko) | 전기수술 시스템 및 방법 | |
JP5425344B2 (ja) | 処置システム及び処置システムの作動方法 | |
JP2010057926A (ja) | 高速エネルギー回復を備える電気手術用装置 | |
JP2010057925A (ja) | 高速エネルギー回復を備える電気手術用装置 | |
US20150313628A1 (en) | Electrosurgical instruments including end-effector assembly configured to provide mechanical cutting action on tissue | |
US10045815B2 (en) | Energy treatment device and energy control device | |
US11564704B2 (en) | Energy treatment system | |
WO2018211629A1 (ja) | 制御装置及び処置システム | |
WO2018167877A1 (ja) | エネルギー源装置 | |
WO2017187530A1 (ja) | エネルギー処置具、処置システム及び制御装置 | |
WO2018163329A1 (ja) | エネルギー源装置 | |
WO2018163330A1 (ja) | エネルギー源装置 | |
CN108135650B (zh) | 能量处置器具、处置系统和控制装置 | |
US11317960B2 (en) | Electric power source device, high-frequency treatment system, and actuating method of electric power source | |
US20200330144A1 (en) | Control device, treatment system and operation method of control device | |
JP6214831B1 (ja) | 処置システム及び制御装置 | |
JP7024086B2 (ja) | 制御装置、処置システム、制御装置の作動方法 | |
WO2019142251A1 (ja) | 制御装置及び制御装置の作動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17901243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17901243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |