WO1990013897A1 - Cellule de conversion d'energie au deuterium-lithium - Google Patents
Cellule de conversion d'energie au deuterium-lithium Download PDFInfo
- Publication number
- WO1990013897A1 WO1990013897A1 PCT/US1990/002074 US9002074W WO9013897A1 WO 1990013897 A1 WO1990013897 A1 WO 1990013897A1 US 9002074 W US9002074 W US 9002074W WO 9013897 A1 WO9013897 A1 WO 9013897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- accumulator
- electrode
- ion
- deuterium
- palladium
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 8
- 229910052744 lithium Inorganic materials 0.000 title claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 55
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims abstract description 32
- 229910052805 deuterium Inorganic materials 0.000 claims abstract description 32
- 150000002500 ions Chemical class 0.000 claims abstract description 29
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims abstract description 27
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 18
- 239000003792 electrolyte Substances 0.000 claims abstract description 15
- 239000002344 surface layer Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 230000005684 electric field Effects 0.000 claims abstract 6
- 230000036962 time dependent Effects 0.000 claims abstract 6
- 239000007788 liquid Substances 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 1
- -1 deuterium ions Chemical class 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- WMFOQBRAJBCJND-DYCDLGHISA-M 12159-20-5 Chemical group [Li+].[2H][O-] WMFOQBRAJBCJND-DYCDLGHISA-M 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000007499 fusion processing Methods 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 240000002989 Euphorbia neriifolia Species 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 244000025221 Humulus lupulus Species 0.000 description 1
- 102100026933 Myelin-associated neurite-outgrowth inhibitor Human genes 0.000 description 1
- 241001474977 Palla Species 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000010210 aluminium Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000005493 condensed matter Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B3/00—Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Definitions
- This invention relates to a cell for production of thermal energy by conversion from other forms of energy.
- Electrode charged particles such as bare electrons or protons or muons are known to be Fermions and to obey Fermi-Dirac statistics.
- Two like elementary charged particles, such as two protons, have like elec- trical charges so that they tend to repel one another.
- Bosons Bose-Einstein statistics
- This tendency of Bosons to accumulate in the same region of space is indicated by a quantum thermodynamic expression for the pressure in a system of Bosons, developed and discussed in Statistical Physics by L.D. Landau and E.M. Lifshitz, Addison- esley Co., 1958, p. 159.
- the pressure developed by a system of Bosons is less than the pressure developed by a system of particles that are nei ⁇ ther Fermions nor Bosons at the same concentration and temperature. This suggests that the Boson particles ex ⁇ perience a modest attraction for one another that has its origin in quantum mechanical forces.
- Lithium ions have been widely used in the elec ⁇ trolyte added to heavy water in certain experiments by Pons and Fleischmann and many other researchers.
- the electrolyte used most commonly is LiOD, wherein most or all of the hydrogen in LiOH is replaced by deuterium. Most reports of generation of heat by these experiments indicated that the LiOD electrolyte had been used. In March, 1990, several physicists speculated that the ex- cess enthalpy generated may come from the reaction
- One object of this invention is to provide ap ⁇ paratus that suppresses the tendency of the deuterium and lithium ions to pick up electrons as the ions reach the accumulator or enter the interior of the metal that serves as the accumulator.
- Another object of the invention is to suppress the tendency of deuterium and lithium ions to be inter ⁇ fered with by deuterium gas and atoms as both types of ions approach the accumulator.
- Another object of the invention is to provide an additional means of triggering the fusion process.
- the apparatus contains an anode and a cathode with controllable voltage therebetween.
- An accumulator structure is placed between the anode and cathode.
- the accumulator has a surface layer of metal such as palladium that readily absorbs deuterium and lithium ions (commonly called “deuterons” and “lithons,” respectively) into its interior, or the accumulator may be composed entirely of this metal.
- the accumulator may be electrically floating with the elec ⁇ trical charge on it being determined by deuterons and lithons which enter it and by positive and negative ions in contact with the accumulator.
- the accumulator may also be pre-charged to assist the ion attraction process.
- the accumulator may have a time varying voltage with re ⁇ spect to the cathode or anode. With a suitable choice of accumulator geometry, a fraction of the deuterons and lithons that approach the accumulator will be pulled into the interior of the accumulator material and will con ⁇ tribute to the production of energy therein.
- the appara ⁇ tus promoting ion motion here are the cathode and anode.
- the accumulator is made of a deuterium-absorbing material such as palladium and intercepts deuterons and lithons as they move toward the cathode. A fraction of these ions are intercepted and absorbed by the accumulator material before they reach the cathode. Within the accumulator material, the ions may act as Bosons and may fuse or oth- erwise combine to produce heat.
- Fig. 1 is a perspective view of one embodiment of the invention.
- Fig. 2 is a perspective cutaway view of a sec ⁇ ond embodiment of the invention.
- Fig. 3a is a top plan view of the embodiment shown in Fig. 2.
- Fig. 3b is a top plan view of a second alter- nate embodiment of the invention.
- Fig. 4 is a cross-sectional view of a strand or fiber of material used in a screen electrode of Fig. 1.
- Figs. 5, 6 and 7 are perspective cutaway views of three other embodiments of the invention.
- Fig. 8 is a graphical view of one suitable time variation of voltage source impressed between cathode and accumulator in an embodiment of the invention.
- the apparatus 11 in one embodiment includes a container 13 containing a liq- uid 15 that is high purity heavy water, D 2 0, and small amounts of one or more salts, usually LiOD, to create a suitable deuteron and lithon concentration in the liquid.
- Typical concentrations of LiOD range from 0.1M to 1.0M, with the preferred concentration being closer to 0.1 M.
- Commercially available lithium is about 92 percent Li 7 and about 8 percent Li 6 . Because the Li 6 0D positive ion is a Boson and is known to combine with deuterium without any radioactive products, Li 6 (at least 6 percent) is preferred over Li 7 in this process.
- Two electrodes 17 and 19 are immersed in the liquid 15 and spaced apart from each other and are connected by a controllable volt ⁇ age source 21 that imposes a negative electrical voltage -V ca on the second electrode 19 relative to the electri ⁇ cal voltage of the first electrode 17.
- the electrodes 17 and 19 thus serve as anode and cathode, respectively, for the apparatus 11.
- the D 2 0 molecules in the liquid 15 are decomposed into negatively charged OD ions, which are drawn to the first electrode 17, and positively charged deuterons and lithons, which are drawn to the second electrode 19.
- An accumulator 22 is immersed in the liq ⁇ uid 15 and is positioned between the first and second electrodes 17 and 19.-
- the accumulator 22 is electrically floating in one embodiment.
- the accumulator 22 extends between two walls of the container 13 so that the accumulator divides the container liquid 15 into a first portion that contains the first electrode 17 and a mutually exclusive second portion that contains the second electrode 19. Care should be taken to prevent ordinary water from get ⁇ ting into the heavy water since this can stop the fusion process.
- Fig. 2 illustrates in three dimensions an exam- pie of an accumulator 23 used in an approximately coaxial arrangement with the cathode 19, also shown in Fig. 3a.
- Fig. 3a illustrates an embodiment in which an accumula ⁇ tor 23 radially surrounds and is adjacent to the second electrode 19, with the distance between the accumulator 23 and the second electrode 19 being smaller than the distance between the accumulator 23 and the first elec ⁇ trode 17.
- the accumulator 23 divides the container liquid 15 into two portions, and many of the deuterons and lithons in the liquid 15 must pass through the accumulator 23 in order to reach the second electrode 19.
- the accumulator 23 radially sur ⁇ rounds the second electrode 19 and the first electrode 17 radially surrounds the accumulator.
- the anode and cath- ode may be tubular or may be helical.
- the accumulator 22 or 23 may be in the form of a mesh, as illustrated in Fig. 1 or Fig. 2, respectively, or may be in the form of a helix or a squirrel cage. The roles of the electrodes may be exchanged, with 17 becoming the cathode and 19 becoming the anode in with Fig. 3a or Fig. 3b.
- Deuterons and lithons are produced by ioniza ⁇ tion in conjunction with an electrolyte such as LiOD in the heavy water, which has a high concentration of deute ⁇ rium atoms present in the form D 2 0.
- the accumulator 23 should have a surface layer 27 of a selected thickness, as illustrated in Fig. 4, with the surface layer being composed of a metal such as palladium, preferred for thermal power generation.
- the accumulator material may be entirely composed of palladi- um or a palladium alloy or may have a surface layer pref ⁇ erably at least 100 microns thick of such material that encloses an electrically conducting core 28 that is com ⁇ posed of a material such as copper, silver, nickel, alu- minum or iron.
- an anode 31 and a cathode 33 are immersed in a heavy water liquid 35 that is contained in a container 37.
- the liquid 35 also contains an electrolyte, such as LiOD to ionize the heavy water and electrolytes into D + ions, Li + ions and OD ⁇ ions.
- the cathode mesh 33 is positioned between the anode 31 and an accumulator 39 that is also immersed in the liquid 35, with the accumulator being positioned close to the cathode.
- a controllable voltage source 41 is connected between the anode 31 and cathode 33 as be ⁇ fore, and the accumulator includes a deuterium-permeable material, preferably palladium.
- the cathode 33 is a grid-like or mesh-like body radially surrounding the ac- cumulator, and the anode 31 may either radially surround the cathode, as shown in Fig. 5, or may be spaced apart from and not surround the cathode, as shown in Fig. 6. In Figs. 5 and 6 the spacing between the cathode 33 and the accumulator 39 is small so that ions passing through the cathode can still reach the accumulator.
- an anode 51 and a mesh-like cathode 53 are immersed in heavy water liquid 55 containing an electrolyte, preferably LiOD, with the liquid being contained in a container 57.
- the container 57 functions as the deuterium accumulator and includes deuterium-permeable material, preferably palladium.
- a controllable voltage source 59 is connected between the anode 51 and the cathode 53, with the cathode radially surrounding the anode and the container 57 radially surrounding the cathode and being positioned close to the cathode.
- a second voltage source 25 that is connected between, and provides a time varying voltage between, the cathode 19 and the accumulator.
- a second voltage source is connected between, and provides a time varying voltage between, the anode 17 and the accumulator 23, by an obvious modification of Fig. 1.
- Fig. 8 illustrates one suitable time variation of the voltage difference V cs between cathode and accu u- lator as a function of time, for comparison with the ca ⁇ thode-anode voltage -V ca , in the embodiment of Fig. 1.
- the voltage V cs (t) is approximately constant and equal to a first value, -V cso ( ⁇ 0) for most of a cycle.
- the voltage V cs (t) is pulsed to a positive value (or negative value) V cs _, that is smaller than V ca .
- each of these pulses at the times tl, t2, t3, • •• is a small fraction of the time separation of consecutive pulse points t2-tl, t3-t2, etc.
- the length of each time interval, such as t- ⁇ ⁇ t ⁇ t 2 is preferably of the order of one second or greater.
- Various patterns of time varying voltages may be used to change the ion distribution near the accumulator so as to prevent electrolysis at the accumulator or to trigger the fusion process.
- the voltage source 21 shown in any of Figs. 1, 2, 3a or 3b, the voltage source 41 shown in any of Figs. 4, 5 or 6, or the voltage source 59 shown in Fig. 7, may be a static voltage source or battery as shown therein or may be a time varying source V 12 (t) .
- the voltage level should be adjustable or controllable so that the voltage can be set at an optimum level that will depend in part on the electrolyte(s) used and on the electrolyte concen ⁇ tration.
- the voltage difference V 12 im- pressed between the first electrode 17 and the second electrode 19 in Fig. 1 might be chosen to be always positive but might be dithered or otherwise varied in time about a chosen positive value such as +10 volts.
- a time varying second voltage source 25 can also be included in the embodiments of Figs. 2, 3a and 3b; a time varying second voltage source 42 can be included in the embodiments of Figs. 5 and 6; and a time varying second voltage source 60 can be in ⁇ cluded in the embodiment of Fig. 7.
- the cathode-accumulator voltage dif ⁇ ference V cs (t) would preferably vary as shown in Fig. 8 or opposite polarity pulses may be used.
- a more realistic ratio of the maximum number of deuterium atoms or ions present to the number of palladium atoms present may be about 0.6.
- the numeri- cal density of solid palladium is about 6.75 x l ⁇ 22 Pd atoms cm J so that a realizable average density of deute ⁇ rium atoms bound into a Pd-based lattice could be about 4 x lo" D atoms or ions cm . This density of deuterium within the lattice has the potential to produce deuterium related fusion reactions and excess energy.
- the pH of the electrolyte was adjust ⁇ ed to less than 3.0 by addition of HN0 3 .
- electrol ⁇ ysis was begun, oxygen bubbles were observed to form im ⁇ mediately at the positive electrode.
- deuterium bubbles were observed to form at the negative electrode (Pd or Ti) only after many minutes of electrolysis, sug ⁇ gesting the rapid absorption of deuterium into this elec ⁇ trode initially. No generation of excess enthalpy was reported. Fleischmann and Pons, Electrochemically Induced
- the only elec ⁇ trodes are a palladium cathode and a platinum anode.
- the cathode plays a dual role in both accumulating the deute ⁇ rons and lithons and in converting the deuterons to a deuterium gas.
- the only method of controlling or trig ⁇ gering the fusion process is by changing the temperature or anode voltage.
- the invention disclosed in Figs. 1, 2, 3, 5, 6 and 7 physically separates the step of electrolysis by the positive and negative electrodes from the step of accumulation of the deuterons and lithons within the in ⁇ terior of the accumulator material.
- the deuterons and lithons can pass into the interior of the palladium accu ⁇ mulator without passing through a screen of bubbling deuterium gas as in the prior art.
- the local ion flow may be instanta- neously changed in kinetic energy and magnitude at the accumulator which can be used to trigger the fusion process. This was not possible in the two electrode structures of the prior art.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Méthode et appareillage pour produire de l'énergie par ionisation électrolytique d'eau lourde (15), accélération dans un champ électrique des particules ionisées et rassemblement des ions dans du palladium pour faciliter la combinaison ion-ion. Une première source de champ électrique (21) entraîne les ions deutérium vers un accumulateur à deutérium (22) qui comprend une couche de surface (27) de palladium ou d'un alliage de celui-ci et qui est positionnée à l'écart de deux électrodes (17, 19) qui produisent le champ électrique. Une deuxième source de champ électrique dépendant du temps (25) (facultative) entraîne périodiquement les particules chargées négativement à l'écart de l'accumulateur à deutérium (22) et participent au déclenchement des réactions recherchées.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35135789A | 1989-05-12 | 1989-05-12 | |
US351,357 | 1989-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990013897A1 true WO1990013897A1 (fr) | 1990-11-15 |
Family
ID=23380567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1990/002074 WO1990013897A1 (fr) | 1989-05-12 | 1990-04-17 | Cellule de conversion d'energie au deuterium-lithium |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU5648690A (fr) |
IL (1) | IL94229A0 (fr) |
WO (1) | WO1990013897A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992022908A1 (fr) * | 1991-06-11 | 1992-12-23 | Electric Power Research Institute, Inc. | Appareil produisant de la chaleur a partir de palladium deuterise |
WO1993001601A1 (fr) * | 1991-07-11 | 1993-01-21 | University Of Utah Research Foundation | Methode de reproduction constante d'une charge elevee de deuterium et d'obtention de tritium dans des electrodes de palladium |
US5281798A (en) * | 1991-12-24 | 1994-01-25 | Maxwell Laboratories, Inc. | Method and system for selective removal of material coating from a substrate using a flashlamp |
WO1996039700A1 (fr) * | 1995-06-05 | 1996-12-12 | Ragland Evan L | Appareil a triode pour controler une fusion nucleaire |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2741587A (en) * | 1950-06-24 | 1956-04-10 | Borolite Corp | Production of metal borides by fused salt electrolysis |
GB926884A (en) * | 1958-10-29 | 1963-05-22 | Amalgamated Curacao Patents Co | A diaphram for use in electrolysis |
US3113080A (en) * | 1961-05-22 | 1963-12-03 | Smith Corp A O | Continuous decontamination of the hydrogen acquiring surface of a palladium diaphragm used for the transfer of atomic hydrogen |
US4311569A (en) * | 1980-04-21 | 1982-01-19 | General Electric Company | Device for evolution of oxygen with ternary electrocatalysts containing valve metals |
US4444641A (en) * | 1980-07-11 | 1984-04-24 | Asahi Glass Company Ltd. | Electrode |
US4465580A (en) * | 1978-02-20 | 1984-08-14 | Chlorine Engineers Corp. Ltd. | Cathode for use in electrolysis |
US4908114A (en) * | 1985-09-27 | 1990-03-13 | William Ayers | Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane |
-
1990
- 1990-04-17 AU AU56486/90A patent/AU5648690A/en not_active Abandoned
- 1990-04-17 WO PCT/US1990/002074 patent/WO1990013897A1/fr unknown
- 1990-04-27 IL IL94229A patent/IL94229A0/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2741587A (en) * | 1950-06-24 | 1956-04-10 | Borolite Corp | Production of metal borides by fused salt electrolysis |
GB926884A (en) * | 1958-10-29 | 1963-05-22 | Amalgamated Curacao Patents Co | A diaphram for use in electrolysis |
US3113080A (en) * | 1961-05-22 | 1963-12-03 | Smith Corp A O | Continuous decontamination of the hydrogen acquiring surface of a palladium diaphragm used for the transfer of atomic hydrogen |
US4465580A (en) * | 1978-02-20 | 1984-08-14 | Chlorine Engineers Corp. Ltd. | Cathode for use in electrolysis |
US4311569A (en) * | 1980-04-21 | 1982-01-19 | General Electric Company | Device for evolution of oxygen with ternary electrocatalysts containing valve metals |
US4444641A (en) * | 1980-07-11 | 1984-04-24 | Asahi Glass Company Ltd. | Electrode |
US4908114A (en) * | 1985-09-27 | 1990-03-13 | William Ayers | Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane |
Non-Patent Citations (5)
Title |
---|
CAN. J. CHEM., Vol. 37, issued 1959, SCHULDINER et al., see pages 228, 229, 235, 236. * |
J. ELECTROANAL. CHEM., Vol. 261, issued 10 April 1989, FLEISCHMANN et al.: "Electrochemically induced nuclear fusion of deuterium", see pages 301-308. * |
NATURE, Vol. 344, issued 29 March 1990, SALAMON et al.: pages 401-405, (cited as casting doubt on the obtainment of electrochemically induced nuclear fusion). * |
ORNL/FTR-3341, dated 31 July 1989, COOKE, see pages 3-5, (cited as casting doubt on the obtainment of electrochemically induced nuclear fusion). * |
THE PALLADIUM HYDROGEN SYSTEM, dated 1967, Author F.A. LEWIS, Academic Press, see pages 3-6, 11, 12, 37, 38, 129-137. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992022908A1 (fr) * | 1991-06-11 | 1992-12-23 | Electric Power Research Institute, Inc. | Appareil produisant de la chaleur a partir de palladium deuterise |
WO1993001601A1 (fr) * | 1991-07-11 | 1993-01-21 | University Of Utah Research Foundation | Methode de reproduction constante d'une charge elevee de deuterium et d'obtention de tritium dans des electrodes de palladium |
US5281798A (en) * | 1991-12-24 | 1994-01-25 | Maxwell Laboratories, Inc. | Method and system for selective removal of material coating from a substrate using a flashlamp |
WO1996039700A1 (fr) * | 1995-06-05 | 1996-12-12 | Ragland Evan L | Appareil a triode pour controler une fusion nucleaire |
Also Published As
Publication number | Publication date |
---|---|
AU5648690A (en) | 1990-11-29 |
IL94229A0 (en) | 1991-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060088138A1 (en) | Method and apparatus for the generation and the utilization of plasma solid | |
JP2010174379A (ja) | パルス電解層 | |
WO1990013125A1 (fr) | Fusion piezonucleaire | |
WO1994016446A1 (fr) | Fusion nucleaire auto-catalysee de lithium-6 et de deuterium a l'aide de particules alpha | |
EP0473681B1 (fr) | Generation d'energie par fusion | |
WO1992022909A1 (fr) | Dispositif de fusion a micro-plasma de surface a l'etat solide | |
US20030112916A1 (en) | Cold nuclear fusion under non-equilibrium conditions | |
WO1990013897A1 (fr) | Cellule de conversion d'energie au deuterium-lithium | |
EP0461690A2 (fr) | Générateur de chaleur utilisant la fusion nucléaire froide | |
US20080205572A1 (en) | Apparatus and process for generating nuclear heat | |
US20090116604A1 (en) | Machine for producing flow of Isotopic fuel through a material | |
EP0531454A1 (fr) | Appareil de production d'energie a partir de deuterium-lithium reparti. | |
EP0576293A1 (fr) | Production d'énergie par commande des probabilités d'effets quantiques, réalisé par l'intermédiaire d'interactions induites de niveaux quantiques | |
WO1991018397A1 (fr) | Appareil de conversion de l'energie par accumulation de deuterium | |
WO1991002359A1 (fr) | Accumulateur reparti de conversion d'energie | |
WO1991015017A1 (fr) | Accumulation de l'energie de deuterium | |
US20080159461A1 (en) | Apparatus and process for generating nuclear heat | |
WO2005065095A2 (fr) | Dispositif de multiplication par alpha commande | |
US20050105664A1 (en) | Process for generating nuclear heat | |
WO1991018396A1 (fr) | Accumulateur au deuterium pour la conversion d'energie | |
Das et al. | Fusion in Condensed Matter—A Likely Scenario | |
WO2023248107A1 (fr) | Procédé de fusion thermonucléaire contrôlée | |
EP0830688A1 (fr) | Appareil a triode pour controler une fusion nucleaire | |
JPH0368894A (ja) | 核融合発生装置 | |
WO1996006434A1 (fr) | Procede de condensation d'un hydrure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA DK FI JP KR NO SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |
|
NENP | Non-entry into the national phase |
Ref country code: CA |