WO2024143153A1 - 排ガス浄化用触媒 - Google Patents
排ガス浄化用触媒 Download PDFInfo
- Publication number
- WO2024143153A1 WO2024143153A1 PCT/JP2023/045927 JP2023045927W WO2024143153A1 WO 2024143153 A1 WO2024143153 A1 WO 2024143153A1 JP 2023045927 W JP2023045927 W JP 2023045927W WO 2024143153 A1 WO2024143153 A1 WO 2024143153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- mass
- exhaust gas
- oxide
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J33/00—Protection of catalysts, e.g. by coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
- B01J35/57—Honeycombs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
Definitions
- Patent Document 2 describes an exhaust gas purification catalyst that includes a carrier, a lower catalytic layer provided on the carrier, and an upper catalytic layer provided on the lower catalytic layer, in which the lower catalytic layer contains zeolite, Ce-containing oxide, activated alumina, Pt, and Pd, and the upper catalytic layer contains activated alumina supporting Rh-doped Ce-containing oxide and NOx storage material.
- a catalyst for purifying exhaust gas comprising a substrate, a first layer provided on the substrate, a second layer provided on the first layer, and a third layer provided on the second layer, the first layer includes a Pt and Ce-based oxide; a content of the Ce-based oxide in the first layer is 50 mass% or more based on a mass of the first layer; The content of Ce in the Ce-based oxide in terms of CeO2 is 85% by mass or more based on the mass of the Ce-based oxide; the second layer does not contain any platinum group element, or the content of the platinum group element having the highest content in the second layer, calculated as metal, is 0.5 mass% or less based on the mass of the second layer;
- an exhaust gas purification catalyst that uses Pt as a catalytically active component and that can prevent a decrease in exhaust gas purification performance after exposure to high temperatures.
- Prevention of a decrease in exhaust gas purification performance after exposure to high temperatures is significant when the temperature to which the exhaust gas purification catalyst of the present invention is exposed is 600°C or higher, more significant when it is 700°C or higher, and even more significant when it is 800°C or higher.
- FIG. 1 is a partial end view showing a state in which an exhaust gas purifying catalyst according to one embodiment of the present invention is disposed in an exhaust passage of an internal combustion engine.
- FIG. 2 is an end view taken along line AA of FIG.
- FIG. 3 is an enlarged view of the area indicated by the symbol R in FIG.
- FIG. 4 is an end view taken along line BB of FIG.
- exhaust gas purification catalysts may be arranged upstream and/or downstream of catalyst 1 in the exhaust passage in exhaust pipe P.
- the catalyst 1 includes a substrate 10, a first layer 20 provided on the substrate 10, a second layer 30 provided on the first layer 20, and a third layer 40 provided on the second layer 30.
- the cell 13 extends in the exhaust gas flow direction X and has an end on the exhaust gas inlet side and an end on the exhaust gas outlet side.
- the end (opening) of cell 13 on the exhaust gas inlet side has a rectangular shape in plan view, but may have other shapes such as a hexagon or octagon.
- the end (opening) of cell 13 on the exhaust gas outlet side also has a similar shape in plan view.
- the cell density per square inch of the substrate 10 is, for example, 100 cells or more and 1200 cells or less.
- the cell density per square inch of the substrate 10 means the total number of cells 13 per square inch in a cross section obtained by cutting the substrate 10 along a plane perpendicular to the exhaust gas flow direction X.
- the volume of the substrate 10 is, for example, 0.1 L or more and 20 L or less.
- the volume of the substrate 10 means the apparent volume of the substrate 10.
- the first layer 20 extends along the exhaust gas flow direction X from the end of the partition section 12 on the exhaust gas inlet side to the end of the partition section 12 on the exhaust gas outlet side.
- the first layer 20 may extend along the exhaust gas flow direction X from the end of the partition section 12 on the exhaust gas inlet side so as not to reach the end of the partition section 12 on the exhaust gas outlet side, or may extend in the opposite direction to the exhaust gas flow direction X from the end of the partition section 12 on the exhaust gas outlet side so as not to reach the end of the partition section 12 on the exhaust gas inlet side.
- platinum group elements includes Pt (platinum element), Pd (palladium element), Rh (rhodium element), Ru (ruthenium element), Os (osmium element), and Ir (iridium element).
- a composition analysis For cut pieces that clearly contain a portion of the first layer 20, it is not necessary to perform a composition analysis.
- a scanning electron microscope (SEM), an electron probe microanalyzer (EPMA), or the like can be used to observe the cut surface to confirm whether or not the cut piece contains a portion of the first layer 20.
- SEM scanning electron microscope
- EPMA electron probe microanalyzer
- elemental mapping of the cut surface may also be performed.
- the length of the first layer 20 contained in the sample is (5 x k) mm.
- the content of Pt in the first layer 20 in terms of metal is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.15% by mass or more and 5% by mass or less, and even more preferably 0.2% by mass or more and 3% by mass or less, based on the mass of the first layer 20.
- the first layer 20 contains Pt and a platinum group element other than Pt
- the Pt and the platinum group element other than Pt may form an alloy, which may reduce the active sites of Pt that contribute to the exhaust gas purification performance. Therefore, it is preferable that the first layer 20 does not substantially contain any platinum group elements other than Pt.
- the first layer 20 is substantially free of platinum group elements other than Pt
- the content of platinum group elements other than Pt in the first layer 20 in terms of metal is preferably 0.05 mass% or less, more preferably 0.01 mass% or less, based on the mass of the first layer 20.
- the lower limit is zero.
- the content of platinum group elements other than Pt in the first layer 20 in terms of metal means the content of one platinum group element in terms of metal when the first layer 20 contains one platinum group element other than Pt, and means the total content of the two or more platinum group elements in terms of metal when the first layer 20 contains two or more platinum group elements other than Pt.
- the metal-equivalent content of each metal element in the first layer 20 can be determined by standard methods such as scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX). Specifically, this is as follows:
- the first layer 20 contains a Ce-based oxide.
- Ce-based oxide refers to an oxide in which, among the elements other than O that constitute the Ce-based oxide, the element with the highest content by mass is Ce.
- the Ce-based oxide is, for example, particulate.
- the Ce-based oxide is used as a carrier for catalytically active components. From the viewpoint of improving the supportability of the catalytically active components, the Ce-based oxide is preferably porous.
- the Ce-based oxide is distinguished from ceria used as a binder. In this specification, ceria used as a binder may be referred to as "ceria binder.”
- the Ce-based oxide may contain one or more elements other than Ce and O (hereinafter sometimes referred to as "other elements").
- the other elements may be selected from, for example, rare earth elements other than Ce, alkaline earth metal elements (e.g., Mg, Ca, Sr, Ba, etc.), Fe, Mn, Ni, Zr, Al, etc.
- rare earth elements other than Ce include Y, Pr, Sc, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.
- Cerium-based oxides include, for example, ceria (an oxide composed of Ce and O), oxides obtained by modifying the surface of ceria with other elements, and oxides obtained by dissolving other elements in ceria.
- the other elements may form a solid solution phase (e.g., a solid solution phase of CeO2 and an oxide of the other element, etc.), or may form a single phase that is a crystalline phase or an amorphous phase (e.g., an oxide phase of the other element), or may form both a solid solution phase and a single phase.
- a solid solution phase e.g., a solid solution phase of CeO2 and an oxide of the other element, etc.
- a single phase that is a crystalline phase or an amorphous phase (e.g., an oxide phase of the other element), or may form both a solid solution phase and a single phase.
- An elemental analysis is performed on a sample obtained from the first layer 20 using a standard method such as SEM-EDX to identify the types of constituent elements of the entire sample and to determine the content (mass %) of each identified element.
- Elemental mapping is performed on the sample obtained from the first layer 20 using a standard method such as SEM-EDX to identify the types of particles contained in the sample (e.g., Ce-based oxide particles and possibly other particles).
- SEM-EDX e.g., Ce-based oxide particles and possibly other particles.
- For each type of particle a number of arbitrarily selected particles (e.g., 50 particles) are subjected to elemental analysis by SEM-EDX to identify the types of constituent elements of the particles and to determine the content (mass%) of each identified element. The average content (mass%) of each element is calculated for each type of particle.
- inorganic oxides used as supports include Al-based oxides, Ce-Zr-based composite oxides, Ce-Zr-Al-based composite oxides, oxides of rare earth elements other than Ce, oxides based on zirconia (ZrO 2 ), silica (SiO 2 ), titania (TiO 2 ), zeolite (aluminosilicate), MgO, ZnO, SnO 2 , etc.
- the mass of the second layer 30 per unit volume of the portion of the substrate 10 on which the second layer 30 is formed is preferably 5 g/L or more and 100 g/L or less, more preferably 10 g/L or more and 90 g/L or less, even more preferably 15 g/L or more and 80 g/L or less, and even more preferably 20 g/L or more and 70 g/L or less.
- first layer 20 should be read as “second layer 30.”
- the second layer 30 does not contain any platinum group elements
- the second layer 30 does not contain any platinum group elements selected from Pt, Pd, Rh, Ru, Os, and Ir.
- the metal-equivalent content of the platinum group element having the highest concentration in the second layer 30 is preferably 0.4 mass% or less, and more preferably 0.3 mass% or less, based on the mass of the second layer 30.
- the lower limit of the metal-equivalent content of the platinum group element having the highest concentration in the second layer 30 can be adjusted as appropriate.
- the metal-equivalent content of the platinum group element having the highest concentration in the second layer 30 is, for example, 0.01 mass% or more, 0.02 mass% or more, or 0.05 mass% or more, based on the mass of the second layer 30. Each of these lower limits may be combined with any of the above-mentioned upper limits.
- the total content of all platinum group elements in the second layer 30 in terms of metal is preferably 1.5 mass% or less, more preferably 1.0 mass% or less, and even more preferably 0.75 mass% or less, based on the mass of the second layer 30.
- the lower limit of the total content of all platinum group elements in terms of metal in the second layer 30 can be adjusted as appropriate.
- the total content of all platinum group elements in terms of metal in the second layer 30 is, for example, 0.02 mass% or more, 0.04 mass% or more, or 0.10 mass% or more, based on the mass of the second layer 30. Each of these lower limits may be combined with any of the upper limits described above.
- the metal equivalent content of each metal element in the second layer 30 can be determined in the same manner as the metal equivalent content of each metal element in the first layer 20.
- An elemental analysis is performed on the sample obtained from the second layer 30 using a standard method such as SEM-EDX to identify the types of constituent elements of the entire sample and to determine the Al content (mass%) in terms of Al2O3 .
- the Al content (mass%) in terms of Al2O3 is determined for each of 10 SEM visual fields, and the average of the Al contents (mass%) in terms of Al2O3 for the 10 visual fields is taken as the Al content ( mass%) in terms of Al2O3 in the second layer 30.
- the second layer 30 contains Al
- the second layer 30 contains one or more Al sources.
- the "content of Al in the second layer 30 in terms of Al2O3 means the content of Al derived from one Al source in terms of Al2O3 when the second layer 30 contains one Al source, and means the total content of Al derived from the two or more Al sources in terms of Al2O3 when the second layer 30 contains two or more Al sources.
- the second layer 30 preferably contains an Al-based oxide as an Al source.
- the second layer 30 may contain at least one selected from the group consisting of a Ce-based oxide containing Al, a Ce-Zr-based composite oxide containing Al, a Ce-Zr-Al-based composite oxide, an alumina binder, and the like as an Al source.
- the second layer 30 contains an Al-based oxide and an alumina binder as an Al source.
- the Al-based oxide is, for example, particulate.
- the Al-based oxide is used as a capture material that captures Pt volatilized from the first layer 20.
- the Al-based oxide is also used as a carrier for catalytically active components containing platinum group elements. From the viewpoint of effectively capturing Pt volatilized from the first layer 20, and from the viewpoint of improving the supportability of catalytically active components when the second layer 30 contains a platinum group element, it is preferable that the Al-based oxide is porous.
- the Al-based oxide may contain one or more elements other than Al and O (hereinafter sometimes referred to as "other elements").
- the other elements may be selected from, for example, rare earth elements (e.g., Ce, Y, Pr, La, Nd, Sm, Eu, Gd, etc.), alkaline earth metal elements (e.g., Mg, Ca, Sr, Ba, etc.), B, Si, Zr, Cr, etc.
- Al-based oxides examples include alumina (an oxide composed of Al and O), oxides obtained by modifying the surface of alumina with other elements, and oxides obtained by dissolving other elements in alumina.
- Al-based oxides containing other elements include alumina-silica, alumina-silicate, alumina-zirconia, alumina-chromia, alumina-ceria, and alumina-lanthana.
- the other element may form a solid solution phase (e.g., a solid solution phase of Al2O3 and an oxide of the other element), or may form a single phase that is a crystalline phase or an amorphous phase (e.g., an oxide phase of the other element), or may form both a solid solution phase and a single phase.
- a solid solution phase e.g., a solid solution phase of Al2O3 and an oxide of the other element
- the content of Al in the Al-based oxide calculated as Al2O3 is preferably 70 mass% or more, more preferably 80 mass% or more, and even more preferably 90 mass% or more, based on the mass of the Al-based oxide.
- the upper limit is 100 mass%.
- the upper limit is preferably 99.9 mass% or less, more preferably 99.5 mass% or less, and even more preferably 99 mass% or less. Each of these upper limits may be combined with any of the above-mentioned lower limits.
- the oxide-equivalent content of each element in Al-based oxides can be determined in the same way as the oxide-equivalent content of each element in Ce-based oxides.
- the ratio of the mass of Al in the second layer 30, in terms of Al2O3 , to the mass of Pt in the first layer 20 , in terms of metal is preferably 1 or more and 1,000 or less, more preferably 5 or more and 900 or less, even more preferably 8 or more and 800 or less, and even more preferably 10 or more and 700 or less.
- the second layer 30 may contain other components such as a binder and a stabilizer.
- binders include inorganic oxide binders such as alumina sol, ceria sol, zirconia sol, titania sol, and silica sol.
- stabilizers include carbonates, oxides, and sulfates of alkaline earth metal elements (e.g., Sr, Ba, etc.).
- the third layer 40 is disposed on the second layer 30.
- the third layer 40 is provided on the second layer 30 means that a part or all of the third layer 40 is present on the main surface opposite to the main surface on the first layer 20 side, out of the two main surfaces of the second layer 30.
- "Main surface of the second layer 30” means the outer surface of the second layer 30 extending in the exhaust gas flow direction X.
- the third layer 40 may be provided directly on the main surface of the second layer 30, or may be provided via another layer, but is usually provided directly on the main surface of the second layer 30.
- the third layer 40 may be provided so as to cover a part of the main surface of the second layer 30, or may be provided so as to cover the entire main surface of the second layer 30.
- "The third layer 40 provided on the second layer 30" includes both an embodiment in which the third layer 40 is provided directly on the main surface of the second layer 30, and an embodiment in which the third layer 40 is provided on the main surface of the second layer 30 via another layer.
- the third layer 40 extends along the exhaust gas flow direction X from the end of the partition section 12 on the exhaust gas inlet side to the end of the partition section 12 on the exhaust gas outlet side.
- the third layer 40 may extend along the exhaust gas flow direction X from the end of the partition section 12 on the exhaust gas inlet side so as not to reach the end of the partition section 12 on the exhaust gas outlet side, or may extend in the opposite direction to the exhaust gas flow direction X from the end of the partition section 12 on the exhaust gas outlet side so as not to reach the end of the partition section 12 on the exhaust gas inlet side.
- the mass of the third layer 40 per unit volume of the portion of the substrate 10 on which the third layer 40 is formed is preferably 20 g/L to 200 g/L, more preferably 30 g/L to 150 g/L, even more preferably 40 g/L to 120 g/L, and even more preferably 50 g/L to 100 g/L.
- the mass of the third layer 40 per unit volume of the portion of the substrate 10 on which the third layer 40 is formed is calculated from the formula: (mass of the third layer 40)/((volume of the substrate 10) ⁇ (average length L40 of the third layer 40 /length L10 of the substrate 10 )).
- the third layer 40 contains Rh and/or Pd as catalytically active components.
- Rh is contained in the third layer 40 in a form capable of functioning as a catalytically active component, for example, in the form of a catalytically active component containing Rh, such as metallic Rh, an alloy containing Rh, or a compound containing Rh (e.g., an oxide of Rh). From the viewpoint of improving exhaust gas purification performance, it is preferable that the catalytically active component containing Rh is in particulate form.
- Pd is contained in the third layer 40 in the form of a catalytically active component that can function as a catalytically active component, such as metallic Pd, an alloy containing Pd, or a compound containing Pd (e.g., an oxide of Pd). From the viewpoint of improving exhaust gas purification performance, it is preferable that the catalytically active component containing Pd is in particulate form.
- a catalytically active component that can function as a catalytically active component, such as metallic Pd, an alloy containing Pd, or a compound containing Pd (e.g., an oxide of Pd).
- the catalytically active component containing Pd is in particulate form.
- the content of Rh in the third layer 40 in terms of metal is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.015% by mass or more and 5% by mass or less, and even more preferably 0.02% by mass or more and 1% by mass or less, based on the mass of the third layer 40.
- the metal-equivalent Pd content in the third layer 40 is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.15% by mass or more and 8% by mass or less, and even more preferably 0.2% by mass or more and 5% by mass or less, based on the mass of the third layer 40.
- the third layer 40 may contain platinum group elements other than Rh and Pd as catalytically active components.
- platinum group elements other than Rh and Pd include Pt, Ru, Os, and Ir.
- the platinum group elements other than Rh and Pd are contained in the third layer 40 in a form capable of functioning as catalytically active components, such as metals, alloys containing platinum group elements, and compounds containing platinum group elements (e.g., oxides of platinum group elements), in the form of catalytically active components containing platinum group elements other than Rh and Pd. From the viewpoint of improving exhaust gas purification performance, it is preferable that the catalytically active components containing platinum group elements other than Rh and Pd are in particulate form.
- the third layer 40 contains Rh and/or Pd and platinum group elements other than Rh and Pd, there is a risk that the Rh and/or Pd will form an alloy with the platinum group elements other than Rh and Pd, resulting in a decrease in the active sites of Rh and/or Pd that contribute to the exhaust gas purification performance. Therefore, it is preferable that the third layer 40 does not substantially contain platinum group elements other than Rh and Pd.
- the metal equivalent content of each metal element in the third layer 40 can be determined in the same manner as the metal equivalent content of each metal element in the first layer 20.
- the third layer 40 preferably contains one or more carriers.
- the mechanism of action of the catalyst 1 is not entirely clear, but is thought to be as follows.
- the catalyst 1 includes a third layer 40 containing Rh and/or Pd in addition to a first layer 20 containing Pt. Therefore, the catalyst 1 can purify harmful components such as carbon monoxide (CO), hydrocarbons (HC), non-methane hydrocarbons (NMHC), and nitrogen oxides (NOx) in a well-balanced manner.
- harmful components such as carbon monoxide (CO), hydrocarbons (HC), non-methane hydrocarbons (NMHC), and nitrogen oxides (NOx) in a well-balanced manner.
- the Pt in the first layer 20 may aggregate, and the active sites of Pt involved in the exhaust gas purification performance may decrease.
- the first layer 20 contains a Ce-based oxide.
- the second layer 30 between the first layer 20 and the third layer 40 it is possible to prevent the Pt that has volatilized from the first layer 20 from reaching the third layer 40 and the associated decrease in the exhaust gas purification performance and/or heat resistance of Rh and/or Pd in the third layer 40.
- the first layer 20 can be formed by mixing a Pt source (e.g., Pt salt), a Ce-based oxide, and optionally other components (e.g., inorganic oxides other than Ce-based oxides, binders, stabilizers, solvents, etc.) to prepare a first slurry, applying the first slurry onto the substrate 10, drying, and firing.
- a Pt source e.g., Pt salt
- Ce-based oxide e.g., inorganic oxides other than Ce-based oxides, binders, stabilizers, solvents, etc.
- the second layer 30 can be formed by mixing an Al source (e.g., Al-based oxides, Ce-based oxides containing Al, Ce-Zr-based composite oxides containing Al, Ce-Zr-Al-based composite oxides, alumina binders, etc.) and optionally other components (e.g., inorganic oxides other than the Al source, binders, stabilizers, solvents, etc.) to prepare a second slurry, applying the second slurry onto the first layer 20, drying, and firing.
- Al source e.g., Al-based oxides, Ce-based oxides containing Al, Ce-Zr-based composite oxides containing Al, Ce-Zr-Al-based composite oxides, alumina binders, etc.
- other components e.g., inorganic oxides other than the Al source, binders, stabilizers, solvents, etc.
- the third layer 40 can be formed by mixing a source of Rh and/or Pd (e.g., an Rh salt and/or a Pd salt) and optionally other components (e.g., an inorganic oxide, a binder, a stabilizer, a solvent, etc.) to prepare a third slurry, applying the third slurry onto the second layer 30, drying, and firing.
- a source of Rh and/or Pd e.g., an Rh salt and/or a Pd salt
- other components e.g., an inorganic oxide, a binder, a stabilizer, a solvent, etc.
- Pt salts, Rh salts, and Pd salts include nitrates, ammine complex salts, acetates, and chlorides.
- binders include alumina sol, zirconia sol, titania sol, silica sol, and ceria sol.
- solvents include water and organic solvents.
- a stainless steel metal honeycomb substrate (diameter: 40 mm, length: 120 mm, cell density: 400 cells/square inch, volume: 151 mL) was immersed in the catalyst layer forming slurry, excess slurry was removed, and the catalyst layer forming slurry was applied to the inner wall surface of the substrate.
- the substrate to which the catalyst layer forming slurry was applied was dried at 80°C for 1 hour and then fired at 500°C for 4 hours to form a catalyst layer on the inner wall surface of the substrate, and a catalyst for exhaust gas purification was obtained.
- the mass of the catalyst layer per unit volume of the portion of the substrate on which the catalyst layer was formed was 100 g/L.
- Reference Example 1 had a higher exhaust gas purification performance than Reference Example 2 due to the higher content of Ce-based oxide in the catalyst layer than Reference Example 2. Also, as shown in Table 1, Reference Example 2 had a higher exhaust gas purification performance than Reference Example 3 due to the higher content of Ce in the Ce-based oxide in terms of CeO2 than Reference Example 3. Since Ce-based oxides have a high affinity for Pt, the catalyst layer contains Ce-based oxides, which can suppress the aggregation of Pt that may occur at high temperatures and the associated decrease in active sites of Pt. As a result, Reference Example 1 had a higher exhaust gas purification performance than Reference Example 2, and Reference Example 2 had a higher exhaust gas purification performance than Reference Example 3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
Abstract
Description
[1]基材と、前記基材上に設けられた第1層と、前記第1層上に設けられた第2層と、前記第2層上に設けられた第3層とを備える排ガス浄化用触媒であって、
前記第1層が、Pt及びCe系酸化物を含み、
前記第1層中の前記Ce系酸化物の含有率が、前記第1層の質量を基準として、50質量%以上であり、
前記Ce系酸化物中のCeのCeO2換算の含有率が、前記Ce系酸化物の質量を基準として、85質量%以上であり、
前記第2層が、いずれの白金族元素も含まないか、又は、前記第2層において最も含有率が大きい白金族元素の金属換算の含有率が、前記第2層の質量を基準として、0.5質量%以下であり、
前記第3層が、Rh及び/又はPdを含む、前記排ガス浄化用触媒。
[2]前記第2層がAlを含み、前記第2層中のAlのAl2O3換算の含有率が、前記第2層の質量を基準として、90質量%以上である、[1]に記載の排ガス浄化用触媒。
[3]前記第1層中のPtの金属換算の質量に対する、前記第2層中のAlのAl2O3換算の質量の比が、1以上1000以下である、[1]又は[2]に記載の排ガス浄化用触媒。
[4]前記第1層中のPtの金属換算の含有率が、前記第1層の質量を基準として、0.1質量%以上である、[1]~[3]のいずれかに記載の排ガス浄化用触媒。
[5]前記第3層がRhを含み、前記第3層中のRhの金属換算の含有率が、前記第3層の質量を基準として、0.01質量%以上である、[1]~[4]のいずれかに記載の排ガス浄化用触媒。
[6]前記第3層がPdを含み、前記第3層中のPdの金属換算の含有率が、前記第3層の質量を基準として、0.1質量%以上である、[1]~[5]のいずれかに記載の排ガス浄化用触媒。
以下、本発明の排ガス浄化用触媒について説明する。
以下、基材10について説明する。
以下、第1層20について説明する。
サンプルに含まれる第1層20の長さ=5mm×(第1層20の一部を含む切断片の数)
第k切断片(第1層20が隔壁部12の排ガス流入側の端部から排ガス流通方向Xに沿って延在している場合、第1層20の一部を含む切断片のうち、サンプルの最も排ガス流出側から得られた切断片であり、第1層20が隔壁部12の排ガス流出側の端部から排ガス流通方向Xとは反対の方向に沿って延在している場合、第1層20の一部を含む切断片のうち、サンプルの最も排ガス流入側から得られた切断片である)を基材10の軸方向で切断して、SEM、EPMA等を使用して切断面に存在する第1層20の一部を観察することにより、第k切断片における第1層20の一部の長さを測定する。そして、下記式に基づいて、サンプルに含まれる第1層20の長さを算出する。
サンプルに含まれる第1層20の長さ=(5mm×(k-1))+(第k切断片に含まれる第1層20の一部の長さ)
(2)第1層20から得られた試料について、SEM-EDX等の常法を用いて元素マッピングを行い、試料に含まれる粒子の種類(例えば、Ce系酸化物粒子及び場合によりその他の粒子)を特定する。
(3)各種類の粒子について、任意に選択された複数個(例えば50個)の粒子をSEM-EDXにて元素分析し、粒子の構成元素の種類を特定するとともに、特定された各元素の含有率(質量%)を求める。各種類の粒子について、各元素の含有率(質量%)の平均値を求める。
(4)試料における各元素の含有率(質量%)と、各種類の粒子における各元素の含有率(質量%)と、試料における各種類の粒子の含有率(質量%)との関係を表す方程式を作成して解くことにより、試料における各種類の粒子の含有率(質量%)を算出し、これを、第1層20中の各種類の粒子の含有率(質量%)とする。
以下、第2層30について説明する。
以下、第3層40について説明する。
触媒1の作用メカニズムは必ずしも定かではないが、次のように考えられる。
触媒1は、Ptを含む第1層20に加えて、Rh及び/又はPdを含む第3層40を備える。したがって、一酸化炭素(CO)、炭化水素(HC)、非メタン炭化水素(NMHC)、窒素酸化物(NOx)等の有害成分をバランスよく浄化することができる。
触媒1は、基材10上に第1層20を形成し、次いで、第1層20上に第2層30を形成し、次いで、第2層30上に第3層40を形成することにより製造することができる。
純水の入った容器に、ジニトロジアミン白金(II)溶液、Ce系酸化物、La含有Al系酸化物及びバインダを添加し、十分に攪拌混合し、触媒層形成用スラリーを得た。触媒層形成用スラリー中の各成分の量は、焼成後の触媒層において、白金が金属換算で1質量%、Ce系酸化物が80質量%、La含有Al系酸化物が10質量%、バインダが9質量%となるように調整した。Ce系酸化物中のCeのCeO2換算の含有率は、Ce系酸化物の質量を基準として、ほぼ100質量%(>99質量%)であった。La含有Al系酸化物中のAlのAl2O3換算の含有率は、La含有Al系酸化物の質量を基準として、99質量%であった。
純水の入った容器に、ジニトロジアミン白金(II)溶液、Ce系酸化物、La含有Al系酸化物、水酸化バリウム及びバインダを添加し、十分に攪拌混合し、触媒層形成用スラリーを得た。触媒層形成用スラリー中の各成分の量は、焼成後の触媒層において、白金が金属換算で1質量%、Ce系酸化物が41質量%、La含有Al系酸化物が41質量%、酸化バリウムが8質量%、バインダが9質量%となるように調整した。Ce系酸化物及びLa含有Al系酸化物として、参考例1と同一のCe系酸化物及びLa含有Al系酸化物を使用した。触媒層形成用スラリーを使用して、参考例1と同様にして、基材内部の壁面上に触媒層を形成し、排ガス浄化用触媒を得た。
Ce系酸化物として、Ce系酸化物中のCeのCeO2換算の含有率、ZrのZrO2換算の含有率及びCe以外の希土類元素の酸化物換算の含有率が、それぞれ、Ce系酸化物の質量を基準として、60質量%、30質量%及び10質量%であるCe系酸化物を使用した点を除き、参考例2と同様にして、基材内部の壁面上に触媒層を形成し、排ガス浄化用触媒を得た。
(1)第1層の形成
純水の入った容器に、ジニトロジアミン白金(II)溶液、Ce系酸化物、Al系酸化物及びバインダを添加し、十分に攪拌混合し、第1層形成用スラリーを得た。第1層形成用スラリー中の各成分の量は、焼成後の層において、白金が金属換算で0.9質量%、Ce系酸化物が80質量%、La含有アルミナが10質量%、バインダが9.1質量%となるように調整した。Ce系酸化物中のCeのCeO2換算の含有率は、Ce系酸化物の質量を基準として、ほぼ100質量%(>99質量%)であった。Al系酸化物中のAlのAl2O3換算の含有率は、Al系酸化物の質量を基準として、ほぼ100質量%(>99質量%)であった。
Al系酸化物及びバインダを純水に分散させ、第2層形成用スラリーを得た。第2層形成用スラリー中の各成分の量は、焼成後の第2層において、Al系酸化物が93質量%、アルミナバインダが2質量%、ジルコニアバインダが5質量%となるように調整した。Al系酸化物中のAlのAl2O3換算の含有率は、Al系酸化物の質量を基準として、ほぼ100質量%(>99質量%)であった。
純水の入った容器に、硝酸パラジウム溶液、硝酸ロジウム溶液、Ce-Zr系複合酸化物、La含有Al系酸化物及びバインダを添加し、十分に攪拌混合し、第3層形成用スラリーを得た。第3層形成用スラリー中の各成分の量は、焼成後の第3層において、パラジウムが金属換算で1.0質量%、ロジウムが金属換算で0.1質量%となるように調整した。
第2層を形成しなかった点を除き、実施例1と同様にして排ガス浄化用触媒を得た。
(1)耐久試験
上記で得られた排ガス浄化用触媒を排気管に搭載し、ハニカム基材の中央に熱電対を差し込んだ。この排気管をガソリンエンジン(排気量:2300cc、燃料:エンジンオイルを添加したガソリン)にセットし、熱電対の温度が850℃~1000℃の所定温度になるようにエンジン回転数、トルク等を調整し、排ガスが酸化性雰囲気となる条件、還元性雰囲気となる条件を繰り返しながら40時間にわたり耐久試験を実施した。
耐久試験後、排ガス浄化用触媒を自動二輪車のマフラーに組み込み、下記条件で一酸化炭素(CO)、炭化水素(HC)、非メタン炭化水素(NMHC)及び窒素酸化物(NOx)の排出量(mg/km)を測定した。結果を表1に示す。
使用車両:単気筒110cc自動二輪車
燃料:無鉛ガソリン
走行モード:WMTC
測定方法:ISO6460に準拠
1・・・排ガス浄化用触媒
10・・・基材
11・・・筒状部
12・・・隔壁部
13・・・セル
20・・・第1層
30・・・第2層
40・・・第3層
Claims (6)
- 基材と、前記基材上に設けられた第1層と、前記第1層上に設けられた第2層と、前記第2層上に設けられた第3層とを備える排ガス浄化用触媒であって、
前記第1層が、Pt及びCe系酸化物を含み、
前記第1層中の前記Ce系酸化物の含有率が、前記第1層の質量を基準として、50質量%以上であり、
前記Ce系酸化物中のCeのCeO2換算の含有率が、前記Ce系酸化物の質量を基準として、85質量%以上であり、
前記第2層が、いずれの白金族元素も含まないか、又は、前記第2層において最も含有率が大きい白金族元素の金属換算の含有率が、前記第2層の質量を基準として、0.5質量%以下であり、
前記第3層が、Rh及び/又はPdを含む、前記排ガス浄化用触媒。 - 前記第2層がAlを含み、前記第2層中のAlのAl2O3換算の含有率が、前記第2層の質量を基準として、90質量%以上である、請求項1に記載の排ガス浄化用触媒。
- 前記第1層中のPtの金属換算の質量に対する、前記第2層中のAlのAl2O3換算の質量の比が、1以上1000以下である、請求項1又は2に記載の排ガス浄化用触媒。
- 前記第1層中のPtの金属換算の含有率が、前記第1層の質量を基準として、0.1質量%以上である、請求項1又は2に記載の排ガス浄化用触媒。
- 前記第3層がRhを含み、前記第3層中のRhの金属換算の含有率が、前記第3層の質量を基準として、0.01質量%以上である、請求項1又は2に記載の排ガス浄化用触媒。
- 前記第3層がPdを含み、前記第3層中のPdの金属換算の含有率が、前記第3層の質量を基準として、0.1質量%以上である、請求項1又は2に記載の排ガス浄化用触媒。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2024567711A JPWO2024143153A1 (ja) | 2022-12-28 | 2023-12-21 | |
| CN202380088689.5A CN120529965A (zh) | 2022-12-28 | 2023-12-21 | 废气净化用催化剂 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2022-211920 | 2022-12-28 | ||
| JP2022211920 | 2022-12-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2024143153A1 true WO2024143153A1 (ja) | 2024-07-04 |
Family
ID=91717541
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/045927 Pending WO2024143153A1 (ja) | 2022-12-28 | 2023-12-21 | 排ガス浄化用触媒 |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JPWO2024143153A1 (ja) |
| CN (1) | CN120529965A (ja) |
| WO (1) | WO2024143153A1 (ja) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006035029A (ja) * | 2004-07-23 | 2006-02-09 | Mazda Motor Corp | 排気ガス浄化用触媒 |
| JP2007083125A (ja) * | 2005-09-20 | 2007-04-05 | Toyota Motor Corp | 排ガス浄化用触媒 |
| JP2009285607A (ja) * | 2008-05-30 | 2009-12-10 | Toyota Motor Corp | 排ガス浄化用触媒 |
| JP2010022921A (ja) * | 2008-07-17 | 2010-02-04 | Toyota Motor Corp | 排ガス浄化用触媒 |
| US20190126252A1 (en) * | 2017-11-01 | 2019-05-02 | Battelle Memorial Institute | Catalyst materials, systems, and methods of making |
| WO2022209533A1 (ja) * | 2021-03-30 | 2022-10-06 | 三井金属鉱業株式会社 | 排ガス浄化用触媒組成物及び排ガス浄化用触媒 |
-
2023
- 2023-12-21 CN CN202380088689.5A patent/CN120529965A/zh active Pending
- 2023-12-21 WO PCT/JP2023/045927 patent/WO2024143153A1/ja active Pending
- 2023-12-21 JP JP2024567711A patent/JPWO2024143153A1/ja active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006035029A (ja) * | 2004-07-23 | 2006-02-09 | Mazda Motor Corp | 排気ガス浄化用触媒 |
| JP2007083125A (ja) * | 2005-09-20 | 2007-04-05 | Toyota Motor Corp | 排ガス浄化用触媒 |
| JP2009285607A (ja) * | 2008-05-30 | 2009-12-10 | Toyota Motor Corp | 排ガス浄化用触媒 |
| JP2010022921A (ja) * | 2008-07-17 | 2010-02-04 | Toyota Motor Corp | 排ガス浄化用触媒 |
| US20190126252A1 (en) * | 2017-11-01 | 2019-05-02 | Battelle Memorial Institute | Catalyst materials, systems, and methods of making |
| WO2022209533A1 (ja) * | 2021-03-30 | 2022-10-06 | 三井金属鉱業株式会社 | 排ガス浄化用触媒組成物及び排ガス浄化用触媒 |
Non-Patent Citations (1)
| Title |
|---|
| NAGAI YASUTAKA: "In Situ Redispersion of Platinum Supported on Ceria-based Oxide for Automotive Catalysts", R&D REVIEW OF TOYOTA CRDL, vol. 42, no. 1, 1 January 2011 (2011-01-01), pages 43 - 50, XP093185893 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2024143153A1 (ja) | 2024-07-04 |
| CN120529965A (zh) | 2025-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210039080A1 (en) | Exhaust gas purification catalyst | |
| JP7284362B2 (ja) | 排ガス浄化用触媒組成物及び排ガス浄化用触媒 | |
| WO2024143153A1 (ja) | 排ガス浄化用触媒 | |
| JP7625155B1 (ja) | 排ガス浄化用触媒 | |
| JP7684531B1 (ja) | 排ガス浄化用触媒 | |
| JP7506838B2 (ja) | 排ガス浄化用触媒 | |
| JP7696531B1 (ja) | 排ガス浄化用触媒 | |
| JP7708872B2 (ja) | 排ガス浄化用触媒 | |
| JP7715948B2 (ja) | 排ガス浄化用触媒 | |
| JP7519555B2 (ja) | 排ガス浄化用触媒組成物、排ガス浄化用触媒及び排ガス浄化システム | |
| WO2024150640A1 (ja) | 排ガス浄化用触媒 | |
| WO2025115841A1 (ja) | 排ガス浄化用触媒 | |
| WO2025142859A1 (ja) | 排ガス浄化用触媒 | |
| JP7751633B2 (ja) | 排ガス浄化用触媒 | |
| JP7715955B1 (ja) | 排ガス浄化触媒 | |
| JP7706644B2 (ja) | 排ガス浄化用触媒 | |
| JP7525760B1 (ja) | 排ガス浄化用触媒及びその製造方法 | |
| WO2023182481A1 (ja) | 排ガス浄化用触媒 | |
| WO2025028434A1 (ja) | 排ガス浄化用触媒 | |
| WO2025121117A1 (ja) | 排ガス浄化触媒 | |
| WO2024203562A1 (ja) | 排ガス浄化用触媒及びその製造方法 | |
| CN117098602A (zh) | 废气净化用催化剂组合物和废气净化用催化剂 | |
| WO2022209154A1 (ja) | 排ガス浄化用触媒及び排ガス浄化システム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23911933 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2024567711 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 202380088689.5 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 202547068698 Country of ref document: IN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWP | Wipo information: published in national office |
Ref document number: 202547068698 Country of ref document: IN |
|
| WWP | Wipo information: published in national office |
Ref document number: 202380088689.5 Country of ref document: CN |