+

WO2018186108A1 - Biological-related information measuring device - Google Patents

Biological-related information measuring device Download PDF

Info

Publication number
WO2018186108A1
WO2018186108A1 PCT/JP2018/009370 JP2018009370W WO2018186108A1 WO 2018186108 A1 WO2018186108 A1 WO 2018186108A1 JP 2018009370 W JP2018009370 W JP 2018009370W WO 2018186108 A1 WO2018186108 A1 WO 2018186108A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pulse wave
measurement
volume pulse
signal
Prior art date
Application number
PCT/JP2018/009370
Other languages
French (fr)
Japanese (ja)
Inventor
添田 薫
良 下北
Original Assignee
アルプス電気株式会社
ジーニアルライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社, ジーニアルライト株式会社 filed Critical アルプス電気株式会社
Publication of WO2018186108A1 publication Critical patent/WO2018186108A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow

Definitions

  • the present invention relates to a living body related information measuring apparatus and a sensor mounting unit for estimating living body related information of a subject, particularly information related to a volume pulse wave.
  • the living body related information measuring device described in Patent Document 1 is a living body related information measuring device that is worn on a user's body and measures the user's biological information, and detects the user's pulse wave and outputs a pulse wave signal.
  • a pulse wave detection unit that detects a user's body motion and outputs a body motion signal
  • a state evaluation unit that evaluates the degree of stability of the user's motion state based on the body motion signal
  • a state evaluation A detection interval setting unit that sets a pulse wave detection interval based on the evaluation result of the unit.
  • an apparatus biologically related information measurement apparatus that estimates information on the volume pulse wave of a subject using return light obtained by irradiating the subject with light, such as disclosed in Patent Document 1
  • a blood vessel If the return light that has been transmitted through and reflected from the blood vessel can be received as it is, the information on the change in blood flow that flows through the blood vessel can be returned and accurately captured as the change in the amount of light. it can.
  • the change in the amount of return light detected by the light receiving element due to various factors has information other than the change in blood flow.
  • the return light received by the light receiving element is converted into an electric signal by the photoelectric conversion element, and a process for generating a signal related to the volume pulse wave from the electric signal or a signal based on the electric signal is performed. Also in the processing of the electrical signal after the photoelectric conversion, various disturbance signals may be superimposed, and when such a disturbance signal is superimposed, the reliability of information regarding the finally estimated volume pulse wave is lowered.
  • the present invention has an object to provide a living body related information measuring apparatus that has a light emitting element and a light receiving element and estimates a volume pulse wave based on a light reception result.
  • the present invention provided to solve the above-described problems is a light-emitting element that emits measurement light having a predetermined wavelength, a light-receiving element that receives return light through the subject, and the light-receiving element.
  • a volume pulse wave measurement unit that estimates a volume pulse wave of blood flowing through the blood vessel of the subject based on a light reception result by the element, and causes the measurement light to be emitted in a pulse form from the light emitting element at each time of a predetermined time interval
  • a pulse wave composed of a determination unit that determines that the light received by the element is the return light of the measurement light, and an electric signal based on the light that is determined by the determination unit to be the return light of the measurement light
  • a frequency filter that generates a signal related to the volume pulse wave by removing signal components in a frequency band other than the frequency band corresponding to the heartbeat of the subject from the signal, and estimates information related to the volume pulse wave This is a living body related information measuring device.
  • the measurement light emitted from the light emitting element returns to the light receiving element via the inside of the subject as light.
  • the return light not only information relating to blood flow but also various information can be superimposed on the return light.
  • One factor that reduces the accuracy of the amount of light received by the light receiving element is that light other than the light derived from the measurement light emitted from the light emitting element is misidentified as returning light.
  • a measuring unit is provided to determine the light received in the time zone in which the pulsed measurement light is emitted (the time zone from the rise time to the fall time of the measurement light) as return light, The possibility of misrecognizing light other than light originating from as return light is reduced.
  • a pulse wave signal having information related to the pulse wave is obtained by arranging in time series the electric signals obtained by photoelectrically converting the return light received in the time zone set by the determination unit in this way. Since this pulse wave signal is an aggregate of a plurality of pulse-shaped electric signals, these electric signals are digitized, and digital-analog conversion is performed on the obtained digital data signal to thereby relate to the volume pulse wave.
  • a continuous electrical signal (analog signal) with information is obtained.
  • the analog signal includes noise (stray light and the like) superimposed in the state of return light before photoelectric conversion, noise superimposed in the process until the analog signal is formed, and the like. Therefore, by performing a frequency filter process that removes signal components in a frequency band other than the frequency band corresponding to the heart rate range of the subject from the analog signal, it is possible to generate a highly accurate signal related to the volume pulse wave. .
  • the removal frequency band of the frequency filter is appropriately set according to the frequency band of the heart rate range of the subject. As a specific example, when the subject is a person, it is possible to remove signal components in a frequency band of less than 0.6 Hz and a frequency band of more than 3.3 Hz.
  • the signal relating to the volume pulse wave generated in the frequency filter includes information relating to overlapping notches of the volume pulse wave. If the signal related to the volume pulse wave contains information related to the overlapping notch, the signal related to the volume pulse wave can be used to confirm the boundary time between the systole and the diastole of the heart. It becomes possible to grasp information more accurately.
  • the measurement apparatus includes a contact adjustment mechanism that adjusts a contact state with the subject.
  • the contact state with respect to the subject that is, the mounting state of the measuring apparatus changes during measurement
  • the amount of return light received by the light receiving element may change greatly.
  • Such a change in the amount of light adversely affects the reliability of the signal related to the volume pulse wave. Therefore, it is possible to improve the accuracy of the signal related to the volume pulse wave by suppressing the fluctuation of the contact state (the mounting state of the measurement device) with respect to the subject by the contact device including the contact adjustment mechanism.
  • the contact adjustment mechanism includes a mechanism that elastically presses the casing from the opposite side of the casing that holds the light receiving element and the light emitting element to the side of the subject. It is preferable.
  • the measurement apparatus includes a light shielding mechanism that prevents light other than the measurement light emitted from the light emitting element from entering the light receiving element.
  • a light shielding mechanism that prevents light other than the measurement light emitted from the light emitting element from entering the light receiving element.
  • the plethysmogram obtained by the living body related information measuring device can appropriately have information on overlapping notches. Therefore, the open / closed state of the aortic valve of the heart can be appropriately estimated by specifying the overlapping notch from the obtained signal regarding the volume pulse wave.
  • a measuring apparatus that estimates a volume pulse wave that is accurate and, in a preferred aspect, is accurate enough to confirm an overlapping notch based on a result of receiving a return light of measuring light emitted from a light emitting element.
  • FIG. 2 is a cross-sectional view taken along line A′-A ′ of FIG. It is a block diagram which illustrates the composition of the sensor module in the embodiment of the present invention.
  • XYZ coordinates are shown as reference coordinates
  • the XY plane is a plane orthogonal to the Z1-Z2 direction.
  • the state viewed along the Z1-Z2 direction with the Z1 direction as the upward direction and the Z2 direction as the downward direction may be referred to as a plan view.
  • the same members are denoted by the same reference numerals, and the description of the members once described is omitted as appropriate.
  • FIGS. 1A and 1B are perspective views showing a schematic configuration of a living body related information measuring apparatus 10 according to the present embodiment.
  • 1A is a perspective view seen from the substrate 20 side
  • FIG. 1B is a perspective view seen from the light receiving and emitting surface 10a side opposite to the substrate 20.
  • FIG. FIG. 2 is a plan view showing an arrangement example of the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 in the living body related information measuring apparatus 10.
  • FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG.
  • the living body related information measuring device 10 is a device that is attached so as to be in close contact with a subject, for example, the skin of a human body, and measures information related to volume pulse waves as living body information.
  • the living body related information measuring device 10 includes a sensor module 10m shown in FIG.
  • the sensor module 10 m includes two light emitting units 11 and 12 and a light receiving unit 13 provided on the upper surface 20 a (FIG. 3) of the substrate 20.
  • each of the two light emitting units 11 and 12 emits light I11 and I12 having a predetermined wavelength by turning on the light emitting elements 11a and 12a, respectively, and emits (emits) light toward the subject as measurement light.
  • the return light I13 emitted from the two light emitting units 11 and 12 and passing through the subject is received by the light receiving element 13a.
  • the return light that has passed through includes light that has passed through the inside of the subject, for example, inside a blood vessel, light that has diffused inside, and light that has been reflected or diffused on the surface.
  • the measurement lights I11 and I12 are emitted and the return light I13 is received by the light emitting / receiving surface 10a facing the substrate 20 in the Z1-Z2 direction.
  • the living body related information measuring device 10 is mounted so that the light emitting / receiving surface 10a is in close contact with the subject.
  • the details of the sensor module 10m having the two light emitting units 11 and 12 and the light receiving unit 13 will be described later.
  • the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12 are sequentially arranged from the Y2 side to the Y1 side along the Y1-Y2 direction.
  • the center distance between the plane center C11 of the first light emitting unit 11 and the plane center C13 of the light receiving unit 13 is the first distance L1, and the plane center C12 of the second light emitting unit 12 and the plane center C13 of the light receiving unit 13 are the same.
  • the center distance is set to the second distance L2.
  • the first distance L1 and the second distance L2 are most preferably the same distance, but the two distances L1 and L2 preferably satisfy the following expression (1). 0.7 ⁇ L2 / L1 ⁇ 1.3 (1)
  • the distances L1 and L2 are preferably in the range of 4 mm to 11 mm.
  • the measurement light emitted from each of the two light emitting elements 11a and 12a reaches each measurement site of the subject.
  • Variation in depth can be suppressed to a certain range, and measurement variation of biological information based on measurement light from these light emitting elements 11a and 12a (specifically, variation in shape of measured volume pulse wave) can be suppressed. .
  • the living body related information measuring apparatus 10 includes a housing 30 that holds the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13.
  • the housing 30 is provided on the upper surface 20a (the surface facing the Z1 direction) of the substrate 20 by the adhesive layer 21.
  • the housing 30 has a first emission opening 31 provided in the emission path of the measurement light I11 from the first light emitting unit 11 and a second emission provided in the emission path of the measurement light I12 from the second light emission part 12.
  • the light emitting opening 32 and the light receiving opening 33 provided in the light receiving path of the return light I13 in the light receiving unit 13 are provided.
  • the first light emitting unit 11 is arranged in the first emission opening 31, the second light emitting unit 12 is arranged in the second emission opening 32, and the light receiving unit 13 is arranged in the light receiving opening 33. .
  • the outgoing light from the first light emitting unit 11 travels into the first emission opening 31, and the outgoing light from the second light emitting unit 12 travels into the second emission opening 32.
  • the housing 30 is formed of a light shielding material, for example, metal or resin.
  • a light-shielding material By configuring the housing 30 with a light-shielding material, it is possible to prevent light emitted from the first light emitting unit 11 and the second light emitting unit 12 from directly entering the light receiving unit 13 without passing through the subject. Therefore, it becomes easy to accurately extract information necessary for measurement of biological information, and highly accurate measurement is possible.
  • the casing 30 is made of a metal material, it can function as a heat radiating member that releases heat generated in the two light emitting units 11 and 12 and the light receiving unit 13 to the outside.
  • the housing 30 when the housing 30 is made of a resin material, the elasticity can be arranged along the shape of the skin as the subject, thereby improving the adhesion.
  • three translucent members 41, 42, and 43 are provided so as to cover the upper portions of the first emission opening 31, the second emission opening 32, and the light receiving opening 33, respectively. It has been.
  • the light emitted from the first light emitting unit 11 is emitted as measurement light from the inside of the first emission opening 31 through the translucent member 41 and is emitted to the outside on the upper side of the living body related information measuring device 10, and the second light emission.
  • the light emitted from the unit 12 passes through the translucent member 42 from the second emission opening 32 as measurement light and is emitted to the outside on the upper side of the living body related information measuring device 10.
  • the return light through which the measurement light passes through the subject passes through the translucent member 43, reaches the light receiving opening 33, and is received by the light receiving unit 13.
  • the translucent members 41, 42 and 43 for example, PET (polyethylene terephthalate) is used.
  • PET polyethylene terephthalate
  • the three translucent members 41, 42, 43 are fixed to the housing 30 by adhesion, and the upper end surfaces 41a, 42a, 43a form the same surface as the light emitting / receiving surface 10a together with the upper surface 30a of the housing 30. .
  • casing 30 and the translucent member 41,42,43 can be closely_contact
  • FIG. 4 is a block diagram illustrating the configuration of the sensor module 10m.
  • the sensor module 10 m includes a pair of light emitting units 11 and 12, a light receiving unit 13, a control unit 14, and an input / output interface unit 15.
  • the 1st light emission part 11 is provided with the 1st light emission element 11a
  • the 2nd light emission part 12 is provided with the 2nd light emission element 12a.
  • the emission wavelengths of the first light-emitting element 11a and the second light-emitting element 12a are not limited, but are preferably 500 nm or more and 1000 nm or less from the viewpoint of appropriately securing the amount of return light.
  • the first light-emitting element 11a and the second light-emitting element 12a emit light containing near-infrared light of 600 nm to 804 nm, preferably 758 nm to 762 nm, as measurement light.
  • the first light emitting element 11a and the second light emitting element 12a are light emitting diode elements or laser elements.
  • Each of the first light emitting unit 11 and the second light emitting unit 12 further includes a light emitting element that emits light having a wavelength region different from the emission wavelength of the first light emitting element 11a and the second light emitting element 12a as measurement light. May be. Specific examples of such an emission wavelength include near infrared light having a wavelength of 806 nm to 995 nm.
  • the light-receiving unit 13 is emitted from the first light-emitting unit 11 or the second light-emitting unit 12 and receives near-infrared light as return light that passes through the blood flowing through the blood vessel in the subject, in particular, the blood vessel, and converts it into an electrical signal. It has a light receiving element 13a.
  • the light receiving element 13a is, for example, a photodiode.
  • the light receiving element 13a has a sensitivity of outputting an electrical signal corresponding to the amount of received light.
  • the two light emitting units 11 and 12 and the light receiving unit 13 are integrally configured as a light receiving and emitting unit.
  • the sensor module 10m may be a package of the two light emitting units 11 and 12, the light receiving unit 13, the control unit 14, and the input / output interface unit 15.
  • the first light emitting unit 11 has a drive circuit 11b that drives the first light emitting element 11a
  • the second light emitting unit 12 has a drive circuit 12b that drives the second light emitting element 12a
  • the light receiving unit 13 includes an amplification circuit 13b that amplifies a light reception signal output from the light receiving element 13a.
  • the control unit 14 is composed of a microcomputer. As the light emission control unit, the control unit 14 transmits a timing signal to each of the drive circuit 11b of the light emission unit 11 and the drive circuit 12b of the second light emission unit 12, and the first light emission unit 11 and the second light emission unit 12 are predetermined. Control to emit near-infrared light at the timing of. More specifically, the control unit 14 causes the first light emitting unit 11 and the second light emitting unit 12 to simultaneously emit light for a short time of about 200 to 600 microseconds at 10 millisecond intervals, for example. By controlling in this way, pulsed measurement light is continuously emitted from the first light emitting element 11a and the second light emitting element 12a.
  • the control unit 14 controls the measurement light at each time when the measurement light is emitted from the first light emitting element 11a and the second light emitting element 12a at a predetermined time interval (for example, every 10 milliseconds) under the control of the light emission control unit.
  • a determination unit that determines that the light received by the light receiving element 13a in the time period from the rising time to the falling time (for example, the time period from 200 microseconds to 600 microseconds) is the return light of the measurement light.
  • FIG. 5 is a flowchart showing the operation of the determination unit.
  • the timing signal which the light emission control part which the control part 14 has transmits to each of the drive circuit 11b of the light emission part 11 and the drive circuit 12b of the 2nd light emission part 12 is confirmed (step S101).
  • each rise time of the measurement light is grasped, and it is determined whether or not the confirmed time is the rise time (step S102).
  • the light received by the light receiving element 13a is determined as the return light of the measurement light, and after the amplification output from the amplifier circuit 13b of the light receiving unit 13 Is received in a memory (not shown) as a signal for generating a volume pulse signal (step S103). If the rise time has not been reached, the process returns to step S101 for checking the timing signal.
  • step S104 the timing signal is confirmed again (step S104), the respective falling times of the measurement light are grasped, and the confirmed time is the falling time or the time when the falling time has elapsed. It is determined whether or not (step S105).
  • the confirmed time is the falling time or the time when the falling time has elapsed
  • the amplified light reception signal output from the amplification circuit 13b of the light receiving unit 13 is used as a signal for generating a volume pulse wave signal.
  • step S106 After capturing the data in the memory, one pulsed light reception signal corresponding to one pulse signal of the measurement light is obtained (step S106), and the process returns to step S101 where the timing signal is confirmed with respect to the rise time. If the fall time has not been reached, the process returns to step S105 where the timing signal is confirmed with respect to the fall time.
  • a plurality of pulsed light receiving signals are obtained corresponding to the continuous pulsed measurement light. Since the plurality of pulsed light receiving signals have information on time and the amount of light received by the light receiving element, a digital signal having information on pulse waves can be obtained by digitizing a group of pulsed light receiving signals. This digital signal is converted from digital to analog to generate an analog signal. For conversion to an analog signal, a conventionally known method such as linear interpolation may be used. This digital-analog conversion is also performed by the control unit 14.
  • the control unit 14 removes a signal component in a frequency band other than the frequency band corresponding to the heart rate of the subject from the analog signal, and generates a signal related to the volume pulse wave.
  • the frequency band to be removed is appropriately set according to the heart rate range of the subject. Taking a case where the subject is a person as a specific example, the heart rate range of a person is generally 40 to 200 times per minute, and if this is set to a frequency range, 0.6 Hz to 3.3 Hz. Therefore, signal components in this frequency band are extracted, and signal components in other frequency bands (frequency bands consisting of less than 0.6 Hz and more than 3.3 Hz) are removed.
  • the frequency filter By having such a frequency filter, low-frequency noise and high-frequency noise are appropriately removed, and a signal related to the volume pulse wave can be generated with high accuracy.
  • a low frequency noise source in the analog signal the relative position between the external light source and the sensor module 10m changes due to the movement of the subject, or the mounting state of the sensor module 10m changes.
  • the amount of received light changes.
  • the high frequency noise source include noise generated from the control unit 14, noise from an electronic device carried by the subject, noise generated in processing such as digital-analog conversion, and the like.
  • a digital signal obtained from a group of pulsed light reception signals is processed by a frequency filter on an analog signal obtained by digital-analog conversion.
  • the present invention is not limited to this. You may process with a frequency filter with respect to a digital signal.
  • An analog signal may be generated by performing digital-analog conversion on the obtained noise-removed digital signal.
  • FIG. 6A shows an analog signal generated by digital-analog conversion of the amplified received light signal output from the amplification circuit 13b of the light receiving unit 13, and is positioned as a conventional technique.
  • the plurality of volume pulse waves shown in the display range of FIG. 6A are non-uniform in shape, and it is difficult to grasp the overlapping notch DN from each volume pulse wave.
  • FIG. 6B illustrates a process of a determination unit performed on the amplified light reception signal output from the amplification circuit 13b of the light reception unit 13, and digital signals obtained from a plurality of obtained pulse signals are digital-analog.
  • the plurality of volume pulse waves shown in the display range of FIG. 6B have substantially similar shape characteristics, and the position of the overlapping notch DN can be specified for any signal.
  • FIG. 6C is a diagram for explaining the characteristics of the volume pulse wave.
  • the plethysmogram rises sharply with the opening of the aortic valve (ascending leg AS), and an overlapping notch DN is formed in which the signal intensity varies greatly when the aortic valve is closed. After that, it will gradually descend. It is possible to estimate the open / close state of the aorta of the heart from the waveform of the volume pulse wave. As shown in FIG. 6 (c), the systolic and diastolic phases of the heart can be determined from the opening and closing times of the aorta, and the systolic and diastolic pressures can be measured based on these times.
  • the mean arterial pressure can be calculated.
  • the stroke volume can be estimated from the rise of the volume pulse waveform from the systolic force, the compliance of the artery, the area of the systole, and the like. This stroke volume is calculated from the hatched region R1 in FIG. These are very useful in anesthesia management because they can be measured continuously in real time.
  • the control part 14 estimates the information relevant to a volume pulse wave as a volume pulse wave measurement part. At that time, the shape characteristic of the volume pulse wave including the overlapping notch DN as described above may be specified.
  • FIG. 7 is a flowchart of an information processing method according to an embodiment of the present invention. As shown in FIG. 7, first, a process for obtaining a signal related to volume pulse wave using the living body related information measuring apparatus 10 according to the present embodiment is performed (step S111). In this step, the above-described determination unit processing and frequency filter processing are performed.
  • a step of identifying the overlapping notch DN from the signal relating to the volume pulse wave thus obtained is performed (step S112).
  • a minute waveform called a precursor phase wave is generated before the ascending leg AS described above
  • a shock wave that is a peak portion of the volume pulse wave is generated immediately after the ascending leg AS
  • a double notch DN It is known that a peak lower than that of a shock wave called a tidal wave is generated up to and a double pulse is generated in the diastole after the overlapping notch DN.
  • the position of the overlapping notch DN can be specified. Specifically, the position of the overlapping notch DN can be specified by performing primary differentiation or secondary differentiation on the volume pulse wave.
  • a process of estimating the open / closed state of the aortic valve of the subject's heart from the overlapping notch DN is performed (step S113).
  • the period from the initial rise of the ascending leg AS to the overlapping notch DN corresponds to the systole of the heart, and the period from the overlapping notch DN to immediately before the ascending leg AS of the next plethysmogram starts is dilated. It corresponds to the period.
  • Information on the open / closed state of the aortic valve of the heart can be obtained from the relationship between the systolic area (region R1 in FIG. 6C) and the diastole area.
  • the control unit 14 may perform all of the information processing method described above for the living body related information measuring apparatus 10, or the living body related information measuring apparatus 10 performs only the step of acquiring the volume pulse wave (step S ⁇ b> 111),
  • the signal related to the volume pulse wave obtained in step S111 is transmitted to an external device (for example, a smartphone) by the communication device included in the living body related information measuring apparatus 10, and the remaining steps (step S112 and step S113) are performed in the external device. May be.
  • control unit 14 uses a built-in analog-digital conversion circuit as a living body related information measurement unit, and uses digital signal information that can process the amplified received light signal output from the amplification circuit 13b of the light receiving unit 13. And information (biological information) on blood passing through the blood vessel of the subject may be estimated based on the converted signal information.
  • the biological information estimated by the control unit 14 includes changes in blood hemoglobin (Hb) in the measurement using the return light through which the near-infrared light emitted from the first light emitting element 11a and the second light emitting element 12a passes through the subject. Change amount), blood oxygen ratio change (oxygen level), and the like.
  • the absorbances of oxygenated hemoglobin and deoxygenated hemoglobin are equal at a wavelength of 805 nm, the absorbance of oxygenated hemoglobin is greater than that of deoxygenated hemoglobin at a wavelength longer than 805 nm, and oxygen at a wavelength shorter than 805 nm.
  • the absorbance of oxyhemoglobin is smaller than the absorbance of deoxygenated hemoglobin. Therefore, when near-infrared light having a wavelength of 804 nm or less emitted from the first light-emitting element 11a and the second light-emitting element 12a is given to the human body as the subject, the absorbance of deoxygenated hemoglobin can be measured preferentially. . Since deoxygenated hemoglobin tends to have a smaller change in absorbance with respect to elapsed time than oxygenated hemoglobin, the pulsation and volume pulse wave of the subject can be measured more accurately.
  • each of the first light emitting unit 11 and the second light emitting unit 12 is further provided with a light emitting element that emits measurement light including near infrared light having an emission wavelength of 806 nm or more and 995 nm or less.
  • Information obtained from blood passing through the blood flow for example, pulsation of blood flow, blood flow rate, flow rate, etc. can be obtained.
  • the blood oxygen ratio It is possible to derive changes (oxygen levels) or related information
  • FIG. 8 is a diagram for explaining the structure of a band as a contact adjusting mechanism and a light shielding mechanism.
  • FIG. 8A is a diagram illustrating a state where the band is attached to the subject.
  • FIG. 8B is a cross-sectional view taken along the line AA in FIG.
  • the subject MB (a human wrist is shown as a specific example in FIG. 8A) in the housing 30 included in the living body related information measuring apparatus 100 is opposed.
  • a band 200 made of an elastic body (specifically, an elastic cloth) is positioned so as to cover the side opposite to the side to be performed.
  • Each of the bands 200 has a structure in which an inner elastic cloth 210 and an outer elastic cloth 220 having light shielding properties are overlapped, and the casing 30 is placed in a space 200 ⁇ / b> C between the inner elastic cloth 210 and the outer elastic cloth 220.
  • the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 incorporated in the housing 30 can face the subject MB through the opening 210A of the inner elastic cloth 210.
  • the outer elastic cloth 220 elastically presses the housing 30 from the side opposite to the side facing the subject MB to the subject MB. If the contact state with respect to the subject MB, that is, the mounting state of the biological related information measuring device 100 changes during measurement, the amount of return light received by the light receiving unit 13 may change greatly. Such a change in the amount of light adversely affects the reliability of the signal related to the volume pulse wave. Specifically, it becomes a low-frequency noise source that destabilizes the baseline.
  • the biological related information measuring device 100 includes the band 200 as a contact adjustment mechanism, fluctuations in the contact state with respect to the subject MB (the wearing state of the biological related information measuring device 100) are suppressed, and the accuracy of the signal related to the volume pulse wave is suppressed. Can be increased.
  • the band 200 is made of a light shielding material, it also has a function as a light shielding mechanism. Therefore, the band 200 can more stably reduce the possibility that the light receiving elements (the first light emitting element 11a and the second light emitting element 12a) of the living body related information measuring device receive light other than the return light other than the measurement light. Can do.
  • the band 200 and the member that constitutes the light shielding mechanism and also the member that constitutes the contact adjustment mechanism are from the viewpoint of simplifying the structure by reducing the number of components of the living body related information measuring apparatus 100 as a whole. preferable.
  • the return light of the measurement light from the two light emitting elements is received by the light receiving element 13a, but the number of light emitting elements is one. It may be three or more. There may be a plurality of light receiving elements.
  • information from another sensor may be taken in and the operation of the determination unit may be determined.
  • a signal indicating that the measurement should not be continued is input from a sensor related to environmental information such as an outside air temperature / humidity sensor or an atmospheric pressure sensor, or a sensor related to other information related to the subject such as an electrocardiogram sensor, an electroencephalogram sensor, or a motion sensor. In this case, if the light reception signal is not taken in, the volume pulse wave can be estimated more accurately.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

This biological related information measuring device is provided with: a light-emitting element for emitting measurement light of predetermined wavelength; a light receiving element for receiving return light of the measurement light; a volume pulse wave measuring unit for estimating a volume pulse wave on the basis of the light reception results by the light receiving element; a light emission control unit for causing the light-emitting element to emit the measurement light in a pulse form at each timing of a predetermined time interval; a determination unit for determining, as the return light of the measurement light, the light which is received by the light receiving element during a time period from a rising time to a falling time of each of the measurement light at each time when the measurement light is emitted at predetermined time intervals under the control of the light emission control unit; and a frequency filter which removes a low-frequency noise and a high-frequency noise from a pulse wave signal composed of an electric signal based on the light that has been determined to be the return light of the measurement light by the determination unit, and which generates a signal relating to the volume pulse wave. This biological-related information measuring device can estimate a volume pulse wave on the basis of light reception results.

Description

生体関連情報測定装置Biological information measuring device
 本発明は、被検体の生体関連情報、特に容積脈波に関連する情報を推定する生体関連情報測定装置およびセンサ装着ユニットに関する。 The present invention relates to a living body related information measuring apparatus and a sensor mounting unit for estimating living body related information of a subject, particularly information related to a volume pulse wave.
 特許文献1に記載の生体関連情報測定装置は、ユーザーの身体に装着されて、ユーザーの生体情報を測定する生体関連情報測定装置であって、ユーザーの脈波を検出して脈波信号を出力する脈波検出部と、ユーザーの体動を検出して体動信号を出力する体動検出部と、体動信号に基づいてユーザーの運動状態の安定度合を評価する状態評価部と、状態評価部の評価結果に基づいて、脈波の検出間隔を設定する検出間隔設定部と、を備える。これにより、ユーザーの運動状態の安定度合が十分に高いと評価した場合に、脈波信号の検出間隔を長くする設定変更を行うことができ、したがって、消費電力をより低減することが可能となるとしている。 The living body related information measuring device described in Patent Document 1 is a living body related information measuring device that is worn on a user's body and measures the user's biological information, and detects the user's pulse wave and outputs a pulse wave signal. A pulse wave detection unit that detects a user's body motion and outputs a body motion signal, a state evaluation unit that evaluates the degree of stability of the user's motion state based on the body motion signal, and a state evaluation A detection interval setting unit that sets a pulse wave detection interval based on the evaluation result of the unit. Thereby, when it is evaluated that the degree of stability of the user's exercise state is sufficiently high, it is possible to change the setting to increase the detection interval of the pulse wave signal, and thus it is possible to further reduce power consumption. It is said.
特開2016-198193号公報JP 2016-198193 A
 特許文献1などに示される、被検体に光を照射して得られるもどり光を用いて被検体の容積脈波に関する情報を推定する装置(生体関連情報測定装置)では、理想的には、血管に照射される光が均一であって、血管を透過したり反射したりしてきたもどり光をそのまま受光できれば、血管を流れる血流の変化に関する情報をもどり光の光量の変化として正確にとらえることができる。しかしながら、現実には、様々な要因により、受光素子において検出されるもどり光の光量の変化は、血流の変化以外の情報を有している。また、受光素子において受光したもどり光は、光電変換素子によって電気信号に変換され、この電気信号またはこの電気信号に基づく信号から、容積脈波に関する信号を生成するプロセスが行われる。この光電変換後の電気信号の処理においても、各種の外乱信号が重畳する可能性があり、こうした外乱信号が重畳すると、最終的に推定される容積脈波に関する情報の信頼性が低下する。 In an apparatus (biologically related information measurement apparatus) that estimates information on the volume pulse wave of a subject using return light obtained by irradiating the subject with light, such as disclosed in Patent Document 1, ideally a blood vessel If the return light that has been transmitted through and reflected from the blood vessel can be received as it is, the information on the change in blood flow that flows through the blood vessel can be returned and accurately captured as the change in the amount of light. it can. However, in reality, the change in the amount of return light detected by the light receiving element due to various factors has information other than the change in blood flow. The return light received by the light receiving element is converted into an electric signal by the photoelectric conversion element, and a process for generating a signal related to the volume pulse wave from the electric signal or a signal based on the electric signal is performed. Also in the processing of the electrical signal after the photoelectric conversion, various disturbance signals may be superimposed, and when such a disturbance signal is superimposed, the reliability of information regarding the finally estimated volume pulse wave is lowered.
 本発明は、かかる現状を鑑み、発光素子および受光素子を有し受光結果に基づいて容積脈波を推定する生体関連情報測定装置を提供することを目的とする。 In view of the current situation, the present invention has an object to provide a living body related information measuring apparatus that has a light emitting element and a light receiving element and estimates a volume pulse wave based on a light reception result.
 上記課題を解決するために提供される本発明は、一態様において、所定波長の測定光を発光する発光素子と、前記測定光が被検体を経由したもどり光を受光する受光素子と、前記受光素子による受光結果に基づいて前記被検体の血管を流れる血液の容積脈波を推定する容積脈波測定部と、所定の時間間隔の各時刻で前記発光素子から前記測定光をパルス状に発光させる発光制御部と、前記発光制御部の制御によって前記所定の時間間隔で前記測定光が発光されたときの前記各時刻における前記測定光のそれぞれの立ち上がり時間から立下り時間までの時間帯に前記受光素子で受光した光を前記測定光のもどり光であると判定する判定部と、前記判定部により前記測定光のもどり光であると判定された光に基づく電気信号から構成される脈波信号から前記被検体の心拍に対応する周波数帯以外の周波数帯の信号成分を除去して前記容積脈波に関する信号を生成する周波数フィルタと、を有し、容積脈波に関連する情報を推定することを特徴とする生体関連情報測定装置である。 In one aspect, the present invention provided to solve the above-described problems is a light-emitting element that emits measurement light having a predetermined wavelength, a light-receiving element that receives return light through the subject, and the light-receiving element. A volume pulse wave measurement unit that estimates a volume pulse wave of blood flowing through the blood vessel of the subject based on a light reception result by the element, and causes the measurement light to be emitted in a pulse form from the light emitting element at each time of a predetermined time interval A light emission control unit, and the light reception in a time period from a rising time to a falling time of the measurement light at each time when the measurement light is emitted at the predetermined time interval under the control of the light emission control unit. A pulse wave composed of a determination unit that determines that the light received by the element is the return light of the measurement light, and an electric signal based on the light that is determined by the determination unit to be the return light of the measurement light A frequency filter that generates a signal related to the volume pulse wave by removing signal components in a frequency band other than the frequency band corresponding to the heartbeat of the subject from the signal, and estimates information related to the volume pulse wave This is a living body related information measuring device.
 発光素子から放出された測定光は、被検体内を経由して受光素子にもどり光として到達する。前述のように、もどり光には、血流に関する情報のみならず、様々な情報が重畳されうる。特に、容積脈波に関する情報を得ようとする場合には、容積脈波の形状を正確に測定することが必要とされる。受光素子において受光する光量の正確性を低下させる要因の一つに、発光素子から放出される測定光に由来する光以外の光をもどり光と誤認することが挙げられる。そこで、判定部を設けて、パルス状の測定光が放出されている時間帯(測定光の立ち上がり時間から立下り時間までの時間帯)に受光した光をもどり光と判定することにより、測定光に由来する光以外の光をもどり光として誤認する可能性が低減される。こうして判定部により設定された時間帯に受光したもどり光を光電変換して得られる電気信号を時系列に並べることにより、脈波に関連する情報を有する脈波信号が得られる。この脈波信号は、複数のパルス状の電気信号の集合体であるから、これらの電気信号をデジタル化し、得られたデジタルデータ信号に対してデジタル-アナログ変換を行うことにより、容積脈波に関する情報を有する連続的な電気信号(アナログ信号)が得られる。このアナログ信号は、光電変換前のもどり光の状態で重畳しているノイズ(迷光など)や、アナログ信号を形成するまでの過程で重畳したノイズなどを含んでいる。そこで、アナログ信号から前記被検体の心拍範囲に対応する周波数帯以外の周波数帯の信号成分を除去する周波数フィルタの処理を行うことにより、正確性の高い容積脈波に関する信号を生成することができる。周波数フィルタの除去周波数帯は、被検体の心拍範囲の周波数帯に応じて適宜設定される。具体例として、被検体が人である場合には、0.6Hz未満の周波数帯および3.3Hz超の周波数帯の信号成分を除去することが挙げられる。 The measurement light emitted from the light emitting element returns to the light receiving element via the inside of the subject as light. As described above, not only information relating to blood flow but also various information can be superimposed on the return light. In particular, in order to obtain information on the volume pulse wave, it is necessary to accurately measure the shape of the volume pulse wave. One factor that reduces the accuracy of the amount of light received by the light receiving element is that light other than the light derived from the measurement light emitted from the light emitting element is misidentified as returning light. Therefore, a measuring unit is provided to determine the light received in the time zone in which the pulsed measurement light is emitted (the time zone from the rise time to the fall time of the measurement light) as return light, The possibility of misrecognizing light other than light originating from as return light is reduced. A pulse wave signal having information related to the pulse wave is obtained by arranging in time series the electric signals obtained by photoelectrically converting the return light received in the time zone set by the determination unit in this way. Since this pulse wave signal is an aggregate of a plurality of pulse-shaped electric signals, these electric signals are digitized, and digital-analog conversion is performed on the obtained digital data signal to thereby relate to the volume pulse wave. A continuous electrical signal (analog signal) with information is obtained. The analog signal includes noise (stray light and the like) superimposed in the state of return light before photoelectric conversion, noise superimposed in the process until the analog signal is formed, and the like. Therefore, by performing a frequency filter process that removes signal components in a frequency band other than the frequency band corresponding to the heart rate range of the subject from the analog signal, it is possible to generate a highly accurate signal related to the volume pulse wave. . The removal frequency band of the frequency filter is appropriately set according to the frequency band of the heart rate range of the subject. As a specific example, when the subject is a person, it is possible to remove signal components in a frequency band of less than 0.6 Hz and a frequency band of more than 3.3 Hz.
 上記の測定装置において、前記周波数フィルタにおいて生成した前記容積脈波に関する信号は、前記容積脈波の重複切痕に関する情報を含むことが好ましい。容積脈波に関する信号が重複切痕に関する情報を含んでいる場合には、容積脈波に関する信号により心臓の収縮期と拡張期との境界時期を確認することができ、心拍数や血圧など各種生体情報をより正確に把握することが可能となる。 In the above measurement apparatus, it is preferable that the signal relating to the volume pulse wave generated in the frequency filter includes information relating to overlapping notches of the volume pulse wave. If the signal related to the volume pulse wave contains information related to the overlapping notch, the signal related to the volume pulse wave can be used to confirm the boundary time between the systole and the diastole of the heart. It becomes possible to grasp information more accurately.
 上記の測定装置において、前記被検体に対する接触状態を調整する接触調整機構を備えることが好ましい。被検体に対する接触状態、すなわち、測定装置の装着状態が測定中に変化すると、受光素子において受光するもどり光の光量が大きく変化してしまう場合がある。そのような光量の変化は容積脈波に関する信号の信頼性に悪影響を及ぼす。したがって、接触装置が接触調整機構を備えて被検体に対する接触状態(測定装置の装着状態)の変動を抑制することによって、容積脈波に関する信号の正確性を高めることが可能となる。 It is preferable that the measurement apparatus includes a contact adjustment mechanism that adjusts a contact state with the subject. When the contact state with respect to the subject, that is, the mounting state of the measuring apparatus changes during measurement, the amount of return light received by the light receiving element may change greatly. Such a change in the amount of light adversely affects the reliability of the signal related to the volume pulse wave. Therefore, it is possible to improve the accuracy of the signal related to the volume pulse wave by suppressing the fluctuation of the contact state (the mounting state of the measurement device) with respect to the subject by the contact device including the contact adjustment mechanism.
 前記接触調整機構は、前記受光素子および前記発光素子を保持する筐体における前記被検体に対向する側とは反対側から前記被検体側へと、前記筐体を弾性的に押圧する機構を有することが好ましい。 The contact adjustment mechanism includes a mechanism that elastically presses the casing from the opposite side of the casing that holds the light receiving element and the light emitting element to the side of the subject. It is preferable.
 上記の測定装置は、前記発光素子が放出する前記測定光以外の光が前記受光素子に入ることを防ぐ遮光機構を備えることが好ましい。判定部によって発光素子からの測定光のもどり光以外の光を受光素子で受光する可能性は低減されているが、測定光が放出されている時間帯に外部からの光が重畳すると、もどり光の光量が大きく変化してしまうことが懸念される。したがって、上記のように遮光機構を備えることにより、受光素子が測定光以外のもどり光以外の光を受光する可能性をより安定的に低減させることができる。なお、遮光機構を構成する部材が、上記の接触調整機構を構成していてもよい。 It is preferable that the measurement apparatus includes a light shielding mechanism that prevents light other than the measurement light emitted from the light emitting element from entering the light receiving element. Although the possibility of receiving light other than the return light of the measurement light from the light emitting element by the light receiving element is reduced by the determination unit, if the light from the outside is superimposed in the time zone in which the measurement light is emitted, the return light There is a concern that the amount of light will change greatly. Therefore, by providing the light shielding mechanism as described above, the possibility that the light receiving element receives light other than return light other than measurement light can be more stably reduced. In addition, the member which comprises a light-shielding mechanism may comprise said contact adjustment mechanism.
 本発明は、別の一態様において、上記の生体関連情報測定装置を用いて、前記容積脈波に関する信号を取得する工程と、前記容積脈波に関する信号から前記重複切痕を特定する工程と、前記重複切痕から被検体の心臓の大動脈弁の開閉状態を推定する工程と、を有することを特徴とする情報処理方法を提供する。上記の生体関連情報測定装置により得られる容積脈波は重複切痕に関する情報を適切に有することができる。したがって、得られた容積脈波に関する信号から重複切痕を特定することにより、心臓の大動脈弁の開閉状態を適切に推定することができる。 According to another aspect of the present invention, in another aspect, using the biological related information measuring device, a step of obtaining a signal related to the volume pulse wave, a step of identifying the overlapping notch from the signal related to the volume pulse wave, And a step of estimating the open / closed state of the aortic valve of the subject's heart from the overlap notch. The plethysmogram obtained by the living body related information measuring device can appropriately have information on overlapping notches. Therefore, the open / closed state of the aortic valve of the heart can be appropriately estimated by specifying the overlapping notch from the obtained signal regarding the volume pulse wave.
 本発明によれば、発光素子から放出された測定光のもどり光の受光結果に基づいて、正確な、好ましい一態様では重複切痕を確認できる程度に正確な容積脈波を推定する測定装置が提供される。 According to the present invention, there is provided a measuring apparatus that estimates a volume pulse wave that is accurate and, in a preferred aspect, is accurate enough to confirm an overlapping notch based on a result of receiving a return light of measuring light emitted from a light emitting element. Provided.
[規則91に基づく訂正 19.03.2018] 
(a)、(b)は本発明の実施形態に係る生体関連情報測定装置の概略構成を示す斜視図であって、(a)は基板側から見た図であり、(b)は受発光面側からみた図である。 本発明の実施形態に係る生体関連情報測定装置における、第1発光部、第2発光部、および受光部の配置例を示す平面図である。 図1のA’-A’線に沿った断面図である。 本発明の実施形態におけるセンサモジュールの構成を例示するブロック図である。 判定部の動作を表すフローチャートである。 (a)従来技術に係る容積脈波の測定結果を示す図、および(b)本発明の実施形態に係る生体関連情報測定装置により得られた容積脈波の測定結果を示す図である。(c)容積脈波の特徴を説明するための図である。 本発明の一実施形態に係る情報処理方法のフローチャートである。 本発明の実施形態に係る生体関連情報測定装置が備えるバンドの構造を説明するための図であって、(a)外観図、および(b)図7(a)のA-A線の断面図である。
[Correction based on Rule 91 19.03.2018]
(A), (b) is a perspective view which shows schematic structure of the biological body relevant information measuring apparatus which concerns on embodiment of this invention, (a) is the figure seen from the board | substrate side, (b) is light-receiving / emission. It is the figure seen from the surface side. It is a top view which shows the example of arrangement | positioning of the 1st light emission part, the 2nd light emission part, and a light-receiving part in the biological body relevant-information measurement apparatus which concerns on embodiment of this invention. FIG. 2 is a cross-sectional view taken along line A′-A ′ of FIG. It is a block diagram which illustrates the composition of the sensor module in the embodiment of the present invention. It is a flowchart showing operation | movement of a determination part. (A) The figure which shows the measurement result of the volume pulse wave which concerns on a prior art, and (b) The figure which shows the measurement result of the volume pulse wave obtained by the biological body related information measuring device which concerns on embodiment of this invention. (C) It is a figure for demonstrating the characteristic of a volume pulse wave. It is a flowchart of the information processing method which concerns on one Embodiment of this invention. It is a figure for demonstrating the structure of the band with which the biological body relevant information measuring device which concerns on embodiment of this invention is equipped, (a) External view and (b) Sectional drawing of the AA line of Fig.7 (a) It is.
 以下、本発明の実施形態に係る生体関連情報測定装置について図面を参照しつつ詳しく説明する。各図には、基準座標としてX-Y-Z座標が示されており、X-Y面はZ1-Z2方向に直交する面である。以下の説明において、Z1方向を上方向、Z2方向を下方向とし、Z1-Z2方向に沿ってみた状態を平面視ということがある。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。 Hereinafter, a living body related information measuring device according to an embodiment of the present invention will be described in detail with reference to the drawings. In each figure, XYZ coordinates are shown as reference coordinates, and the XY plane is a plane orthogonal to the Z1-Z2 direction. In the following description, the state viewed along the Z1-Z2 direction with the Z1 direction as the upward direction and the Z2 direction as the downward direction may be referred to as a plan view. In the following description, the same members are denoted by the same reference numerals, and the description of the members once described is omitted as appropriate.
 図1(a)、(b)は、本実施形態に係る生体関連情報測定装置10の概略構成を示す斜視図である。図1(a)は基板20側からみた斜視図であり、図1(b)は基板20とは反対側の受発光面10a側からみた斜視図である。図2は、生体関連情報測定装置10における、第1発光部11、第2発光部12、および受光部13の配置例を示す平面図である。図3は、図1のA-A’線に沿った断面図である。 FIGS. 1A and 1B are perspective views showing a schematic configuration of a living body related information measuring apparatus 10 according to the present embodiment. 1A is a perspective view seen from the substrate 20 side, and FIG. 1B is a perspective view seen from the light receiving and emitting surface 10a side opposite to the substrate 20. FIG. FIG. 2 is a plan view showing an arrangement example of the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 in the living body related information measuring apparatus 10. FIG. 3 is a cross-sectional view taken along line A-A ′ of FIG.
 生体関連情報測定装置10は、被検体、例えば人体の皮膚に密着するように装着され、生体情報として、容積脈波に関する情報の測定を行う装置である。生体関連情報測定装置10は、図4に示すセンサモジュール10mを備える。センサモジュール10mは、基板20の上面20a(図3)に設けられた2つの発光部11、12および受光部13を有する。 The living body related information measuring device 10 is a device that is attached so as to be in close contact with a subject, for example, the skin of a human body, and measures information related to volume pulse waves as living body information. The living body related information measuring device 10 includes a sensor module 10m shown in FIG. The sensor module 10 m includes two light emitting units 11 and 12 and a light receiving unit 13 provided on the upper surface 20 a (FIG. 3) of the substrate 20.
 図3に示すように、2つの発光部11、12は、それぞれが有する発光素子11a、12aの点灯によって所定波長の光I11、I12をそれぞれ発光し、測定光として被検体に向けて放出(出射)する。受光部13では、2つの発光部11、12から放出され、被検体を経由したもどり光I13が受光素子13aで受光される。ここで、経由したもどり光には、被検体の内部、例えば血管内、を通過した光、内部で拡散した光、および表面で反射や拡散した光を含む。測定光I11、I12の放出、およびもどり光I13の受光は、Z1-Z2方向において、基板20に対向する受発光面10aで行われる。生体関連情報測定装置10は、受発光面10aを被検体に密着させるように装着される。なお、2つの発光部11、12および受光部13を有するセンサモジュール10mの詳細は後述する。 As shown in FIG. 3, each of the two light emitting units 11 and 12 emits light I11 and I12 having a predetermined wavelength by turning on the light emitting elements 11a and 12a, respectively, and emits (emits) light toward the subject as measurement light. ) In the light receiving unit 13, the return light I13 emitted from the two light emitting units 11 and 12 and passing through the subject is received by the light receiving element 13a. Here, the return light that has passed through includes light that has passed through the inside of the subject, for example, inside a blood vessel, light that has diffused inside, and light that has been reflected or diffused on the surface. The measurement lights I11 and I12 are emitted and the return light I13 is received by the light emitting / receiving surface 10a facing the substrate 20 in the Z1-Z2 direction. The living body related information measuring device 10 is mounted so that the light emitting / receiving surface 10a is in close contact with the subject. The details of the sensor module 10m having the two light emitting units 11 and 12 and the light receiving unit 13 will be described later.
 図2に示すように、Y1-Y2方向に沿ってY2側からY1側へ、第1発光部11、受光部13、および第2発光部12が順に配置されている。第1発光部11の平面中心C11と受光部13の平面中心C13との中心間距離は第1の距離L1とされ、第2発光部12の平面中心C12と受光部13の平面中心C13との中心間距離は第2の距離L2に設定されている。第1の距離L1と第2の距離L2は互いに同一の距離であることが最も好ましいが、2つの距離L1、L2が次式(1)を満足していることが好ましい。
  0.7≦L2/L1≦1.3   (1)
 また、距離L1、L2は4mm以上11mm以下の範囲にあることが好ましい。
As shown in FIG. 2, the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12 are sequentially arranged from the Y2 side to the Y1 side along the Y1-Y2 direction. The center distance between the plane center C11 of the first light emitting unit 11 and the plane center C13 of the light receiving unit 13 is the first distance L1, and the plane center C12 of the second light emitting unit 12 and the plane center C13 of the light receiving unit 13 are the same. The center distance is set to the second distance L2. The first distance L1 and the second distance L2 are most preferably the same distance, but the two distances L1 and L2 preferably satisfy the following expression (1).
0.7 ≦ L2 / L1 ≦ 1.3 (1)
The distances L1 and L2 are preferably in the range of 4 mm to 11 mm.
 距離L1、L2が、上式(1)、および/または、上記範囲を満足することにより、2つの発光素子11a、12aのそれぞれから放出される測定光が到達する、被検体の各測定部位の深度ばらつきを一定範囲に抑えることができ、これらの発光素子11a、12aからの測定光に基づく生体情報の測定ばらつき(具体的には測定された容積脈波の形状のばらつき)を抑えることができる。 When the distances L1 and L2 satisfy the above formula (1) and / or the above range, the measurement light emitted from each of the two light emitting elements 11a and 12a reaches each measurement site of the subject. Variation in depth can be suppressed to a certain range, and measurement variation of biological information based on measurement light from these light emitting elements 11a and 12a (specifically, variation in shape of measured volume pulse wave) can be suppressed. .
 図1と図3に示すように、生体関連情報測定装置10は、第1発光部11、第2発光部12および受光部13を保持する筐体30を備えている。具体的には、筐体30は、接着層21によって基板20の上面20a(Z1方向に向く面)に設けられる。さらに筐体30は、第1発光部11からの測定光I11の放出経路に設けられた第1放出用開口31と、第2発光部12からの測定光I12の放出経路に設けられた第2放出用開口32と、受光部13におけるもどり光I13の受光経路に設けられた受光用開口33とを有する。第1放出用開口31内には第1発光部11が配置され、第2放出用開口32内には第2発光部12が配置され、受光用開口33内には受光部13が配置される。第1発光部11からの出射光は第1放出用開口31内へ進行し、第2発光部12からの出射光は第2放出用開口32内へ進行する。 As shown in FIGS. 1 and 3, the living body related information measuring apparatus 10 includes a housing 30 that holds the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13. Specifically, the housing 30 is provided on the upper surface 20a (the surface facing the Z1 direction) of the substrate 20 by the adhesive layer 21. Further, the housing 30 has a first emission opening 31 provided in the emission path of the measurement light I11 from the first light emitting unit 11 and a second emission provided in the emission path of the measurement light I12 from the second light emission part 12. The light emitting opening 32 and the light receiving opening 33 provided in the light receiving path of the return light I13 in the light receiving unit 13 are provided. The first light emitting unit 11 is arranged in the first emission opening 31, the second light emitting unit 12 is arranged in the second emission opening 32, and the light receiving unit 13 is arranged in the light receiving opening 33. . The outgoing light from the first light emitting unit 11 travels into the first emission opening 31, and the outgoing light from the second light emitting unit 12 travels into the second emission opening 32.
 筐体30は、遮光性材料、例えば金属や樹脂で形成される。筐体30を遮光性材料で構成することにより、第1発光部11および第2発光部12からの出射光が、被検体を経由せずに直接受光部13に入射することを防ぐことができるため、生体情報の測定において必要な情報を正確に抽出しやすくなり、精度の高い測定が可能となる。また、筐体30を金属材料で構成すると、2つの発光部11、12、および受光部13で発生した熱を外部に放出する放熱部材として機能させることができる。一方、筐体30を樹脂材料で構成すると、その弾性により、被検体としての皮膚の形状に沿って配置できるため密着性を高めることができる。 The housing 30 is formed of a light shielding material, for example, metal or resin. By configuring the housing 30 with a light-shielding material, it is possible to prevent light emitted from the first light emitting unit 11 and the second light emitting unit 12 from directly entering the light receiving unit 13 without passing through the subject. Therefore, it becomes easy to accurately extract information necessary for measurement of biological information, and highly accurate measurement is possible. Further, when the casing 30 is made of a metal material, it can function as a heat radiating member that releases heat generated in the two light emitting units 11 and 12 and the light receiving unit 13 to the outside. On the other hand, when the housing 30 is made of a resin material, the elasticity can be arranged along the shape of the skin as the subject, thereby improving the adhesion.
 生体関連情報測定装置10においては、第1放出用開口31、第2放出用開口32、および受光用開口33の上部をそれぞれ覆うように、3つの透光性部材41、42、43がそれぞれ設けられている。第1発光部11から放出された光は、測定光として、第1放出用開口31内から透光性部材41を透過して生体関連情報測定装置10の上側の外部へ放出され、第2発光部12から放出された光は、測定光として、第2放出用開口32内から透光性部材42を透過して生体関連情報測定装置10の上側の外部へ放出される。これらの測定光が被検体を経由したもどり光は、透光性部材43を透過して受光用開口33内に至り受光部13で受光される。透光性部材41、42、43には、例えばPET(polyethylene terephthalate:ポリエチレンテレフタレート)が用いられる。3つの透光性部材41、42、43は、接着によって筐体30に固定され、その上端面41a、42a、43aは、受発光面10aとして、筐体30の上面30aとともに同一面を形成する。これにより、筐体30と透光性部材41、42、43とを同時に被検体に密着させることができる。 In the living body-related information measuring device 10, three translucent members 41, 42, and 43 are provided so as to cover the upper portions of the first emission opening 31, the second emission opening 32, and the light receiving opening 33, respectively. It has been. The light emitted from the first light emitting unit 11 is emitted as measurement light from the inside of the first emission opening 31 through the translucent member 41 and is emitted to the outside on the upper side of the living body related information measuring device 10, and the second light emission. The light emitted from the unit 12 passes through the translucent member 42 from the second emission opening 32 as measurement light and is emitted to the outside on the upper side of the living body related information measuring device 10. The return light through which the measurement light passes through the subject passes through the translucent member 43, reaches the light receiving opening 33, and is received by the light receiving unit 13. For the translucent members 41, 42 and 43, for example, PET (polyethylene terephthalate) is used. The three translucent members 41, 42, 43 are fixed to the housing 30 by adhesion, and the upper end surfaces 41a, 42a, 43a form the same surface as the light emitting / receiving surface 10a together with the upper surface 30a of the housing 30. . Thereby, the housing | casing 30 and the translucent member 41,42,43 can be closely_contact | adhered to a subject simultaneously.
 図4は、センサモジュール10mの構成を例示するブロック図である。
 センサモジュール10mは、一対の発光部11、12と、受光部13と、制御部14と、入出力インタフェース部15とを備える。
FIG. 4 is a block diagram illustrating the configuration of the sensor module 10m.
The sensor module 10 m includes a pair of light emitting units 11 and 12, a light receiving unit 13, a control unit 14, and an input / output interface unit 15.
 図4に示すように、第1発光部11は第1発光素子11aを備え、第2発光部12は第2発光素子12aを備える。第1発光素子11aおよび第2発光素子12aの発光波長は限定されないが、もどり光の光量を適切に確保する観点から、500nm以上1000nm以下とすることが好ましい。第1発光素子11aおよび第2発光素子12aは、具体的な一例として600nm以上804nm以下、好ましくは758nm以上762nm以下の近赤外光を含む光を測定光として発光する。第1発光素子11aと第2発光素子12aは、発光ダイオード素子やレーザ素子である。 As shown in FIG. 4, the 1st light emission part 11 is provided with the 1st light emission element 11a, and the 2nd light emission part 12 is provided with the 2nd light emission element 12a. The emission wavelengths of the first light-emitting element 11a and the second light-emitting element 12a are not limited, but are preferably 500 nm or more and 1000 nm or less from the viewpoint of appropriately securing the amount of return light. As a specific example, the first light-emitting element 11a and the second light-emitting element 12a emit light containing near-infrared light of 600 nm to 804 nm, preferably 758 nm to 762 nm, as measurement light. The first light emitting element 11a and the second light emitting element 12a are light emitting diode elements or laser elements.
 なお、第1発光部11と第2発光部12のそれぞれにおいて、上記第1発光素子11aと第2発光素子12aの発光波長とは異なる波長域の光を測定光として発光する発光素子をさらに備えても良い。そのような発光波長の具体例として、806nm以上995nm以下の近赤外光が挙げられる。これにより、2つの発光素子11a、12aからの測定光を被検体に与えることによって、容積脈波に関する情報を測定するとともに、容積脈波とは異なる生体情報の測定が可能となる。 Each of the first light emitting unit 11 and the second light emitting unit 12 further includes a light emitting element that emits light having a wavelength region different from the emission wavelength of the first light emitting element 11a and the second light emitting element 12a as measurement light. May be. Specific examples of such an emission wavelength include near infrared light having a wavelength of 806 nm to 995 nm. Thus, by providing measurement light from the two light emitting elements 11a and 12a to the subject, information on the volume pulse wave can be measured, and biological information different from the volume pulse wave can be measured.
 受光部13は、第1発光部11または第2発光部12から放出され、被検体の体内、特に、血管を流れる血液を経由したもどり光としての近赤外光を受けて電気信号に変換する受光素子13aを有する。受光素子13aは、例えばフォトダイオードである。受光素子13aは、受光量に応じた電気信号を出力する感度を有する。 The light-receiving unit 13 is emitted from the first light-emitting unit 11 or the second light-emitting unit 12 and receives near-infrared light as return light that passes through the blood flowing through the blood vessel in the subject, in particular, the blood vessel, and converts it into an electrical signal. It has a light receiving element 13a. The light receiving element 13a is, for example, a photodiode. The light receiving element 13a has a sensitivity of outputting an electrical signal corresponding to the amount of received light.
 2つの発光部11、12と受光部13とは受発光部として一体で構成することが好ましい。さらに、センサモジュール10mは、2つの発光部11、12、受光部13、制御部14、および入出力インタフェース部15をパッケージ化したものであってもよい。 It is preferable that the two light emitting units 11 and 12 and the light receiving unit 13 are integrally configured as a light receiving and emitting unit. Further, the sensor module 10m may be a package of the two light emitting units 11 and 12, the light receiving unit 13, the control unit 14, and the input / output interface unit 15.
 第1発光部11は、第1発光素子11aを駆動するドライブ回路11bを有し、第2発光部12は、第2発光素子12aを駆動するドライブ回路12bを有する。また、受光部13は、受光素子13aが出力する受光信号を増幅する増幅回路13bを有する。これらの回路11b、12b、13bは1つのチップで構成されていてもよい。 The first light emitting unit 11 has a drive circuit 11b that drives the first light emitting element 11a, and the second light emitting unit 12 has a drive circuit 12b that drives the second light emitting element 12a. In addition, the light receiving unit 13 includes an amplification circuit 13b that amplifies a light reception signal output from the light receiving element 13a. These circuits 11b, 12b, and 13b may be constituted by one chip.
 制御部14はマイクロコンピュータで構成されている。制御部14は、発光制御部として、発光部11のドライブ回路11bと第2発光部12のドライブ回路12bのそれぞれにタイミング信号を送信して、第1発光部11と第2発光部12が所定のタイミングで近赤外光を放出するように制御する。より具体的には、制御部14は、第1発光部11と第2発光部12を同時に、例えば10ミリ秒間隔で200マイクロ秒間から600マイクロ秒間程度の短時間発光させる。このように制御することにより、第1発光素子11aと第2発光素子12aからパルス状の測定光が連続的に放出される。 The control unit 14 is composed of a microcomputer. As the light emission control unit, the control unit 14 transmits a timing signal to each of the drive circuit 11b of the light emission unit 11 and the drive circuit 12b of the second light emission unit 12, and the first light emission unit 11 and the second light emission unit 12 are predetermined. Control to emit near-infrared light at the timing of. More specifically, the control unit 14 causes the first light emitting unit 11 and the second light emitting unit 12 to simultaneously emit light for a short time of about 200 to 600 microseconds at 10 millisecond intervals, for example. By controlling in this way, pulsed measurement light is continuously emitted from the first light emitting element 11a and the second light emitting element 12a.
 制御部14は、発光制御部の制御によって所定の時間間隔(例えば10ミリ秒間隔)で第1発光素子11aと第2発光素子12aから測定光が発光されたときの、各時刻における測定光のそれぞれの立ち上がり時間から立下り時間までの時間帯(例えば200マイクロ秒間から600マイクロ秒間の時間帯)に受光素子13aで受光した光を、測定光のもどり光であると判定する判定部を有する。 The control unit 14 controls the measurement light at each time when the measurement light is emitted from the first light emitting element 11a and the second light emitting element 12a at a predetermined time interval (for example, every 10 milliseconds) under the control of the light emission control unit. There is a determination unit that determines that the light received by the light receiving element 13a in the time period from the rising time to the falling time (for example, the time period from 200 microseconds to 600 microseconds) is the return light of the measurement light.
 判定部の動作を図5を用いて詳しく説明する。図5は判定部の動作を示すフローチャートである。まず、制御部14が有する発光制御部が発光部11のドライブ回路11bと第2発光部12のドライブ回路12bのそれぞれに送信するタイミング信号を確認する(ステップS101)。そして、測定光のそれぞれの立ち上がり時間を把握し、確認した時間が立ち上がり時間であるか否かを判定する(ステップS102)。確認した時間が立ち上がり時間または立ち上がり時間を経過した時間である場合には、受光素子13aで受光した光を測定光のもどり光と判定して、受光部13の増幅回路13bから出力された増幅後の受光信号を容積脈波の信号を生成するための信号としてメモリ(図示せず。)に取り込む(ステップS103)。立ち上がり時間に至っていない場合には、タイミング信号を確認するステップS101に戻る。 The operation of the determination unit will be described in detail with reference to FIG. FIG. 5 is a flowchart showing the operation of the determination unit. First, the timing signal which the light emission control part which the control part 14 has transmits to each of the drive circuit 11b of the light emission part 11 and the drive circuit 12b of the 2nd light emission part 12 is confirmed (step S101). Then, each rise time of the measurement light is grasped, and it is determined whether or not the confirmed time is the rise time (step S102). When the confirmed time is the rise time or the time when the rise time has elapsed, the light received by the light receiving element 13a is determined as the return light of the measurement light, and after the amplification output from the amplifier circuit 13b of the light receiving unit 13 Is received in a memory (not shown) as a signal for generating a volume pulse signal (step S103). If the rise time has not been reached, the process returns to step S101 for checking the timing signal.
 ステップS102において受光信号の取り込みが終了したら、タイミング信号の確認をあらためて行い(ステップS104)、測定光のそれぞれの立ち下がり時間を把握し、確認した時間が立ち下がり時間または立ち下がり時間を経過した時間であるか否かを判定する(ステップS105)。確認した時間が立ち下がり時間または立ち下がり時間を経過した時間である場合には、受光部13の増幅回路13bから出力された増幅後の受光信号を容積脈波の信号を生成するための信号としてメモリに取り込むことを終了して、測定光の1パルス信号に対応したパルス状の受光信号を1つ得て(ステップS106)、立上がり時間に関してタイミング信号を確認するステップS101に戻る。立ち下がり時間に至っていない場合には、立ち下がり時間に関してタイミング信号を確認するステップS105に戻る。 When the reception of the received light signal is completed in step S102, the timing signal is confirmed again (step S104), the respective falling times of the measurement light are grasped, and the confirmed time is the falling time or the time when the falling time has elapsed. It is determined whether or not (step S105). When the confirmed time is the falling time or the time when the falling time has elapsed, the amplified light reception signal output from the amplification circuit 13b of the light receiving unit 13 is used as a signal for generating a volume pulse wave signal. After capturing the data in the memory, one pulsed light reception signal corresponding to one pulse signal of the measurement light is obtained (step S106), and the process returns to step S101 where the timing signal is confirmed with respect to the rise time. If the fall time has not been reached, the process returns to step S105 where the timing signal is confirmed with respect to the fall time.
 こうして連続パルス状の測定光に対応して、複数のパルス状の受光信号が得られる。この複数のパルス状の受光信号は時間と受光素子で受光した光量に関する情報を有するため、一群のパルス状の受光信号をデジタル化することにより、脈波に関する情報を有するデジタル信号が得られる。このデジタル信号を、デジタル-アナログ変換してアナログ信号を生成する。アナログ信号への変換は、線形補完など従来公知の手法を用いればよい。このデジタル-アナログ変換も制御部14において行われる。 Thus, a plurality of pulsed light receiving signals are obtained corresponding to the continuous pulsed measurement light. Since the plurality of pulsed light receiving signals have information on time and the amount of light received by the light receiving element, a digital signal having information on pulse waves can be obtained by digitizing a group of pulsed light receiving signals. This digital signal is converted from digital to analog to generate an analog signal. For conversion to an analog signal, a conventionally known method such as linear interpolation may be used. This digital-analog conversion is also performed by the control unit 14.
 制御部14は、周波数フィルタとして、上記のアナログ信号から被検体の心拍数に対応する周波数帯以外の周波数帯の信号成分を除去して、容積脈波に関する信号を生成する。除去する周波数帯は被検体の心拍範囲に応じて適宜設定される。被検体が人である場合を具体例とすれば、人の心拍の範囲は、一般的に、1分間に40~200回/分であり、これを周波数の範囲にすれば、0.6Hz~3.3Hzである。そこで、この周波数帯の信号成分を抽出し、それ以外の周波数帯(0.6Hz未満および3.3Hz超からなる周波数帯)の信号成分を除去する。このような周波数フィルタを有することにより、低周波ノイズおよび高周波ノイズが適切に除去され、容積脈波に関する信号を正確性高く生成することができる。アナログ信号における低周波ノイズ源としては、被検体が移動することによって、外部光源とセンサモジュール10mとの相対位置が変化したり、センサモジュール10mの装着状態が変化したりして、受光素子13aで受光する光の光量が変化することが具体例として挙げられる。高周波ノイズ源としては、制御部14から発生するノイズ、被検体が携帯している電子機器からのノイズ、デジタル-アナログ変換などの処理において発生するノイズなどが具体例として挙げられる。 As the frequency filter, the control unit 14 removes a signal component in a frequency band other than the frequency band corresponding to the heart rate of the subject from the analog signal, and generates a signal related to the volume pulse wave. The frequency band to be removed is appropriately set according to the heart rate range of the subject. Taking a case where the subject is a person as a specific example, the heart rate range of a person is generally 40 to 200 times per minute, and if this is set to a frequency range, 0.6 Hz to 3.3 Hz. Therefore, signal components in this frequency band are extracted, and signal components in other frequency bands (frequency bands consisting of less than 0.6 Hz and more than 3.3 Hz) are removed. By having such a frequency filter, low-frequency noise and high-frequency noise are appropriately removed, and a signal related to the volume pulse wave can be generated with high accuracy. As a low frequency noise source in the analog signal, the relative position between the external light source and the sensor module 10m changes due to the movement of the subject, or the mounting state of the sensor module 10m changes. A specific example is that the amount of received light changes. Specific examples of the high frequency noise source include noise generated from the control unit 14, noise from an electronic device carried by the subject, noise generated in processing such as digital-analog conversion, and the like.
 なお、上記の説明では、一群のパルス状の受光信号から得られたデジタル信号をデジタル-アナログ変換して得られたアナログ信号に対して周波数フィルタで処理したが、これに限定されない。デジタル信号に対して周波数フィルタで処理してもよい。得られたノイズ除去済みのデジタル信号に対して、デジタル-アナログ変換を行ってアナログ信号を生成してもよい。 In the above description, a digital signal obtained from a group of pulsed light reception signals is processed by a frequency filter on an analog signal obtained by digital-analog conversion. However, the present invention is not limited to this. You may process with a frequency filter with respect to a digital signal. An analog signal may be generated by performing digital-analog conversion on the obtained noise-removed digital signal.
 図6(a)は、受光部13の増幅回路13bから出力された増幅後の受光信号をデジタル-アナログ変換して生成したアナログ信号であり、従来技術として位置付けられる。図6(a)の表示範囲内に示される複数の容積脈波は、互いに形状が不均一であり、個々の容積脈波から重複切痕DNを把握することが困難である。図6(b)は、受光部13の増幅回路13bから出力された増幅後の受光信号に対して判定部の処理を行い、得られた複数のパルス信号から得られたデジタル信号をデジタル-アナログ変換してアナログ信号を生成し、生成したアナログ信号に対して周波数フィルタ(透過周波数帯域:0.6Hz以上3.3Hz以下)の処理を行って得られた容積脈波信号である。図6(b)の表示範囲内に示される複数の容積脈波は、ほぼ同様の形状的特徴を有し、いずれの信号についても、重複切痕DNの位置を特定可能である。 FIG. 6A shows an analog signal generated by digital-analog conversion of the amplified received light signal output from the amplification circuit 13b of the light receiving unit 13, and is positioned as a conventional technique. The plurality of volume pulse waves shown in the display range of FIG. 6A are non-uniform in shape, and it is difficult to grasp the overlapping notch DN from each volume pulse wave. FIG. 6B illustrates a process of a determination unit performed on the amplified light reception signal output from the amplification circuit 13b of the light reception unit 13, and digital signals obtained from a plurality of obtained pulse signals are digital-analog. This is a volume pulse wave signal obtained by converting to generate an analog signal and subjecting the generated analog signal to processing of a frequency filter (transmission frequency band: 0.6 Hz to 3.3 Hz). The plurality of volume pulse waves shown in the display range of FIG. 6B have substantially similar shape characteristics, and the position of the overlapping notch DN can be specified for any signal.
 図6(c)は容積脈波の特徴を説明するための図である。容積脈波は、大動脈弁の開放とともに急峻に立ち上がり(上行脚AS)、大動脈弁の閉鎖時に信号強度が大きく変動する重複切痕DNが形成される。その後、緩やかに下降していく。この容積脈波の波形から心臓の大動脈の開閉状態を推定することが可能である。図6(c)に示されるように、大動脈の開放時期と閉鎖時期から心臓の収縮期と拡張期がわかり、これらの時期に基づき収縮期圧と拡張期圧を測定することが可能であり、さらに、平均動脈圧も算出されうる。また、容積脈波の波形の立ち上がりから心収縮力や動脈のコンプライアンス、収縮期の面積などから一回拍出量が推測できる。この一回拍出量は、図6(c)においてハッチングを付した領域R1から算出される。これらはリアルタイムかつ連続的に測定できる点で、麻酔管理などにおいて非常に有用である。制御部14は、容積脈波測定部として、容積脈波に関連する情報を推定する。その際、上記のような、重複切痕DNを含む容積脈波の形状的特徴を特定してもよい。 FIG. 6C is a diagram for explaining the characteristics of the volume pulse wave. The plethysmogram rises sharply with the opening of the aortic valve (ascending leg AS), and an overlapping notch DN is formed in which the signal intensity varies greatly when the aortic valve is closed. After that, it will gradually descend. It is possible to estimate the open / close state of the aorta of the heart from the waveform of the volume pulse wave. As shown in FIG. 6 (c), the systolic and diastolic phases of the heart can be determined from the opening and closing times of the aorta, and the systolic and diastolic pressures can be measured based on these times. In addition, the mean arterial pressure can be calculated. The stroke volume can be estimated from the rise of the volume pulse waveform from the systolic force, the compliance of the artery, the area of the systole, and the like. This stroke volume is calculated from the hatched region R1 in FIG. These are very useful in anesthesia management because they can be measured continuously in real time. The control part 14 estimates the information relevant to a volume pulse wave as a volume pulse wave measurement part. At that time, the shape characteristic of the volume pulse wave including the overlapping notch DN as described above may be specified.
 したがって、本実施形態に係る生体関連情報測定装置10を用いて、次に説明するような情報処理方法の実施が可能である。図7は、本発明の一実施形態に係る情報処理方法のフローチャートである。
 図7に示されるように、まず、本実施形態に係る生体関連情報測定装置10を用いて容積脈波に関する信号を取得する工程を実施する(ステップS111)。この工程では、前述の判定部の処理や周波数フィルタの処理が行われる。
Therefore, it is possible to implement the information processing method described below using the living body related information measuring apparatus 10 according to the present embodiment. FIG. 7 is a flowchart of an information processing method according to an embodiment of the present invention.
As shown in FIG. 7, first, a process for obtaining a signal related to volume pulse wave using the living body related information measuring apparatus 10 according to the present embodiment is performed (step S111). In this step, the above-described determination unit processing and frequency filter processing are performed.
 次に、こうして得られた容積脈波に関する信号から重複切痕DNを特定する工程を実施する(ステップS112)。従来技術において容積脈波の波形についての詳細な検討が行われている。例えば、前述の上行脚ASの前には、前駆出期波と呼ばれる微小な波形が発生し、上行脚ASの直後には容積脈波のピーク部である衝撃波が生じ、その後、重複切痕DNに至るまでに潮浪波と呼ばれる衝撃波よりも低いピークが発生し、重複切痕DNの後の拡張期には、重拍波が生じることが知られている。こうした容積脈波の特徴から、重複切痕DNの位置を特定することが可能である。具体的には、容積脈波に対して一次微分や二次微分を行うことにより、重複切痕DNの位置を特定することができる。 Next, a step of identifying the overlapping notch DN from the signal relating to the volume pulse wave thus obtained is performed (step S112). In the prior art, detailed investigations have been made on the waveform of the volume pulse wave. For example, a minute waveform called a precursor phase wave is generated before the ascending leg AS described above, a shock wave that is a peak portion of the volume pulse wave is generated immediately after the ascending leg AS, and thereafter, a double notch DN It is known that a peak lower than that of a shock wave called a tidal wave is generated up to and a double pulse is generated in the diastole after the overlapping notch DN. From the feature of the volume pulse wave, the position of the overlapping notch DN can be specified. Specifically, the position of the overlapping notch DN can be specified by performing primary differentiation or secondary differentiation on the volume pulse wave.
 こうして重複切痕DNが特定されたら、その重複切痕DNから被検体の心臓の大動脈弁の開閉状態を推定する工程を実施する(ステップS113)。具体的には、上行脚ASの立ち上がり初期から重複切痕DNまでが心臓の収縮期に相当し、重複切痕DNから次の容積脈波の上行脚ASが開始される直前までが心臓の拡張期に相当する。収縮期の面積(図6(c)の領域R1)と拡張期の面積との関係などから、心臓の大動脈弁の開閉状態に関する情報を得ることができる。 Thus, when the overlapping notch DN is specified, a process of estimating the open / closed state of the aortic valve of the subject's heart from the overlapping notch DN is performed (step S113). Specifically, the period from the initial rise of the ascending leg AS to the overlapping notch DN corresponds to the systole of the heart, and the period from the overlapping notch DN to immediately before the ascending leg AS of the next plethysmogram starts is dilated. It corresponds to the period. Information on the open / closed state of the aortic valve of the heart can be obtained from the relationship between the systolic area (region R1 in FIG. 6C) and the diastole area.
 上記の情報処理方法を生体関連情報測定装置10の全てを制御部14が実施してもよいし、生体関連情報測定装置10は、容積脈波を取得する工程(ステップS111)のみを実施し、ステップS111で得られた容積脈波に関する信号を生体関連情報測定装置10が有する通信装置により外部機器(例えばスマートフォン)へと送信し、残りの工程(ステップS112およびステップS113)は外部機器において実施してもよい。 The control unit 14 may perform all of the information processing method described above for the living body related information measuring apparatus 10, or the living body related information measuring apparatus 10 performs only the step of acquiring the volume pulse wave (step S <b> 111), The signal related to the volume pulse wave obtained in step S111 is transmitted to an external device (for example, a smartphone) by the communication device included in the living body related information measuring apparatus 10, and the remaining steps (step S112 and step S113) are performed in the external device. May be.
 また、制御部14は、生体関連情報測定部として、内蔵のアナログ-デジタル変換回路を用いて、受光部13の増幅回路13bから出力された増幅後の受光信号を処理可能なデジタル形式の信号情報に変換し、この変換した信号情報に基づいて、被検体の血管内を通る血液に関する情報(生体情報)を推定してもよい。制御部14が推定する生体情報としては、第1発光素子11aと第2発光素子12aから放出される近赤外光が被検体を経由したもどり光を用いた測定では、血中ヘモグロビン変化(Hb変化量)、血中酸素比率変化(酸素度)などが挙げられる。 In addition, the control unit 14 uses a built-in analog-digital conversion circuit as a living body related information measurement unit, and uses digital signal information that can process the amplified received light signal output from the amplification circuit 13b of the light receiving unit 13. And information (biological information) on blood passing through the blood vessel of the subject may be estimated based on the converted signal information. The biological information estimated by the control unit 14 includes changes in blood hemoglobin (Hb) in the measurement using the return light through which the near-infrared light emitted from the first light emitting element 11a and the second light emitting element 12a passes through the subject. Change amount), blood oxygen ratio change (oxygen level), and the like.
 ここで、酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの吸光度は波長805nmにおいて等しく、波長805nmよりも長波長では酸素化ヘモグロビンの吸光度が脱酸素化ヘモグロビンの吸光度よりも大きく、波長805nmよりも短波長では酸素化ヘモグロビンの吸光度が脱酸素化ヘモグロビンの吸光度よりも小さくなる。したがって、第1発光素子11aと第2発光素子12aから放出される波長804nm以下の近赤外光を被検体としての人体に与えると、脱酸素化ヘモグロビンの吸光度を優先的に測定することができる。脱酸素化ヘモグロビンは酸素化ヘモグロビンに比べて、経過時間に対する吸光度の変化が小さい傾向があるため、被検体の脈動や容積脈波をより正確に測定することができる。 Here, the absorbances of oxygenated hemoglobin and deoxygenated hemoglobin are equal at a wavelength of 805 nm, the absorbance of oxygenated hemoglobin is greater than that of deoxygenated hemoglobin at a wavelength longer than 805 nm, and oxygen at a wavelength shorter than 805 nm. The absorbance of oxyhemoglobin is smaller than the absorbance of deoxygenated hemoglobin. Therefore, when near-infrared light having a wavelength of 804 nm or less emitted from the first light-emitting element 11a and the second light-emitting element 12a is given to the human body as the subject, the absorbance of deoxygenated hemoglobin can be measured preferentially. . Since deoxygenated hemoglobin tends to have a smaller change in absorbance with respect to elapsed time than oxygenated hemoglobin, the pulsation and volume pulse wave of the subject can be measured more accurately.
 なお、第1発光部11と第2発光部12のそれぞれにおいて、発光波長が806nm以上995nm以下の近赤外光を含む測定光を発光する発光素子をさらに設けた場合は、被検体の血管内を通る血液から得られる情報、例えば、血流の拍動、血流量、流速などを得ることができる。さらに、2つの発光素子11a、12aから放出される、804nm以下の近赤外光を含む光による測定結果、および806nm以上995nm以下の近赤外光を含む光による測定結果から、血中酸素比率変化(酸素度)またはこれに関連する情報を導き出すことが可能である If each of the first light emitting unit 11 and the second light emitting unit 12 is further provided with a light emitting element that emits measurement light including near infrared light having an emission wavelength of 806 nm or more and 995 nm or less, Information obtained from blood passing through the blood flow, for example, pulsation of blood flow, blood flow rate, flow rate, etc. can be obtained. Furthermore, from the measurement result by the light containing near infrared light of 804 nm or less and the measurement result by the light containing near infrared light of 806 nm or more and 995 nm or less emitted from the two light emitting elements 11a and 12a, the blood oxygen ratio It is possible to derive changes (oxygen levels) or related information
 図8は、接触調整機構および遮光機構としてのバンドの構造を説明する図である。図8(a)は、バンドが被検体に装着された状態を説明する図である。図8(b)は、図8(a)のA-A線での断面図である。 FIG. 8 is a diagram for explaining the structure of a band as a contact adjusting mechanism and a light shielding mechanism. FIG. 8A is a diagram illustrating a state where the band is attached to the subject. FIG. 8B is a cross-sectional view taken along the line AA in FIG.
 図8(a)に示されるように、生体関連情報測定装置100が備える筐体30における、被検体MB(図8(a)では一具体例として人体の手首が示されている。)に対向する側とは反対側を覆うように、弾性体(具体的には弾性布)からなるバンド200が位置する。バンド200は、いずれも遮光性を有する内側弾性布210と外側弾性布220とが重ねされた構造を有し、内側弾性布210と外側弾性布220との間の空間200Cの内部に筐体30が位置し、内側弾性布210の開口210Aにより、筐体30に組み込まれた第1発光部11、第2発光部12および受光部13は、被検体MBに対向することができる。このような構成において、外側弾性布220は、被検体MBに対向する側とは反対側から被検体MBへと、筐体30を弾性的に押圧している。被検体MBに対する接触状態、すなわち、生体関連情報測定装置100の装着状態が測定中に変化すると、受光部13において受光するもどり光の光量が大きく変化してしまう場合がある。そのような光量の変化は容積脈波に関する信号の信頼性に悪影響を及ぼす。具体的には、ベースラインを不安定化させる低周波ノイズ源となる。生体関連情報測定装置100が接触調整機構としてのバンド200を備えることにより、被検体MBに対する接触状態(生体関連情報測定装置100の装着状態)の変動が抑制され、容積脈波に関する信号の正確性を高めることが可能となる。 As shown in FIG. 8A, the subject MB (a human wrist is shown as a specific example in FIG. 8A) in the housing 30 included in the living body related information measuring apparatus 100 is opposed. A band 200 made of an elastic body (specifically, an elastic cloth) is positioned so as to cover the side opposite to the side to be performed. Each of the bands 200 has a structure in which an inner elastic cloth 210 and an outer elastic cloth 220 having light shielding properties are overlapped, and the casing 30 is placed in a space 200 </ b> C between the inner elastic cloth 210 and the outer elastic cloth 220. The first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 incorporated in the housing 30 can face the subject MB through the opening 210A of the inner elastic cloth 210. In such a configuration, the outer elastic cloth 220 elastically presses the housing 30 from the side opposite to the side facing the subject MB to the subject MB. If the contact state with respect to the subject MB, that is, the mounting state of the biological related information measuring device 100 changes during measurement, the amount of return light received by the light receiving unit 13 may change greatly. Such a change in the amount of light adversely affects the reliability of the signal related to the volume pulse wave. Specifically, it becomes a low-frequency noise source that destabilizes the baseline. Since the biological related information measuring device 100 includes the band 200 as a contact adjustment mechanism, fluctuations in the contact state with respect to the subject MB (the wearing state of the biological related information measuring device 100) are suppressed, and the accuracy of the signal related to the volume pulse wave is suppressed. Can be increased.
 また、判定部によって発光素子からの測定光のもどり光以外の光を受光素子で受光する可能性は低減されているが、測定光が放出されている時間帯に外部からの光が重畳すると、もどり光の光量が大きく変化してしまうことが懸念される。バンド200は、遮光性材料から構成されているため、遮光機構としての機能も有する。したがって、バンド200によって、生体関連情報測定装置の受光素子(第1発光素子11aおよび第2発光素子12a)が測定光以外のもどり光以外の光を受光する可能性をより安定的に低減させることができる。このように、バンド200、遮光機構を構成する部材であるとともに、接触調整機構を構成する部材でもあることは、生体関連情報測定装置100全体の構成要素を少なくして構造を簡素化する観点から好ましい。 In addition, although the possibility of receiving light other than the return light of the measurement light from the light emitting element by the light receiving element by the determination unit is reduced, when light from the outside is superimposed on the time zone in which the measurement light is emitted, There is concern that the amount of return light may change significantly. Since the band 200 is made of a light shielding material, it also has a function as a light shielding mechanism. Therefore, the band 200 can more stably reduce the possibility that the light receiving elements (the first light emitting element 11a and the second light emitting element 12a) of the living body related information measuring device receive light other than the return light other than the measurement light. Can do. As described above, the band 200 and the member that constitutes the light shielding mechanism and also the member that constitutes the contact adjustment mechanism are from the viewpoint of simplifying the structure by reducing the number of components of the living body related information measuring apparatus 100 as a whole. preferable.
 以上、本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。 Although the present embodiment and its application examples have been described above, the present invention is not limited to these examples. For example, those in which the person skilled in the art appropriately added, deleted, or changed the design of the above-described embodiments or application examples thereof, or combinations of the features of the embodiments as appropriate are also included in the present invention. As long as the gist is provided, it is included in the scope of the present invention.
 例えば、上記の説明では、2つの発光素子(第1発光素子11a、第2発光素子12a)からの測定光のもどり光を受光素子13aで受光するが、発光素子の数は、1つであってもよいし、3つ以上であってもよい。また、受光素子の数が複数あってもよい。また、脈波の測定に際して、他のセンサからの情報を取り込んで、判定部の動作を決定してもよい。例えば、外気温湿度センサ、気圧センサなどの環境情報に関するセンサや、心電センサ、脳波センサ、動作センサなどの被検体に関する別の情報に関するセンサなどから測定を継続すべきでないとの信号を入力した場合には、受光信号の取り込みを行わないようにすれば、より正確に容積脈波を推定することが可能となる。 For example, in the above description, the return light of the measurement light from the two light emitting elements (the first light emitting element 11a and the second light emitting element 12a) is received by the light receiving element 13a, but the number of light emitting elements is one. It may be three or more. There may be a plurality of light receiving elements. Further, when measuring a pulse wave, information from another sensor may be taken in and the operation of the determination unit may be determined. For example, a signal indicating that the measurement should not be continued is input from a sensor related to environmental information such as an outside air temperature / humidity sensor or an atmospheric pressure sensor, or a sensor related to other information related to the subject such as an electrocardiogram sensor, an electroencephalogram sensor, or a motion sensor. In this case, if the light reception signal is not taken in, the volume pulse wave can be estimated more accurately.
10、100  生体関連情報測定装置
10m センサモジュール
10a 受発光面
11  第1発光部
11a 第1発光素子
11b ドライブ回路
12  第2発光部
12a  第2発光素子
12b  ドライブ回路
13  受光部
13a  受光素子
13b  増幅回路
14  制御部
15  入出力インタフェース部
20  基板
20a  基板20の上面
21  接着層
30  筐体
30a  筐体30の上面
31  第1放出用開口
32  第2放出用開口
33  受光用開口
41、42、43  透光性部材
41a、42a、43a  透光性部材41、42、43の上端面
B1、B2  直線
C11、C12、C13  平面中心
I11、I12  測定光
I13  もどり光
L1、L2  距離
DN  重複切痕
AS  上行脚
R1  領域
MB  被検体
200  バンド
210  内側弾性布
220  外側弾性布
210A  内側弾性布210の開口
200C  内側弾性布210と外側弾性布220との間の空間
DESCRIPTION OF SYMBOLS 10, 100 Living body related information measuring apparatus 10m Sensor module 10a Light receiving / emitting surface 11 1st light emission part 11a 1st light emission element 11b Drive circuit 12 2nd light emission part 12a 2nd light emission element 12b Drive circuit 13 Light reception part 13a Light reception element 13b Amplifier circuit 14 Control unit 15 Input / output interface unit 20 Substrate 20a Upper surface 21 of substrate 20 Adhesive layer 30 Housing 30a Upper surface 31 of housing 30 First emission opening 32 Second emission opening 33 Light receiving openings 41, 42, 43 Translucent 41a, 42a, 43a Upper end surfaces B1, B2 of translucent members 41, 42, 43 Straight lines C11, C12, C13 Plane centers I11, I12 Measuring light I13 Return light L1, L2 Distance DN Overlapping notch AS Ascending leg R1 Area MB Subject 200 Band 210 Inner elastic cloth 220 Outer elastic cloth 21 The space between the openings 200C inner elastic cloth 210 and the outer elastic fabrics 220 A inner elastic fabric 210

Claims (6)

  1.  所定波長の測定光を発光する発光素子と、
     前記測定光が被検体を経由したもどり光を受光する受光素子と、
     前記受光素子による受光結果に基づいて前記被検体の血管を流れる血液の容積脈波を推定する容積脈波測定部と、
     所定の時間間隔の各時刻で前記発光素子から前記測定光をパルス状に発光させる発光制御部と、
     前記発光制御部の制御によって前記所定の時間間隔で前記測定光が発光されたときの前記各時刻における前記測定光のそれぞれの立ち上がり時間から立下り時間までの時間帯に前記受光素子で受光した光を前記測定光のもどり光であると判定する判定部と、
     前記判定部により前記測定光のもどり光であると判定された光に基づく電気信号から構成される脈波信号から前記被検体の心拍に対応する周波数帯以外の周波数帯の信号成分を除去して前記容積脈波に関する信号を生成する周波数フィルタと、
    を有して、
     前記容積脈波に関連する情報を推定することを特徴とする生体関連情報測定装置。
    A light emitting element that emits measurement light of a predetermined wavelength;
    A light receiving element for receiving return light through which the measurement light passes through the subject;
    A volume pulse wave measurement unit that estimates a volume pulse wave of blood flowing through the blood vessel of the subject based on a light reception result by the light receiving element;
    A light emission control unit for emitting the measurement light in a pulse form from the light emitting element at each time of a predetermined time interval;
    Light received by the light receiving element in the time period from the rising time to the falling time of the measurement light at each time when the measurement light is emitted at the predetermined time interval under the control of the light emission control unit A determination unit that determines that the measurement light is a return light;
    A signal component in a frequency band other than the frequency band corresponding to the heartbeat of the subject is removed from a pulse wave signal composed of an electrical signal based on the light determined to be the return light of the measurement light by the determination unit. A frequency filter for generating a signal related to the volume pulse wave;
    Having
    A living body related information measuring apparatus for estimating information related to the volume pulse wave.
  2.  前記周波数フィルタにおいて生成した前記容積脈波に関する信号は、前記容積脈波の重複切痕に関する情報を含む、請求項1に記載の生体関連情報測定装置。 The biological related information measuring device according to claim 1, wherein the signal relating to the volume pulse wave generated in the frequency filter includes information relating to overlapping notches of the volume pulse wave.
  3.  前記被検体に対する接触状態を調整する接触調整機構を備える、請求項1または請求項2に記載の生体関連情報測定装置。 The living body related information measuring device according to claim 1 or 2, further comprising a contact adjusting mechanism for adjusting a contact state with respect to the subject.
  4.  前記接触調整機構は、前記受光素子および前記発光素子を保持する筐体における前記被検体に対向する側とは反対側から前記被検体側へと、前記筐体を弾性的に押圧する機構を有する、請求項3に記載の生体関連情報測定装置。 The contact adjustment mechanism includes a mechanism that elastically presses the casing from the opposite side of the casing that holds the light receiving element and the light emitting element to the side of the subject. The living body related information measuring device according to claim 3.
  5.  前記発光素子が放出する前記測定光以外の光が前記受光素子に入ることを防ぐ遮光機構を備える、請求項1から請求項4のいずれか一項に記載の生体関連情報測定装置。 The living body related information measuring device according to any one of claims 1 to 4, further comprising a light blocking mechanism that prevents light other than the measurement light emitted by the light emitting element from entering the light receiving element.
  6.  請求項2から請求項5のいずれか一項に記載される生体関連情報測定装置を用いて、前記容積脈波に関する信号を取得する工程と、
     前記容積脈波に関する信号から前記重複切痕を特定する工程と、
     前記重複切痕から被検体の心臓の大動脈弁の開閉状態を推定する工程と、
    を有することを特徴とする情報処理方法。
    Using the biological related information measuring device according to any one of claims 2 to 5 to obtain a signal related to the volume pulse wave;
    Identifying the overlapping notch from the signal relating to the volume pulse wave;
    Estimating the open / closed state of the aortic valve of the subject's heart from the overlap notch,
    An information processing method characterized by comprising:
PCT/JP2018/009370 2017-04-07 2018-03-12 Biological-related information measuring device WO2018186108A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076741 2017-04-07
JP2017076741A JP2020096648A (en) 2017-04-07 2017-04-07 Living body related information measurement device

Publications (1)

Publication Number Publication Date
WO2018186108A1 true WO2018186108A1 (en) 2018-10-11

Family

ID=63712172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009370 WO2018186108A1 (en) 2017-04-07 2018-03-12 Biological-related information measuring device

Country Status (2)

Country Link
JP (1) JP2020096648A (en)
WO (1) WO2018186108A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126437A (en) * 1989-10-11 1991-05-29 Seiko Instr Inc Pulsimeter
JPH05504084A (en) * 1990-02-16 1993-07-01 リンドバーク ラース―ゲーラン Monitor that analyzes pulse rate using photoplethysmography measurements
US20130324855A1 (en) * 2012-05-31 2013-12-05 Nellcor Puritan Bennett Llc Methods and systems for power optimization in a medical device
JP2016179124A (en) * 2015-03-25 2016-10-13 セイコーエプソン株式会社 Biological information measuring device
JP2017012483A (en) * 2015-07-01 2017-01-19 浜松ホトニクス株式会社 Blood pressure ratio calculation device, blood pressure ratio calculation method, blood pressure ratio calculation program, and recording medium for recording the program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126437A (en) * 1989-10-11 1991-05-29 Seiko Instr Inc Pulsimeter
JPH05504084A (en) * 1990-02-16 1993-07-01 リンドバーク ラース―ゲーラン Monitor that analyzes pulse rate using photoplethysmography measurements
US20130324855A1 (en) * 2012-05-31 2013-12-05 Nellcor Puritan Bennett Llc Methods and systems for power optimization in a medical device
JP2016179124A (en) * 2015-03-25 2016-10-13 セイコーエプソン株式会社 Biological information measuring device
JP2017012483A (en) * 2015-07-01 2017-01-19 浜松ホトニクス株式会社 Blood pressure ratio calculation device, blood pressure ratio calculation method, blood pressure ratio calculation program, and recording medium for recording the program

Also Published As

Publication number Publication date
JP2020096648A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US12279892B2 (en) Methods and apparatus for detecting motion via optomechanics
JP5775923B2 (en) Optical sensor for patient contactless respiratory monitoring and photoplethysmography measurement
US9952095B1 (en) Methods and systems for modulation and demodulation of optical signals
KR102299361B1 (en) Apparatus and method for monitoring blood pressure, wearable device having function of blood pressure monitoring
US9480407B2 (en) Device and method for removal of ambient noise signal from a photoplethysmograph
JP6729704B2 (en) Blood pressure estimation device
RU2680190C1 (en) Sensor of indicators of vital important functions and method of measurement of indicators of vital life important functions of user
US20070299330A1 (en) Sensor, processing means, method and computer program for providing information on a vital parameter of a living being
KR101033472B1 (en) Form and Method of Sensor Module for Optical Pulse Wave Measurement for Dynamic Noise Reduction
KR20160086710A (en) Method and apparatus for simultaneously detecting body surface pressure and blood volume
JP6431697B2 (en) Wrist-mounted pulse oximeter
US9668698B2 (en) Monitoring device and method for compensating non-linearity effects in vital signs monitoring
CN110772234B (en) Biological information measurement device
JP2014042579A (en) Analyte information detection unit
KR20190030152A (en) Apparatus and method for measuring bio-information
RU2696422C2 (en) Optical analysis system and method
JP2013000540A (en) Pulse wave detector, and pulse wave detection system
KR20170064906A (en) Apparatus and method for measuring bio-signal
JPWO2017064836A1 (en) measuring device
WO2018186108A1 (en) Biological-related information measuring device
CN113995389A (en) Method for obtaining heart rate and electronic equipment
JP6679605B2 (en) Measuring device and measuring method
WO2018180375A1 (en) Biological information measurement device
JP6691637B2 (en) Biological information measuring device
JP6530892B2 (en) Biological information display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载