WO2018180375A1 - Biological information measurement device - Google Patents
Biological information measurement device Download PDFInfo
- Publication number
- WO2018180375A1 WO2018180375A1 PCT/JP2018/009273 JP2018009273W WO2018180375A1 WO 2018180375 A1 WO2018180375 A1 WO 2018180375A1 JP 2018009273 W JP2018009273 W JP 2018009273W WO 2018180375 A1 WO2018180375 A1 WO 2018180375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light emitting
- biological information
- measurement
- unit
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 78
- 230000008859 change Effects 0.000 claims description 30
- 230000010349 pulsation Effects 0.000 description 13
- 108010054147 Hemoglobins Proteins 0.000 description 11
- 102000001554 Hemoglobins Human genes 0.000 description 11
- 238000002835 absorbance Methods 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000000758 substrate Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 230000017531 blood circulation Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
Definitions
- the present invention relates to a biological information measuring apparatus, and more particularly to a biological information measuring apparatus that measures information in blood by being attached to the skin of a human body as a subject.
- the biological information measuring device described in Patent Literature 1 is a biological information measuring device that is mounted on a user's body and measures the user's biological information, and detects a user's pulse wave and outputs a pulse wave signal.
- a wave detection unit, a body motion detection unit that detects a user's body motion and outputs a body motion signal, a state evaluation unit that evaluates the degree of stability of the user's motion state based on the body motion signal, and a state evaluation unit A detection interval setting unit that sets a pulse wave detection interval based on the evaluation result.
- an object of the present invention is to provide a biological information measuring device that can reliably measure pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the device. To do. It is another object of the present invention to provide a biological information measuring apparatus that can avoid the restriction on the design of the apparatus and that can suppress discomfort during wearing.
- a biological information measuring apparatus includes a light emitting element that emits measurement light having a predetermined wavelength, a light receiving element that receives return light that passes through the subject, and a light receiving element that receives light.
- a biological information measurement unit that measures biological information of the subject based on the result, a light emission control unit that emits measurement light from the light emitting element at each time of a predetermined time interval, and a predetermined time interval controlled by the light emission control unit
- a mounting determination unit that determines the mounting state on the subject based on the amount of light received by the light receiving element for the return light corresponding to each of the measurement light at each time when the measurement light is emitted; It is characterized by.
- the determination by the wearing determination unit is executed when measurement by the biological information measuring unit is not performed.
- the wearing state can be reliably determined, and measurement of biological information in a state where the wearing state is not correctly attached can be avoided.
- the attachment determination unit is attached to a predetermined measurement position of the subject if the amount of change in the amount of return light corresponding to each of the measurement lights at each time is within a predetermined value. It is preferable to determine that Thereby, the wearing state can be objectively and accurately determined.
- the light emission control unit has a plurality of light emitting elements, the light emission control unit causes the plurality of light emitting elements to alternately emit light at a predetermined time interval, and the attachment determination unit is configured for each of the plurality of light emitting elements. It is determined whether or not the amount of change in the amount of return light of the return light corresponding to each of the measurement lights at each time is within a predetermined value. If all of the plurality of light emitting elements are within the predetermined value, the predetermined amount of the subject is determined. It is preferable to determine that it is mounted at the measurement position. Thereby, even when a plurality of light emitting elements are provided, it is possible to objectively and accurately determine whether or not all the light emitting elements are correctly mounted.
- the distance between the light receiving element and one of the plurality of light emitting elements is L1
- the distance L2 between the other light emitting elements and the light receiving element satisfies the following formula (1). Is preferred. 0.7 ⁇ L2 / L1 ⁇ 1.3
- the distance between the light receiving element and each of the plurality of light emitting elements is preferably 4 mm or more and 11 mm or less. Accordingly, it is possible to suppress the variation in depth of each measurement site of the subject irradiated with the measurement light emitted from each of the plurality of light emitting elements within a certain range, and thus based on the measurement light from the plurality of light emitting elements. Measurement variation of biological information can be suppressed.
- the biological information measuring apparatus of the present invention has two light emitting elements, the two light emitting elements being a first light emitting element and a second light emitting element, the first light emitting element, the light receiving element, and the second light emitting element.
- the angle formed by the light emitting element is preferably 90 degrees or more and 180 degrees or less. Accordingly, the light emitting elements can be freely arranged according to the shape of the measurement target region of the subject, the wearing state can be easily adjusted, and accurate biological information can be reliably measured.
- the present invention it is possible to provide a biological information measuring device capable of reliably measuring pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the device.
- a biological information measuring device capable of reliably measuring pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the device.
- FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. It is a block diagram which illustrates the composition of the sensor module in the embodiment of the present invention.
- XYZ coordinates are shown as reference coordinates
- the XY plane is a plane orthogonal to the Z1-Z2 direction.
- a state viewed along the Z1-Z2 direction with the Z1 direction as an upward direction and the Z2 direction as a downward direction may be referred to as a plan view.
- the same members are denoted by the same reference numerals, and the description of the members once described is omitted as appropriate.
- FIG. 1A and 1B are perspective views showing a schematic configuration of a biological information measuring apparatus 10 according to the present embodiment.
- 1A is a perspective view seen from the substrate 20 side
- FIG. 1B is a perspective view seen from the light receiving and emitting surface 10a side opposite to the substrate 20.
- FIG. FIG. 2 is a plan view illustrating an arrangement example of the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 in the biological information measuring apparatus 10.
- FIG. 3 is a cross-sectional view taken along line AA ′ of FIG.
- the biological information measuring device 10 is a device that is attached so as to be in close contact with a subject, for example, the skin of a human body, and measures information related to substances in blood as biological information.
- the biological information measuring device 10 includes a sensor module 10m shown in FIG.
- the sensor module 10 m includes two light emitting units 11 and 12 and a light receiving unit 13 provided on the upper surface 20 a (FIG. 3) of the substrate 20.
- each of the two light emitting units 11 and 12 emits light I11 and I12 having a predetermined wavelength by turning on the light emitting elements 11a and 12a, respectively, and emits (emits) light toward the subject as measurement light.
- the return light I13 emitted from the two light emitting units 11 and 12 and passing through the subject is received by the light receiving element 13a.
- the return light that has passed through includes light that has passed through the inside of the subject, for example, inside a blood vessel, light that has diffused inside, and light that has been reflected or diffused on the surface.
- the measurement lights I11 and I12 are emitted and the return light I13 is received by the light emitting / receiving surface 10a facing the substrate 20 in the Z1-Z2 direction.
- the biological information measuring device 10 is mounted so that the light emitting / receiving surface 10a is in close contact with the subject.
- the details of the sensor module 10m having the two light emitting units 11 and 12 and the light receiving unit 13 will be described later.
- the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12 are sequentially arranged from the Y2 side to the Y1 side along the Y1-Y2 direction.
- the center distance between the plane center C11 of the first light emitting unit 11 and the plane center C12 of the second light emitting unit 12 is the first distance L1
- the plane center C12 of the second light emitting unit 12 and the plane center C13 of the light receiving unit 13 are set. Is set at the second distance L2.
- the first distance L1 and the second distance L2 are most preferably the same distance, but the two distances L1 and L2 preferably satisfy the following expression (1).
- the distances L1 and L2 are preferably in the range of 4 mm to 11 mm.
- the measurement light emitted from each of the two light emitting elements 11a and 12a reaches each measurement site of the subject.
- the variation in depth can be suppressed to a certain range, and the measurement variation of biological information based on the measurement light from these light emitting elements 11a and 12a can be suppressed.
- the biological information measuring device 10 includes a housing 30.
- the housing 30 is provided on the upper surface 20a (the surface facing the Z1 direction) of the substrate 20 by the adhesive layer 21. Further, the housing 30 has a first emission opening 31 provided in the emission path of the measurement light I11 from the first light emitting unit 11 and a second emission provided in the emission path of the measurement light I12 from the second light emission part 12.
- the light emitting opening 32 and the light receiving opening 33 provided in the light receiving path of the return light I13 in the light receiving unit 13 are provided.
- the first light emitting unit 11 is arranged in the first emission opening 31,
- the second light emitting unit 12 is arranged in the second emission opening 32, and the light receiving unit 13 is arranged in the light receiving opening 33. .
- the outgoing light from the first light emitting unit 11 travels into the first emission opening 31, and the outgoing light from the second light emitting unit 12 travels into the second emission opening 32.
- the housing 30 is formed of a light shielding material, for example, metal or resin.
- a light shielding material for example, metal or resin.
- the housing 30 By configuring the housing 30 with a light shielding material, it is possible to prevent light emitted from the first light emitting unit 11 and the second light emitting unit 12 from directly entering the light receiving unit 13 without passing through the subject. Therefore, it becomes easy to accurately extract information necessary for measurement of biological information, and highly accurate measurement is possible.
- the casing 30 is made of a metal material, it can function as a heat radiating member that releases heat generated by the two light emitting units 11 and 12 and the light receiving unit 13 to the outside.
- the housing 30 when the housing 30 is made of a resin material, the elasticity can be arranged along the shape of the skin as the subject, thereby improving the adhesion.
- three translucent members 41, 42, and 43 are provided so as to cover the upper portions of the first emission opening 31, the second emission opening 32, and the light receiving opening 33, respectively. It has been.
- the light emitted from the first light emitting unit 11 passes through the translucent member 41 from the inside of the first emission opening 31 as measurement light and is emitted to the outside on the upper side of the biological information measuring device 10, and the second light emitting unit
- the light emitted from 12 passes through the translucent member 42 from the second emission opening 32 as measurement light and is emitted to the outside on the upper side of the biological information measuring device 10.
- the return light through which the measurement light passes through the subject passes through the translucent member 43, reaches the light receiving opening 33, and is received by the light receiving unit 13.
- the translucent members 41, 42 and 43 for example, PET (polyethylene terephthalate) is used.
- PET polyethylene terephthalate
- the three translucent members 41, 42, 43 are fixed to the housing 30 by adhesion, and the upper end surfaces 41a, 42a, 43a form the same surface as the light emitting / receiving surface 10a together with the upper surface 30a of the housing 30. .
- casing 30 and the translucent member 41,42,43 can be closely_contact
- FIG. 4 is a block diagram illustrating the configuration of the sensor module 10m.
- the sensor module 10 m includes a pair of light emitting units 11 and 12, a light receiving unit 13, a control unit 14, and an input / output interface unit 15.
- the 1st light emission part 11 is provided with the 1st light emission element 11a
- the 2nd light emission part 12 is provided with the 2nd light emission element 12a.
- the first light emitting element 11a and the second light emitting element 12a emit measurement light including near infrared light having an emission wavelength of 600 nm to 804 nm, preferably 758 nm to 762 nm.
- the first light emitting element 11a and the second light emitting element 12a are light emitting diode elements or laser elements.
- each of the first light emitting unit 11 and the second light emitting unit 12 measurement light including near infrared light of 806 nm to 995 nm, which is different from the emission wavelengths of the first light emitting element 11a and the second light emitting element 12a, is used. You may further provide the light emitting element which light-emits. This makes it possible to measure biological information different from biological information obtained by applying measurement light from the two light emitting elements 11a and 12a to the subject.
- the light-receiving unit 13 is emitted from the first light-emitting unit 11 or the second light-emitting unit 12 and receives near-infrared light as return light that passes through the blood flowing through the blood vessel in the subject, in particular, the blood vessel, and converts it into an electrical signal. It has a light receiving element 13a.
- the light receiving element 13a is, for example, a photodiode.
- the light receiving element 13a has a sensitivity of outputting an electrical signal corresponding to the amount of received light.
- the two light emitting units 11 and 12 and the light receiving unit 13 are integrally configured as a light receiving and emitting unit.
- the sensor module 10m may be a package of the two light emitting units 11, 12, the light receiving unit 13, the control unit 14, and the input / output interface unit 15.
- the first light emitting unit 11 has a drive circuit 11b that drives the first light emitting element 11a
- the second light emitting unit 12 has a drive circuit 12b that drives the second light emitting element 12a
- the light receiving unit 13 includes an amplification circuit 13b that amplifies a light reception signal output from the light receiving element 13a.
- the control unit 14 is composed of a microcomputer. As the light emission control unit, the control unit 14 transmits a timing signal to each of the drive circuit 11b of the light emission unit 11 and the drive circuit 12b of the second light emission unit 12, and the first light emission unit 11 and the second light emission unit 12 are predetermined. Control to emit near-infrared light at the timing of. More specifically, the control unit 14 causes the first light emitting unit 11 and the second light emitting unit 12 to emit light at the same time in the measurement of biological information, and the first light emitting unit 11 and the second light emitting unit 12 are set to be predetermined in the attachment determination. The light is emitted alternately at time intervals of.
- light emission for measurement of biological information and light emission for attachment determination are performed at separate timings, and furthermore, light emission for attachment determination and attachment determination are not performed for measurement of biological information To be done. As a result, it is possible to reliably determine the wearing state, and to avoid measuring or outputting biological information in a state where the wearing state is not correctly performed.
- control unit 14 uses the built-in analog-digital conversion circuit as a biological information measurement unit to convert the amplified light reception signal output from the amplification circuit 13b of the light reception unit 13 into digital signal information that can be processed. Based on the converted signal information, information (biological information) related to blood passing through the blood vessel of the subject is estimated.
- the biological information estimated by the control unit 14 includes changes in blood hemoglobin (Hb) in the measurement using the return light through which the near-infrared light emitted from the first light emitting element 11a and the second light emitting element 12a passes through the subject. Change amount), blood oxygen ratio change (oxygen level), and the like.
- the absorbances of oxygenated hemoglobin and deoxygenated hemoglobin are equal at a wavelength of 805 nm, the absorbance of oxygenated hemoglobin is greater than the absorbance of deoxygenated hemoglobin at a wavelength longer than 805 nm, and oxygen at a wavelength shorter than 805 nm.
- the absorbance of oxyhemoglobin is smaller than the absorbance of deoxygenated hemoglobin. Therefore, when near-infrared light having a wavelength of 804 nm or less emitted from the first light-emitting element 11a and the second light-emitting element 12a is given to the human body as the subject, the absorbance of deoxygenated hemoglobin can be measured preferentially. .
- the pulsation and volume pulse wave of the subject can be measured more accurately.
- the sensor module 10m can measure at a sampling rate of about 10 milliseconds, information about blood can be obtained continuously.
- each of the first light emitting unit 11 and the second light emitting unit 12 is further provided with a light emitting element that emits measurement light including near infrared light having an emission wavelength of 806 nm or more and 995 nm or less.
- Information obtained from blood passing through the blood flow for example, pulsation of blood flow, blood flow rate, flow rate, etc. can be obtained.
- blood oxygen It is possible to derive the ratio change (oxygen level) or related information.
- control unit 14 determines the mounting state on the subject based on the amount of light received by the light receiving unit 13 as return light as the mounting determination unit.
- This return light is return light corresponding to each of the measurement light at each time when the first light emitting element 11a and the second light emitting element 12a emit light at a predetermined time interval.
- the amount of received light is compared for each light emitting unit, and if both the first light emitting unit 11 and the second light emitting unit 12 have a change amount of the received light amount of return light at each time within a predetermined value, the biological information measuring device 10 is determined to be correctly attached to a predetermined measurement position of the subject.
- being correctly attached means that the positional deviation from the position when each of the first light emitting unit 11 and the second light emitting unit 12 is measured immediately before is sufficiently small.
- the predetermined value used in the attachment determination is preferably such that the amount of return light received with respect to the measurement light emitted from the same light emitting unit is within ⁇ 5% of the immediately preceding received light amount, and within ⁇ 3%. And more preferred.
- FIG. 5 is a flowchart showing the flow of wearing determination and pulsation measurement as biological information.
- the biological information measuring apparatus 10 is brought into close contact with the skin of a human body (subject) as a subject, and the first light emitting element 11a of the first light emitting unit 11 is turned on according to the control by the control unit 14.
- the control unit 14 As a result, near-infrared light as measurement light is emitted from the first light emitting element 11 a to the human body side, and return light passing through the human body is received by the light receiving element 13 a of the light receiving unit 13.
- the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D1 of the return light is measured by the control unit 14 as the amount of light received (step S1).
- step S2 After a predetermined time from step S1, for example, after 0.01 second, the second light emitting element 12a of the second light emitting unit 12 is turned on according to the control by the control unit 14. Thereby, near-infrared light as measurement light is emitted from the second light emitting element 12a to the human body side, and the return light passing through the human body is received by the light receiving element 13a of the light receiving unit 13.
- the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D2 of the return light is measured by the control unit 14 as the amount of light received (step S2).
- the first light emitting element 11a and the second light emitting element 12a are simultaneously turned on, and the measurement light is emitted from the first light emitting element 11a and the second light emitting element 12a to the human body side.
- the return light that has passed through is received by the light receiving element 13 a of the light receiving unit 13.
- the lighting of the first light emitting element 11a and the second light emitting element 12a and the light reception by the light receiving element 13a are continued for a predetermined time, for example, 3 seconds.
- the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level of the return light is measured by the control unit 14 as the amount of light received.
- the change in the absorbance of the deoxygenated hemoglobin in the human body can be measured based on the change in the received light level, and the amplitude of the volume pulse wave can be detected based on this change (step S3).
- step S4 the control unit 14 performs mounting determination (step S4), and when the biological information measuring device 10 is correctly mounted on the target site of the subject (YES in step S4).
- step S5 the pulsation change value based on the amplitude detected in step S3 is output (step S6). If the pulsation change value is not correctly worn (NO in step S4), the pulsation change value is not output (step S5). ).
- step S6 When outputting the pulsation change value in the above step S6, it is performed from the input / output interface unit 15 to an external device such as a display device. Further, when the pulsation change value is not output in step S5, for example, a warning sound may be output from a warning unit (not shown).
- the mounting determination in step S4 is performed based on the light receiving levels D1 and D2 of return light when the first light emitting element 11a and the second light emitting element 12a are alternately turned on. More specifically, the control unit 14 as the wearing determination unit is (1) The amount of change between the light reception level D1 obtained in step S1 and the light reception level D11 (not shown) obtained when the first light emitting element 11a is turned on in the previous cycle is within a predetermined value. Whether or not, and (2) The amount of change between the light reception level D2 obtained in step S2 and the light reception level D12 (not shown) obtained when the second light emitting element 12a is turned on in the previous cycle is within a predetermined value. Whether or not In both (1) and (2), when the change amount is within a predetermined value, it is determined that it is correctly attached.
- the steps S1 and S2 are the first lighting after activation of the biological information measuring apparatus 10, the light reception levels D11 and D12 do not exist, so in any of the determinations (1) and (2) above. Also, the amount of change exceeds a predetermined value, and it is determined that it is not correctly attached.
- step S1 the first light emitting element 11a of the first light emitting unit 11 is turned on, and the measurement light is emitted to the human body side. Then, the return light passing through the human body is received by the light receiving element 13a of the light receiving unit 13, and the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D1 ′ of the return light is controlled as the received light quantity. Measurement is performed by the unit 14 (step S7).
- the second light emitting element 12a of the second light emitting unit 12 is turned on according to control by the control unit 14 after a predetermined time from step S7.
- the measurement light is emitted from the second light emitting element 12 a to the human body side, and the return light passing through the human body is received by the light receiving element 13 a of the light receiving unit 13.
- the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D2 'of the return light is measured by the control unit 14 as the amount of light received (step S8).
- the first light emitting element 11a and the second light emitting element 12a are simultaneously turned on according to the control by the control unit 14, and the measurement light is transmitted from the first light emitting element 11a and the second light emitting element 12a to the human body side.
- the return light emitted and passed through the human body is received by the light receiving element 13a of the light receiving unit 13.
- the lighting of the first light emitting element 11a and the second light emitting element 12a and the light receiving element 13a corresponding thereto are continued for a predetermined time.
- the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level of the return light is measured by the control unit 14 as the amount of light received.
- a change in the absorbance of the deoxygenated hemoglobin in the human body can be measured based on the change in the received light level, and the amplitude of the volume pulse wave can be detected based on this change (step S9).
- control unit 14 performs mounting determination (step S10), and when the biological information measuring device 10 is correctly mounted on the target part of the subject (YES in step S10), the amplitude detected in step S9 above. Is output (step S12), and if it is not worn correctly (NO in step S10), the pulsation change value is not output (step S11).
- the control unit 14 (3) Determination of whether or not the amount of change between the light reception level D1 obtained in step S1 and the light reception level D1 ′ obtained in step S7 in the next cycle is within a predetermined value; (4) It is determined whether or not the amount of change between the light reception level D2 obtained in step S2 and the light reception level D2 ′ obtained in step S8 in the next cycle is within a predetermined value. In both (3) and (4), when the amount of change is within a predetermined value, it is determined that the device is correctly attached.
- FIG. 6 is a plan view showing an arrangement example of the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 in the modification.
- the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12 are arranged on one straight line in this order along the Y1-Y2 direction. That is, as shown in FIG. 6, the first light emitting unit 11 and the light receiving unit 13 are arranged along the Y1-Y2 direction, and the second light emitting unit 12 is arranged at the position P1, and the first light emitting unit 11 is arranged.
- the angle ⁇ formed by the straight line B1 connecting the plane center C11 of the light receiving unit 13 and the plane center C13 of the light receiving unit 13 and the straight line B2 connecting the plane center C13 of the light receiving unit 13 and the plane center C12 of the second light emitting unit 12 is 180 degrees. It was. On the other hand, the position of the second light emitting unit 12 may be changed within the range of 90 degrees or more and 180 degrees or less formed by the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12. For example, the second light emitting unit 12 may be arranged such that the angle ⁇ formed by the straight line B1 and the straight line B2 is 90 degrees as in the position P2 and the position P3 in FIG.
- the center-to-center distance between the second light emitting unit 12 and the light receiving unit 13 is preferably L2 at any of the positions P1, P2, and P3C.
- the light emitting elements can be freely arranged according to the shape of the measurement target region of the subject, for example, the size, the degree of curvature, the amount of muscle and fat, the thickness of the blood vessel, and the like. Adjustment becomes easy, and accurate biological information can be reliably measured.
- the number of light emitting units may be one or three or more.
- the translucent members 41, 42, 43 and the upper surface 30 a of the housing 30 form the same surface (light emitting / receiving surface 10 a), but the upper ends of the translucent members 41, 42, 43 are formed. Is also possible to protrude above the upper surface 30a of the housing 30 (in the Z1 direction). Also in this configuration, the adhesiveness between the translucent members 41, 42, and 43 and the subject can be ensured by pressing the biological information measuring device 10 against the skin.
- casing 30 is on the upper side rather than the upper end of the translucent member 41,42,43 is also possible.
- the distance between the skin and the translucent members 41, 42, and 43 can be maintained substantially constant by pressing the biological information measuring device 10 against the skin to bring it into close contact.
- the biological information measuring apparatus can reliably measure pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the apparatus. It is useful in.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
[Problem] To provide a biological information measurement device capable of reliably measuring pulse waves, changes in pulse beat and other biological information without resorting to oversized or high-cost devices. [Solution] This biological information measurement device is provided with: a light emission element for emitting measurement light of a predetermined wavelength; a light reception element for receiving return light from the measurement light via a subject; a biological information measurement unit for measuring biological information of the subject on the basis of the result of light reception by the light reception unit; a light emission control unit for causing the light emission element to emit the measurement light at times separated by predetermined intervals; and an attachment determination unit that, when measurement light is emitted at the predetermined intervals under the control of the light emission control unit, determines the state of attachment to the subject on the basis of the amount of return light, corresponding to measurement light for each emission time, received by the light reception element.
Description
本発明は、生体情報測定装置に関し、特に被検体としての人体の皮膚に装着させて血液内の情報の測定を行う生体情報測定装置に関する。
The present invention relates to a biological information measuring apparatus, and more particularly to a biological information measuring apparatus that measures information in blood by being attached to the skin of a human body as a subject.
特許文献1に記載の生体情報測定装置は、ユーザーの身体に装着されて、ユーザーの生体情報を測定する生体情報測定装置であって、ユーザーの脈波を検出して脈波信号を出力する脈波検出部と、ユーザーの体動を検出して体動信号を出力する体動検出部と、体動信号に基づいてユーザーの運動状態の安定度合を評価する状態評価部と、状態評価部の評価結果に基づいて、脈波の検出間隔を設定する検出間隔設定部と、を備える。これにより、ユーザーの運動状態の安定度合が十分に高いと評価した場合に、脈波信号の検出間隔を長くする設定変更を行うことができ、したがって、消費電力をより低減することが可能となるとしている。
The biological information measuring device described in Patent Literature 1 is a biological information measuring device that is mounted on a user's body and measures the user's biological information, and detects a user's pulse wave and outputs a pulse wave signal. A wave detection unit, a body motion detection unit that detects a user's body motion and outputs a body motion signal, a state evaluation unit that evaluates the degree of stability of the user's motion state based on the body motion signal, and a state evaluation unit A detection interval setting unit that sets a pulse wave detection interval based on the evaluation result. Thereby, when it is evaluated that the degree of stability of the user's exercise state is sufficiently high, it is possible to change the setting to increase the detection interval of the pulse wave signal, and thus it is possible to further reduce power consumption. It is said.
しかしながら、ユーザーの身体に装着する生体情報測定装置においては、位置ずれなどによって装着状態が変化することによって、脈波を継続的に正確に検出することが困難となるおそれがある。これに対して、取り付け具を用いて、位置ずれを起こさないようにユーザーの身体に強く固定する構成も考えられるが、このような構成は大掛かりな機構が必要となって装置の小型化が困難となり、また、取り付け具の追加によって部品コストが増大するという問題がある。また、このような取り付け具を設けることによって装置のデザインに制約が生じてしまうおそれがある。さらに、装着部位によっては、取り付け具と装着部位との間に一定の遊びがないと、継続的に装着している間にユーザーに対して不快感を与えてしまうという問題がある。
However, in the biological information measuring device worn on the user's body, it may be difficult to detect the pulse wave continuously and accurately because the wearing state changes due to positional deviation or the like. On the other hand, it is also possible to use a fixture that is firmly fixed to the user's body so as not to cause a positional shift. However, such a configuration requires a large-scale mechanism and makes it difficult to reduce the size of the device. In addition, there is a problem that the cost of parts increases due to the addition of the fixture. Moreover, there is a possibility that the design of the apparatus may be restricted by providing such an attachment. Furthermore, depending on the mounting part, there is a problem that if there is no certain play between the mounting tool and the mounting part, the user may feel uncomfortable while wearing continuously.
そこで本発明は、装置の大型化や高コスト化を招くことなく、脈波、脈動の変化、及び、その他の生体情報を確実に測定することができる生体情報測定装置を提供することを目的とする。また、本発明は、装置のデザインに対する制約が生じることを避けることができ、また、装着時の不快感を抑えることができる生体情報測定装置を提供することを目的とする。
Accordingly, an object of the present invention is to provide a biological information measuring device that can reliably measure pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the device. To do. It is another object of the present invention to provide a biological information measuring apparatus that can avoid the restriction on the design of the apparatus and that can suppress discomfort during wearing.
上記課題を解決するために、本発明の生体情報測定装置は、所定波長の測定光を発光する発光素子と、測定光が被検体を経由したもどり光を受光する受光素子と、受光素子による受光結果に基づいて被検体の生体情報を測定する生体情報測定部と、所定の時間間隔の各時刻で発光素子から測定光を発光させる発光制御部と、発光制御部の制御によって所定の時間間隔で測定光が発光されたときの、各時刻における測定光のそれぞれに対応するもどり光が受光素子で受光された受光光量に基づいて、被検体への装着状態を判定する装着判定部とを備えることを特徴としている。
これにより、脈波、脈動の変化、及び、その他の生体情報を測定するための測定光と、この測定光が被検体を経由したもどり光とを用いて装着状態を判定することが可能となるため、固定力の強い取り付け具の追加などの制約が少なくなることから、装置の大型化や高コスト化を招くことなく、生体情報を確実に測定することが可能となる。また、装着方法が限定されなくなるため、装置のデザインに対する制約が生じることを避けることができるとともに、装着時の不快感を抑えることができる生体情報測定装置を提供できる。 In order to solve the above problems, a biological information measuring apparatus according to the present invention includes a light emitting element that emits measurement light having a predetermined wavelength, a light receiving element that receives return light that passes through the subject, and a light receiving element that receives light. A biological information measurement unit that measures biological information of the subject based on the result, a light emission control unit that emits measurement light from the light emitting element at each time of a predetermined time interval, and a predetermined time interval controlled by the light emission control unit A mounting determination unit that determines the mounting state on the subject based on the amount of light received by the light receiving element for the return light corresponding to each of the measurement light at each time when the measurement light is emitted; It is characterized by.
This makes it possible to determine the wearing state using measurement light for measuring pulse waves, changes in pulsation, and other biological information, and return light that passes through the subject. Therefore, since restrictions such as the addition of a fixture with a strong fixing force are reduced, it is possible to reliably measure biological information without increasing the size and cost of the apparatus. Further, since the wearing method is not limited, it is possible to provide a biological information measuring device that can avoid the restriction on the design of the device and can suppress discomfort during wearing.
これにより、脈波、脈動の変化、及び、その他の生体情報を測定するための測定光と、この測定光が被検体を経由したもどり光とを用いて装着状態を判定することが可能となるため、固定力の強い取り付け具の追加などの制約が少なくなることから、装置の大型化や高コスト化を招くことなく、生体情報を確実に測定することが可能となる。また、装着方法が限定されなくなるため、装置のデザインに対する制約が生じることを避けることができるとともに、装着時の不快感を抑えることができる生体情報測定装置を提供できる。 In order to solve the above problems, a biological information measuring apparatus according to the present invention includes a light emitting element that emits measurement light having a predetermined wavelength, a light receiving element that receives return light that passes through the subject, and a light receiving element that receives light. A biological information measurement unit that measures biological information of the subject based on the result, a light emission control unit that emits measurement light from the light emitting element at each time of a predetermined time interval, and a predetermined time interval controlled by the light emission control unit A mounting determination unit that determines the mounting state on the subject based on the amount of light received by the light receiving element for the return light corresponding to each of the measurement light at each time when the measurement light is emitted; It is characterized by.
This makes it possible to determine the wearing state using measurement light for measuring pulse waves, changes in pulsation, and other biological information, and return light that passes through the subject. Therefore, since restrictions such as the addition of a fixture with a strong fixing force are reduced, it is possible to reliably measure biological information without increasing the size and cost of the apparatus. Further, since the wearing method is not limited, it is possible to provide a biological information measuring device that can avoid the restriction on the design of the device and can suppress discomfort during wearing.
本発明の生体情報測定装置において、装着判定部による判定は、生体情報測定部による測定を行っていないときに実行されることが好ましい。
これにより、装着状態の判定を確実に行うことができ、正しく装着されていない状態での生体情報の測定を避けることができる。 In the biological information measuring device of the present invention, it is preferable that the determination by the wearing determination unit is executed when measurement by the biological information measuring unit is not performed.
As a result, the wearing state can be reliably determined, and measurement of biological information in a state where the wearing state is not correctly attached can be avoided.
これにより、装着状態の判定を確実に行うことができ、正しく装着されていない状態での生体情報の測定を避けることができる。 In the biological information measuring device of the present invention, it is preferable that the determination by the wearing determination unit is executed when measurement by the biological information measuring unit is not performed.
As a result, the wearing state can be reliably determined, and measurement of biological information in a state where the wearing state is not correctly attached can be avoided.
本発明の生体情報測定装置において、装着判定部は、各時刻における測定光のそれぞれに対応するもどり光の受光光量の変化量が所定値内であれば、被検体の所定の測定位置に装着されていると判定することが好ましい。
これにより、装着状態を客観的かつ正確に判定することができる。 In the biological information measuring apparatus of the present invention, the attachment determination unit is attached to a predetermined measurement position of the subject if the amount of change in the amount of return light corresponding to each of the measurement lights at each time is within a predetermined value. It is preferable to determine that
Thereby, the wearing state can be objectively and accurately determined.
これにより、装着状態を客観的かつ正確に判定することができる。 In the biological information measuring apparatus of the present invention, the attachment determination unit is attached to a predetermined measurement position of the subject if the amount of change in the amount of return light corresponding to each of the measurement lights at each time is within a predetermined value. It is preferable to determine that
Thereby, the wearing state can be objectively and accurately determined.
本発明の生体情報測定装置において、発光素子を複数有し、発光制御部は、所定の時間間隔で、複数の発光素子を交互に発光させ、装着判定部は、複数の発光素子のそれぞれについて、各時刻における測定光のそれぞれに対応するもどり光の受光光量の変化量が所定値内であるか否かを判定し、複数の発光素子のすべてについて所定値内であれば、被検体の所定の測定位置に装着されていると判定することが好ましい。
これにより、複数の発光素子を設けた場合でも、すべての発光素子が正しく装着されているか否かを客観的かつ正確に判定することができる。 In the biological information measuring device of the present invention, the light emission control unit has a plurality of light emitting elements, the light emission control unit causes the plurality of light emitting elements to alternately emit light at a predetermined time interval, and the attachment determination unit is configured for each of the plurality of light emitting elements. It is determined whether or not the amount of change in the amount of return light of the return light corresponding to each of the measurement lights at each time is within a predetermined value. If all of the plurality of light emitting elements are within the predetermined value, the predetermined amount of the subject is determined. It is preferable to determine that it is mounted at the measurement position.
Thereby, even when a plurality of light emitting elements are provided, it is possible to objectively and accurately determine whether or not all the light emitting elements are correctly mounted.
これにより、複数の発光素子を設けた場合でも、すべての発光素子が正しく装着されているか否かを客観的かつ正確に判定することができる。 In the biological information measuring device of the present invention, the light emission control unit has a plurality of light emitting elements, the light emission control unit causes the plurality of light emitting elements to alternately emit light at a predetermined time interval, and the attachment determination unit is configured for each of the plurality of light emitting elements. It is determined whether or not the amount of change in the amount of return light of the return light corresponding to each of the measurement lights at each time is within a predetermined value. If all of the plurality of light emitting elements are within the predetermined value, the predetermined amount of the subject is determined. It is preferable to determine that it is mounted at the measurement position.
Thereby, even when a plurality of light emitting elements are provided, it is possible to objectively and accurately determine whether or not all the light emitting elements are correctly mounted.
本発明の生体情報測定装置において、受光素子と、複数の発光素子の1つとの距離をL1としたとき、それ以外の発光素子と受光素子との距離L2が次式(1)を満足することが好ましい。
0.7≦L2/L1≦1.3 (1)
また、本発明の生体情報測定装置において、受光素子と、複数の発光素子のそれぞれとの距離は4mm以上11mm以下であることが好ましい。
これらにより、複数の発光素子のそれぞれから放出される測定光が照射される、被検体の各測定部位の深度ばらつきを一定範囲に抑えることができ、よって、複数の発光素子からの測定光に基づく生体情報の測定ばらつきを抑えることができる。 In the biological information measuring device of the present invention, when the distance between the light receiving element and one of the plurality of light emitting elements is L1, the distance L2 between the other light emitting elements and the light receiving element satisfies the following formula (1). Is preferred.
0.7 ≦ L2 / L1 ≦ 1.3 (1)
In the biological information measuring device of the present invention, the distance between the light receiving element and each of the plurality of light emitting elements is preferably 4 mm or more and 11 mm or less.
Accordingly, it is possible to suppress the variation in depth of each measurement site of the subject irradiated with the measurement light emitted from each of the plurality of light emitting elements within a certain range, and thus based on the measurement light from the plurality of light emitting elements. Measurement variation of biological information can be suppressed.
0.7≦L2/L1≦1.3 (1)
また、本発明の生体情報測定装置において、受光素子と、複数の発光素子のそれぞれとの距離は4mm以上11mm以下であることが好ましい。
これらにより、複数の発光素子のそれぞれから放出される測定光が照射される、被検体の各測定部位の深度ばらつきを一定範囲に抑えることができ、よって、複数の発光素子からの測定光に基づく生体情報の測定ばらつきを抑えることができる。 In the biological information measuring device of the present invention, when the distance between the light receiving element and one of the plurality of light emitting elements is L1, the distance L2 between the other light emitting elements and the light receiving element satisfies the following formula (1). Is preferred.
0.7 ≦ L2 / L1 ≦ 1.3 (1)
In the biological information measuring device of the present invention, the distance between the light receiving element and each of the plurality of light emitting elements is preferably 4 mm or more and 11 mm or less.
Accordingly, it is possible to suppress the variation in depth of each measurement site of the subject irradiated with the measurement light emitted from each of the plurality of light emitting elements within a certain range, and thus based on the measurement light from the plurality of light emitting elements. Measurement variation of biological information can be suppressed.
本発明の生体情報測定装置において、発光素子を2つ有し、この2つの発光素子は第1の発光素子と第2の発光素子であり、第1の発光素子と、受光素子と、第2の発光素子とがなす角度は90度以上180度以下であることが好ましい。
これにより、被検体の測定対象部位の形状等に応じて、発光素子の自由な配置が可能となり、装着状態の調整が容易になり、正確な生体情報を確実に測定することが可能となる。 The biological information measuring apparatus of the present invention has two light emitting elements, the two light emitting elements being a first light emitting element and a second light emitting element, the first light emitting element, the light receiving element, and the second light emitting element. The angle formed by the light emitting element is preferably 90 degrees or more and 180 degrees or less.
Accordingly, the light emitting elements can be freely arranged according to the shape of the measurement target region of the subject, the wearing state can be easily adjusted, and accurate biological information can be reliably measured.
これにより、被検体の測定対象部位の形状等に応じて、発光素子の自由な配置が可能となり、装着状態の調整が容易になり、正確な生体情報を確実に測定することが可能となる。 The biological information measuring apparatus of the present invention has two light emitting elements, the two light emitting elements being a first light emitting element and a second light emitting element, the first light emitting element, the light receiving element, and the second light emitting element. The angle formed by the light emitting element is preferably 90 degrees or more and 180 degrees or less.
Accordingly, the light emitting elements can be freely arranged according to the shape of the measurement target region of the subject, the wearing state can be easily adjusted, and accurate biological information can be reliably measured.
本発明によると、装置の大型化や高コスト化を招くことなく、脈波、脈動の変化、及び、その他の生体情報を確実に測定することができる生体情報測定装置を提供することができる。また、装置のデザインに対する制約が生じることを避けることができるとともに、装着時の不快感を抑えることが可能となる。
According to the present invention, it is possible to provide a biological information measuring device capable of reliably measuring pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the device. In addition, it is possible to avoid the restriction on the design of the apparatus and to suppress discomfort at the time of wearing.
以下、本発明の実施形態に係る生体情報測定装置について図面を参照しつつ詳しく説明する。各図には、基準座標としてX-Y-Z座標が示されており、X-Y面はZ1-Z2方向に直交する面である。以下の説明において、Z1方向を上方向、Z2方向を下方向とし、Z1-Z2方向に沿って見た状態を平面視ということがある。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
Hereinafter, a biological information measuring apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. In each figure, XYZ coordinates are shown as reference coordinates, and the XY plane is a plane orthogonal to the Z1-Z2 direction. In the following description, a state viewed along the Z1-Z2 direction with the Z1 direction as an upward direction and the Z2 direction as a downward direction may be referred to as a plan view. In the following description, the same members are denoted by the same reference numerals, and the description of the members once described is omitted as appropriate.
(生体情報測定装置の構成)
図1(a)、(b)は、本実施形態に係る生体情報測定装置10の概略構成を示す斜視図である。図1(a)は基板20側からみた斜視図であり、図1(b)は基板20とは反対側の受発光面10a側からみた斜視図である。図2は、生体情報測定装置10における、第1発光部11、第2発光部12、及び、受光部13の配置例を示す平面図である。図3は、図1のA-A’線に沿った断面図である。 (Configuration of biological information measuring device)
1A and 1B are perspective views showing a schematic configuration of a biologicalinformation measuring apparatus 10 according to the present embodiment. 1A is a perspective view seen from the substrate 20 side, and FIG. 1B is a perspective view seen from the light receiving and emitting surface 10a side opposite to the substrate 20. FIG. FIG. 2 is a plan view illustrating an arrangement example of the first light emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 in the biological information measuring apparatus 10. FIG. 3 is a cross-sectional view taken along line AA ′ of FIG.
図1(a)、(b)は、本実施形態に係る生体情報測定装置10の概略構成を示す斜視図である。図1(a)は基板20側からみた斜視図であり、図1(b)は基板20とは反対側の受発光面10a側からみた斜視図である。図2は、生体情報測定装置10における、第1発光部11、第2発光部12、及び、受光部13の配置例を示す平面図である。図3は、図1のA-A’線に沿った断面図である。 (Configuration of biological information measuring device)
1A and 1B are perspective views showing a schematic configuration of a biological
生体情報測定装置10は、被検体、例えば人体の皮膚に密着するように装着され、生体情報として、血液内の物質に関する情報の測定を行う装置である。生体情報測定装置10は、図4に示すセンサモジュール10mを備える。センサモジュール10mは、基板20の上面20a(図3)に設けられた2つの発光部11、12及び受光部13を有する。
The biological information measuring device 10 is a device that is attached so as to be in close contact with a subject, for example, the skin of a human body, and measures information related to substances in blood as biological information. The biological information measuring device 10 includes a sensor module 10m shown in FIG. The sensor module 10 m includes two light emitting units 11 and 12 and a light receiving unit 13 provided on the upper surface 20 a (FIG. 3) of the substrate 20.
図3に示すように、2つの発光部11、12は、それぞれが有する発光素子11a、12aの点灯によって所定波長の光I11、I12をそれぞれ発光し、測定光として被検体に向けて放出(出射)する。受光部13では、2つの発光部11、12から放出され、被検体を経由したもどり光I13が受光素子13aで受光される。ここで、経由したもどり光には、被検体の内部、例えば血管内、を通過した光、内部で拡散した光、及び、表面で反射や拡散した光を含む。測定光I11、I12の放出、及び、もどり光I13の受光は、Z1-Z2方向において、基板20に対向する受発光面10aで行われる。生体情報測定装置10は、受発光面10aを被検体に密着させるように装着される。なお、2つの発光部11、12及び受光部13を有するセンサモジュール10mの詳細は後述する。
As shown in FIG. 3, each of the two light emitting units 11 and 12 emits light I11 and I12 having a predetermined wavelength by turning on the light emitting elements 11a and 12a, respectively, and emits (emits) light toward the subject as measurement light. ) In the light receiving unit 13, the return light I13 emitted from the two light emitting units 11 and 12 and passing through the subject is received by the light receiving element 13a. Here, the return light that has passed through includes light that has passed through the inside of the subject, for example, inside a blood vessel, light that has diffused inside, and light that has been reflected or diffused on the surface. The measurement lights I11 and I12 are emitted and the return light I13 is received by the light emitting / receiving surface 10a facing the substrate 20 in the Z1-Z2 direction. The biological information measuring device 10 is mounted so that the light emitting / receiving surface 10a is in close contact with the subject. The details of the sensor module 10m having the two light emitting units 11 and 12 and the light receiving unit 13 will be described later.
図2に示すように、Y1-Y2方向に沿ってY2側からY1側へ、第1発光部11、受光部13、及び、第2発光部12が順に配置されている。第1発光部11の平面中心C11と第2発光部12の平面中心C12との中心間距離は第1の距離L1とされ、第2発光部12の平面中心C12と受光部13の平面中心C13との中心間距離は第2の距離L2に設定されている。第1の距離L1と第2の距離L2は互いに同一の距離であることが最も好ましいが、2つの距離L1、L2が次式(1)を満足していることが好ましい。
0.7≦L2/L1≦1.3 (1)
また、距離L1、L2は4mm以上11mm以下の範囲にあることが好ましい。
距離L1、L2が、上式(1)、及び/又は、上記範囲を満足することにより、2つの発光素子11a、12aのそれぞれから放出される測定光が到達する、被検体の各測定部位の深度ばらつきを一定範囲に抑えることができ、これらの発光素子11a、12aからの測定光に基づく生体情報の測定ばらつきを抑えることができる。 As shown in FIG. 2, the firstlight emitting unit 11, the light receiving unit 13, and the second light emitting unit 12 are sequentially arranged from the Y2 side to the Y1 side along the Y1-Y2 direction. The center distance between the plane center C11 of the first light emitting unit 11 and the plane center C12 of the second light emitting unit 12 is the first distance L1, and the plane center C12 of the second light emitting unit 12 and the plane center C13 of the light receiving unit 13 are set. Is set at the second distance L2. The first distance L1 and the second distance L2 are most preferably the same distance, but the two distances L1 and L2 preferably satisfy the following expression (1).
0.7 ≦ L2 / L1 ≦ 1.3 (1)
The distances L1 and L2 are preferably in the range of 4 mm to 11 mm.
When the distances L1 and L2 satisfy the above formula (1) and / or the above range, the measurement light emitted from each of the two light emitting elements 11a and 12a reaches each measurement site of the subject. The variation in depth can be suppressed to a certain range, and the measurement variation of biological information based on the measurement light from these light emitting elements 11a and 12a can be suppressed.
0.7≦L2/L1≦1.3 (1)
また、距離L1、L2は4mm以上11mm以下の範囲にあることが好ましい。
距離L1、L2が、上式(1)、及び/又は、上記範囲を満足することにより、2つの発光素子11a、12aのそれぞれから放出される測定光が到達する、被検体の各測定部位の深度ばらつきを一定範囲に抑えることができ、これらの発光素子11a、12aからの測定光に基づく生体情報の測定ばらつきを抑えることができる。 As shown in FIG. 2, the first
0.7 ≦ L2 / L1 ≦ 1.3 (1)
The distances L1 and L2 are preferably in the range of 4 mm to 11 mm.
When the distances L1 and L2 satisfy the above formula (1) and / or the above range, the measurement light emitted from each of the two light emitting elements 11a and 12a reaches each measurement site of the subject. The variation in depth can be suppressed to a certain range, and the measurement variation of biological information based on the measurement light from these light emitting elements 11a and 12a can be suppressed.
図1と図3に示すように、生体情報測定装置10は筐体30を備えている。筐体30は、接着層21によって基板20の上面20a(Z1方向に向く面)に設けられる。さらに筐体30は、第1発光部11からの測定光I11の放出経路に設けられた第1放出用開口31と、第2発光部12からの測定光I12の放出経路に設けられた第2放出用開口32と、受光部13におけるもどり光I13の受光経路に設けられた受光用開口33とを有する。第1放出用開口31内には第1発光部11が配置され、第2放出用開口32内には第2発光部12が配置され、受光用開口33内には受光部13が配置される。第1発光部11からの出射光は第1放出用開口31内へ進行し、第2発光部12からの出射光は第2放出用開口32内へ進行する。
As shown in FIGS. 1 and 3, the biological information measuring device 10 includes a housing 30. The housing 30 is provided on the upper surface 20a (the surface facing the Z1 direction) of the substrate 20 by the adhesive layer 21. Further, the housing 30 has a first emission opening 31 provided in the emission path of the measurement light I11 from the first light emitting unit 11 and a second emission provided in the emission path of the measurement light I12 from the second light emission part 12. The light emitting opening 32 and the light receiving opening 33 provided in the light receiving path of the return light I13 in the light receiving unit 13 are provided. The first light emitting unit 11 is arranged in the first emission opening 31, the second light emitting unit 12 is arranged in the second emission opening 32, and the light receiving unit 13 is arranged in the light receiving opening 33. . The outgoing light from the first light emitting unit 11 travels into the first emission opening 31, and the outgoing light from the second light emitting unit 12 travels into the second emission opening 32.
筐体30は、遮光性材料、例えば金属や樹脂で形成される。筐体30を遮光性材料で構成することにより、第1発光部11及び第2発光部12からの出射光が、被検体を経由せずに直接受光部13に入射することを防ぐことができるため、生体情報の測定において必要な情報を正確に抽出しやすくなり、精度の高い測定が可能となる。また、筐体30を金属材料で構成すると、2つの発光部11、12、及び、受光部13で発生した熱を外部に放出する放熱部材として機能させることができる。一方、筐体30を樹脂材料で構成すると、その弾性により、被検体としての皮膚の形状に沿って配置できるため密着性を高めることができる。
The housing 30 is formed of a light shielding material, for example, metal or resin. By configuring the housing 30 with a light shielding material, it is possible to prevent light emitted from the first light emitting unit 11 and the second light emitting unit 12 from directly entering the light receiving unit 13 without passing through the subject. Therefore, it becomes easy to accurately extract information necessary for measurement of biological information, and highly accurate measurement is possible. Further, when the casing 30 is made of a metal material, it can function as a heat radiating member that releases heat generated by the two light emitting units 11 and 12 and the light receiving unit 13 to the outside. On the other hand, when the housing 30 is made of a resin material, the elasticity can be arranged along the shape of the skin as the subject, thereby improving the adhesion.
生体情報測定装置10においては、第1放出用開口31、第2放出用開口32、及び、受光用開口33の上部をそれぞれ覆うように、3つの透光性部材41、42、43がそれぞれ設けられている。第1発光部11から放出された光は、測定光として、第1放出用開口31内から透光性部材41を透過して生体情報測定装置10の上側の外部へ放出され、第2発光部12から放出された光は、測定光として、第2放出用開口32内から透光性部材42を透過して生体情報測定装置10の上側の外部へ放出される。これらの測定光が被検体を経由したもどり光は、透光性部材43を透過して受光用開口33内に至り受光部13で受光される。透光性部材41、42、43には、例えばPET(polyethylene terephthalate:ポリエチレンテレフタレート)が用いられる。3つの透光性部材41、42、43は、接着によって筐体30に固定され、その上端面41a、42a、43aは、受発光面10aとして、筐体30の上面30aとともに同一面を形成する。これにより、筐体30と透光性部材41、42、43とを同時に被検体に密着させることができる。
In the biological information measuring device 10, three translucent members 41, 42, and 43 are provided so as to cover the upper portions of the first emission opening 31, the second emission opening 32, and the light receiving opening 33, respectively. It has been. The light emitted from the first light emitting unit 11 passes through the translucent member 41 from the inside of the first emission opening 31 as measurement light and is emitted to the outside on the upper side of the biological information measuring device 10, and the second light emitting unit The light emitted from 12 passes through the translucent member 42 from the second emission opening 32 as measurement light and is emitted to the outside on the upper side of the biological information measuring device 10. The return light through which the measurement light passes through the subject passes through the translucent member 43, reaches the light receiving opening 33, and is received by the light receiving unit 13. For the translucent members 41, 42 and 43, for example, PET (polyethylene terephthalate) is used. The three translucent members 41, 42, 43 are fixed to the housing 30 by adhesion, and the upper end surfaces 41a, 42a, 43a form the same surface as the light emitting / receiving surface 10a together with the upper surface 30a of the housing 30. . Thereby, the housing | casing 30 and the translucent member 41,42,43 can be closely_contact | adhered to a subject simultaneously.
(センサモジュールの構成)
図4は、センサモジュール10mの構成を例示するブロック図である。
センサモジュール10mは、一対の発光部11、12と、受光部13と、制御部14と、入出力インタフェース部15とを備える。 (Configuration of sensor module)
FIG. 4 is a block diagram illustrating the configuration of thesensor module 10m.
Thesensor module 10 m includes a pair of light emitting units 11 and 12, a light receiving unit 13, a control unit 14, and an input / output interface unit 15.
図4は、センサモジュール10mの構成を例示するブロック図である。
センサモジュール10mは、一対の発光部11、12と、受光部13と、制御部14と、入出力インタフェース部15とを備える。 (Configuration of sensor module)
FIG. 4 is a block diagram illustrating the configuration of the
The
図4に示すように、第1発光部11は第1発光素子11aを備え、第2発光部12は第2発光素子12aを備える。第1発光素子11aと第2発光素子12aは、発光波長が600nm以上804nm以下、好ましくは758nm以上762nm以下の近赤外光を含む測定光を発光する。第1発光素子11aと第2発光素子12aは、発光ダイオード素子やレーザ素子である。
As shown in FIG. 4, the 1st light emission part 11 is provided with the 1st light emission element 11a, and the 2nd light emission part 12 is provided with the 2nd light emission element 12a. The first light emitting element 11a and the second light emitting element 12a emit measurement light including near infrared light having an emission wavelength of 600 nm to 804 nm, preferably 758 nm to 762 nm. The first light emitting element 11a and the second light emitting element 12a are light emitting diode elements or laser elements.
なお、第1発光部11と第2発光部12のそれぞれにおいて、上記第1発光素子11aと第2発光素子12aの発光波長とは異なる、806nm以上995nm以下の近赤外光を含む測定光を発光する発光素子をさらに備えても良い。これにより、2つの発光素子11a、12aからの測定光を被検体に与えることによって得られる生体情報とは異なる生体情報の測定が可能となる。
In each of the first light emitting unit 11 and the second light emitting unit 12, measurement light including near infrared light of 806 nm to 995 nm, which is different from the emission wavelengths of the first light emitting element 11a and the second light emitting element 12a, is used. You may further provide the light emitting element which light-emits. This makes it possible to measure biological information different from biological information obtained by applying measurement light from the two light emitting elements 11a and 12a to the subject.
受光部13は、第1発光部11又は第2発光部12から放出され、被検体の体内、特に、血管を流れる血液を経由したもどり光としての近赤外光を受けて電気信号に変換する受光素子13aを有する。受光素子13aは、例えばフォトダイオードである。受光素子13aは、受光量に応じた電気信号を出力する感度を有する。
The light-receiving unit 13 is emitted from the first light-emitting unit 11 or the second light-emitting unit 12 and receives near-infrared light as return light that passes through the blood flowing through the blood vessel in the subject, in particular, the blood vessel, and converts it into an electrical signal. It has a light receiving element 13a. The light receiving element 13a is, for example, a photodiode. The light receiving element 13a has a sensitivity of outputting an electrical signal corresponding to the amount of received light.
2つの発光部11、12と受光部13とは受発光部として一体で構成することが好ましい。さらに、センサモジュール10mは、2つの発光部11、12、受光部13、制御部14、及び、入出力インタフェース部15をパッケージ化したものであってもよい。
It is preferable that the two light emitting units 11 and 12 and the light receiving unit 13 are integrally configured as a light receiving and emitting unit. Further, the sensor module 10m may be a package of the two light emitting units 11, 12, the light receiving unit 13, the control unit 14, and the input / output interface unit 15.
第1発光部11は、第1発光素子11aを駆動するドライブ回路11bを有し、第2発光部12は、第2発光素子12aを駆動するドライブ回路12bを有する。また、受光部13は、受光素子13aが出力する受光信号を増幅する増幅回路13bを有する。これらの回路11b、12b、13bは1つのチップで構成されていてもよい。
The first light emitting unit 11 has a drive circuit 11b that drives the first light emitting element 11a, and the second light emitting unit 12 has a drive circuit 12b that drives the second light emitting element 12a. In addition, the light receiving unit 13 includes an amplification circuit 13b that amplifies a light reception signal output from the light receiving element 13a. These circuits 11b, 12b, and 13b may be constituted by one chip.
制御部14はマイクロコンピュータで構成されている。制御部14は、発光制御部として、発光部11のドライブ回路11bと第2発光部12のドライブ回路12bのそれぞれにタイミング信号を送信して、第1発光部11と第2発光部12が所定のタイミングで近赤外光を放出するように制御する。より具体的には、制御部14は、生体情報の測定においては第1発光部11と第2発光部12を同時に発光させ、装着判定においては第1発光部11と第2発光部12を所定の時間間隔で交互に発光させる。また、生体情報の測定のための発光と装着判定のための発光は互いに別個のタイミングで行われ、さらに、装着判定のための発光、及び、装着判定は、生体情報の測定を行っていないときに行われる。これにより、装着状態の判定を確実に行うことができ、正しく装着されていない状態での生体情報の測定又は出力を避けることができる。
The control unit 14 is composed of a microcomputer. As the light emission control unit, the control unit 14 transmits a timing signal to each of the drive circuit 11b of the light emission unit 11 and the drive circuit 12b of the second light emission unit 12, and the first light emission unit 11 and the second light emission unit 12 are predetermined. Control to emit near-infrared light at the timing of. More specifically, the control unit 14 causes the first light emitting unit 11 and the second light emitting unit 12 to emit light at the same time in the measurement of biological information, and the first light emitting unit 11 and the second light emitting unit 12 are set to be predetermined in the attachment determination. The light is emitted alternately at time intervals of. Further, light emission for measurement of biological information and light emission for attachment determination are performed at separate timings, and furthermore, light emission for attachment determination and attachment determination are not performed for measurement of biological information To be done. As a result, it is possible to reliably determine the wearing state, and to avoid measuring or outputting biological information in a state where the wearing state is not correctly performed.
また、制御部14は、生体情報測定部として、内蔵のアナログ-デジタル変換回路を用いて、受光部13の増幅回路13bから出力された増幅後の受光信号を処理可能なデジタル形式の信号情報に変換し、この変換した信号情報に基づいて、被検体の血管内を通る血液に関する情報(生体情報)を推定する。制御部14が推定する生体情報としては、第1発光素子11aと第2発光素子12aから放出される近赤外光が被検体を経由したもどり光を用いた測定では、血中ヘモグロビン変化(Hb変化量)、血中酸素比率変化(酸素度)などが挙げられる。
In addition, the control unit 14 uses the built-in analog-digital conversion circuit as a biological information measurement unit to convert the amplified light reception signal output from the amplification circuit 13b of the light reception unit 13 into digital signal information that can be processed. Based on the converted signal information, information (biological information) related to blood passing through the blood vessel of the subject is estimated. The biological information estimated by the control unit 14 includes changes in blood hemoglobin (Hb) in the measurement using the return light through which the near-infrared light emitted from the first light emitting element 11a and the second light emitting element 12a passes through the subject. Change amount), blood oxygen ratio change (oxygen level), and the like.
ここで、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの吸光度は波長805nmにおいて等しく、波長805nmよりも長波長では酸素化ヘモグロビンの吸光度が脱酸素化ヘモグロビンの吸光度よりも大きく、波長805nmよりも短波長では酸素化ヘモグロビンの吸光度が脱酸素化ヘモグロビンの吸光度よりも小さくなる。したがって、第1発光素子11aと第2発光素子12aから放出される波長804nm以下の近赤外光を被検体としての人体に与えると、脱酸素化ヘモグロビンの吸光度を優先的に測定することができる。脱酸素化ヘモグロビンは酸素化ヘモグロビンに比べて、経過時間に対する吸光度の変化が小さい傾向があるため、被検体の脈動や容積脈波をより正確に測定することができる。
また、センサモジュール10mでは10ミリ秒程度のサンプリングレートで測定できるため、血液に関する情報を連続的に得ることができる。 Here, the absorbances of oxygenated hemoglobin and deoxygenated hemoglobin are equal at a wavelength of 805 nm, the absorbance of oxygenated hemoglobin is greater than the absorbance of deoxygenated hemoglobin at a wavelength longer than 805 nm, and oxygen at a wavelength shorter than 805 nm. The absorbance of oxyhemoglobin is smaller than the absorbance of deoxygenated hemoglobin. Therefore, when near-infrared light having a wavelength of 804 nm or less emitted from the first light-emitting element 11a and the second light-emitting element 12a is given to the human body as the subject, the absorbance of deoxygenated hemoglobin can be measured preferentially. . Since deoxygenated hemoglobin tends to have a smaller change in absorbance with respect to elapsed time than oxygenated hemoglobin, the pulsation and volume pulse wave of the subject can be measured more accurately.
In addition, since thesensor module 10m can measure at a sampling rate of about 10 milliseconds, information about blood can be obtained continuously.
また、センサモジュール10mでは10ミリ秒程度のサンプリングレートで測定できるため、血液に関する情報を連続的に得ることができる。 Here, the absorbances of oxygenated hemoglobin and deoxygenated hemoglobin are equal at a wavelength of 805 nm, the absorbance of oxygenated hemoglobin is greater than the absorbance of deoxygenated hemoglobin at a wavelength longer than 805 nm, and oxygen at a wavelength shorter than 805 nm. The absorbance of oxyhemoglobin is smaller than the absorbance of deoxygenated hemoglobin. Therefore, when near-infrared light having a wavelength of 804 nm or less emitted from the first light-emitting element 11a and the second light-emitting element 12a is given to the human body as the subject, the absorbance of deoxygenated hemoglobin can be measured preferentially. . Since deoxygenated hemoglobin tends to have a smaller change in absorbance with respect to elapsed time than oxygenated hemoglobin, the pulsation and volume pulse wave of the subject can be measured more accurately.
In addition, since the
なお、第1発光部11と第2発光部12のそれぞれにおいて、発光波長が806nm以上995nm以下の近赤外光を含む測定光を発光する発光素子をさらに設けた場合は、被検体の血管内を通る血液から得られる情報、例えば、血流の拍動、血流量、流速などを得ることができる。さらに、2つの発光素子11a、12aから放出される、804nm以下の近赤外光を含む光による測定結果、及び、806nm以上995nm以下の近赤外光を含む光による測定結果から、血中酸素比率変化(酸素度)またはこれに関連する情報を導き出すことが可能である。
If each of the first light emitting unit 11 and the second light emitting unit 12 is further provided with a light emitting element that emits measurement light including near infrared light having an emission wavelength of 806 nm or more and 995 nm or less, Information obtained from blood passing through the blood flow, for example, pulsation of blood flow, blood flow rate, flow rate, etc. can be obtained. Furthermore, from the measurement result by the light containing near infrared light of 804 nm or less emitted from the two light emitting elements 11a and 12a and the measurement result by the light containing near infrared light of 806 nm or more and 995 nm or less, blood oxygen It is possible to derive the ratio change (oxygen level) or related information.
また、制御部14は、装着判定部として、もどり光が受光部13で受光された受光光量に基づいて、被検体への装着状態を判定する。このもどり光は、第1発光素子11aと第2発光素子12aを所定の時間間隔で発光させたときの各時刻における測定光のそれぞれに対応するもどり光である。上記受光光量は発光部ごとに比較し、第1発光部11と第2発光部12の両方について、前記各時刻におけるもどり光の受光光量の変化量が所定値内であれば、生体情報測定装置10が被検体の所定の測定位置に正しく装着されていると判定する。ここで、正しく装着されている、とは、第1発光部11と第2発光部12のそれぞれが直前に測定したときの位置に対する位置ずれが十分に小さいことを意味する。
Also, the control unit 14 determines the mounting state on the subject based on the amount of light received by the light receiving unit 13 as return light as the mounting determination unit. This return light is return light corresponding to each of the measurement light at each time when the first light emitting element 11a and the second light emitting element 12a emit light at a predetermined time interval. The amount of received light is compared for each light emitting unit, and if both the first light emitting unit 11 and the second light emitting unit 12 have a change amount of the received light amount of return light at each time within a predetermined value, the biological information measuring device 10 is determined to be correctly attached to a predetermined measurement position of the subject. Here, being correctly attached means that the positional deviation from the position when each of the first light emitting unit 11 and the second light emitting unit 12 is measured immediately before is sufficiently small.
一方、第1発光部11と第2発光部12のいずれか、又は、第1発光部11と第2発光部12の両方において、もどり光の受光光量の変化量が前記所定値を超えた場合は、正しく装着されていないと判定する。ここで、装着の判定で用いる所定値としては、同じ発光部から放出された測定光に対するもどり光の受光光量が直前の受光光量の±5%以内とすることが好ましく、±3%以内であるとさらに好ましい。このように閾値として上記所定値を用いて判定することにより、装着状態を客観的かつ正確に判定することができる。
On the other hand, when the amount of change in the amount of received light exceeds the predetermined value in either the first light emitting unit 11 or the second light emitting unit 12 or in both the first light emitting unit 11 and the second light emitting unit 12 Determines that it is not properly attached. Here, the predetermined value used in the attachment determination is preferably such that the amount of return light received with respect to the measurement light emitted from the same light emitting unit is within ± 5% of the immediately preceding received light amount, and within ± 3%. And more preferred. Thus, by determining using the said predetermined value as a threshold value, a mounting state can be determined objectively and correctly.
以下、図5を参照しつつ、生体情報測定装置10による装着判定と生体情報測定の流れの例について説明する。図5は、装着判定、及び、生体情報としての脈動測定の流れを示すフローチャートである。
Hereinafter, with reference to FIG. 5, an example of the flow of wearing determination and biological information measurement by the biological information measuring apparatus 10 will be described. FIG. 5 is a flowchart showing the flow of wearing determination and pulsation measurement as biological information.
まず、生体情報測定装置10を被検体としての人体(対象者)の皮膚に密着させ、制御部14による制御にしたがって第1発光部11の第1発光素子11aを点灯させる。これにより、第1発光素子11aから測定光としての近赤外光が人体側へ放出され、人体を経由したもどり光が受光部13の受光素子13aで受光される。受光素子13aから出力された受光信号は増幅回路13bで増幅され、受光光量として、もどり光の受光レベルD1が制御部14で測定される(ステップS1)。
First, the biological information measuring apparatus 10 is brought into close contact with the skin of a human body (subject) as a subject, and the first light emitting element 11a of the first light emitting unit 11 is turned on according to the control by the control unit 14. As a result, near-infrared light as measurement light is emitted from the first light emitting element 11 a to the human body side, and return light passing through the human body is received by the light receiving element 13 a of the light receiving unit 13. The light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D1 of the return light is measured by the control unit 14 as the amount of light received (step S1).
次に、上記ステップS1から所定時間後、例えば、0.01秒後に、制御部14による制御にしたがって第2発光部12の第2発光素子12aを点灯させる。これにより、第2発光素子12aから測定光としての近赤外光が人体側へ放出され、人体を経由したもどり光が受光部13の受光素子13aで受光される。受光素子13aから出力された受光信号は増幅回路13bで増幅され、受光光量として、もどり光の受光レベルD2が制御部14で測定される(ステップS2)。
Next, after a predetermined time from step S1, for example, after 0.01 second, the second light emitting element 12a of the second light emitting unit 12 is turned on according to the control by the control unit 14. Thereby, near-infrared light as measurement light is emitted from the second light emitting element 12a to the human body side, and the return light passing through the human body is received by the light receiving element 13a of the light receiving unit 13. The light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D2 of the return light is measured by the control unit 14 as the amount of light received (step S2).
つづいて、制御部14による制御にしたがって、第1発光素子11aと第2発光素子12aが同時に点灯され、第1発光素子11aと第2発光素子12aから測定光が人体側へ放出され、人体を経由したもどり光が受光部13の受光素子13aで受光される。第1発光素子11a及び第2発光素子12aの点灯と、これに対する受光素子13aによる受光とは所定時間、例えば3秒間に渡って継続される。受光素子13aから出力された受光信号は増幅回路13bで増幅され、受光光量として、もどり光の受光レベルが制御部14で測定される。この受光レベルの変動により、人体の脱酸素化ヘモグロビンの吸光度の変化を測定することができ、これに基づいて容積脈波の振幅を検知できる(ステップS3)。
Subsequently, according to the control by the control unit 14, the first light emitting element 11a and the second light emitting element 12a are simultaneously turned on, and the measurement light is emitted from the first light emitting element 11a and the second light emitting element 12a to the human body side. The return light that has passed through is received by the light receiving element 13 a of the light receiving unit 13. The lighting of the first light emitting element 11a and the second light emitting element 12a and the light reception by the light receiving element 13a are continued for a predetermined time, for example, 3 seconds. The light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level of the return light is measured by the control unit 14 as the amount of light received. The change in the absorbance of the deoxygenated hemoglobin in the human body can be measured based on the change in the received light level, and the amplitude of the volume pulse wave can be detected based on this change (step S3).
上記ステップS1~S3の1つのサイクルにつづいて、制御部14は装着判定(ステップS4)を行い、生体情報測定装置10が被検体の対象部位に正しく装着されている場合(ステップS4でYES)には、上記ステップS3で検知した振幅に基づいた脈動変化値を出力し(ステップS6)、正しく装着されていない場合(ステップS4でNO)には、脈動変化値の出力は行わない(ステップS5)。
Following one cycle of the above steps S1 to S3, the control unit 14 performs mounting determination (step S4), and when the biological information measuring device 10 is correctly mounted on the target site of the subject (YES in step S4). In step S5, the pulsation change value based on the amplitude detected in step S3 is output (step S6). If the pulsation change value is not correctly worn (NO in step S4), the pulsation change value is not output (step S5). ).
上記ステップS6で脈動変化値を出力する場合は、入出力インタフェース部15から外部の装置、例えば表示装置に対して行う。また、上記ステップS5で脈動変化値を出力しない場合は、例えば、不図示の警告部から警告音を出すとよい。
When outputting the pulsation change value in the above step S6, it is performed from the input / output interface unit 15 to an external device such as a display device. Further, when the pulsation change value is not output in step S5, for example, a warning sound may be output from a warning unit (not shown).
上記ステップS4の装着判定は、第1発光素子11aと第2発光素子12aを交互に点灯させたときのもどり光の受光レベルD1、D2に基づいて行う。より具体的には、装着判定部としての制御部14が、
(1)上記ステップS1で得られた受光レベルD1と、それ以前のサイクルで第1発光素子11aを点灯させたときに得られる受光レベルD11(不図示)との変化量が所定値内であるか否かの判定、及び、
(2)上記ステップS2で得られた受光レベルD2と、それ以前のサイクルで第2発光素子12aを点灯させたときに得られる受光レベルD12(不図示)との変化量が所定値内であるか否かの判定を行い、
(1)と(2)のいずれにおいても変化量が所定値内である場合に正しく装着されていると判定する。 The mounting determination in step S4 is performed based on the light receiving levels D1 and D2 of return light when the first light emitting element 11a and the second light emitting element 12a are alternately turned on. More specifically, thecontrol unit 14 as the wearing determination unit is
(1) The amount of change between the light reception level D1 obtained in step S1 and the light reception level D11 (not shown) obtained when the first light emitting element 11a is turned on in the previous cycle is within a predetermined value. Whether or not, and
(2) The amount of change between the light reception level D2 obtained in step S2 and the light reception level D12 (not shown) obtained when the second light emitting element 12a is turned on in the previous cycle is within a predetermined value. Whether or not
In both (1) and (2), when the change amount is within a predetermined value, it is determined that it is correctly attached.
(1)上記ステップS1で得られた受光レベルD1と、それ以前のサイクルで第1発光素子11aを点灯させたときに得られる受光レベルD11(不図示)との変化量が所定値内であるか否かの判定、及び、
(2)上記ステップS2で得られた受光レベルD2と、それ以前のサイクルで第2発光素子12aを点灯させたときに得られる受光レベルD12(不図示)との変化量が所定値内であるか否かの判定を行い、
(1)と(2)のいずれにおいても変化量が所定値内である場合に正しく装着されていると判定する。 The mounting determination in step S4 is performed based on the light receiving levels D1 and D2 of return light when the first light emitting element 11a and the second light emitting element 12a are alternately turned on. More specifically, the
(1) The amount of change between the light reception level D1 obtained in step S1 and the light reception level D11 (not shown) obtained when the first light emitting element 11a is turned on in the previous cycle is within a predetermined value. Whether or not, and
(2) The amount of change between the light reception level D2 obtained in step S2 and the light reception level D12 (not shown) obtained when the second light emitting element 12a is turned on in the previous cycle is within a predetermined value. Whether or not
In both (1) and (2), when the change amount is within a predetermined value, it is determined that it is correctly attached.
ここで、上記ステップS1、S2が生体情報測定装置10の起動後の最初の点灯である場合は、上記受光レベルD11、D12が存在しないため、上記(1)、(2)の判定のいずれにおいても変化量が所定値を超えており、正しく装着されていないと判定される。
Here, when the steps S1 and S2 are the first lighting after activation of the biological information measuring apparatus 10, the light reception levels D11 and D12 do not exist, so in any of the determinations (1) and (2) above. Also, the amount of change exceeds a predetermined value, and it is determined that it is not correctly attached.
次に、上記ステップS1と同様に、第1発光部11の第1発光素子11aが点灯され、測定光が人体側へ放出される。そして、人体を経由したもどり光が受光部13の受光素子13aで受光され、受光素子13aから出力された受光信号は増幅回路13bで増幅され、受光光量として、もどり光の受光レベルD1’が制御部14で測定される(ステップS7)。
Next, as in step S1, the first light emitting element 11a of the first light emitting unit 11 is turned on, and the measurement light is emitted to the human body side. Then, the return light passing through the human body is received by the light receiving element 13a of the light receiving unit 13, and the light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D1 ′ of the return light is controlled as the received light quantity. Measurement is performed by the unit 14 (step S7).
つづいて、上記ステップS2と同様に、上記ステップS7から所定時間後に、制御部14による制御にしたがって第2発光部12の第2発光素子12aが点灯される。これにより、第2発光素子12aから測定光が人体側へ放出され、人体を経由したもどり光が受光部13の受光素子13aで受光される。受光素子13aから出力された受光信号は増幅回路13bで増幅され、受光光量として、もどり光の受光レベルD2’が制御部14で測定される(ステップS8)。
Subsequently, similarly to step S2, the second light emitting element 12a of the second light emitting unit 12 is turned on according to control by the control unit 14 after a predetermined time from step S7. As a result, the measurement light is emitted from the second light emitting element 12 a to the human body side, and the return light passing through the human body is received by the light receiving element 13 a of the light receiving unit 13. The light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level D2 'of the return light is measured by the control unit 14 as the amount of light received (step S8).
さらに、ステップS3と同様に、制御部14による制御にしたがって、第1発光素子11aと第2発光素子12aが同時に点灯され、第1発光素子11aと第2発光素子12aから測定光が人体側へ放出され、人体を経由したもどり光が受光部13の受光素子13aで受光される。第1発光素子11a及び第2発光素子12aの点灯と、これに対する受光素子13aとは所定時間に渡って継続される。受光素子13aから出力された受光信号は増幅回路13bで増幅され、受光光量として、もどり光の受光レベルが制御部14で測定される。この受光レベルの変動により、人体の脱酸素化ヘモグロビンの吸光度の変化を測定することができ、これに基づいて容積脈波の振幅を検知できる(ステップS9)。
Further, similarly to step S3, the first light emitting element 11a and the second light emitting element 12a are simultaneously turned on according to the control by the control unit 14, and the measurement light is transmitted from the first light emitting element 11a and the second light emitting element 12a to the human body side. The return light emitted and passed through the human body is received by the light receiving element 13a of the light receiving unit 13. The lighting of the first light emitting element 11a and the second light emitting element 12a and the light receiving element 13a corresponding thereto are continued for a predetermined time. The light reception signal output from the light receiving element 13a is amplified by the amplifier circuit 13b, and the light reception level of the return light is measured by the control unit 14 as the amount of light received. A change in the absorbance of the deoxygenated hemoglobin in the human body can be measured based on the change in the received light level, and the amplitude of the volume pulse wave can be detected based on this change (step S9).
つづいて、制御部14は装着判定(ステップS10)を行い、生体情報測定装置10が被検体の対象部位に正しく装着されている場合(ステップS10でYES)には、上記ステップS9で検知した振幅に基づいた脈動変化値を出力し(ステップS12)、正しく装着されていない場合(ステップS10でNO)には、脈動変化値の出力は行わない(ステップS11)。
Subsequently, the control unit 14 performs mounting determination (step S10), and when the biological information measuring device 10 is correctly mounted on the target part of the subject (YES in step S10), the amplitude detected in step S9 above. Is output (step S12), and if it is not worn correctly (NO in step S10), the pulsation change value is not output (step S11).
上記ステップS10の装着判定では、制御部14は、
(3)上記ステップS1で得られた受光レベルD1と、次のサイクルの上記ステップS7で得られた受光レベルD1’との変化量が所定値内であるか否かの判定、及び、
(4)上記ステップS2で得られた受光レベルD2と、次のサイクルの上記ステップS8で得られた受光レベルD2’との変化量が所定値内であるか否かの判定を行い、
(3)と(4)のいずれにおいても変化量が所定値内である場合に正しく装着されていると判定する。 In the mounting determination in step S10, thecontrol unit 14
(3) Determination of whether or not the amount of change between the light reception level D1 obtained in step S1 and the light reception level D1 ′ obtained in step S7 in the next cycle is within a predetermined value;
(4) It is determined whether or not the amount of change between the light reception level D2 obtained in step S2 and the light reception level D2 ′ obtained in step S8 in the next cycle is within a predetermined value.
In both (3) and (4), when the amount of change is within a predetermined value, it is determined that the device is correctly attached.
(3)上記ステップS1で得られた受光レベルD1と、次のサイクルの上記ステップS7で得られた受光レベルD1’との変化量が所定値内であるか否かの判定、及び、
(4)上記ステップS2で得られた受光レベルD2と、次のサイクルの上記ステップS8で得られた受光レベルD2’との変化量が所定値内であるか否かの判定を行い、
(3)と(4)のいずれにおいても変化量が所定値内である場合に正しく装着されていると判定する。 In the mounting determination in step S10, the
(3) Determination of whether or not the amount of change between the light reception level D1 obtained in step S1 and the light reception level D1 ′ obtained in step S7 in the next cycle is within a predetermined value;
(4) It is determined whether or not the amount of change between the light reception level D2 obtained in step S2 and the light reception level D2 ′ obtained in step S8 in the next cycle is within a predetermined value.
In both (3) and (4), when the amount of change is within a predetermined value, it is determined that the device is correctly attached.
以上のように構成されたことから、上記実施形態によれば、生体情報を測定するために第1発光部11と第2発光部12から放出する測定光と、この測定光が被検体を経由したもどり光とを用いて被検体への装着状態を判定することが可能となるため、固定力の強い取り付け具の追加などの制約が少なくなる。したがって、取り付け具の追加などによる装置の大型化や高コスト化を招くことがなく、かつ、生体情報を確実に測定することが可能となる。さらに、取り付け具の追加などによる装着方法の限定がないため、装置のデザインに対する制約が生じることを避けることができるとともに、装着時の不快感を抑えることができる。
Since it was configured as described above, according to the above embodiment, the measurement light emitted from the first light emitting unit 11 and the second light emitting unit 12 to measure biological information, and the measurement light passes through the subject. Since the return light can be used to determine the mounting state on the subject, restrictions such as the addition of a fixture with a strong fixing force are reduced. Therefore, it is possible to reliably measure biological information without increasing the size and cost of the apparatus due to the addition of attachments. Furthermore, since there is no limitation on the mounting method by adding a fixture or the like, it is possible to avoid the restriction on the design of the apparatus and to suppress discomfort during mounting.
以下に変形例について説明する。
図6は変形例における第1発光部11、第2発光部12、及び、受光部13の配置例を示す平面図である。上記実施形態では、図2に示すように、Y1-Y2方向に沿って、第1発光部11、受光部13、第2発光部12の順に1つの直線上に配置していた。すなわち、図6に示すように、第1発光部11と受光部13をY1-Y2方向に沿って配置するとともに、さらに位置P1に第2発光部12を配置しており、第1発光部11の平面中心C11と受光部13の平面中心C13を結ぶ直線B1と、受光部13の平面中心C13と第2発光部12の平面中心C12を結ぶ直線B2とがなす角度αは180度となっていた。これに対して、第1発光部11と、受光部13と、第2発光部12とがなす角度が90度以上180度以下の範囲で第2発光部12の位置を変更してもよい。例えば、図6の位置P2や位置P3のように、直線B1と直線B2がなす角度βが90度となるように第2発光部12を配置してもよい。ここで、第2発光部12と受光部13の中心間距離は、位置P1、P2、P3Cのいずれにおいても、L2であることが好ましい。これにより、被検体の測定対象部位の形状等、例えば、サイズ、湾曲度、筋肉や脂肪の量、血管の太さなどに応じて、発光素子の自由な配置が可能となり、また、装着状態の調整が容易になり、正確な生体情報を確実に測定することが可能となる。 A modification will be described below.
FIG. 6 is a plan view showing an arrangement example of the firstlight emitting unit 11, the second light emitting unit 12, and the light receiving unit 13 in the modification. In the above embodiment, as shown in FIG. 2, the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12 are arranged on one straight line in this order along the Y1-Y2 direction. That is, as shown in FIG. 6, the first light emitting unit 11 and the light receiving unit 13 are arranged along the Y1-Y2 direction, and the second light emitting unit 12 is arranged at the position P1, and the first light emitting unit 11 is arranged. The angle α formed by the straight line B1 connecting the plane center C11 of the light receiving unit 13 and the plane center C13 of the light receiving unit 13 and the straight line B2 connecting the plane center C13 of the light receiving unit 13 and the plane center C12 of the second light emitting unit 12 is 180 degrees. It was. On the other hand, the position of the second light emitting unit 12 may be changed within the range of 90 degrees or more and 180 degrees or less formed by the first light emitting unit 11, the light receiving unit 13, and the second light emitting unit 12. For example, the second light emitting unit 12 may be arranged such that the angle β formed by the straight line B1 and the straight line B2 is 90 degrees as in the position P2 and the position P3 in FIG. Here, the center-to-center distance between the second light emitting unit 12 and the light receiving unit 13 is preferably L2 at any of the positions P1, P2, and P3C. As a result, the light emitting elements can be freely arranged according to the shape of the measurement target region of the subject, for example, the size, the degree of curvature, the amount of muscle and fat, the thickness of the blood vessel, and the like. Adjustment becomes easy, and accurate biological information can be reliably measured.
図6は変形例における第1発光部11、第2発光部12、及び、受光部13の配置例を示す平面図である。上記実施形態では、図2に示すように、Y1-Y2方向に沿って、第1発光部11、受光部13、第2発光部12の順に1つの直線上に配置していた。すなわち、図6に示すように、第1発光部11と受光部13をY1-Y2方向に沿って配置するとともに、さらに位置P1に第2発光部12を配置しており、第1発光部11の平面中心C11と受光部13の平面中心C13を結ぶ直線B1と、受光部13の平面中心C13と第2発光部12の平面中心C12を結ぶ直線B2とがなす角度αは180度となっていた。これに対して、第1発光部11と、受光部13と、第2発光部12とがなす角度が90度以上180度以下の範囲で第2発光部12の位置を変更してもよい。例えば、図6の位置P2や位置P3のように、直線B1と直線B2がなす角度βが90度となるように第2発光部12を配置してもよい。ここで、第2発光部12と受光部13の中心間距離は、位置P1、P2、P3Cのいずれにおいても、L2であることが好ましい。これにより、被検体の測定対象部位の形状等、例えば、サイズ、湾曲度、筋肉や脂肪の量、血管の太さなどに応じて、発光素子の自由な配置が可能となり、また、装着状態の調整が容易になり、正確な生体情報を確実に測定することが可能となる。 A modification will be described below.
FIG. 6 is a plan view showing an arrangement example of the first
上記実施形態では、2つの発光部を設けた例を示したが、発光部の数は1つでも、3つ以上でもよい。
In the above embodiment, an example in which two light emitting units are provided is shown, but the number of light emitting units may be one or three or more.
上記実施形態では、透光性部材41、42、43と筐体30の上面30aとで、同一面(受発光面10a)を形成させていたが、透光性部材41、42、43の上端が筐体30の上面30aよりも上側(Z1方向)に突出している構成も可能である。この構成においても、生体情報測定装置10を皮膚に押し当てることによって、透光性部材41、42、43と被検体との密着性を確保することができる。
In the above embodiment, the translucent members 41, 42, 43 and the upper surface 30 a of the housing 30 form the same surface (light emitting / receiving surface 10 a), but the upper ends of the translucent members 41, 42, 43 are formed. Is also possible to protrude above the upper surface 30a of the housing 30 (in the Z1 direction). Also in this configuration, the adhesiveness between the translucent members 41, 42, and 43 and the subject can be ensured by pressing the biological information measuring device 10 against the skin.
また、透光性部材41、42、43の上端よりも筐体30の上面30aの方が上側にある構成も可能である。この構成においては、生体情報測定装置10を皮膚に押し当てて密着させることによって、皮膚と透光性部材41、42、43との距離を略一定に維持できる。
本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Moreover, the structure which theupper surface 30a of the housing | casing 30 is on the upper side rather than the upper end of the translucent member 41,42,43 is also possible. In this configuration, the distance between the skin and the translucent members 41, 42, and 43 can be maintained substantially constant by pressing the biological information measuring device 10 against the skin to bring it into close contact.
Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Moreover, the structure which the
Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
以上のように、本発明に係る生体情報測定装置は、装置の大型化や高コスト化を招くことなく、脈波、脈動の変化、及び、その他の生体情報を確実に測定することができる点で有用である。
As described above, the biological information measuring apparatus according to the present invention can reliably measure pulse waves, changes in pulsation, and other biological information without causing an increase in size and cost of the apparatus. It is useful in.
10 生体情報測定装置
10m センサモジュール
10a 受発光面
11 第1発光部
11a 第1発光素子
11b ドライブ回路
12 第2発光部
12a 第2発光素子
12b ドライブ回路
13 受光部
13a 受光素子
13b 増幅回路
14 制御部
15 入出力インタフェース部
20 基板
21 接着層
30 筐体
31 第1放出用開口
32 第2放出用開口
33 受光用開口
41、42、43 透光性部材
B1、B2 直線
C11、C12、C13 平面中心
I11、I12 測定光
I13 もどり光
L1、L2 距離
P1、P2、P3 位置
α、β 角度 DESCRIPTION OFSYMBOLS 10 Biological information measuring device 10m Sensor module 10a Light receiving / emitting surface 11 1st light emission part 11a 1st light emission element 11b Drive circuit 12 2nd light emission part 12a 2nd light emission element 12b Drive circuit 13 Light reception part 13a Light reception element 13b Amplifier circuit 14 Control part 15 Input / Output Interface Unit 20 Substrate 21 Adhesive Layer 30 Housing 31 First Emission Opening 32 Second Emission Opening 33 Light Receiving Openings 41, 42, 43 Translucent Members B1, B2 Straight Lines C11, C12, C13 Plane Center I11 , I12 Measurement light I13 Return light L1, L2 Distance P1, P2, P3 Position α, β Angle
10m センサモジュール
10a 受発光面
11 第1発光部
11a 第1発光素子
11b ドライブ回路
12 第2発光部
12a 第2発光素子
12b ドライブ回路
13 受光部
13a 受光素子
13b 増幅回路
14 制御部
15 入出力インタフェース部
20 基板
21 接着層
30 筐体
31 第1放出用開口
32 第2放出用開口
33 受光用開口
41、42、43 透光性部材
B1、B2 直線
C11、C12、C13 平面中心
I11、I12 測定光
I13 もどり光
L1、L2 距離
P1、P2、P3 位置
α、β 角度 DESCRIPTION OF
Claims (7)
- 所定波長の測定光を発光する発光素子と、
前記測定光が被検体を経由したもどり光を受光する受光素子と、
前記受光素子による受光結果に基づいて前記被検体の生体情報を測定する生体情報測定部と、
所定の時間間隔の各時刻で前記発光素子から前記測定光を発光させる発光制御部と、
前記発光制御部の制御によって前記所定の時間間隔で前記測定光が発光されたときの、前記各時刻における前記測定光のそれぞれに対応する前記もどり光が前記受光素子で受光された受光光量に基づいて、前記被検体への装着状態を判定する装着判定部とを備えることを特徴とする生体情報測定装置。 A light emitting element that emits measurement light of a predetermined wavelength;
A light receiving element for receiving return light through which the measurement light passes through the subject;
A biological information measuring unit for measuring biological information of the subject based on a light reception result by the light receiving element;
A light emission control unit that emits the measurement light from the light emitting element at each time of a predetermined time interval;
When the measurement light is emitted at the predetermined time interval under the control of the light emission control unit, the return light corresponding to each of the measurement light at each time is based on the amount of received light received by the light receiving element. A living body information measuring apparatus comprising: a wearing determination unit that determines a wearing state of the subject. - 前記装着判定部による判定は、前記生体情報測定部による測定を行っていないときに実行される請求項1に記載の生体情報測定装置。 The biological information measuring device according to claim 1, wherein the determination by the wearing determination unit is executed when measurement by the biological information measuring unit is not performed.
- 前記装着判定部は、前記各時刻における前記測定光のそれぞれに対応する前記もどり光の受光光量の変化量が所定値内であれば、前記被検体の所定の測定位置に装着されていると判定する請求項1又は請求項2に記載の生体情報測定装置。 The mounting determination unit determines that the subject is mounted at a predetermined measurement position if the amount of change in the amount of received light of the return light corresponding to each of the measurement lights at each time is within a predetermined value. The biological information measuring device according to claim 1 or 2.
- 前記発光素子を複数有し、
前記発光制御部は、前記所定の時間間隔で、複数の前記発光素子を交互に発光させ、
前記装着判定部は、前記複数の発光素子のそれぞれについて、前記各時刻における前記測定光のそれぞれに対応する前記もどり光の受光光量の変化量が所定値内であるか否かを判定し、前記複数の前記発光素子のすべてについて前記所定値内であれば、前記被検体の所定の測定位置に装着されていると判定する請求項3に記載の生体情報測定装置。 A plurality of the light emitting elements;
The light emission control unit causes the plurality of light emitting elements to alternately emit light at the predetermined time interval,
The mounting determination unit determines, for each of the plurality of light emitting elements, whether or not the amount of change in received light amount of the return light corresponding to each of the measurement light at each time is within a predetermined value, The biological information measuring apparatus according to claim 3, wherein if all of the plurality of light emitting elements are within the predetermined value, the biological information measuring apparatus determines that the subject is mounted at a predetermined measurement position. - 前記受光素子と、前記複数の発光素子の1つとの距離をL1としたとき、それ以外の発光素子と前記受光素子との距離L2が次式(1)を満足する請求項4に記載の生体情報測定装置。
0.7≦L2/L1≦1.3 (1) The living body according to claim 4, wherein when a distance between the light receiving element and one of the plurality of light emitting elements is L1, a distance L2 between the other light emitting elements and the light receiving element satisfies the following expression (1). Information measuring device.
0.7 ≦ L2 / L1 ≦ 1.3 (1) - 前記受光素子と、前記複数の発光素子のそれぞれとの距離は4mm以上11mm以下である請求項5に記載の生体情報測定装置。 The biological information measuring device according to claim 5, wherein a distance between the light receiving element and each of the plurality of light emitting elements is 4 mm or more and 11 mm or less.
- 前記発光素子を2つ有し、この2つの発光素子は第1の発光素子と第2の発光素子であり、
前記第1の発光素子と、前記受光素子と、前記第2の発光素子とがなす角は90度以上180度以下である請求項4から請求項6のいずれか1項に記載の生体情報測定装置。 Two light emitting elements, the two light emitting elements being a first light emitting element and a second light emitting element,
The biological information measurement according to any one of claims 4 to 6, wherein an angle formed by the first light emitting element, the light receiving element, and the second light emitting element is 90 degrees or more and 180 degrees or less. apparatus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017066901A JP2020092724A (en) | 2017-03-30 | 2017-03-30 | Biological information measuring device |
JP2017-066901 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018180375A1 true WO2018180375A1 (en) | 2018-10-04 |
Family
ID=63677252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009273 WO2018180375A1 (en) | 2017-03-30 | 2018-03-09 | Biological information measurement device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020092724A (en) |
WO (1) | WO2018180375A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7647227B2 (en) | 2021-03-25 | 2025-03-18 | カシオ計算機株式会社 | Electronic device, electronic device control method, and program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023341A (en) * | 2006-07-21 | 2008-02-07 | Eta Sa Manufacture Horlogere Suisse | Pulse meter on wrist and method for controlling pulse meter |
JP2015016215A (en) * | 2013-07-12 | 2015-01-29 | セイコーエプソン株式会社 | Biological information detector |
JP2016500541A (en) * | 2012-10-26 | 2016-01-14 | ナイキ イノベイト シーブイ | Athletic performance monitoring system using heart rate information |
US20160103985A1 (en) * | 2014-10-08 | 2016-04-14 | Lg Electronics Inc. | Reverse battery protection device and operating method thereof |
-
2017
- 2017-03-30 JP JP2017066901A patent/JP2020092724A/en active Pending
-
2018
- 2018-03-09 WO PCT/JP2018/009273 patent/WO2018180375A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023341A (en) * | 2006-07-21 | 2008-02-07 | Eta Sa Manufacture Horlogere Suisse | Pulse meter on wrist and method for controlling pulse meter |
JP2016500541A (en) * | 2012-10-26 | 2016-01-14 | ナイキ イノベイト シーブイ | Athletic performance monitoring system using heart rate information |
JP2015016215A (en) * | 2013-07-12 | 2015-01-29 | セイコーエプソン株式会社 | Biological information detector |
US20160103985A1 (en) * | 2014-10-08 | 2016-04-14 | Lg Electronics Inc. | Reverse battery protection device and operating method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2020092724A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12268480B2 (en) | Multiuse optical sensor | |
EP2291111B1 (en) | Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement | |
US20020188210A1 (en) | Pulse wave sensor and pulse rate detector | |
KR20160086710A (en) | Method and apparatus for simultaneously detecting body surface pressure and blood volume | |
US9173578B2 (en) | Heart pulse detection | |
JP6431697B2 (en) | Wrist-mounted pulse oximeter | |
JP2020018430A (en) | Biological information measuring device | |
CN113164090A (en) | Integrated optical biosensor comprising a molded beam shaping element | |
JP2013000540A (en) | Pulse wave detector, and pulse wave detection system | |
WO2018180375A1 (en) | Biological information measurement device | |
JP6694676B2 (en) | probe | |
WO2018180376A1 (en) | Biological information measurement device | |
JP2002000575A (en) | Heart rate sensor and method of calculating heart rate | |
JP6530892B2 (en) | Biological information display device | |
KR20160053281A (en) | Biological blood flow measuring module | |
WO2018186108A1 (en) | Biological-related information measuring device | |
US20180146903A1 (en) | Sensor module and biological information displaying system | |
CN210871602U (en) | Blood oxygen detection device | |
JP6064108B1 (en) | Biological information measuring instrument | |
JP2019097771A (en) | Pulse oximeter and probe for biological information measurement | |
CN118662105A (en) | Bio-information measuring device and bio-information measuring system | |
CN118662106A (en) | Bio-information measuring device and bio-information measuring system | |
WO2020017083A1 (en) | Detection device, program, and detection system | |
JP2004275307A (en) | Pulse wave sensor and pulse rate detecting device | |
JP2019063137A (en) | Device for measuring biological information and pulse oximeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18775064 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18775064 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |