+

WO2018158841A1 - Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置 - Google Patents

Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置 Download PDF

Info

Publication number
WO2018158841A1
WO2018158841A1 PCT/JP2017/007893 JP2017007893W WO2018158841A1 WO 2018158841 A1 WO2018158841 A1 WO 2018158841A1 JP 2017007893 W JP2017007893 W JP 2017007893W WO 2018158841 A1 WO2018158841 A1 WO 2018158841A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminals
manufacturing
circuit board
electronic circuit
layer
Prior art date
Application number
PCT/JP2017/007893
Other languages
English (en)
French (fr)
Inventor
中山 正樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2017/007893 priority Critical patent/WO2018158841A1/ja
Priority to US15/761,824 priority patent/US20190157625A1/en
Publication of WO2018158841A1 publication Critical patent/WO2018158841A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an EL device including an EL element (electroluminescence element).
  • Patent Document 1 describes a configuration in which a flexible printed circuit board (FPC) is mounted on a device including an organic EL element.
  • FPC flexible printed circuit board
  • the portion supporting the mounting surface may be deformed, resulting in damage to wiring or the like in the device, or poor mounting.
  • An EL device manufacturing method is a method for manufacturing an EL device including a base layer, a light emitting element layer, a plurality of terminals, and an electronic circuit board mounted on the plurality of terminals. Then, a preparatory step of directly or indirectly applying heat and pressure to a predetermined region including the plurality of terminals without overlapping the plurality of terminals and the electronic circuit board is performed, and then the electrons for the plurality of terminals The circuit board is thermocompression bonded.
  • FIG. 3 is a flowchart showing a mounting process in the first embodiment.
  • FIG. 3 is a plan view showing a mounting process (IC chip) in the first embodiment.
  • 6 is a cross-sectional view showing a mounting process in Embodiment 1.
  • FIG. FIG. 2 is a plan view and a cross-sectional view illustrating a configuration of an EL device according to the first embodiment. It is a block diagram which shows the structure of the EL device manufacturing apparatus of this embodiment.
  • FIG. 6 is a plan view showing a mounting process (FPC) in the first embodiment.
  • 10 is a flowchart showing a mounting process in the second embodiment.
  • 10 is a plan view showing a preparation process in Embodiment 2.
  • FIG. FIG. 6 is a cross-sectional view showing a preparation process in Embodiment 2.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing an EL device
  • FIG. 2A is a cross-sectional view illustrating a configuration example in the middle of formation of the EL device according to Embodiment 1
  • FIG. 1 is a cross-sectional view illustrating a configuration example of an EL device according to Embodiment 1.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing an EL device
  • FIG. 2A is a cross-sectional view illustrating a configuration example in the middle of formation of the EL device according to Embodiment 1
  • FIG. 1 is a cross-sectional view illustrating a configuration example of an EL device according to Embodiment 1.
  • FIG. 1 is a flowchart illustrating an example of a method for manufacturing an EL device
  • FIG. 2A is a cross-sectional view illustrating a configuration example in the middle of formation of the EL device according to Embodiment 1
  • FIG. 1 is a
  • a resin layer 12 is formed on a translucent support 50 (for example, a glass substrate) (step S1).
  • the barrier layer 3 is formed (step S2).
  • the TFT layer 4 including the inorganic insulating films 16, 18, 20 and the organic interlayer film 21 is formed (step S3).
  • a light emitting element layer (for example, OLED element layer) 5 is formed (step S4).
  • the sealing layer 6 including the inorganic sealing films 26 and 28 and the organic sealing film 27 is formed (step S5).
  • the top film 9 is pasted on the sealing layer 6 via the adhesive layer 8 (step S6).
  • the laser beam is irradiated onto the lower surface of the resin layer 12 through the glass substrate 50 (step S7).
  • the resin layer 12 absorbs the laser light irradiated to the lower surface of the glass substrate 50 and transmitted through the glass substrate 50, whereby the lower surface of the resin layer 12 (interface with the glass substrate 50) is altered by ablation, and the resin The bonding force between the layer 12 and the glass substrate 50 is reduced.
  • the glass substrate 50 is peeled from the resin layer 12 (step S8).
  • the lower film 10 for example, PET
  • the laminated body with the bottom film is divided and separated into pieces (step S10).
  • step S11 the functional film 39 is pasted through the adhesive layer 38 (step S11).
  • step S12 the separated EL device 2 shown in FIG. 2B is obtained (step S12).
  • step S12 Each step is performed by an EL device manufacturing apparatus.
  • the base layer 7 is flexible and includes a resin layer 12, an adhesive layer 11, and a bottom film 10.
  • resin layer 12 examples include polyimide, epoxy, and polyamide.
  • lower film 10 examples include polyethylene terephthalate (PET).
  • the barrier layer 3 is a layer that prevents moisture and impurities from reaching the TFT layer 4 and the light emitting element layer 5 when the EL device is used.
  • a silicon oxide film, a silicon nitride film, Alternatively, a silicon oxynitride film or a laminated film thereof can be used.
  • the thickness of the inorganic barrier layer 3 is, for example, 50 nm to 1500 nm.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) formed on the upper side of the semiconductor film 15, a gate electrode G formed on the upper side of the gate insulating film 16, and an upper side of the gate electrode G. Formed on the upper side of the inorganic insulating film 20, the source electrode S, the drain electrode D and the terminal TM, and the organic interlayer formed on the upper side of the source electrode S and the drain electrode D. A film 21.
  • the semiconductor film 15, the inorganic insulating film 16, the gate electrode G, the inorganic insulating films 18 and 20, the source electrode S, and the drain electrode D constitute a thin layer transistor (TFT).
  • a plurality of terminals TM used for connection to an electronic circuit substrate such as an IC chip or an FPC are formed at the end portion (non-display portion NA) of the TFT layer 4.
  • the semiconductor film 15 is made of, for example, low temperature polysilicon (LPTS) or an oxide semiconductor.
  • the gate insulating film 16 can be constituted by, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
  • the gate electrode G, the source electrode S, the drain electrode D, and the terminal are, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper ( It is comprised by the metal single layer film or laminated film containing at least 1 of Cu).
  • the TFT having the semiconductor film 15 as a channel is shown as a top gate structure, but a bottom gate structure may be used (for example, when the TFT channel is an oxide semiconductor).
  • the inorganic insulating films 18 and 20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • the organic interlayer film 21 can be made of a photosensitive organic material that can be applied, such as polyimide or acrylic.
  • the anode electrode 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity.
  • the light emitting element layer 5 (for example, OLED layer) includes an anode electrode 22 formed on the upper side of the organic interlayer film 21, a partition wall 23c that defines a subpixel of the display unit DA, and a bank 23b formed in the non-display unit NA. And an EL (electroluminescence) layer 24 formed on the upper side of the anode electrode 22, and a cathode electrode 25 formed on the upper side of the EL layer 24.
  • the partition wall 23c and the bank 23b can be formed, for example, in the same process using a photosensitive organic material such as polyimide, epoxy, or acrylic.
  • the bank 23b of the non-display portion NA is formed on the inorganic insulating film 20.
  • the bank 23 b defines the edge of the organic sealing film 27.
  • the EL layer 24 is formed in a region (subpixel region) surrounded by the partition wall 23c by an evaporation method or an ink jet method.
  • the light emitting element layer 5 is an OLED (organic light emitting diode) layer
  • the EL layer 24 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side. It is composed by doing.
  • the cathode electrode 25 can be made of a transparent metal such as ITO (Indium Tin Oxide) or IZO (Indium Zincum Oxide).
  • the light emitting element layer 5 is an OLED layer
  • holes and electrons are recombined in the EL layer 24 by the driving current between the anode electrode 22 and the cathode electrode 25, and the exciton generated thereby falls to the ground state. Light is emitted.
  • the light emitting element layer 5 is not limited to the OLED layer, but may be an inorganic light emitting diode layer or a quantum dot light emitting diode layer.
  • the sealing layer 6 includes a first inorganic sealing film 26 that covers the partition wall 23 c and the cathode electrode 25, an organic sealing film 27 that covers the first inorganic sealing film 26, and a second inorganic sealing film that covers the organic sealing film 27. And a stop film 28.
  • Each of the first inorganic sealing film 26 and the second inorganic sealing film 28 may be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film formed by CVD. it can.
  • the organic sealing film 27 is a light-transmitting organic insulating film that is thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a photosensitive organic material that can be applied, such as polyimide or acrylic. can do.
  • an ink containing such an organic material is applied onto the first inorganic sealing film 26 by inkjet and then cured by UV irradiation.
  • the sealing layer 6 covers the light emitting element layer 5 and prevents penetration of foreign matters such as water and oxygen into the light emitting element layer 5.
  • the upper surface film 9 is affixed on the sealing layer 6 via the adhesive 8, and functions as a support material when the glass substrate 50 is peeled off.
  • the material for the top film 9 include PET (polyethylene terephthalate).
  • the lower film 10 is for producing an EL device having excellent flexibility by being attached to the lower surface of the resin layer 12 after the glass substrate 50 is peeled off.
  • Examples of the material include PET.
  • the functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
  • the electronic circuit board 60 is, for example, an IC chip or a flexible printed board mounted on the plurality of terminals TM.
  • FIG. 3 is a flowchart showing the mounting process in the first embodiment.
  • FIG. 4 is a plan view showing a mounting process in the first embodiment.
  • FIG. 5 is a cross-sectional view showing a mounting process in the first embodiment.
  • a laminate including the lower film 10, the resin layer 12, the barrier layer 3, and the TFT layer 4 is formed on the support base BS. Place and apply heat and pressure to the predetermined area PA including the plurality of terminals TM by the head 90 of the thermocompression bonding tool (preparation step, step S13a).
  • the predetermined area (empty shot area) PA is a part of the surface of the TFT layer 4 located in the non-display area NA, and is an area along one edge of the TFT layer 4.
  • the predetermined area PA is set so that the mounting area of the electronic circuit board is included inside the edge in plan view.
  • the support base BS that is in contact with and supports the lower film 10 is made of a material harder than the lower film 10, for example, a metal material such as SUS.
  • the terminal TM is connected to various signal wirings or power supply wirings in the TFT layer via the terminal wiring TW.
  • step S13a the head 90 of the thermocompression bonding tool is separated from the plurality of terminals TM (FIG. 5B).
  • an ACF (anisotropic conductive film) 50 is disposed on the plurality of terminals TM (step S13b).
  • an electronic circuit board for example, an IC chip 60 is placed on the ACF 50 (step S 13 c).
  • thermocompression bonding process is performed in which the electronic circuit board 60 is thermocompression bonded to the plurality of terminals TM by the head 90 of the thermocompression bonding tool ( Step S13d).
  • the electronic circuit board 60 is mounted on a part of the predetermined area PA.
  • the base layer 7 containing a resin for example, PET
  • a resin for example, PET
  • the preparation process (empty shot) of step S13a FIG. 5
  • deformation at the time of the thermocompression bonding step (main strike) in step 13d is suppressed (see FIGS. 5 (e) and (f)).
  • FIGS. 5 (e) and (f) it is possible to reduce the possibility that the wiring in the TFT layer 4 is damaged or the electronic circuit board 60 is defectively mounted.
  • the base layer 7 has a small thickness and a high elastic modulus compared to a portion where the plurality of terminals TM overlap the light emitting element layer 5. At least one of high hardness and high density is satisfied.
  • the base layer 7 has a small thickness, a high elastic modulus, a high hardness, and a high density in comparison with the portion overlapping the light emitting element layer 5.
  • the electronic circuit board 60 is disposed inside the edge 10Fe of the deformable portion 10F in plan view, including the deformable portion 10F satisfying at least one. Note that the deformed portion 10F is aligned with the predetermined area PA in which idle driving is performed in FIG. In FIG. 6, as an example, the thickness of the bottom film 10 of the base layer 7 is described so as to be small.
  • the deformed portion 10F may be a region (including a mounting region) extending from one side surface Sx of the EL device 2 to the side surface Sy facing the side surface Sy.
  • step S13a when the preparation process (empty hammering) of step S13a is not performed, the base layer 7 is deformed during the thermocompression bonding process (final hammering) as shown in FIG. Or the electronic circuit board 60 may be defectively mounted.
  • the length in the direction along the edge E1 of the TFT layer 4 in the predetermined area PA is equal to the length of the edge E1. Further, the head width of the thermocompression bonding tool is made longer than the edge E1. In this way, the base layer 7 below the predetermined area PA can be uniformly compressed by the preparation process of step S13a, and the flatness of the mounting surface (a part of the predetermined area PA) can be ensured.
  • the EL device manufacturing apparatus 70 includes a mounting apparatus 80 including a thermocompression bonding tool, a film forming apparatus 76, and a controller 72 that controls these apparatuses.
  • the mounting apparatus 80 that has received this performs Steps S13a to S13d of FIG.
  • the electronic circuit board 60 of Embodiment 1 is not limited to an IC chip.
  • the electronic circuit board 60 is an FPC, it can be mounted as shown in FIG.
  • FIG. 9 is a flowchart showing the mounting process in the second embodiment.
  • FIG. 10 is a plan view showing a preparation process in the second embodiment.
  • FIG. 11 is a cross-sectional view showing a preparation process in the second embodiment.
  • a buffer material BP is disposed on a predetermined area PA including a plurality of terminals TM (step S 13 A).
  • heat and pressure are applied to the predetermined area PA via the buffer material BP by the head 90 of the crimping tool (preparation process, step S ⁇ b> 13 a).
  • step S13a the head 90 of the thermocompression bonding tool is separated from the plurality of terminals TM, and the buffer material BP is conveyed.
  • an ACF (anisotropic conductive film) 50 is disposed on the plurality of terminals TM (step S13b).
  • an electronic circuit board (for example, an IC chip) 60 is disposed on the ACF 50 (step S13c).
  • the plurality of terminals TM and the electronic circuit board 60 are thermocompression bonded by the head 90 of the thermocompression bonding tool (step S13d).
  • the electronic circuit board 60 is mounted on a part of the predetermined area PA.
  • heat and pressure are indirectly applied to the predetermined area PA via the buffer material BP.
  • the buffer material BP has a shape that covers the entire predetermined area PA. In this way, it is possible to apply heat and pressure uniformly to the predetermined area PA.
  • the buffer material BP is preferably made of the same material as the substrate of the electronic circuit board. If it carries out like this, a deformation
  • the processing time of the thermocompression bonding tool (time for applying heat and pressure from the head 90 to the predetermined region PB) is different between the preparation process (step S12a) and the thermocompression bonding process (step S12d). You can also.
  • the processing time of the preparation process may be shorter than the processing time of the thermocompression bonding process to increase the throughput.
  • the set pressure of the thermocompression bonding tool can be changed between the preparation process and the thermocompression bonding process.
  • the set pressure in the preparation process may be larger than the set pressure in the thermocompression bonding process.
  • the set temperature of the thermocompression bonding tool can be changed between the preparation process and the thermocompression bonding process.
  • the set temperature in the preparation process may be higher than the set temperature in the thermocompression bonding process.
  • the head shape of the thermocompression bonding tool can be made different between the preparation process and the thermocompression bonding process.
  • the head used in the preparation process may be made larger than the head used in the thermocompression bonding process, and heat and pressure may be applied uniformly.
  • the material of the head may be different.
  • a method for manufacturing an EL device is a method for manufacturing an EL device including a base layer, a light emitting element layer, a plurality of terminals, and an electronic circuit board mounted on the plurality of terminals.
  • a preparatory step of directly or indirectly applying heat and pressure to a predetermined region including the plurality of terminals without overlapping the terminals and the electronic circuit board, and then the plurality of terminals and the electronic circuit board A thermocompression bonding process for thermocompression bonding is performed.
  • the base layer has flexibility.
  • an anisotropic conductive material is disposed between the plurality of terminals and the electronic circuit board after the preparation step and before the thermocompression bonding step.
  • the EL device includes a TFT layer, and the predetermined region is a region along one edge of the TFT layer.
  • the electronic circuit board is mounted on a part of the predetermined area.
  • the length of the predetermined region in the direction along the edge is equal to the length of the edge.
  • the TFT layer includes an organic interlayer insulating film, and the plurality of terminals are formed on the organic interlayer insulating film.
  • the buffer material is made of the same material as the substrate of the electronic circuit board.
  • the preparatory step and the thermocompression bonding step are performed using a thermocompression bonding tool.
  • the head area of the thermocompression bonding tool is larger than the area of the predetermined region.
  • thermocompression bonding tool is varied between the preparation process and the thermocompression bonding process.
  • the set pressure of the thermocompression bonding tool is changed between the preparation step and the thermocompression bonding step.
  • the set temperature of the thermocompression bonding tool is changed between the preparation step and the thermocompression bonding step.
  • the head shape of the thermocompression bonding tool is made different between the preparation step and the thermocompression bonding step.
  • the base layer includes a resin layer and a bottom film.
  • the lower film is made of polyethylene terephthalate.
  • the support is peeled off from the resin layer, and the lower film is formed on the lower surface of the resin layer. Glue.
  • the electronic circuit board is an IC chip or a flexible printed board.
  • An EL device is an EL device including a base layer, a light emitting element layer, a plurality of terminals, and an electronic circuit board mounted on the plurality of terminals.
  • the portion overlapping with the terminal satisfies at least one of the small thickness, the high elastic modulus, the high hardness, and the high density.
  • the base layer includes a deformed portion that satisfies at least one of a small thickness, a high elastic modulus, a high hardness, and a high density in comparison with a portion overlapping the light emitting element layer.
  • the electronic circuit board is disposed inside the edge of the deformed portion in plan view.
  • the deformed portion extends from one side surface of the EL device to the side surface facing the EL device.
  • An EL device manufacturing apparatus is an EL device manufacturing apparatus including a base layer, a light emitting element layer, a plurality of terminals, and an electronic circuit board mounted on the plurality of terminals.
  • a mounting apparatus is a mounting apparatus used for manufacturing an EL device including a base layer, a light emitting element layer, a plurality of terminals, and an electronic circuit board mounted on the plurality of terminals.
  • a thermocompression bonding is performed in which a preparatory step for applying heat and pressure directly or indirectly to a predetermined region including the plurality of terminals is performed without superimposing the electronic circuit board, and then the plurality of terminals and the electronic circuit board are thermocompression bonded. Perform the process.
  • the present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

ベース層(7)と、発光素子層と、複数の端子(TM)と、前記複数の端子上に実装された電子回路基板(60)とを備えるELデバイスの製造方法であって、前記複数の端子と前記電子回路基板とを重ねることなく、前記複数の端子を含む所定領域(PB)に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子(TM)と前記電子回路基板(60)とを熱圧着する熱圧着工程を行う。

Description

ELデバイスの製造方法、ELデバイス、ELデバイスの製造装置、実装装置
 本発明は、EL素子(electroluminescence element)を含むELデバイスに関する。
 特許文献1には、有機EL素子を含むデバイスにフレキシブルプリント基板(FPC)を実装する構成が記載されている。
日本国再公表特許公報「WO2013-99135号(2013年7月4日公開)」
 発光素子を含むデバイスに熱圧着によって電子回路基板を実装する場合、実装面を支える部分が変形し、デバイス内の配線等に損傷が生じたり、実装不良になったりするおそれがある。
 本発明の一態様に係るELデバイスの製造方法は、ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造方法であって、前記複数の端子と前記電子回路基板とを重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子に対する前記電子回路基板の熱圧着を行う。
 本発明の一態様によれば、デバイス内の配線等に損傷が生じたり、実装不良になったりするおそれを低減することができる。
ELデバイスの製造方法の一例を示すフローチャートである。 (a)は、本実施形態のELデバイスの形成途中の構成例を示す断面図であり、(b)は、本実施形態のELデバイスの構成例を示す断面図である。 実施形態1での実装工程を示すフローチャートである。 実施形態1での実装工程(ICチップ)を示す平面図である。 実施形態1での実装工程を示す断面図である。 実施形態1のELデバイスの構成を示す平面図および断面図である。 本実施形態のELデバイス製造装置の構成を示すブロック図である。 実施形態1での実装工程(FPC)を示す平面図である。 実施形態2での実装工程を示すフローチャートである。 実施形態2での準備工程を示す平面図である。 実施形態2での準備工程を示す断面図である。
 図1は、ELデバイスの製造方法の一例を示すフローチャートであり、図2(a)は、実施形態1に係るELデバイスの形成途中の構成例を示す断面図であり、図2(b)は、実施形態1に係るELデバイスの構成例を示す断面図である。
 図1および図2(a)に示すように、まず、透光性の支持体50(例えば、ガラス基板)上に樹脂層12を形成する(ステップS1)。次いで、バリア層3を形成する(ステップS2)。次いで、無機絶縁膜16・18・20および有機層間膜21を含むTFT層4を形成する(ステップS3)。次いで、発光素子層(例えば、OLED素子層)5を形成する(ステップS4)。次いで、無機封止膜26・28および有機封止膜27を含む封止層6を形成する(ステップS5)。次いで、封止層6上に接着層8を介して上面フィルム9を貼り付ける(ステップS6)。
 次いで、ガラス基板50越しに樹脂層12の下面にレーザ光を照射する(ステップS7)。ここでは、ガラス基板50の下面に照射され、ガラス基板50を透過したレーザ光を樹脂層12が吸収することで、樹脂層12の下面(ガラス基板50との界面)がアブレーションによって変質し、樹脂層12およびガラス基板50間の結合力が低下する。次いで、ガラス基板50を樹脂層12から剥離する(ステップS8)。次いで、樹脂層12の下面に、接着層11を介して下面フィルム10(例えば、PET)を貼り付ける(ステップS9)。次いで、下面フィルム付きの積層体を分断し、個片化する(ステップS10)。次いで、接着層38を介して機能フィルム39を貼り付ける(ステップS11)。次いで、TFT層4の端部に電子回路基板60を実装し、図2(b)に示す、個片化されたELデバイス2を得る(ステップS12)。なお、前記各ステップはELデバイスの製造装置が行う。
 ベース層7はフレキシブル(可撓性)であり、樹脂層12、接着層11および下面フィルム10を含む。樹脂層12の材料としては、例えば、ポリイミド、エポキシ、ポリアミド等が挙げられる。下面フィルム10の材料としては、例えばポリエチレンテレフタレート(PET)が挙げられる。
 バリア層3は、ELデバイスの使用時に、水分や不純物が、TFT層4や発光素子層5に到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。無機バリア層3の厚さは、例えば、50nm~1500nmである。
 TFT層4は、半導体膜15と、半導体膜15の上側に形成される無機絶縁膜16(ゲート絶縁膜)と、ゲート絶縁膜16の上側に形成されるゲート電極Gと、ゲート電極Gの上側に形成される無機絶縁膜18・20と、無機絶縁膜20の上側に形成される、ソース電極S、ドレイン電極Dおよび端子TMと、ソース電極Sおよびドレイン電極Dの上側に形成される有機層間膜21とを含む。半導体膜15、無機絶縁膜16、ゲート電極G、無機絶縁膜18・20、ソース電極Sおよびドレイン電極Dは、薄層トランジスタ(TFT)を構成する。TFT層4の端部(非表示部NA)には、ICチップ、FPC等の電子回路基板との接続に用いられる複数の端子TMが形成される。
 半導体膜15は、例えば低温ポリシリコン(LPTS)あるいは酸化物半導体で構成される。ゲート絶縁膜16は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。ゲート電極G、ソース電極S、ドレイン電極D、および端子は、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。なお、図2では、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。
 無機絶縁膜18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。有機層間膜21は、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。アノード電極22は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。
 発光素子層5(例えば、OLED層)は、有機層間膜21の上側に形成されるアノード電極22と、表示部DAのサブピクセルを規定する隔壁23cと、非表示部NAに形成されるバンク23bと、アノード電極22の上側に形成されるEL(エレクトロルミネッセンス)層24と、EL層24の上側に形成されるカソード電極25とを含む。
 隔壁23cおよびバンク23bは、ポリイミド、エポキシ、アクリル等の塗布可能な感光性有機材料を用いて、例えば同一工程で形成することができる。非表示部NAのバンク23bは無機絶縁膜20上に形成される。バンク23bは有機封止膜27のエッジを規定する。
 EL層24は、蒸着法あるいはインクジェット法によって、隔壁23cによって囲まれた領域(サブピクセル領域)に形成される。 発光素子層5がOLED(有機発光ダイオード)層である場合、EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。カソード電極25は、ITO(Indium Tin Oxide)、IZO(Indium Zincum Oxide)等の透明金属で構成することができる。
 発光素子層5がOLED層である場合、アノード電極22およびカソード電極25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。
 なお、 発光素子層5は、前記のOLED層に限られず、無機発光ダイード層でもよいし、量子ドット発光ダイオード層でもよい。
 封止層6は、隔壁23cおよびカソード電極25を覆う第1無機封止膜26と、第1無機封止膜26を覆う有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。
 第1無機封止膜26および第2無機封止膜28はそれぞれ、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、第1無機封止膜26および第2無機封止膜28よりも厚い、透光性の有機絶縁膜であり、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。例えば、このような有機材料を含むインクを第1無機封止膜26上にインクジェット塗布した後、UV照射により硬化させる。封止層6は、発光素子層5を覆い、水、酸素等の異物の発光素子層5への浸透を防いでいる。
 なお、上面フィルム9は、接着剤8を介して封止層6上に貼り付けられ、ガラス基板50を剥離した時の支持材として機能する。上面フィルム9の材料としては、PET(ポリエチレンテレフタレート)等が挙げられる。
 下面フィルム10は、ガラス基板50を剥離した後に樹脂層12の下面に貼り付けることで、柔軟性に優れたELデバイスを製造するためのものであり、その材料としては、PET等が挙げられる。
 機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能等を有する。電子回路基板60は、例えば、複数の端子TM上に実装されるICチップあるいはフレキシブルプリント基板である。
 〔実施形態1〕
 図3は実施形態1での実装工程を示すフローチャートである。図4は実施形態1での実装工程を示す平面図である。図5は実施形態1での実装工程を示す断面図である。
 まず、図3および図4(a)(b)並びに図5(a)に示すように、支持台BS上に、下面フィルム10、樹脂層12、バリア層3およびTFT層4を含む積層体を載置し、熱圧着ツールのヘッド90によって、複数の端子TMを含む所定領域PAに、熱および圧力を加える(準備工程、ステップS13a)。
 所定領域(空打ち領域)PAは、非表示領域NAに位置するTFT層4の表面の一部であり、TFT層4の1つのエッジに沿う領域である。所定領域PAは、平面視において、そのエッジの内側に電子回路基板の実装領域が含まれるように設定する。下面フィルム10と接し、これを支持する支持台BSは、下面フィルム10よりも硬質な素材、例えば、SUS等の金属素材で構成される。
 端子TMは端子配線TWを介してTFT層内の各種信号配線あるいは電源配線等に接続されている。
 ステップS13aが終了すれば、熱圧着ツールのヘッド90を複数の端子TMから離す(図5(b))。
 次いで、図3および図5(c)に示すように、複数の端子TM上にACF(異方性導電性フィルム)50を配置する(ステップS13b)。
 次いで、図3および図4(c)並びに図5(d)に示すように、ACF50上に電子回路基板(例えばICチップ)60を配置する(ステップS13c)。
 次いで、図3および図4(d)並びに図5(e)に示すように、熱圧着ツールのヘッド90によって、複数の端子TMにと電子回路基板60とを熱圧着する熱圧着工程を行う(ステップS13d)。これにより、図5(f)に示すように、所定領域PAの一部に電子回路基板60が実装される。
 実施形態1の実装工程(S13a~S13d)によれば、ステップS13aの準備工程(空打ち)によって樹脂(例えば、PET)を含むベース層7が熱および圧力によって事前に圧縮されるため(図5(a)・(b)参照)、ステップ13dの熱圧着工程(本打ち)の時の変形が抑えられる(図5(e)・(f)参照)。これにより、TFT層4内の配線等に損傷が生じたり、電子回路基板60が実装不良になったりするおそれを低減することができる。
 ELデバイス2では、図5(g)のように、ベース層7については、複数の端子TMと重なる部分が、発光素子層5と重なる部分との比較において、厚みが小さい、弾性率が高い、硬度が高い、密度が高いのうち少なくとも1つを満たすことになる。
 また、図5(g)および図6に示すように、ベース層7は、発光素子層5と重なる部分との比較において、厚みが小さい、弾性率が高い、硬度が高い、密度が高いのうち少なくとも1つを満たす変形部分10Fを含み、平面視においては、変形部分10Fのエッジ10Feの内側に電子回路基板60が配されている。なお、変形部分10Fは、図5(a)の空打ちが行われる所定領域PAに整合している。図6では例示として、ベース層7の下面フィルム10の厚みが小さくなるように記載している。変形部分10Fは、ELデバイス2の1つの側面Sxからこれに対向する側面Syにわたる領域(実装領域を含む)でもよい。
 なお、ステップS13aの準備工程(空打ち)を行わない場合、図5(h)のように、熱圧着工程(本打ち)時にベース層7が変形し、TFT層4内の配線等に損傷が生じたり、電子回路基板60が実装不良になったりするおそれがある。
 実施形態1では、所定領域PAにおけるTFT層4のエッジE1に沿う方向の長さがエッジE1の長さに等しい。また、熱圧着ツールのヘッド幅を、エッジE1よりも長くしている。こうすれば、ステップS13aの準備工程によって所定領域PAの下側のベース層7を均一に圧縮することができ、実装面(所定領域PAの一部)の平坦性を担保することができる。
 なお、図7に示すように、ELデバイス製造装置70は、熱圧着ツールを含む実装装置80と、成膜装置76と、これらの装置を制御するコントローラ72とを含んでおり、コントローラ72の制御を受けた実装装置80が図3のステップS13a~ステップS13dを行う。
 実施形態1の電子回路基板60はICチップに限られない。例えば電子回路基板60がFPCである場合、図8のように実装を行うことができる。
 〔実施形態2〕
 図9は実施形態2での実装工程を示すフローチャートである。図10は実施形態2での準備工程を示す平面図である。図11は実施形態2での準備工程を示す断面図である。
 まず、図9および図10(a)(b)並びに図11(a)に示すように、複数の端子TMを含む所定領域PA上に緩衝材BPを配置する(ステップS13A)。次いで、図9および図10(c)並びに図11(b)に示すように、圧着ツールのヘッド90によって、緩衝材BPを介して所定領域PAに熱と圧力を与える(準備工程、ステップS13a)。ステップS13aが終了すれば、熱圧着ツールのヘッド90を複数の端子TMから離し、緩衝材BPを搬送する。
 次いで、図11(c)に示すように、複数の端子TM上にACF(異方性導電性フィルム)50を配置する(ステップS13b)。次いで、図11(d)に示すように、ACF50上に電子回路基板(例えばICチップ)60を配置する(ステップS13c)。次いで、図10(d)・図11(e)に示すように、熱圧着ツールのヘッド90によって、複数の端子TMと電子回路基板60との熱圧着を行う(ステップS13d)。これにより、図11(f)に示すように、所定領域PAの一部に電子回路基板60が実装される。
 図9~図11に示す準備工程では、緩衝材BPを介して所定領域PAに間接的に熱および圧力を与える。これにより、所定領域PAが高温になり過ぎて端子が変形してしまうといったおそれを低減することができる。また、緩衝材BPは所定領域PA全体を覆う形状とすることが望ましい。こうすれば、所定領域PAに均一に熱および圧力を加えることができる。なお、緩衝材BPは、電子回路基板の基板と同一材料で構成されていることが望ましい。こうすれば、熱圧着工程(ステップS13d)時のベース層7の変形をより効果的に抑えることができる。
 〔実施形態3〕
 実施形態1・2においては、準備工程(ステップS12a)と熱圧着工程(ステップS12d)とで、熱圧着ツールの処理時間(ヘッド90から所定領域PBに熱および圧力を加える時間)を異ならせることもできる。例えば、準備工程の処理時間を熱圧着工程の処理時間よりも短くしてスループットを高めてもよい。
 また、準備工程と熱圧着工程とで、熱圧着ツールの設定圧力を変更することもできる。例えば、スループットを高めるため、準備工程の設定圧力を熱圧着工程の設定圧力よりも大きくしてもよい。
 また、準備工程と熱圧着工程とで、熱圧着ツールの設定温度を変更することもできる。例えば、スループットを高めるため、準備工程の設定温度を熱圧着工程の設定温度よりも高くしてもよい。
 また、準備工程と熱圧着工程とで、熱圧着ツールのヘッド形状を異ならせることもできる。例えば、準備工程で用いるヘッドを熱圧着工程で用いるヘッドよりも大きくし、均一に熱および圧力を加えてもよい。また、ヘッドの材料を異ならせてもよい。
 〔まとめ〕
 態様1のELデバイスの製造方法は、ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造方法であって、前記複数の端子と前記電子回路基板とを重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子と前記電子回路基板とを熱圧着する熱圧着工程を行う。
 態様2では、前記ベース層は可撓性を有する。
 態様3では、前記準備工程の後であって前記熱圧着工程の前に、異方性導電材を前記複数の端子と前記電子回路基板との間に配置する。
 態様4では、前記ELデバイスはTFT層を備え、前記所定領域は、前記TFT層の1つのエッジに沿う領域である。
 態様5では、前記準備工程では、緩衝材を介して前記所定領域に熱および圧力を与える。
 態様6では、前記所定領域の一部に前記電子回路基板が実装される。
 態様7では、前記所定領域の前記エッジに沿う方向の長さが、前記エッジの長さに等しい。
 態様8では、前記TFT層は有機層間絶縁膜を含み、前記複数の端子は、前記有機層間絶縁膜上に形成されている。
 態様9では、前記緩衝材は、前記電子回路基板の基板と同一材料で構成されている。
 態様10では、前記準備工程および前記熱圧着工程を、熱圧着ツールによって行う。
 態様11では、前記熱圧着ツールのヘッド面積は、前記所定領域の面積よりも大きい。
 態様12では、前記準備工程と前記熱圧着工程とで、熱圧着ツールの処理時間を異ならせる。
 態様13では、前記準備工程と前記熱圧着工程とで、熱圧着ツールの設定圧力を変更する。
 態様14では、前記準備工程と前記熱圧着工程とで、熱圧着ツールの設定温度を変更する。
 態様15では、前記準備工程と前記熱圧着工程とで、熱圧着ツールのヘッド形状を異ならせる。
 態様16では、前記ベース層に、樹脂層および下面フィルムが含まれる。
 態様17では、前記下面フィルムはポリエチレンテレフタレートで構成されている。
 態様18では、支持体の上面側に、樹脂層、バリア層、TFT層、発光素子層、封止層を形成した後に前記支持体を樹脂層から剥離し、前記樹脂層の下面に前記下面フィルムを接着する。
 態様19では、前記電子回路基板はICチップあるいはフレキシブルプリント基板である。
 態様20のELデバイスは、ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスであって、前記ベース層については、前記複数の端子と重なる部分が、前記発光素子層と重なる部分との比較において、厚みが小さい、弾性率が高い、硬度が高い、密度が高いのうち少なくとも1つを満たす。
 態様21のELデバイスでは、前記ベース層は、前記発光素子層と重なる部分との比較において、厚みが小さい、弾性率が高い、硬度が高い、密度が高いのうち少なくとも1つを満たす変形部分を含み、平面視においては、前記変形部分のエッジの内側に前記電子回路基板が配されている。
 態様22のELデバイスでは、前記変形部分は、ELデバイスの1つの側面からこれに対向する側面にわたる。
 態様23のELデバイスの製造装置は、ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造装置であって、前記電子回路基板を重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子と前記電子回路基板とを熱圧着する熱圧着工程を行う。
 態様24の実装装置は、ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造に用いられる実装装置であって、前記電子回路基板を重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子と前記電子回路基板とを熱圧着する熱圧着工程を行う。
 本発明は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 2  ELデバイス
 4  TFT層
 5  発光素子層
 6  封止層
 7  ベース層
 10 下面フィルム
 12 樹脂層
 16 無機絶縁膜
 18 無機絶縁膜
 20 無機絶縁膜
 21 有機層間膜
 24 EL層
 26 第1無機封止膜
 27 有機封止膜
 28 第2無機封止膜
 50 支持体
 60 電子回路基板
 70 ELデバイス製造装置
 80 実装装置
 90 熱圧着ツールのヘッド
 PA 所定領域
 BP 緩衝材
 TM 端子 

Claims (24)

  1.  ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造方法であって、
     前記複数の端子と前記電子回路基板とを重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子と前記電子回路基板とを熱圧着する熱圧着工程を行うELデバイスの製造方法。
  2.  前記ベース層は可撓性を有する請求項1に記載のELデバイスの製造方法。
  3.  前記準備工程の後であって前記熱圧着工程の前に、異方性導電材を前記複数の端子と前記電子回路基板との間に配置する請求項1または2に記載のELデバイスの製造方法。
  4.  前記ELデバイスはTFT層を備え、
     前記所定領域は、前記TFT層の1つのエッジに沿う領域である請求項1~3のいずれか1項に記載のELデバイスの製造方法。
  5.  前記準備工程では、緩衝材を介して前記所定領域に熱および圧力を与える請求項1~4のいずれか1項に記載のELデバイスの製造方法。
  6.  前記所定領域の一部に前記電子回路基板が実装される請求項1~5のいずれか1項に記載のELデバイスの製造方法。
  7.  前記所定領域の前記エッジに沿う方向の長さが、前記エッジの長さに等しい請求項4項に記載のELデバイスの製造方法。 
  8.  前記TFT層は有機層間絶縁膜を含み、
     前記複数の端子は、前記有機層間絶縁膜上に形成されている請求項4に記載のELデバイスの製造方法。
  9.  前記緩衝材は、前記電子回路基板の基板と同一材料で構成されている請求項5に記載のELデバイスの製造方法。
  10.  前記準備工程および前記熱圧着工程を、熱圧着ツールによって行う請求項1~9のいずれか1項に記載のELデバイスの製造方法。
  11.  前記熱圧着ツールのヘッド面積は、前記所定領域の面積よりも大きい請求項10に記載のELデバイスの製造方法。
  12.  前記準備工程と前記熱圧着工程とで、熱圧着ツールの処理時間を異ならせる請求項10に記載のELデバイスの製造方法。
  13.  前記準備工程と前記熱圧着工程とで、熱圧着ツールの設定圧力を変更する請求項10に記載のELデバイスの製造方法。
  14.  前記準備工程と前記熱圧着工程とで、熱圧着ツールの設定温度を変更する請求項10に記載のELデバイスの製造方法。
  15.  前記準備工程と前記熱圧着工程とで、熱圧着ツールのヘッド形状を異ならせる請求項10に記載のELデバイスの製造方法。
  16.  前記ベース層に、樹脂層および下面フィルムが含まれる請求項2に記載のELデバイスの製造方法。
  17.  前記下面フィルムはポリエチレンテレフタレートで構成されている請求項16に記載のELデバイスの製造方法。
  18.  支持体の上面側に、樹脂層、バリア層、TFT層、発光素子層、封止層を形成した後に前記支持体を樹脂層から剥離し、前記樹脂層の下面に前記下面フィルムを接着する請求項16に記載のELデバイスの製造方法。
  19.  前記電子回路基板はICチップあるいはフレキシブルプリント基板である請求項1~18のいずれか1項に記載のELデバイスの製造方法。
  20.  ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスであって、
     前記ベース層については、前記複数の端子と重なる部分が、前記発光素子層と重なる部分との比較において、厚みが小さい、弾性率が高い、硬度が高い、密度が高いのうち少なくとも1つを満たすELデバイス。
  21.  前記ベース層は、前記発光素子層と重なる部分との比較において、厚みが小さい、弾性率が高い、硬度が高い、密度が高いのうち少なくとも1つを満たす変形部分を含み、
     平面視においては、前記変形部分のエッジの内側に前記電子回路基板が配されている請求項20に記載のELデバイス。
  22.  前記変形部分は、ELデバイスの1つの側面からこれに対向する側面にわたる請求項21記載のELデバイス。
  23.  ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造装置であって、
     前記電子回路基板を重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子と前記電子回路基板とを熱圧着する熱圧着工程を行うELデバイスの製造装置。
  24.  ベース層と、発光素子層と、複数の端子と、前記複数の端子上に実装された電子回路基板とを備えるELデバイスの製造に用いられる実装装置であって、
     前記電子回路基板を重ねることなく、前記複数の端子を含む所定領域に直接あるいは間接的に熱および圧力を与える準備工程を行い、その後、前記複数の端子と前記電子回路基板とを熱圧着する熱圧着工程を行う実装装置。
PCT/JP2017/007893 2017-02-28 2017-02-28 Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置 WO2018158841A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/007893 WO2018158841A1 (ja) 2017-02-28 2017-02-28 Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置
US15/761,824 US20190157625A1 (en) 2017-02-28 2017-02-28 Production method for el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007893 WO2018158841A1 (ja) 2017-02-28 2017-02-28 Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置

Publications (1)

Publication Number Publication Date
WO2018158841A1 true WO2018158841A1 (ja) 2018-09-07

Family

ID=63371240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007893 WO2018158841A1 (ja) 2017-02-28 2017-02-28 Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置

Country Status (2)

Country Link
US (1) US20190157625A1 (ja)
WO (1) WO2018158841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739911A (zh) * 2020-06-17 2020-10-02 深圳市华星光电半导体显示技术有限公司 显示基板母板及其制备方法、显示基板及其缺陷修补方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206710A (ja) * 2017-06-09 2018-12-27 株式会社Joled 有機el表示パネル及び有機el表示パネルの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281182A (ja) * 2003-03-14 2004-10-07 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2011134627A (ja) * 2009-12-25 2011-07-07 Canon Inc 有機発光装置の製造方法
JP2012178262A (ja) * 2011-02-25 2012-09-13 Canon Inc 発光装置の製造方法
WO2013099135A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 フレキシブル表示装置
JP2015121777A (ja) * 2013-11-20 2015-07-02 株式会社Joled 表示装置、およびその製造方法
JP2015232660A (ja) * 2014-06-10 2015-12-24 株式会社Joled 表示装置の製造方法及び表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281182A (ja) * 2003-03-14 2004-10-07 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2011134627A (ja) * 2009-12-25 2011-07-07 Canon Inc 有機発光装置の製造方法
JP2012178262A (ja) * 2011-02-25 2012-09-13 Canon Inc 発光装置の製造方法
WO2013099135A1 (ja) * 2011-12-28 2013-07-04 パナソニック株式会社 フレキシブル表示装置
JP2015121777A (ja) * 2013-11-20 2015-07-02 株式会社Joled 表示装置、およびその製造方法
JP2015232660A (ja) * 2014-06-10 2015-12-24 株式会社Joled 表示装置の製造方法及び表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739911A (zh) * 2020-06-17 2020-10-02 深圳市华星光电半导体显示技术有限公司 显示基板母板及其制备方法、显示基板及其缺陷修补方法
WO2021253511A1 (zh) * 2020-06-17 2021-12-23 深圳市华星光电半导体显示技术有限公司 显示基板母板及其制备方法、显示基板

Also Published As

Publication number Publication date
US20190157625A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
KR102655956B1 (ko) 표시 장치, 타일형 표시 장치 및 이의 제조 방법
JP4465367B2 (ja) 有機電界発光表示装置及びその製造方法
CN108962941B (zh) 显示装置
JP4489092B2 (ja) 有機電界発光表示装置及び有機電界発光表示装置の製造方法
JP6792723B2 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
WO2020065910A1 (ja) 表示装置の製造方法
WO2019187137A1 (ja) 表示装置
KR20130053280A (ko) 씨오지 타입 플렉서블 유기발광소자
WO2018179261A1 (ja) 貼り付け方法及び貼り付け装置
WO2019146115A1 (ja) 表示デバイスおよび表示デバイスの製造方法
WO2019150503A1 (ja) 表示装置
US20190364671A1 (en) Mounting method, mounting device, and production device
WO2018138823A1 (ja) Oledパネル、oledパネルの製造方法、oledパネルの製造装置
KR101843199B1 (ko) 플렉서블 유기발광다이오드 표시장치 및 그 제조 방법
WO2018179132A1 (ja) 表示デバイスの製造方法、表示デバイス、表示デバイスの製造装置、成膜装置
CN108054142B (zh) 显示基板的制作方法及显示基板
JP6744479B2 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
JP2011023265A (ja) 電気光学装置、電気光学装置の製造方法
WO2018158841A1 (ja) Elデバイスの製造方法、elデバイス、elデバイスの製造装置、実装装置
WO2019064591A1 (ja) 表示デバイス、表示デバイスの製造方法
US10326103B2 (en) Display device having buffer patterns
US10862075B2 (en) Manufacturing method for EL device
WO2019186845A1 (ja) 表示装置及び表示装置の製造方法
JP2020038758A (ja) 表示装置、及び表示装置の製造方法
WO2018179215A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、実装装置、コントローラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载