+

WO2004005504A1 - Verfahren zum erreichen einer pathogenresistenz in pflanzen - Google Patents

Verfahren zum erreichen einer pathogenresistenz in pflanzen Download PDF

Info

Publication number
WO2004005504A1
WO2004005504A1 PCT/EP2003/007027 EP0307027W WO2004005504A1 WO 2004005504 A1 WO2004005504 A1 WO 2004005504A1 EP 0307027 W EP0307027 W EP 0307027W WO 2004005504 A1 WO2004005504 A1 WO 2004005504A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
nucleic acid
transgenic
seq
gene
Prior art date
Application number
PCT/EP2003/007027
Other languages
English (en)
French (fr)
Inventor
Uwe Sonnewald
Frederik BÖRNKE
Karin Herbers
Bettina Tschiersch
Horst-Ekkehard Neuhaus
Original Assignee
Sungene Gmbh & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sungene Gmbh & Co. Kgaa filed Critical Sungene Gmbh & Co. Kgaa
Priority to US10/516,075 priority Critical patent/US7572950B2/en
Priority to AU2003246353A priority patent/AU2003246353A1/en
Publication of WO2004005504A1 publication Critical patent/WO2004005504A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8285Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for nematode resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the invention relates to methods for generating or increasing a pathogen resistance in plants by - preferably pathogen-inducible - expression of a sucrose isomerase.
  • Palatinose (isomaltulose) and trehalulose are produced on an industrial scale from sucrose by an enzymatic rearrangement using immobilized bacterial cells.
  • the ( ⁇ l-> ⁇ 2-glycosidic bond between the monosaccharides of the disaccharide sucrose isomerized to an ⁇ l-> ⁇ 6 bond with palatinose or an ⁇ l-> ⁇ l bond with trehalulose.
  • sucrose isomerase also called sucrose mutase, and corresponding sequences are described, for example, in WO 95/20047 (US Pat. No. 5,786,140; US Pat. No. 5,985,622).
  • Sucrose isomerases from Erwinia rhapontici (pall gene, GenBank Acc.-No .: AF279281; Börnke et al.
  • WO 01/59136 describes methods for the direct production of non-cariogenic sugars directly in transgenic plants which contain recombinant nucleic acid molecules coding for proteins with the enzymatic activity of a sucrose isomerase. Expression constructs for the said sucrose isomerase for expression in plants and the transgenic plants transformed with the same are described.
  • WO 01/59135 describes methods for influencing pollen development using anther, tapetum or pollen-specific expressed sucrose isomerases.
  • sucrose isomerase constitutive expression of sucrose isomerase in plants has an adverse effect on the growth of the plant (Börnke F et al.
  • the aim of biotechnological work on plants is to produce plants with advantageous new properties, for example to increase agricultural productivity, to improve the quality of food or to produce certain chemicals or pharmaceuticals.
  • Plant mechanisms against pathogens are insufficient. Fungal diseases alone result in crop losses of many billions of US dollars a year.
  • the introduction of foreign genes from plants, animals or microbial sources can strengthen the immune system. Examples are protection against insect caused by tobacco
  • SAR systemic acquired resistance
  • SA salicylic acid
  • the barley locus has long been described in barley as a negative regulator of pathogen defense.
  • the loss or loss of function of the Mio gene results in increased and, above all, race-unspecific resistance to, for example, numerous types of mildew (Büschges R et al.
  • Plant pathogenic fungi generally live saprophytically or parasitically. The latter - at least in certain phases of their life cycle - rely on a range of active substances (e.g. a range of vitamins, carbohydrates, etc.), which can only be provided in this form by living plant cells.
  • active substances e.g. a range of vitamins, carbohydrates, etc.
  • the expert distinguishes parasitic fungi into necrotrophic, hemibiotrophic and biotrophic. In necrotrophic fungal parasites, the infection leads to tissue destruction and thus to the death of the plant.
  • These fungi are usually only optional parasitic; they can also multiply saprophytically in dead or dying plant material.
  • Biotrophic fungal parasites are characterized in that the parasite and the host live together, at least over longer periods of time. The fungus takes nutrients from the host, but does not kill it. Most biotrophic fungi are obligate parasites. Hemibiotrophic fungi live biotrophically at times and kill the host at a later time, i.e. they change into a necrotrophic phase.
  • nematodes Another large group of biotrophic plant pathogens of enormous agro-economic importance are nematodes. Plant pathogens nematodes take their food from the outer plant tissue (ectoparasites) or after penetration into the plant from deeper cell layers (endoparasites). In the case of endoparasitic root nematodes, a distinction is made between two groups according to their lifestyle and diet: cyst-forming nematodes (heterodera and globodera species) and root gall nematodes (meloidogyne species). Both groups are obligatory biotrophic parasites that induce the formation of special nutrient cells in the roots.
  • nutrient cells are plant cells whose metabolism has been changed by the nematodes in such a way that they specifically serve to nourish the nematodes that have developed. Endo-parasitic root nematodes are absolutely dependent on these nutrient cells in their development (for an overview see Sijmons et al. (1994) Ann. Rev. Phytopathol. 32: 235-259). Cyst-forming nematodes (heterodera and globodera species) remain at the parasitization site in the root (sessile endoparasites) convert the cells surrounding them into syncytia by protoplast fusion with partial cell wall dissolution.
  • the nematodes take their food from these nutrient cells, which are formed in the central cylinder of the root, and swell strongly in the process.
  • Root bile nematodes (Meloidogyne species) also remain at the selected parasitization site and cause the formation of nutrient cells, which, however, unlike the cyst-forming nematodes from several, through synchronous core divisions without cell lines. wall-developing multinucleated giant cells exist (Fenoll and Del Campo (1998) Physiol. Mol. Biol. Plants 4: 9-18).
  • the formation of the nutrient cell systems is induced by the signaling molecules in the saliva of the nematodes. It is known that a number of plant genes change their expression profile significantly during these differentiation processes.
  • Promoters are described in the literature which are specifically induced in the nutrient cell system (syncytia). Examples include the ⁇ 0.3 TobRB7 promoter from tobacco (Opperman et al. (1994) Science 263: 221-223, the Lemmi9 promoter from tomato (Ecobar et al. (1999) Mol Plant Microbe Interact 12: 440-449) , and Geminivirus V-sense promoters (WO 00/01832).
  • WO 94/10320 describes DNA constructs for the expression of genes which act as inhibitors of endogenous plant genes (e.g. ATP synthase, cytochrome C, pyruvate kinase) under the control of nematode-induced promoters in the syncytia.
  • endogenous plant genes e.g. ATP synthase, cytochrome C, pyruvate kinase
  • the present invention has for its object to provide new methods for pathogen defense in plants, which efficiently protect a broad spectrum of pathogens, preferably fungi and nematodes, in as many different plant species, preferably the crop plants used in agriculture. This object is achieved by the method according to the invention.
  • a first subject of the invention comprises a method for generating or increasing the resistance to at least one pathogen in plant organisms, the following working steps being included
  • transgenic expression of a protein with sucrose isomerase activity in a plant organism or a tissue, organ, part or cell thereof, and b) Selection of the plant organisms in which - in contrast to or compared to the original organism - the resistance to at least one pathogen exists or is increased.
  • the method according to the invention can in principle be applied to all plant organisms which produce sucrose. This includes all higher plants. It was surprisingly observed that the growth of the fungus Alternaria was significantly inhibited on potato slices of transgenic potato plants, in the tubers of which tubers are converted to palatinose due to transgenic expression of a sucrose isomerase.
  • sucrose isomerase also causes resistance to nematodes. 15
  • a syncitia-specific expression of the sucrose isomerase sequence caused by endoparasitic root nematodes results in a significant reduction in the attack of the atodes.
  • protein with sucrose isomerase activity means a protein which catalyzes the isomerization of sucrose to other disaccharides as an “essential property”, the ⁇ l-> ⁇ 2-glycosidic bond between glucose and fructose in the sucrose into another
  • an HPLC system e.g. from Dionex, which is equipped with a PA-1 (4 x 250 mm) column and a pulsed electrochemical detector can be equipped. Before the injection, the samples can be centrifuged for 2 minutes at 13,000 rpm. The sugars can then be eluted with a 10 minute gradient from 0 to 15 M sodium acetate after 4 minutes at 150 mM NaOH and a flow rate of 1 ml / min.
  • the appropriate standards from Sigma can be used to identify and quantify the sugars.
  • a protein with sucrose isomerase activity is particularly preferably understood to mean a protein which is capable of isomerizing sucrose to palatinose and / or trehalulose as an essential property.
  • the proportion of palatinose and trehalulose in the total disaccharides is that
  • At least 2%, preferably at least 20%, particularly preferably at least 50% and most preferably at least 60% are formed by isomerization of sucrose.
  • the nucleic acid sequence encoding a protein with sucrose isomerase activity can be isolated from natural sources or synthesized according to conventional methods.
  • Containing 25 sequences are in particular microorganisms of the genera Protaminobacter, Erwinia, Serratia, Leuconostoc, Pseudomonas, Agrobacterium, Klebsiella and Enterobacter.
  • the following examples of such microorganisms are particularly worth mentioning:
  • Protaminobacter rubrum CBS 547, 77
  • Erwinia rhapontici NCPPB 1578
  • Serratia plymuthica ATCC 15928
  • Serratia marcescens NCIB 8285
  • Leuconostoc mesenteroides NRRL B-52 If ATCC 1083 0a.
  • Pseudomonas mesoacidophila MX-45 (FERM 11808 or FERM BP 3619), Agrobacterium radiobacter MX-232 (FERM 12397 or FERM BP
  • the nucleic acid sequence encoding a protein with a sucrose isomerase activity comprises nucleic acid sequences encoding proteins 40 with sucrose isomerase activity, the nucleic acids being selected from the group consisting of
  • nucleic acid sequences which code for proteins with sucrose isomerase activity are known in the prior art and are thus available to the person skilled in the art for transfer to plant cells.
  • Sequences from Protaminobacter rubrum, Erwinia rhapontici, Enterobacter species SZ 62 and Pseudomonas mesoacidophila MX-45 are described in WO 95/20047. Reference is hereby expressly made to the disclosure of this patent application, both with regard to the sequences disclosed themselves and with regard to the finding and characterization of these and further sucrose isomerase-coding sequences from other sources.
  • sucrose isomerases can be known to the person skilled in the art, inter alia. the gene databases using suitable search profiles and computer programs for screening for homologous sequences or for sequence comparisons.
  • the person skilled in the art can find further nucleic acid sequences encoding sucrose isomerase from other organisms by means of conventional molecular biological techniques and use them in the context of the present invention.
  • the person skilled in the art can derive suitable hybridization probes from the known sucrose isomerase sequences and use them for screening cDNA and / or genomic banks of the desired organism from which a new sucrose isomerase gene is to be isolated.
  • the person skilled in the art can rely on common hybridization methods.
  • This transformed cell line is able to identify palatinose producers in the gene bank prepared as described above from DNA of the donor organism.
  • the cells of the gene bank are isolated and grown on minimal salt media with galactose and sucrose. After replica stamping of the colonies on plates with the same medium, the cells are killed by evaporation with toluene. Cells from the screening strain are then spread and incubated as a lawn in minimal salt soft agar without addition of C sources over the colonies of the gene bank.
  • isomerase clones can also be identified using a PCR fragment. If plasmid DNA of the E. coli clones identified in this way is used as probes for hybridization on filters with immobilized DNA from the donor organism, the gene regions which carry isomerase genes can be detected and made available in a targeted manner.
  • Functional equivalents of the proteins with sucrose isomerase activity disclosed in the context of this invention preferably include those from other organisms, for example from microorganisms whose genomic sequence is known in whole or in part, such as, for example, from microorganisms of the genera Protaminobacter, Erwinia, Serratia, Leuconostoc, Pseudomonas, Agrobacterium , Klebsiella and Enterobacter. These can be found, for example, by database searches in sequence databases such as GenBank or by screening gene or cDNA banks - for example using the sequence according to SEQ ID NO: 1 or a part thereof Search sequence or probe - can be found. Mutations include substitutions, additions, deletions, inversions or insertions of one or more amino acid residues.
  • the person skilled in the art can additionally introduce various mutations into the DNA sequence encoding the sucrose isomerase by means of routine techniques, which leads to the synthesis of proteins with possibly changed biological properties. So it is e.g. possible to specifically produce enzymes that are localized in certain compartments of the plant cell by adding corresponding signal sequences. Such sequences are described in the literature and are known to the person skilled in the art (see, for example, Braun et al. (1992) EMBO J 11: 3219-3227; Wolter F et al. (1988) Proc Natl Acad Sei USA 85: 846-850; Sonnewald U et al. (1991) Plant J 1: 95-106).
  • mutants are produced that are no longer subject to the regulatory mechanisms normally found in the cell via allosteric regulation or covalent modification. Furthermore, mutants can be produced which have an altered substrate or product specificity. Furthermore, mutants can be produced which have a changed activity, temperature and / or pH profile.
  • the degeneration of the genetic code offers the skilled worker the possibility of adapting the nucleotide sequence of the DNA sequence to the codon preference ("codon usage") of the target plant, that is to say of the plant or plant cell which is pathogen-resistant due to the expression of the sucrose isomerase nucleic acid sequence, and thereby optimizing the expression.
  • the recombinant nucleic acid molecules according to the invention or parts thereof can be introduced into plasmids which permit mutagenesis or a sequence change by recombining DNA sequences.
  • base exchanges can be carried out or natural or synthetic sequences can be added.
  • adapters or linkers can be added to the fragments where necessary.
  • Appropriate restriction sites can also be provided by means of enzymatic and other manipulations or superfluous DNA or restriction sites be removed. Where insertions, deletions or substitutions are possible, in vitro mutagenesis, "primer repair", restriction or ligation can be used. Sequence analysis, restriction analysis and other biochemical-molecular biological methods are generally carried out as analysis methods.
  • Said functional equivalents preferably have a homology of at least 40%, particularly preferably at least 50%, particularly preferably at least 70%, most preferably at least 90% to one of the polypeptide sequences with the
  • SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 36 The homology extends most over at least 30 amino acids, preferably at least 60 amino acids, particularly preferably at least 90 amino acids preferably over the entire length of one of the polypeptides according to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 36.
  • GAP Garnier ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Gap Weight 8 Length Weight: 2
  • a sequence which has a homology of at least 80% on a protein basis with the sequence SEQ ID NO: 2 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 2 according to the above program algorithm with the above parameter set, has a homology of has at least 80%.
  • Functional equivalents also include those proteins which are encoded by nucleic acid sequences which have a homology of at least 40%, particularly preferably at least 50%, particularly preferably at least 70%, most preferably at least 90% to one of the nucleic acid sequences with the SEQ ID NO: 1 , 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 35.
  • the homology extends over at least 100 bases, preferably at least 200 bases, particularly preferably at least 300 bases, most preferably over the entire length of one of the sequences according to SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15 , 17, 19, 21 or 35.
  • Homology between two nucleic acid sequences means the identity of the two nucleic acid sequences over the respective sequence length, which can be determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al . (1997) Nucleic Acids Res. 25: 3389ff) is calculated using the following parameters:
  • Gap Weight 50 Length Weight: 3
  • a sequence which has a homology of at least 80% on a nucleic acid basis with the sequence SEQ ID NO: 1 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 1 according to the above program algorithm with the above parameter set, has a homology of has at least 80%.
  • Functional equivalents also include those proteins which are encoded by nucleic acid sequences which, under standard conditions, have one of the nucleic acid sequences described by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 35, hybridize to this complementary nucleic acid sequence or parts of the aforementioned and have the essential properties of a Saacharo isomerase.
  • Standard hybridization conditions is to be understood broadly and means stringent as well as less stringent hybridization conditions. Such hybridization conditions are described, inter alia, by Sambrook J, Fritsch EF, Maniatis T et al. , in Molecular Cloning (A Laboratory Manual), 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57) or in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.).
  • the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with approximately 2X SSC at 50 ° C) and those with high stringency (with approximately 0.2X SSC at 50 ° C, preferably at 65 ° C) (20X SSC: 0.3 M sodium citrate, 3 M NaCl, pH 7.0).
  • the temperature during the washing step can be raised from low stringent conditions at room temperature, about 22 ° C, to more stringent conditions at about 65 ° C. Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied. Denaturing agents such as formamide or SDS can also be used during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C.
  • Hybridization conditions can be selected from the following conditions, for example:
  • Washing steps can be selected, for example, from the following conditions:
  • the nucleic acid sequence encoding a protein with a sucrose isomerase activity comprises nucleic acid sequences coding for proteins with sucrose isomerase activity, the nucleic acids being selected from the group consisting of
  • nucleic acid sequences encoding an amino acid sequence according to SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 36, and
  • nucleic acid sequences according to SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 35, and d) nucleic acid sequences which is degenerate to a nucleic acid sequence of c), and
  • nucleic acid sequences which have a homology of at least 40% to a nucleic acid sequence according to SEQ ID No: 1, 3, 5, 7, 9,
  • nucleic acid sequences which hybridize with a complementary strand of the nucleic acid sequence according to SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 or 35,
  • Functionally equivalent fragments means, with respect to a protein with sucrose isomerase activity or a nucleic acid sequence, coding for such a polypeptide or all those coding nucleic acid sequences which, compared to their starting sequence, have a shortening at the 5 'and / or 3' end and / or have one or more deletions, but still have sucrose isomerase activity, or code for a protein with the same.
  • deletion mutants in which the synthesis of correspondingly shortened proteins can be achieved by progressive deletion from the 5 'or from the 3' end of the coding DNA sequence.
  • sucrose isomerases can also be supplemented by signal sequences which ensure the transport of the gene product, in this case the protein with sucrose isomerase activity, to a specific compartment.
  • signal sequences ensure that the sucrose isomerase is transported into the cell wall or the apoplasts of the transformed plant cells, i.e. the transformed plants express a chimeric sucrose isomerase which comprises a signal peptide for transport into the endoplasmic reticulum.
  • Suitable signal sequences which ensure inclusion in the endoplasmic reticulum can be found in the relevant literature by the person skilled in the art. For example, the sequence coding for the signal peptide of the proteinase inhibitor II gene from potato (Keil et al. (1996) Nucl Acids Res 14: 5641-5650; Genbank Accession No. X04118).
  • Other suitable signal sequences provide e.g. for the inclusion of sucrose isomerase in the
  • Vacuole Here is the signal peptide of the patatin gene as an example from potatoes (Sonnewald U et al. (1991) Plant J 1 (1): 95-106).
  • Phathogen resistance means the diminution or weakening of 5 disease symptoms of a plant as a result of an infestation by a pathogen.
  • the symptoms can be of various types, but preferably include those which directly or indirectly impair the quality of the plant, the quantity of the yield, the suitability for use as feed or food, or else sowing, cultivation, harvesting or processing of the Complicate crops.
  • the increased resistance manifests itself preferably in a reduced expression of the disease symptoms, whereby disease symptoms - in addition to the above-mentioned impairments - also, for example, the penetration efficiency of a pathogen in the
  • the disease symptoms are preferably at least 10% or at least 20%, particularly preferably by at least 40% or 60%, very particularly preferably by at least 70% or 80%, most preferably by at least
  • selection comprises all of the
  • 35 drive which are suitable for the detection of existing or increased pathogen resistance.
  • These may be symptoms of the pathogen infection (e.g. housorium training in case of fungal infection) but also include the symptoms described above, which indicate the quality of the plant, the quantity of the yield
  • pathogen means, for example, non-restrictive fungi, fungus-like pathogens (such as, for example, Chromista; for example Oomycetes) and animal pests such as, for example, nematodes. Nematodes and fungi are particularly preferred. However, it can be assumed that the expression of a Sucrose isomerase protein also causes resistance to other pathogens.
  • Fungal pathogens and fungal pathogens (such as, for example, Chromista) 0 comprise biotrophic, hemibiotrophic and necrotrophic fungi and preferably come from the group comprising Plasmodiophora- ycota, Oomycota, Ascomycota, Chytridiomycetes, Zygomycetes, Basidiomycota and Deuteromyceten (Fungi imperfecti).
  • the pathogens mentioned in Tables 15 and 2 and the diseases associated with them should be mentioned as examples, but not by way of limitation.
  • Plasmodiophoromycota such as Plasmodiophora brassicae (Kohl's hernia, clubroot of crucifers), Spongospora subterranea (powdery scab of potato tubers), Polymyxa graminis (root disease of cereals and grasses),
  • Ascomycota such as Microdochium nivale (snow mold on rye and wheat), Fusarium graminearum, Fusarium culmorum (rotten ears, especially on wheat), Fusarium oxysporum (Fusarium wilt on tomato), Blumeria graminis (powdery mildew on barley (f.sp. ) and wheat (f.sp.
  • Basidiomycetes such as Typhula incarnata (Typhula rot on barley, rye, wheat), Ustilago maydis (bump fire on
  • fungi imperfecti such as Septoria nodorum (tan) on wheat (Septoria tritici), Pseudocerco-sporella herpotrichoides (broken stalk disease on wheat, barley, rye), Rynchosporium secalis (leaf blotch disease on rye and barley), Alternaria solani (Alternaria solani Potato, tomato), Phoma betae (root fire on beta beet), Cercospora beticola (Cercospora leaf blotch on beta beet), (Alternaria brassicae (black rapeseed on rapeseed, cabbage and cruciferous vegetables, among others), Verticillium dahliae (rapeseed wilt, and columbus rot) Lindemuthianum (focal spot disease on beans), Phoma Hungary - diarrhea (black-legged on cabbage; root neck or stem rot on rapeseed),
  • Botrytis cinerea (gray mold on grapevines, strawberries, tomatoes, hops etc.).
  • Phytophthora infestans (late blight, late blight in tomatoes etc.), Microdochium nivale (formerly Fusarium nivale; snow mold on rye and wheat), Fusarium graminearum, Fusarium culmorum (ear rot on wheat), Fusarium oxysporum (fusarium wilt on tomato), Blumeria graminis (powdery mildew on barley (f.sp. hordei) and wheat (f.sp.
  • Magnaporthe grisea rice blast disease
  • Sclerotinia sclerotium white stalk, rape cancer
  • Septoria nodorum and Septoria tritici tan on wheat
  • Alternaria brassicae black rapeseed on rapeseed, cabbage and cruciferous vegetables, among others
  • Phoma Hungary diarrhea, black legs on cabbage; root neck or stem rot on rapeseed.
  • Root nematodes (e.g. Pratylenchus, Xiphinema and Longidorus species).
  • Wandering nematodes are not tied to a parasitization site, but can change them. They can migrate from one root to another, from one plant to another and sometimes also in the plant tissue. For a long time, their importance as pests was underestimated: today they are among the extremely dangerous nematodes that damage plants. Many growth damage (also known as "soil fatigue") and early yellowing of the crops could be attributed to such root pests. Pratylenchus species in particular are also known to cause violent root damage in ornamental plant cultivation. Diseased roots can be recognized by the fact that they show brown discoloration in places. Rotting organisms subsequently penetrate into the resulting wounds, causing rapid tissue death and deep rotting in these areas. Host plants include: cereals, potatoes, carrots, tomatoes, cucumbers, celery and wine.
  • Nematodes producing root galls e.g. Meloidogyne species
  • Root gall whales are among the largest pests, especially in greenhouses, but they have been also proven outdoors on carrots, celery and parsley.
  • the wheat whale is a specialized parasite of the wheat blossom, which converts it into galls.
  • the nematode infestation can already be recognized from the curls or ripples of the leaves in the early stages of the plant.
  • Cyst-forming root nematodes (globodera and heterodera species)
  • the potato cyst lynx is the number one enemy of potatoes. This species outperforms all other Herderodera species and can destroy up to 80% of the harvest in the event of a massive outbreak. After infestation with cyst-forming nematodes, the plant takes care of it without an externally recognizable cause. Only when you examine the roots do you see pin-sized, brownish, yellow or whitish cysts. The female nematodes burrow into the root and blow up the root through their abdomen, which is filled with eggs and thus swells. The nematode is still in the root with its mouth prick, while the bulging abdomen lies in the ground. The mother dies and its hardening skin becomes a protective cover
  • cysts and their contents are very resistant and can last a long time. If the environmental conditions are suitable, the larvae drill into the open and attack new roots.
  • the most important cyst-forming nematodes are potato, beet, oat, pea, clover, cabbage, hop, and carrot cyst stalks (for an examination of potato cyst nematodes see also at: http://www.bfl.at/)
  • Nematodes are particularly preferred as animal pests.
  • the pathogens listed in Table 3 and the diseases associated with them should be mentioned as examples, but not by way of limitation.
  • Globodera rostochiensis and G. pallida (cysts on potatoes, tomatoes and nightshade plants), Heterodera schachtii (beet cysts on sugar and fodder beet, oilseed rape, cabbage, etc.), Heterodera avenae (oat cysts on oats and other types of cereals), dityi (chickens) are very particularly preferred.
  • Small stem or stick small beet head on rye, oats, corn, clover, tobacco, beet, Anguina tritici (small wheat, disease of wheat on spelled, spelled, rye), Meloidogyne hapla (root gall small on carrot, cucumber, lettuce, tomato, potato, sugar beet , Alfalfa).
  • Barley Puccinia graminis f.sp. hordei (barley ste rust), blumeria (Erysiphe) graminis f.sp. Hordei (Barley Powdery Mildew).
  • Soybean Phytophthora megasperma fsp.glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum,
  • Canola Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum,
  • Mycosphaerella brassiccola Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata.
  • Alfalfa Clavibater michiganese subsp. insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginumomyidis, fugus aphaginophysiumis, fagus medicaginium, agis trophis, trophic aphidis Stemphylium alfalfae.
  • Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthobiumus carbonum Exserohilum turcicum I, II & III, Helminthosporium pedicellatum, Physoderma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium oxalicum, Clariusumiaumiaumia, arbariaumiaumia lumbarumumiaumia lumbarumumia,
  • Sorghum Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola), Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifata, Alternaria alternolahomehapia, Alternaria alternolaunolaisola, Alternaria alternatehumolina, Alternaria alternateunia, Solaria alternate, Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchari,
  • Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinumararumumarumumomiumaromiumariumumomusium, Faminiciumomaniumumus, Scleromiumiumspariumium, graminiumiumspariumium, gramineromiumium, Famin griumaminomarosum, gramineromium ariumium, graminerium ariumium, graminarium arumium, graminarium arumium, graminarium arumium, graminarium arumium, graminarium arumium, graminarium arumium, graminerium arium, graminerium
  • Plant organism or cells derived therefrom generally means any cell, tissue, part or reproductive material (such as seeds or fruits) of an organism which is capable of photosynthesis. Included in the scope of the invention are all genera and species of higher and lower plants in the plant kingdom. Annual, perennial, monocot and dicot plants are preferred. Included are mature plants, seeds, sprouts and seedlings, as well as parts derived from them, propagation material (for example tubers, seeds or fruits) and cultures, for example row or callus cultures. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
  • Plant in the context of the invention means all genera and species of higher and lower plants in the plant kingdom. Included under the term are the mature plants, seeds, shoots and seedlings, as well as parts derived therefrom, propagation material, plant organs, tissues, protoplasts, callus and other cultures, for example cell cultures, and all other types of groupings of plant cells to form functional or structural units. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
  • Plant includes all annual and perennial, monocotyledonous and dicotyledonous plants and includes, by way of example but not by way of limitation, those of the genera Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Pelargonium Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Loliu, Ory
  • Plants from the following plant families are preferred: Amaranth aceae, Asteraceae, Brassicaceae, Carophyllaceae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Acaceaeaeae, Rosaceaeae, Solaceaeae Tetragoniacea, Theaceae, Umbelliferae.
  • Preferred monocotyledonous plants are selected in particular from the monocotyledonous crop plants, such as, for example, the family of the Gramineae such as rice, corn, wheat or other types of cereals such as barley, millet, rye, triticale or oats, and sugar cane and all types of grasses.
  • the family of the Gramineae such as rice, corn, wheat or other types of cereals such as barley, millet, rye, triticale or oats, and sugar cane and all types of grasses.
  • the invention is particularly preferably applied to dicotyledonous plant organisms.
  • Preferred dicotyledonous plants are in particular selected from the dicotyledonous crop plants, such as, for example
  • Asteraceae such as sunflower, tagetes or calendula and others
  • - Cruciferae especially the genus Brassica, especially the species napus (rape), campestris (turnip), oleracea cv Tastie (cabbage), oleracea cv Snowball Y (cauliflower) and oleracea cv Emperor (broccoli) and other types of cabbage; and the genus Arabidopsis, especially the species thaliana as well as cress or canola and others,
  • Cucurbitaceae such as melon, pumpkin or zucchini and others
  • - Leguminosae especially the genus Glycine, especially the type max (soybean) as well as alfalfa, peas, beans or peanuts and others Rubiaceae, preferably of the subclass Lamiidae such as, for example, Coffea arabica or Coffea liberica (coffee bush) and others,
  • - Solanaceae especially the genus Lycopersicon, especially the species esculentum (tomato), the genus Solanum, especially the species tuberosum (potato) and melongena (eggplant), and the genus Capsicum, especially the species annum (paprika) as well as tobacco and others more,
  • Sterculiaceae preferably of the subclass Dilleniidae such as Theobroma cacao (cocoa bush) and others,
  • Theaceae preferably of the subclass Dilleniidae, such as, for example, Camellia sinensis or Thea sinensis (tea bush) and others,
  • Umbelliferae especially the genus Daucus (especially the species carota (carrot)) and Apium (especially the species graveolens dulce (Seiarie)) and others,
  • decorative plants useful or ornamental trees, flowers, cut flowers, shrubs or lawn.
  • Examples include, but are not limited to, angiosperms, bryophytes such as hepaticae (liverwort) and musci (mosses); Pteridophytes such as ferns, horsetail and lycopods; Gymnosperms such as conifers, cycads, ginkgo and gnetals, the families of rosaceae such as rose, ericaceae such as rhododendrons and azaleas, euphorbiaceae such as poinsettias and croton, caryophyllaceae such as cloves, solanaceae such as petunias, Gesneriaceae such as the Usamalsaceaeideae such as the Usambaramineae , Iridaceae like gladiolus, iris, freesia and crocus, Compositae like
  • agricultural crops which naturally have a high proportion of sucrose or whose roots, tubers or storage roots are used economically, such as potatoes, beets or sugar beets.
  • tomato, banana, carrot, sugar cane, strawberry, pineapple, papaya, soy and cereals such as oats, Barley, wheat, rye, triticale, millet and corn.
  • potato, beet, sugar beet and sugar cane are preferred.
  • expression constructs are used for the expression of proteins with sucrose isomerase activity in plants.
  • Expression cassettes of this type are described, for example, in WO 01/59136 and WO 01/59135, to which reference is hereby expressly made.
  • a nucleic acid molecule encoding a protein with sucrose isomerase activity (for example described by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned) is preferably functionally linked to at least one genetic control element (for example a promoter) , which ensures transgenic expression in a plant organism or a tissue, organ, part or cell thereof.
  • a functional link is understood to mean, for example, the sequential arrangement of a promoter with the nucleic acid sequence to be expressed (for example the sequence according to SEQ ID NO: 1) and possibly other regulatory elements such as a terminator such that each of the regulatory elements can perform its function in the transgenic expression of the nucleic acid sequence. This does not necessarily require a direct link in the chemical sense. Genetic control sequences, such as, for example, enhancer sequences, can also perform their function on the target sequence from more distant positions or even from other DNA molecules. Arrangements are preferred in which the nucleic acid sequence to be expressed transgenically is positioned behind the sequence which acts as a promoter, so that both sequences are covalently linked to one another.
  • transgenic expression construct consisting of a linkage of promoter and nucleic acid sequence to be expressed, may preferably be integrated in a vector and inserted into a plant genome by, for example, transformation.
  • An expression construct is, however, also to be understood as such constructions in which the nucleic acid sequence coding for the protein with sucrose isomerase activity (for example coded by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the aforementioned) - for example by means of a homologous recombination - placed behind an endogenous plant promoter in such a way that this ensures transgenic expression of the said nucleic acid sequence.
  • Plant-specific promoters basically means any promoter that can control the expression of genes, in particular foreign genes, in plants or plant parts, cells, tissues or cultures.
  • the promoter can be selected so that the expression takes place constitutively or only in a certain tissue or organ, at a certain time in plant development and / or at a time determined by external influences, biotic or abiotic stimuli (induced gene expression).
  • the promoter can be homologous or heterologous with respect to the plant to be transformed. Preferred are:
  • “Constitutive” promoters mean those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development (Benfey et al. (1989) EMBO J 8: 2195-2202).
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140 : 281-288; Gardner et al. (1986) Plant Mol Biol 6: 221-228) or the 19S CaMV promoter
  • Another suitable constitutive promoter is the LeguminB promoter (GenBank Acc.-No. X03677), the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (octopine synthase) promoter from Agrobacterium, the Ubi uitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649), the ubiquitin 1 promoter (Christensen et al. (1992) Plant Mol Biol 18: 675-689; Bruce et al.
  • the constitutive promoter is the promoter of the nitrilase-1 (nitl) gene from A. thaliana (GenBank Acc.-No.: Y07648.2, nucleotides
  • Promoters with specificities for the leaves, stems, roots or seeds are also preferred.
  • Seed-specific promoters such as the promoter of phaseoline (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9): 839-53; e.g. from Phaseolus vulgari; van der Geest et al. (1996) Plant Mol Biol 32 : 579-588), des 2S albumins (Joseffson LG et al. (1987) J Biol Chem 262: 12196-12201), legumes (Shirsat A et al. (1989) Mol Gen Genet 215 (2): 326-331 ), the USP (unknown seed protein; Bäumlein H et al. (1991) Mol Gen Genet 225 (3): 459-467; Phillips et al.
  • seed-specific promoters are those of the genes coding for the "high molecular weight glutenin” (HMWG), gliadin, branching enzyme, ADP glucose pyrophosphatase (AGPase), the napin promoter, the ACP promoter and the FatB3 and FatB4- Promoters, the promoter of starch synthase or other starch-forming / modifying enzymes such as, for example, promoters of genes for branching enzymes code (WO 92/14827, WO 92/11375). Also preferred are promoters which allow seed-specific expression in monocotyledons such as corn, barley, wheat, rye, rice etc.
  • the promoter of the lpt2 or lptl gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzine gene, etc.) can be used advantageously Prolamin gene, gliadin gene, glutelin gene, zein gene, kasirin gene or secalin gene). Further seed-specific promoters are described in WO 89/03887.
  • Tuber-, storage root- or root-specific promoters such as the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato.
  • the promoter of the class I patatin gene is about 100 to 1000 times more active in tubers than in leaves (Rocha-Sosa et al., Vide supra). Further
  • tuber-specific or at least increased expression in tubers are known (e.g. the promoter of the ADP-glucose pyrophosphorylase genes; Müller et al.
  • Leaf-specific promoters such as a promoter of the cytosolic FBPase from potato (WO 97/05900), the SSU promoter (small subunit) from Rubisco (ribulose-1, 5-bis-phosphate carboxylase; US 4,962,028) or the ST-LSI promoter from potato ( Stockhaus et al. (1989) EMBO J
  • Epidermis-specific promoters are very particularly preferred, such as the promoter of the OXLP gene (“oxalate oxidase like protein”; Wei et al. (1998) Plant Mol Biol 36: 101-112).
  • transgenic expression constructs can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol
  • promoters such as the PRPl promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), a promoter induced by salicylic acid (WO 95/19443), a promoter promoted by benzenesulfonamide (EP 0 388 186), a tetracycline-inducible promoter (Gatz et al.
  • suitable promoters are, for example, fruit ripening-specific promoters, such as the fruit ripening-specific promoter from tomato (WO 94/21794, EP 409 625).
  • Development-dependent promoters partly include the tissue-specific promoters, since the formation of individual tissues is naturally development-dependent.
  • promoters that are induced by biotic or abiotic stress, such as the pathogen-inducible promoter of the PRPL gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the cold-inducing alpha-amylase promoter from the potato (WO 96/12814) or the light-inducible PPDK promoter.
  • pathogen-inducible promoter of the PRPL gene Ward et al. (1993) Plant Mol Biol 22: 361-366
  • the heat-inducible hsp70 or hsp80 promoter from tomato US 5,187,267
  • the cold-inducing alpha-amylase promoter from the potato
  • WO 96/12814 the light-inducible PPDK promoter.
  • Pathogen-inducible promoters include the promoters of genes that are induced as a result of pathogen attack such as genes from PR proteins, SAR proteins, ⁇ -1, 3-glucanase, chitinase etc. (e.g. Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes et al. (1992) Plant Cell 4: 645-656; Van Loon (1985) Plant Mol Viral 4: 111-116; Marineau et al. (1987) Plant Mol Biol 9: 335 -342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2: 325-342; Somssich et al.
  • wound-inducible promoters such as that of the pinll gene (Ryan (1990) Ann Rev Phytopath 28: 425-449; Duan et al. (1996) Nat Biotech 14: 494-498; EP-A 375 091), the wunl and wun2 gene (US 5,428,148), the winl and win2 genes (Stanford et al. (1989) Mol Gen Genet 215: 200-208), the systemin gene (McGurl et al. (1992) Science 225: 1570- 1573), the WIPl gene (Rohmeier et al. (1993) Plant Mol Biol 22: 783-792; Eckelkamp et al. (1993) FEBS Letters 323: 73-76), of the MPI gene (Corderok et al. (1994) Plant J 6 2): 141-150) and the like.
  • the pinll gene Rost al. (1990) Ann Rev Phytopath 28: 425-449; Duan
  • Promoters that are particularly preferred are those that are specifically in nutrient. cell systems (syncytia) after nematode involvement. Examples are to be mentioned
  • Gemini virus V-sense promoters (WO 00/01832), in particular the promoters described by SEQ ID NO: 32, 33 or 34.
  • nematode-inducible promoters within the scope of this invention are described in WO 98/22599.
  • the regulatory areas i.e. the areas upstream of the ATG start codon
  • the promoter sequences described in US Pat. No. 6,395,963 are particularly preferred.
  • the promoter sequences described in WO 03/033651 are particularly preferred.
  • the promoter sequences described in JP 2001508661-A are particularly preferred.
  • nemotode-inducible promoters can be derived from genes, the induction of which is described as a result of a nematode attack. Examples include, but are not limited to: The pollenin promoter (Karimi M et al. (2002) J Nematol 34 (2): 75-79) and the promoter of a putative receptor serine / threonine protein kinase (Custers JHHV et al (2002) Mol Plant Pathol 3 (4): 239-249).
  • Pathogen- or stress-inducible as well as seed-, tuber-, root-, leaf- and / or stem-specific are particularly preferred, whereby pathogen-inducible (especially the nematode-inducible promoters mentioned above) are most preferred.
  • Another - particularly preferred - subject of the invention relates to expression constructs in which a nucleic acid sequence coding for a protein with sucrose isomerase activity in is functional linkage with a stress, pathogen, or wound-inducible promoter.
  • Stress, pathogenic or wound-inducible promoters generally mean all those promoters that can be induced by biotic or abiotic stress.
  • Abiotic stress means stimuli such as heat, cold, dryness, frost, moisture, salt, UV light, etc.
  • Biotic stress means infestation by a pathogen, the term "pathogen" encompassing all of the pathogens mentioned above.
  • the stimulus preferably has a strength that leads to a drop in yield of at least 5% compared to average yield values.
  • Inducible here means an increase in transcription activity by at least 50%, preferably at least 100%, particularly preferably at least 500%, very particularly preferably at least 1000%, most preferably at least 5000% in comparison to the expression activity of a non-stimulated plant.
  • Stress or pathogen inducible promoters include, by way of example, but not by limitation, the pathogen inducible promoter of the PRPl gene (Ward et al.
  • wound-inducible promoters such as that of the pinll gene (Ryan (1990) Ann Rev Phytopath 28: 425-449; Duan et al. (1996) Nat Biotech 14: 494-498), the wunl and wun2 genes ( US 5,428,148), the winl and win2 genes (Stanford et al. (1989) Mol Gen Genet 215: 200-208), the systemin gene (McGurl et al. (1992) Science 225: 1570-1573), des WIPl gene (Rohmeier et al.
  • Wound-inducible promoters are to be used to advantage when infested with feeding pathogens.
  • the average person skilled in the art can also easily find additional examples of genes with stress, pathogen or wound-induced expression patterns in the literature.
  • the average person skilled in the art is able to isolate further suitable promoters using routine methods. The person skilled in the art can thus identify appropriate regulatory nucleic acid elements with the aid of common molecular biological methods, for example hybridization experts or DNA-protein binding studies.
  • a differential expression library of, for example, pathogen-infected / infected and "normal" tissues is created.
  • promoters are isolated which have pathogen-inducible regulatory elements.
  • the person skilled in the art also has other methods based on PCR for the isolation of suitable stress-, pathogen- or wound-induced promoters.
  • Tissue-specific promoters in particular seed-specific, tuber-specific, fruit-specific and leaf-specific promoters and pathogen-induced promoters are particularly preferred.
  • Pathogen-induced promoters in particular nematode-induced promoters, are very particularly preferred.
  • promoters can be functionally linked to the nucleic acid sequence to be expressed, which enable transgenic expression in other plant tissues or in other organisms, such as, for example, E. coli bacteria.
  • all promoters described above can be used as plant promoters.
  • the nucleic acid sequences contained in the expression constructs or expression vectors can be functionally linked to further genetic control sequences in addition to a promoter.
  • the term “genetic control sequences” is to be understood broadly and means all those sequences which have an influence on the formation or the function of an expression construct. Genetic control sequences modify, for example, transcription and translation in prokaryotic or eukaryotic organisms.
  • the expression constructs preferably comprise a plant-specific promoter 5 'upstream of the respective nucleic acid sequence to be expressed transgenically and a terminator sequence 3' downstream as an additional genetic control sequence, and optionally further customary regulatory elements, each functionally linked to the transgenic nucleic acid sequence to be expressed.
  • Genetic control sequences also include further promoters, promoter elements or minimal promoters that can modify the expression-controlling properties. Genetic control sequences can, for example, also result in tissue-specific expression depending on certain stress factors. Corresponding elements are, for example, for water stress, abscisic acid (Lam E and Chua NH (1991) J Biol Chem 266 (26): 17131-17135) and heat stress (Schoffl F et al. (1989) Mol Gen Genetics 217 (2- 3): 246-53).
  • Genetic control sequences also include the 5 'untranslated regions, introns or non-coding 3' regions of genes such as the actin-1 intron, or the Adhl-S introns 1, 2 and 6 (general: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). It has been shown that these can play a significant role in regulating gene expression. It has been shown that 5 'untranslated sequences can increase the transient expression of heterologous genes.
  • An example of translation enhancers is the 5 'leader sequence from the tobacco mosaic virus (Gallie et al. (1987) Nucl Acids Res 15: 8693-8711) and the like. They can also promote tissue specificity (Rouster J et al. (1998) Plant J 15: 435-440).
  • the transgenic expression construct can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically.
  • the nucleic acid sequences to be expressed transgenically can be contained in one or more copies in the gene construct.
  • Polyadenylation signals suitable as control sequences are plant polyadenylation signals, preferably those which essentially comprise T-DNA polyadenylation signals from Agrobacterium tumefaciens.
  • Examples of particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
  • Control sequences are also to be understood as those which enable homologous recombination or insertion into the genome of a host organism or the removal from the genome allow.
  • homologous recombination for example, the coding sequence of a specific endogenous gene can be specifically exchanged for the sequence coding for a sucrose isomerase.
  • a transgenic expression construct and / or the transgenic expression vectors derived from it can contain further functional elements.
  • the term functional element is to be understood broadly and means all those elements which have an influence on the production, multiplication or function of the transgenic expression constructs according to the invention, the transgenic expression vectors or the transgenic organisms. Examples include, but are not limited to:
  • a) Selection markers that show resistance to biocides e.g. Metabolism inhibitors (such as 2-deoxyglucose-6-phosphate (WO 98/45456), antibiotics (such as e.g. kanamycin, G 418, bleomycin, hygromycin) or herbicides (such as gyphosate or phosphinotricin).
  • Metabolism inhibitors such as 2-deoxyglucose-6-phosphate (WO 98/45456)
  • antibiotics such as e.g. kanamycin, G 418, bleomycin, hygromycin
  • herbicides such as gyphosate or phosphinotricin
  • Particularly preferred selection markers are those which confer resistance to herbicides. Examples include: DNA sequences which code for phosphinothricin acetyl transferases (PAT) and inactivate glutamine synthase inhibitors (bar and pat gene), 5-enolpyruvylshikimate-3-phosphate synthase genes (EPSP synthase genes) which are resistant to Glyphosat ® (N- (phosphonomethyl) glycine), the gox gene (glyphosate oxidoreductase) coding for the glyphosate ® degrading enzymes, the deh gene (coding for a dehalogenase which inactivates dalapon), sulfonylurea and imidazolinone inactivating acetolactate synthases and bxn genes which degrade nitrodilynase enzymes for bromoxynil enzymes aasa gene conferring resistance to the antibiotic apectinomycin, the strepto
  • reporter proteins such as the "green fluorescence protein” (GFP) (Sheen et al. (1995) Plant Journal 8 (5 ): 777-784), chloramphenicol transferase, luciferase (Ow et al. (1986) Science 234: 856-859),
  • origins of replication which ensure an increase in the transgenic expression constructs or transgenic expression vectors according to the invention in, for example, E. coli.
  • a selectable marker which gives the successfully recombined cells resistance to a biocide (for example a herbicide), a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98 / 45456) or an antibiotic.
  • a biocide for example a herbicide
  • a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98 / 45456) or an antibiotic.
  • the selection marker allows the selection of the transformed cells from untransformed (McCormick et al. (1986) Plant Cell Reports 5: 81-84).
  • an expression construct according to the invention into an organism or cells, tissues, organs, parts or seeds thereof (preferably in plants or plant cells, tissues, organs, parts or seeds) can advantageously be implemented using vectors in which the transgenic Expression constructs are included.
  • Vectors can be, for example, plasmids, cos ide, phages, viruses or even agrobacteria.
  • the transgenic expression construct can be inserted into the vector (preferably a
  • Plasmid vector can be introduced via a suitable restriction site or a recombinase att sequence.
  • the resulting transgenic expression vector is first introduced into E. coli. Correctly transformed E. coli are selected, grown and the recombinant vector with those familiar to the person skilled in the art
  • transformation or transduction or transfection
  • the DNA or RNA can be introduced directly by microinjection or by bombardment with DNA-coated microparticles.
  • the cell can also be chemically permeabilized, for example with polyethylene glycol, so that the DNA can pass through
  • the DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes. Electroporation is another suitable method for introducing DNA, in which the cells are reversible by an electrical
  • 20 impulse can be permeabilized.
  • Appropriate methods are described (for example in Bilang et al. (1991) Gene 100: 247-250; Scheid et al. (1991) Mol Gen Genet 228: 104-112; Guerche et al. (1987) Plant Science 52: 111- 116; Neuhause et al. (1987) Theor Appl Genet 75: 30-36; Klein et al. (1987) Nature
  • a transformation can also be carried out by bacterial infection using Agrobacterium tumefaciens or Agrobacterium rhizogenes. 45
  • the Agrobacterium -mediated transformation is best suited for dicotyledonous plant cells. The procedures are described for example by Horsch RB et al. (1985). Science 225: 1229f).
  • the transgenic expression construct has to be integrated into special plasmids, either into a shuttle or intermediate vector or a binary vector. If a Ti or Ri plasmid is used for the transformation, at least the right boundary, but mostly the right and the left boundary of the Ti or Ri plasmid T-DNA as flanking region, is connected to the transgenic expression construct to be introduced.
  • Binary vectors are preferably used. Binary vectors can replicate in both E.coli and Agrobacterium. They usually contain a selection marker gene for the
  • transformed plants e.g. the nptll gene, which confers resistance to kanamycin
  • linker or polylinker flanked by the right and left T-DNA delimitation sequence In addition to the T-DNA restriction sequence, they also contain a selection marker that enables selection of transformed E. coli and / or agrobacteria (e.g. the nptlll gene, which confers resistance to kanamycin).
  • Corresponding vectors can be transformed directly into Agrobacterium (Holsters et al. (1978) Mol Gen Genet 163: 181-187).
  • the Agrobacterium which acts as the host organism in this case, should already contain a plasmid with the vir region. This is necessary for the transfer of T-DNA to the plant cell.
  • An Agrobacterium transformed in this way can be used to transform plant cells.
  • the use of T-DNA for the transformation of plant cells has been intensively investigated and described (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters BV, Alblasserda, Chapter V; An et al. (1985) EMBO J 4: 277-287).
  • Various binary vectors are known and some are commercially available, for example pBI101.2 or pBIN19 (Clontech Laboratories, Inc. USA).
  • Direct transformation techniques are suitable for every organization and cell type.
  • no special requirements are placed on the plasmid used.
  • Simple plasmids such as the pUC series can be used.
  • Stably transformed cells ie those which contain the inserted DNA integrated into the DNA of the host cell, can be selected from untransformed cells if a selectable marker is part of the inserted DNA.
  • Any gene that can confer resistance to antibiotics or herbicides can act as a marker (see above).
  • Transformed cells that express such a marker gene are able to survive in the presence of concentrations of a corresponding antibiotic or herbicide that kill an untransformed wild type. Examples are mentioned above and preferably comprise the bar gene which confers resistance to the herbicide phosphinotricin (Rathore KS et al.
  • Generations should be cultivated to ensure that genomic integration is stable and inheritable.
  • the above-mentioned methods are described, for example, in Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R Wu, Academic Press, p.128-143 and in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42: 205-225.
  • the expression construct is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al. (1984) Nucl Acids Res 12: 8711f).
  • a whole plant can be obtained using methods known to those skilled in the art. This is based on callus cultures, for example. The formation of shoots and roots can be induced in a known manner from these still undifferentiated cell masses. The sprouts obtained can be planted out and grown.
  • nucleic acid sequence coding for a protein with sucrose isomerase activity a) the nucleic acid sequence coding for a protein with sucrose isomerase activity
  • Natural genetic environment means the natural chromosomal locus in the organism of origin or the presence in a genomic library.
  • SEQ ID NO: 1 nucleic acid sequence coding for sucrose isomerase from Protaminobacter rubrum 5
  • SEQ ID NO: 2 amino acid sequence coding for sucrose isomerase from Protaminobacter rubrum
  • SEQ ID NO: 3 nucleic acid sequence coding for sucrose isomerase from sucrose isomerase from Erwinia rhaponthici (N-terminal fragment)
  • SEQ ID NO: 4 amino acid sequence coding for sucrose isomerase from sucrose isomerase from Erwinia 15 rhaponthici (N-terminal fragment)
  • SEQ ID NO: 5 nucleic acid sequence coding for sucrose isomerase from Erwinia rhaponthici
  • SEQ ID NO: 6 amino acid sequence coding for sucrose isomerase from Erwinia rhaponthici
  • SEQ ID NO: 7 nucleic acid sequence coding for sucrose isomerase from Protaminobacter rubrum (variant) 25
  • SEQ ID NO: 8 amino acid sequence coding for sucrose isomerase from Protaminobacter rubrum (variant)
  • SEQ ID NO: 9 nucleic acid sequence coding for sucrose isomerase from Enterobacter species SZ62
  • SEQ ID NO: 10 amino acid sequence coding for sucrose isomerase from Enterobacter species SZ62
  • SEQ ID NO: 11 Nucleic acid sequence coding for sucrose isomerase from Serratia plymuthica
  • SEQ ID NO: 12 amino acid sequence coding for sucrose isomerase from Serratia plymuthica 40
  • SEQ ID NO: 13 nucleic acid sequence coding for fusion protein from sucrose isomerase from Erwinia rhapontici (pall) and signal peptide sequence of the proteinase inhibitor II gene 14.
  • SEQ ID NO: 15 nucleic acid sequence (complete cDNA with untranslated region) coding for sucrose isomerase (iso involvedose synthase) from Klebsiella sp. LX3 10
  • SEQ ID NO: 17 nucleic acid sequence (open reading frame) coding for sucrose isomerase (isomaltulose synthase) from Klebsiella sp. LX3
  • SEQ ID NO: 19 nucleic acid sequence coding for sucrose isomerase from Enterobacter species SZ62 25 (fragment)
  • SEQ ID NO: 20 amino acid sequence coding for sucrose isomerase from Enterobacter species SZ62 (fragment) 30
  • SEQ ID NO: 21 nucleic acid sequence coding for sucrose isomerase from Pseudomonas mesoacidophila MX45 (fragment)
  • SEQ ID NO: 23 nucleic acid sequence coding for
  • SEQ ID NO: 24 nucleic acid sequence coding for ⁇ 0.3TobRB7
  • SEQ ID NO: 26 oligonucleotide primer FB84
  • SEQ ID NO: 27 oligonucleotide primer FB 97
  • SEQ ID NO: 28 oligonucleotide primer Leml
  • SEQ ID NO: 29 oligonucleotide primer Lem2
  • SEQ ID NO: 30 oligonucleotide primer Tobl
  • SEQ ID NO: 31 oligonucleotide primer Tob2
  • SEQ ID NO: 32 nucleic acid sequence coding for V-sense
  • Wheat Dwarf Virus promoter (GenBank Acc.-No .: AX006849; Sequence 1 from WO 00/01832) 25
  • SEQ ID NO: 33 nucleic acid sequence coding for V-sense
  • Maize streak virus promoter (GenBank Acc.- No .: AX006850; Sequence 2 from WO 00/01832)
  • SEQ ID NO: 34 nucleic acid sequence coding for V-sense
  • Pepper huasteco virus promoter (GenBank Acc.-No .: AX006851; Sequence 3 from WO 00/01832)
  • SEQ ID NO: 35 nucleic acid sequence coding for sucrose 35 isomerase from Serratia plymuthica
  • SEQ ID NO: 36 amino acid sequence coding for sucrose isomerase from Serratia plymuthica
  • Fig. 1 Schematic representation of the expression cassette in the plasmid p35S-cwIso.
  • 35S 35S Cauliflower Mosaic Virus (CaMV) promoter SP: signal peptide of the proteinase inhibitor II gene pall: sucrose isomerase gene from Erwinia rhapontici
  • OCS polyadenylation signal of the octopine synthase gene EcoRI, Asp718, BamHI, Sall, Hindlll: restriction sites
  • Fig. 2 Schematic representation of the expression cassette in the plasmid pB33-cwIso. Abbreviations:
  • B33 promoter of the class I patatin gene
  • B33 SP signal peptide of the proteinase inhibitor II gene pall: sucrose isomerase gene from Erwinia rhapontici
  • OCS polyadenylation signal of the octopine synthase gene EcoRI, Asp718, BamHI, Sall, Hindlll: restriction sites Detailed description of the individual Elements see below.
  • Fig. 3 Western blot analysis of pall expressing potato tubers of various transgenic lines. 20 ⁇ g of soluble protein per lane were applied to an SDS gel, separated and transferred to nitocellulose. The filter was then hybridized with a polyclonal Pall antibody. The expression in tubers of wild-type potato plants (wt) was compared with that in potato lines 5, 12, 26 and 33.
  • Fig. 4 HPLC analysis of soluble carbohydrates in plants expressing sucrose isomerase.
  • A Sugar standards.
  • B Extract of a transgenic tuber.
  • C Extract of a wild-type tuber.
  • Fig. 5 Content of palatinose, sucrose, glucose and starch in wild-type potato tubers (wt) and potato tubers of various transgenic lines (3 to 37) that express the chimeric pall gene in the cell wall.
  • the values of the wilt type (wt; striped columns) and the transgenic potato tubers (3 to 37; black columns) correspond to the mean values of four measurements + standard deviation.
  • a transgenic but pall non-expressing line was analyzed.
  • Fig. 6 Infection of potato tubers with Alternaria solani. Potato slices of wild-type tubers and tubers of pall expressing transgenic lines 5 and 33 at the time
  • Fig. 7 Schematic representation of the expression cassette in the plasmid pLemmi9-cwIso. Abbreviations:
  • Lemmi9 Lemmi9 promoter from tomato (Lycopersicon esculentum) SP: signal peptide of the proteinase inhibitor II gene pall: sucrose isomerase gene from Erwinia rhapontici OCS: polyadenylation signal of the octopine synthase gene EcoRI, Asp718, BamHI, Sall, Hindlll: Description of the restriction sites individual elements see below.
  • Fig. 8 Schematic representation of the expression cassette in the plasmid p ⁇ 0.3TobRB7-cwIso.
  • OCS polyadenylation signal of the octopine synthase gene EcoRI, Asp718, BamHI, Sall, Hindlll: restriction sites. Detailed description of the individual elements see below.
  • oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the cloning steps carried out in the context of the present invention such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, Multiplication of phages and sequence analysis of recombinant DNA - as with Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6.
  • Agrobacterium tumefaciens was carried out according to the method of Hofgen and Willmitzer ((1988) Nucl. Acids Res. 16: 9877).
  • the Agrobacteria were grown in YEB Medium (Vervliet et al. (1975) Gen Virol 26: 33-33).
  • the sequencing of recombinant DNA molecules is carried out using a laser fluorescence DNA sequencer from MWG-Licor using the method of Sanger (S nger et al. (1977) Proc Natl Acad Sei USA 74: 5463-5467).
  • Example 1 PCR amplification of a subfrag of sucrose isomerase from Erwinia rhaponitici
  • sucrose isomerase A subfragment of sucrose isomerase was cloned by means of polymerase chain reaction (PCR). Genomic DNA from E. rhapontici (DSM 4484) was used as template material and was isolated according to the standard protocol. The amplification was carried out using the following specific primers, which were derived from a sucrose isomerase sequence of the prior art:
  • Primer FB83 comprises bases 109 to 127 and primer FB84 bases 1289 to 1306 of the coding region of the sucrose isomerase gene from E. rhapontici.
  • the PCR reaction mixture (100 ⁇ l) contained:
  • dNTPs dATP, dCTP, dGTP, dTTP
  • the mixture was heated to 95 ° C. for 5 min.
  • the polymerization steps (30 cycles) were carried out in an automatic T3 thermal cycler (Biometra) according to the following program: denaturation 95 ° C (1 minute), attachment of the primers at 55 ° C (40 seconds), polymerase reaction at 72 ° C ( 2 minutes) .
  • the fragment obtained was cloned into the vector pCR blunt (Invitrogen). The identity of the amplified DNA was verified by sequence analysis.
  • the amplified subfragment can also be used as a hybridization probe for the isolation of further sucrose isomerase DNA sequences from other organisms or as a probe in the analysis of transgenic cells and plants.
  • Example 2 PCR amplification of a sucrose isomerase from Erwinia rhaponitici
  • a Erwinia rhapontici genomic library was screened according to standard methods. Subsequent sequence analyzes allowed the determination of the open reading frame of sucrose isomerase.
  • the oligonucleotide primers FB83 and FB97 were derived from this sequence.
  • sucrose isomerase The complete open reading frame of sucrose isomerase was cloned by means of polymerase chain reaction (PCR). Genomic DNA from E. rhapontici (DSM 4484) was used as template material and was isolated according to the standard protocol. The amplification was carried out using the following specific primers
  • Primer FB83 comprises bases 109 to 127 and primer FB97 bases 1786 to 1803 of the coding region of the sucrose isomerase gene.
  • the primers additionally carry the following for cloning the amplified DNA into expression vectors
  • the PCR reaction mixture (100 ⁇ l) contained:
  • dNTPs dATP, dCTP, dGTP, dTTP
  • Pfu DNA polymerase dATP, dCTP, dGTP, dTTP
  • dATP, dCTP, dGTP, dTTP dATP, dCTP, dGTP, dTTP
  • Pfu DNA polymerase - 2.5 units
  • the mixture was heated to 95 ° C. for 5 min.
  • the polymerization steps (30 cycles) were carried out in an automatic T3 thermal cycler (Biometra) according to the following program: denaturation 95 ° C (1 minute), attachment of the primers at 55 ° C (40 seconds), polymerase reaction at 72 ° C ( 2 minutes) .
  • the amplified sucrose isomerase fragment was cloned into the vector pCR blunt (Invitrogen), whereby the plasmid pCR-SucIso2 (without translation start) was obtained. The identity of the amplified DNA was verified by sequence analysis.
  • the PCR fragment thus contains the sequence of a E. rhapontici sucrose isomerase extending from nucleotide 109-1803 of the sucrose isomerase gene.
  • a DNA sequence coding for a sucrose isomerase was isolated from the plasmid pCR-SucIso2 and provided with the 35S promoter of the Cauliflower Mosaic Virus, which mediates a constitutive expression in transgenic plant cells and a plant termination signal.
  • the plant termination signal contains the 3 'end of the polyadenylation site of the octopine synthase gene.
  • sucrose isomerase gene Before the coding sequence of the sucrose isomerase gene, a signal peptide of a vegetable gene (proteinase inhibitor II gene from potato (Keil et al. (1986) Nucl Acids Res 14: 5641-5650; Genbank) necessary for inclusion in the endoplasmic reticulum was also added Acc. -No.: X04118) by cutting out the sucrose isomerase fragment from the construct pCR-SucIso2 via the restriction sites BamHI and Sall and ligating it into a BamHI / Sall-opened pMA vector.
  • the vector pMA represents a modified form of the Vector pBinAR (Höfgen and Willmitzer (1990) Plant Sei. 66: 221-230).
  • the plant termination signal contains the 3 '- End of the polyadenylation site of the octopine synthase gene.
  • the expression cassette in the plasmid p35S-cwIso thus consists of fragments A, B and C (FIG. 1):
  • Fragment A contains the 35S promoter of the Cauliflower Mosaic Virus (CaMV). It contains a fragment which comprises the nucleotides 6909 to 7437 of the CaMV (Franck (1980) Cell 21: 285).
  • Fragment B contains nucleotides 923 to 1059 "of a proteinase inhibitor II gene from the potato (Keil el al., Supra), which is linked via a linker with the sequence ACC GAA
  • TTG GG are fused to the sucrose isomerase gene from Erwinia rhapontici, which comprises nucleotides 109 to 1803.
  • a signal peptide of a vegetable protein necessary for the uptake / on proteins into the endoplasmic reticulum (ER) is fused N-terminally to the sucrose isomerase sequence.
  • Fragment C contains the polyadenylation signal of the octopine synthase gene (Dhaese et al. (1983) EMBO J. 2: 419-426. GenBank Acc.-No .: Z37515, nucleotides 1344 to 1533).
  • sucrose isomerase the coding region of sucrose isomerase from E. rhapontici is under constitutive control, the gene product is taken up in the ER and then secreted.
  • the plasmid pB33-cwIso was prepared using the binary plasmid p35S-cwIso.
  • the 35S promoter was exchanged for the promoter of the class I patatin gene (Rocha-Sosa et al (1989) EMBO J 8: 23-29).
  • the expression cassette of this plasmid pB33-cwIso thus consists of the three fragments A, B and C (see FIG. 2):
  • Fragment A contains the region -1512 to +14 relative to the transcription initiation site of the class I patatin gene.
  • the promoter region was ligated as a Dral fragment into the vector pUCI8 cut with SstI, the ends of which had been filled in using the T4 DNA polymerase and thus smoothed.
  • the fragment with the restriction enzymes EcoRI and Asp718 was then cut out again from the vector pUC18 and cloned into the plasmid p35S-cwIso, from which the 35S CaMV promoter had previously been deleted after partial restriction with the enzymes EcoRI and Asp718.
  • Fragment B contains nucleotides 923 to 1059 one
  • Proteinase inhibitor II gene from the potato which is linked to the sucrose isomerase gene from E. rhapontici via a linker with the sequence ACC GAA TTG GG
  • Nucleotides 109 to 1803 comprises, are fused. This makes it necessary for the inclusion of proteins in the ER Signal peptide of a vegetable protein fused N-terminal to the sucrose isomerase sequence.
  • Fragment C contains the polyadenylation signal of the octopine synthase gene (Dhaese et al. (1983) EMBO J 2: 419-426; GenBank Acc.-No .: Z37515, nucleotides 1344 to 1533).
  • Example 5 Potato transformation and selection of transgenic plants
  • 25 lines could be detected pall expression in the Western blot.
  • a Western blot of representative lines is shown in FIG. 3.
  • Example 6 HPLC analysis of the transgenic pB33-cwIso potatoes
  • tuber extracts of the transgenic lines were examined by means of HPLC with regard to their content of soluble carbohydrates.
  • the HPLC analysis was carried out according to the in Börnke et al. (2002) Planta 214: 356-364.
  • the production of the tuber extracts is described in Sonnewald et al. (1992) Plant J 2: 571-581.
  • the results of the HPLC analysis are shown in FIG. 4.
  • the functionality of the "Feeding cell” specific Lemmi9 promoter has already been demonstrated (Escobar C et al. (1999) 45 Mol Plant Microbe Interact 12: 440-449).
  • the plasmid pLemmi9-cwlso contains three fragments A, B and C (see FIG. 7):
  • A) Fragment A contains the Lemmi9 promoter from tomato (Lycopersicon esculentum).
  • the fragment contains the sequence of 1417 bp before the translation start (ATG) of the Lemmi9 gene and was characterized as a functional promoter fragment (Escobar et al. (1999) Mol Plant Microbe Interact 12: 440-449, Accession Z69032). It was amplified by PCR from tomato genomic DNA (Lycopersicon esculentum). The amplification was carried out using the following specific primers:
  • Lem2 5 'atcGGTACCTGCTTCTGGAACGAAAGGG 3' (SEQ ID NO: 29)
  • the primers additionally carry the following restriction sites: primer Leml, EcoRI; Primer Lem2, Asp718.
  • the PCR reaction mixture (100 ⁇ l) contained:
  • dNTPs dATP, dCTP, dGTP, dTTP
  • Pfu DNA polymerase dATP, dCTP, dGTP, dTTP
  • dATP, dCTP, dGTP, dTTP dATP, dCTP, dGTP, dTTP
  • Pfu DNA polymerase - 2.5 units
  • the mixture was heated to 95 ° C. for 5 min.
  • the polymerization steps (30 cycles) were carried out in an automatic T3 thermocycler (Biometra) according to the following program: denaturation 95 ° C. (1 minute), attachment of the primers at 56 ° C. (40 seconds), polymerase reaction at 72 ° C (3 minutes).
  • the amplicon was digested with the restriction enzymes EcoRI and Asp718 and cloned into the corresponding restriction sections of the polylinker from pBluescript (Stratagene). The identity of the amplified DNA was verified by sequence analysis.
  • the fragment was then digested with the restriction enzymes EcoRI and Asp718 and cloned into the plasmid pB33-cwIso, from which the B33 promoter had previously been deleted after partial restriction with the enzymes EcoRI and Asp718.
  • Fragment B contains nucleotides 923 to 1059 of the
  • Proteinase inhibitor II gene from the potato (Keil et al. (1986) Nucl Acids Res 14: 5641-5650; Genbank Acc.No .: X04118), which is linked to the sucrose isomerase via a linker with the sequence ACC GAA TTG GG. Gene from E. rhapontici, which the Nucleotides 109 to 1803 comprises, are fused. As a result, a signal peptide of a vegetable protein necessary for the incorporation of proteins into the ER is fused N-terminally to the sucrose isomerase sequence.
  • Fragment C contains the polyadenylation signal of the octopine synthase gene (Dhaese et al. (1983) EMBO J 2: 419-426. Accession Z37515, nucleotides 1344 to 1533).
  • Potato cells were transformed as described above using Agrobacterium -mediated gene transfer with the construct pLemmi9-cwIso or pLemmi9-GUS and whole potato plants were regenerated.
  • the promoter of the class I patatin gene B33 in the plasmid pB33-cwIso was replaced by the ⁇ 0.3TobRB7 promoter (Opperman et al. (1994) Science 263: 221-223) and the fusion protein from proteinase inhibitor signal peptide and the sucrose isomerase thus placed under feeding cell-specific control.
  • the functionality of the "Feeding cell” specific ⁇ 0.3TobRB7 promoter has already been demonstrated (Opperman et al. (1994) Science 263: 221-223).
  • the plant termination signal includes the 3 'end of the polyadenylation site of the octopine synthase gene.
  • the plasmid p ⁇ O .3TobRB7-cwIso contains three fragments A, B and C (Fig. 8):
  • Fragment A contains the ⁇ 0.3TobRB7 promoter from Nicotiana tabacum. The fragment contains the region from -298 bp to +76 of the TobBR7 gene and has been characterized as a functional promoter fragment (Opperman et al. (1994) Science. 263: 221-223, Acc.-No .: S45406). It was generated from genomic DNA from Nicotiana tabacum Var. Samsun NN amplified. The amplification was carried out using the following specific primers:
  • Tob2 5 '-GGGTACCAGTTCTCACTAGAAAAATGCCCC-3' (SEQ ID NO: 31)
  • the primers additionally carry the following restriction sites: primer Tobl, EcoRI; Primer Tob2, Asp718.
  • the PCR reaction mixture (100 ⁇ l) contained:
  • dNTPs dATP, dCTP, dGTP, dTTP
  • the mixture was heated to 95 ° C. for 5 min.
  • the polymerization steps (30 cycles) were carried out in an automatic T3 thermocycler (Biometra) according to the following program: denaturation 95 ° C. (1 minute), attachment of the primers at 56 ° C. (40 seconds), polymerase reaction at 72 ° C (3 minutes).
  • the amplicon was digested with the restriction enzymes EcoRI and Asp718 and cloned into the corresponding restriction sites of the polylinker from pBluescript (Stratagene). The identity of the amplified DNA was verified by sequence analysis.
  • the fragment was then digested with the restriction enzymes EcoRI and Asp718 and cloned into the plasmid pB33-cwIso from which the B33 promoter had previously been deleted after restriction with the enzymes EcoRI and Asp718.
  • Fragment B contains nucleotides 923 to 1059 one
  • Proteinase inhibitor II gene from the potato (Keil et al. (1986) Nucl. Acids Res. 14: 5641-5650; Genbank Acc. O.: X04118), which binds to the sucrose isomerase gene from E. rhapontici, which comprises nucleotides 109 to 1803 are fused.
  • a signal peptide of a vegetable protein necessary for the uptake of proteins in the ER is fused N-terminally to the sucrose isomerase sequence.
  • C) Fragment C contains the polyadenylation signal - of the octopine synthase gene (Dhaese et al. (1983) EMBO J 2: 419-426. Accession Z37515, nucleotides 1344 to 1533).
  • Potato cells were analyzed as described above
  • Agrobacterium-mediated gene transfer was transformed with the construct p ⁇ 0.3TobRB7-cwIso or p ⁇ O .3TobRB7-GUS and potato plants were regenerated
  • Transformed plants are confirmed with the help of npt-specific primers via PCR.
  • the cuttings from transgenic lines which express the sucrose isomerase under the control of a "feeding cell" -specific promoter are first grown on medium with kanamycin and later transferred to pots with sterile earth. The plants are grown at 22 ° C. (16 h day / 8 h night) The infection of the plants is carried out as follows: 3 ml of a suspension (approx.
  • Root bile nematodes 500 J2 larvae of root bile nematodes (Meloidogyne species) are inoculated into the soil directly next to the stems of the plants Plants are removed from the pots after 2 to 3 weeks and the roots are washed, then the entire root of each plant is examined using a stereo microscope and the number of galls on the root system of transgenic plants and wild-type plants is compared.
  • Transgenic plants which express the sucrose isomerase under the control of a "feeding cell" -specific promoter show a marked resistance to endoparasitic root nematodes. The number of galls on the root system of these plants after nematode attack is significantly reduced compared to non-transformed plants.
  • Example 11 In vitro nematode resistance test
  • Plants Potato (Solanum tuberosum L. cv. Solara)
  • Nematodes Meloidogyne incognita
  • Murashige & Skoog medium (MS; solidified with agar) consisting of micro and 1/2 macro elements including vitamins, sucrose and diachin agar (0.7%) pH 5.8.
  • Plants Sterile transgenic potato plants (Solanum tuberosum L. cv. Solara transformed with p ⁇ 0.3TobRB7-cwIso or pLemmi9-cwIso) and corresponding transgenic control plants (Solanum tuberosum L. cv. Solara transformed with p ⁇ O .3TobRB7-GUS or pLemmi9 ) were provided in jars with several plants each. Starting from each plant, three lines were generated using stem sections and subsequent cultivation on modified Murashige & Skoog medium (MSm; solidified with agar). Each line was planted on a separate 9 cm petri dish. The plants were grown for 2 to 3 weeks under a light / dark regime of 16h light / 8h dark at 25 ° C.
  • MSm Murashige & Skoog medium
  • Nematodes were obtained from sterile cultures. M. incognita was grown monoxenically in the dark at 25 ° C. on root explants of Cucumis sativus, as described by Wyss et al. (Wyss U et al. (1992) Nematologica 38: 98-111). Egg bags were collected from the sterile cultures and placed on a sieve in a glass funnel with sterile water. The funnels were connected with a plastic tube, which was closed with a clamp. Hatched hatchlings were obtained by opening the clamp and draining the suspension into small vessels. The viscosity of the suspension was increased by adding a suspension of sterile "Gel Rite". The density of the nematodes in the suspension was determined and normalized by adding sterile water.
  • the potato lines transformed with p ⁇ O .3TobRB7-cwIso or pLemmi9-cwIso show a significant reduction in the formation of bile. This means a significant reduction in the damage caused by nematodes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch - bevorzugt pathogeninduzierbare - Expression einer Saccharoseisomerase.

Description

Verfahren zum Erreichen einer Pathogenresistenz in Pflanzen
Beschreibung
Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung einer Pathogenresistenz in Pflanzen durch - bevorzugt pathoge- ninduzierbare - Expression einer Saccharoseisomerase.
Palatinose (Isomaltulose) und Trehalulose werden großtechnisch aus Saccharose durch eine enzymatische Umlagerung unter Verwendung von immobilisierten Bakterienzellen hergestellt. Dabei wird die zwischen den Monosacchariden des Disaccharids Saccharose bestehende (αl->ß2-glykosidische Bindung zu einer αl->α6-Bindung bei Palatinose bzw. einer αl->αl-Bindung bei Trehalulose isomeri- siert . Diese Umlagerung von Saccharose zu den beiden nicht-kario- genen Disacchariden erfolgt unter Katalyse des bakteriellen Enzyms Saccharoseisomerase, auch Saccharosemutase genannt. Entsprechende Sequenzen sind beispielsweise in WO 95/20047 (US 5,786,140; US 5,985,622) beschrieben.
Ferner sind beschrieben Saccharoseisomerasen aus Erwinia rhapontici (pall Gen, GenBank Acc.-No.: AF279281; Börnke et al .
(2001) J Bacteriol 183 (8) :2425-2430) und Klebsiella sp. Strain LX3 (GenBank Acc.-No.: AY040843; Zhang et al. (2002) Appl Environ Microbiol (68) :2676-2682) .
WO 01/59136 beschreibt Verfahren zur direkten Herstellung nicht- kariogener Zucker direkt in transgenen Pflanzen, die rekombinante Nukleinsäuremoleküle kodierend für Proteine mit der enzymatischen Aktivität einer Saccharoseisomerase enthalten. Beschrieben sind Expressionskonstrukte für besagte Saccharoseisomerase zur Expression in Pflanzen, sowie die mit denselben transformierten transgenen Pflanzen.
WO 01/59135 beschreibt Verfahren zur Beeinflussung der Pollenentwicklung unter Verwendung von antheren-, tapetum oder pollenspezifisch exprimierten Saccharoseisomerasen. Die konstitutive Expression der Saccharoseisomerase in Pflanzen hat jedoch nach- teilige Wirkung auf das Wachstum der Pflanze (Börnke F et al .
(2002) Planta 214:356-364) .
Ziel biotechnologischer Arbeiten an Pflanzen ist die Herstellung von Pflanzen mit vorteilhaften, neuen Eigenschaften zum Beispiel zur Steigerung der landwirtschaftlichen Produktivität, zur Qualitätssteigerung bei Nahrungsmitteln oder zur Produktion bestimmter Chemikalien oder Pharmazeutika. Oft sind die natürlichen Abwehr- mechanismen der Pflanze gegen Pathogene unzureichend. Allein Pilzerkrankungen führen zu Ernteverlusten in der Höhe von vielen Milliarden US-$ jährlich. Die Einführung fremder Gene aus Pflanzen, Tieren oder mikrobiellen Quellen kann die Abwehr verstärken. Beispiele sind der Schutz gegen Insektenfrass in Tabak durch
Expression von Bacillus thuringiensis Endotoxinen unter Kontrolle des 35 S CaMV Promoters (Vaeck et al. (1987) Nature 328:33-37) oder der Schutz des Tabaks gegen Pilzbefall durch Expression einer Chitinase aus der Bohne unter Kontrolle des CaMV Promoters (Broglie et al. (1991) Science 254:1194-1197). Die meisten der beschriebenen Ansätze gewähren jedoch nur eine Resistenz gegen ein einzelnes Pathogen oder gegen ein schmales Spektrum von Pathogenen.
Es gibt nur wenige Ansätze, die Pflanzen eine Resistenz gegen ein breiteres Spektrum von Pathogenen, vor allem Pilzpathogene, verleihen. Die systemische erworbene Resistenz ("systerαic acquired resistance"; SAR) - ein Abwehrmechanismus bei verschiedenen Pflanze/ athogen-Interaktionen - kann durch Applikation von endo- genen Botenstoffen wie Jasmonsäure (JA) oder Salicylsäure (SA) vermittelt werden (Ward, et al. (1991) Plant Cell 3:1085-1094; Uknes, et al. (1992) Plant Cell 4 (6) : 645-656) . Ähnliche Effekte können auch durch synthetische Verbindungen wie 2, 6-Dichloriso- nikotinsäure (INA) oder Benzo (1, 2 , 3) thiadiazol-7-thiocarbonsäure- S-methylester (BTH; Bion®) (Friedrich et al. (1996) Plant J 10(1):61-70; Lawton et al . (1996) Plant J. 10:71-82) bewirkt werden. Auch die Expression der im Rahmen eines SAR hochregulierten "pathogenesis related" (PR) Proteine vermag zum Teil eine Pathogenresistenz zu bewirken.
In Gerste ist bereits seit längerem der Mlo-Locus als negativer Regulator der Pathogenabwehr beschrieben. Der Verlust oder Funktionsverlust ( "loss-of-function" ) des Mio-Gens bedingt eine erhöhte und vor allem rassen-unspezifische Resistenz beispiels- weise gegen zahlreiche Arten von Mehltau (Büschges R et al .
(1997) Cell 88:695-705; Jorgensen JH (1977) Euphytica 26:55-62; yngkjaer MF et al. (1995) Plant Pathol 44:786-790). Das Mio- Gen wurde erst kürzlich kloniert (Büschges R et al . (1997) Cell : 695-705; WO 98/04586; Schulze-Lefert P, Vogel J (2000) Trends Plant Sei. 5:343-348). Verschiedene Verfahren unter Verwendung von Mio-Genen zum Erzielen einer Pathogenresistenz sind beschrieben (WO 98/04586; WO 00/01722; WO 99/47552). Unklar ist, ob ein Mlo-basierter Ansatz auch in dikotyledonen Pflanzen praktikabel ist. Generell leben pflanzenpathogene Pilzarten saprophy-tisch oder parasitisch. Letztere sind - zumindest in bestimmten Phasen ihres Lebenszyklus - auf ein Wirkstoffangebot (z.B. ein Angebot an Vitaminen, Kohlenhydraten usw. ) angewiesen, wie es in dieser Form nur von lebenden Pflanzenzellen bereitgestellt werden kann. Der Fachmann unterscheidet parasitäre Pilze in nekrotrophe, hemibio- trophe und biotrophe. Bei nekrotrophen pilzlichen Parasiten führt die Infektion zur GewebeZerstörung und damit zum Tod der Pflanze. Diese Pilze sind meist nur fakultativ parasitär; sie können sich ebenso gut saprophytisch in totem oder absterbendem Pflanzenmaterial vermehren.
Biotrophe pilzliche Parasiten sind dadurch charakterisiert, dass Parasit und Wirt, zumindest über längere Zeiträume hinweg, zusammenleben. Der Pilz entnimmt dem Wirt Nährstoffe, tötet ihn jedoch nicht ab. Die meisten biotrophen Pilze sind obligate Parasiten. Hemibiotrophe Pilze leben zeitweise biotroph und töten den Wirt zu einem späteren Zeitpunkt ab, d.h. sie wechseln in eine nekrotrophe Phase.
Einer weitere große Gruppe biotropher pflanzlicher Pathogene von enormer agro-ökonomischer Bedeutung stellen Nematoden dar. Pflanzenpathogene Nematoden entnehmen ihre Nahrung aus den äußeren pflanzlichen Gewebeabschnitten (Ektoparasiten) oder nach dem Eindringen in die Pflanze aus tiefer liegenden Zellschichten (Endoparasiten) . Bei den endoparasitären Wurzelnematoden unterscheidet man nach ihrer Lebens- und Ernährungsweisen zwischen zwei Gruppen: Zystenbildende Nematoden (Heterodera- und Globo- dera-Arten) und Würzelgallennematöden (Meloidogyne-Arten) . Bei beiden Gruppen handelt es sich um obligate biotrophe Parasiten, die in den Wurzeln die Bildung spezieller Nährzellen induzieren. Bei diesen Nährzellen handelt es sich um Pflanzenzellen, deren Stoffwechsel von den Nematoden so verändert wurde, dass sie gezielt der Ernährung der sich entwickelten Nematoden dienen. Endo- parasitäre Wurzelnematoden sind in ihrer Entwicklung von diesen Nährzellen absolut abhängig (zur Übersicht siehe Sijmons et al. (1994) Ann. Rev. Phytopathol . 32: 235-259). Zystenbildende Nematoden (Heterodera- und Globodera-Arten) verbleiben an der Parasitierungsstelle in der Wurzel (sessile Endoparasiten) wandeln die sie umgebenden Zellen durch Protoplastenfusion bei teilweiser Zellwandauflösung in Syncytien um. Diesen Nährzellen, die im Zentralzylinder der Wurzel gebildet werden, entnehmen die Nematoden ihre Nahrung und schwellen dabei stark an. Wurzel- gallennematoden (Meloidogyne-Arten) verbleiben ebenfalls an der einmal gewählten Parasitierungsstelle und veranlassen die Bildung von Nährzellen, welche aber, anders als bei den Zystenbildenden Nematoden aus mehreren, durch synchrone Kernteilungen ohne Zeil- wandbildung sich entwickelnden vielkernigen Riesenzellen bestehen (Fenoll and Del Campo (1998) Physiol. Mol. Biol. Plants 4:9-18). Die Bildung der Nährzellensysteme wird durch die Signalmoleküle im Speichel der Nematoden induziert. Es ist bekannt, dass während dieser Differenzierungsprozesse eine Reihe von Pflanzengenen ihr Expressionsprofil stark verändern. In der Literatur sind Promotoren beschrieben, die speziell in Nährzellsystem (Syncytien) induziert werden. Beispielhaft seien zu nennen der Δ0.3 TobRB7 Promotor aus Tabak (Opperman et al . (1994) Science 263:221-223, der Lemmi9 Promotor aus Tomate (Ecobar et al. (1999) Mol Plant Microbe Interact 12: 440-449), sowie Geminivirus V-sense Promotoren (WO 00/01832).
WO 94/10320 beschreibt DNA Konstrukte zur Expression von Genen, die als Inhibitoren endogener Pflanzengene wirken (z.B. ATP Synthase, Cytochrom C, Pyruvatkinase) , unter der Kontrolle von Nematoden-induzierter Promotoren in den Syncytien.
Trotz einiger Fortschritte in manchen Bereichen der Pflanzen- biotechnologie, sind die Erfolge beim Erzielen einer Pathogenresistenz in Pflanzen sehr begrenzt und bislang nur gegen Viren hinreichend belegt. Insbesondere Ernteverluste infolge von Pilz- und Nematodenbefall stellen ein ernstzunehmendes Problem dar und erfordern nach wie vor den intensiven Einsatz von Fungiziden und Nematoziden. Dennoch sind die damit zusammenhängenden Probleme nur unzureichend in den Griff zu bekommen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Verfahren zur Pathogenabwehr in Pflanzen bereitzustellen, die eine effiziente Abwehr eines möglichst breiten Spektrums von Pathogenen, bevorzugt von Pilzen und Nematoden, in möglichst vielen verschiedenen Pflanzenarten, bevorzugt den in der Landwirtschaft verwendeten Kulturpflanzen bewirken. Diese Aufgabe wird durch das erfindungsgemäße Verfahren gelöst .
Ein erster Gegenstand der Erfindung umfasst ein Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen mindestens ein Pathogen in pflanzlichen Organismen, wobei nachfolgende Arbeitsschritte umfasst sind
a) transgene Expression eines Proteins mit Saccharoseisomerase Aktivität in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle desselben, und b) Auswahl der pflanzlichen Organismen, bei denen.-- im Unterschied oder Vergleich zur Ausgangsorganismus - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist.
5 Das erfindungsgemäße Verfahren kann im Prinzip auf alle pflanzlichen Organismen angewendet werden, die Saccharose produzieren. Dazu zählen alle höheren Pflanzen. Es wurde überraschender Weise beobachtet, dass auf Kartoffelscheiben transgener Kartoffelpflanzen, in deren Knollen aufgrund transgener Expression einer 10 Saccharoseisomerase Saccharose in Palatinose umgewandelt wird, das Wachstum des Pilzes Alternaria signifikant gehemmt ist.
Ferner kann beobachtet werden, dass die transgene Expression der Saccharoseisomerase auch eine Resistenz gegen Nematoden bewirkt. 15 Insbesondere eine durch endoparasitären Wurzelnematoden hervorgerufene Syncitien-spezifische Expression der Saccharoseisomerase- sequenz bewirkt eine deutliche Reduktion das Ne atodenbefalls.
Da zahlreiche Pathogene, insbesondere Pilze und Nematoden, Pala- 20 tinose nicht verstoffwechseln können, ist eine Überwindung der Resistenz durch einfache Mutation in den Pathogenen kaum möglich, da hierfür die Gewinnung einer neuen Enzymaktivität erforderlich wäre.
25 "Protein mit Saccharoseisomerase Aktivität" meint im Rahmen der vorliegenden Erfindung ein Protein, das als "wesentliche Eigenschaft" die Isomerisierung von Saccharose zu anderen Disacchariden katalysiert, wobei die αl->ß2-glykosidische Bindung zwischen Glukose und Fruktose in der Saccharose in eine andere
30 glykosidische Bindung zwischen zwei Monosaccharideinheiten überführt wird, insbesondere in eine αl->0c6-Bindung und/oder einer αl->αl-Bindung. i1 Eine Saccharoseisomerase-Aktivität kann indirekt über die
35 Analyse der resultierenden Kohlenhydrate (z.B. Palatinosegehalt) in der dem Fachmann geläufigen Weise beispielsweise durch Analyse ethanolischer Extrakte entsprechenden biologischen Materials (z.B. Material einer transgenen Pflanze oder eines Mikroorganismus) gemessen werden. Besagte Extrakte können z.B.
40 durch HPLC analysiert und die Zucker anhand der entsprechenden Standards identifiziert werden. Ein Verfahren zur Analyse ist z.B. in WO 01/59136 beschrieben. So werden zum Nachweis von Saccharoseisomerase-Aktivität in Pflanzenextrakten Blattscheiben mit einem Durchmesser von ca. 0,8 cm für 2 h bei 70°C mit 100 μl
45 80 % Ethanol und 10 mM HEPES-Puffer (pH 7,5) extrahiert. Für die Analyse eines Aliquots dieser Extrakte kann ein HPLC-System z.B. der Firma Dionex verwendet werden, welches mit einer PA-1 (4 x 250 mm) -Säule und einen gepulsten elektrochemischen.- Detektor ausgestattet werden kann. Vor der Injektion können die Proben für 2 Minuten bei 13.000 rpm abzentrifugiert werden. Die Zucker können anschließend mit einem 10 minütigen Gradienten von 0 bis 1 5 M Natriumacetat nach 4 Minuten bei 150 mM NaOH und einer Durchflussrate von 1 ml/min eluiert werden. Zur Identifizierung und Quantifizierung der Zucker können die entsprechenden Standards der Firma Sigma verwendet werden.
10 Besonders bevorzugt wird unter einem Protein mit Saccharoseisomerase Aktivität ein Protein verstanden, das als wesentliche Eigenschaft zur Isomerisierung von Saccharose zu Palatinose und/oder Trehalulose befähigt ist. Dabei beträgt der Anteil von Palatinose und Trehalulose an den gesamten Disacchariden, die
15 durch Isomerisierung von Saccharose gebildet werden mindestens 2 %, bevorzugt mindestens 20 %, besonders bevorzugt mindestens 50 % und am meisten bevorzugt mindestens 60 %.
Die Nukleinsäuresequenz kodierend für ein Protein mit Saccharose- 20 isomerase-Aktivität, kann aus natürlichen Quellen isoliert oder nach herkömmlichen Verfahren synthetisiert werden.
Beispiele für Organismen, deren Zellen Proteine mit Saccharoseisomerase-Aktivität sowie die dafür kodierende Nukleinsäure-
25 Sequenzen enthalten, sind insbesondere Mikroorganismen der Gattungen Protaminobacter, Erwinia, Serratia, Leuconostoc, Pseudomonas, Agrobacterium, Klebsiella und Enterobacter. Insbesondere sind hier folgende Beispiele für solche Mikroorganismen zu nennen:
30 Protaminobacter rubrum (CBS 547, 77), Erwinia rhapontici (NCPPB 1578), Serratia plymuthica (ATCC 15928), Serratia marcescens (NCIB 8285), Leuconostoc mesenteroides NRRL B-52 If (ATCC 1083 0a) . Pseudomonas mesoacidophila MX-45 (FERM 11808 bzw. FERM BP 3619), Agrobacterium radiobacter MX-232 (FERM 12397 bzw. FERM BP
35 3620), Klebsiella Subspezies und Enterobacter spezies.
In einer bevorzugten Ausführungsform umfasst die Nukleinsäure- sesequenz kodierend für ein Protein mit einer Saccharoseisomerase-Aktivität, Nukleinsäuresequenzen, die für Proteine 40 mit Saccharoseisomerase-Aktivität kodieren, wobei die Nukleinsäuren ausgewählt sind aus der Gruppe bestehend aus
i) Nukleinsäuresequenzen kodierend ein Protein gemäß SEQ ID NO: 2, 6, 8, 10, 12, 14, 16, 18 oder 36 und 45 ii) Nukleinsäuresequenzen kodierend ein funktionelles Äquivalent zu einem Protein gemäß SEQ ID NO: 2, 6, 8, 10, 12, 14, 16, 18 oder 36 und
iii) Nukleinsäuresequenzen kodierend für funktionell äquivalente Fragmente zu einem Protein gemäß i) und ii) .
Weitere Nukleinsäuresequenzen, die für Proteine mit Saccharoseisomerase-Aktivität kodieren, sind im Stand der Technik bekannt und stehen dem Fachmann somit für den Transfer auf Pflanzenzellen zur Verfügung. So sind z.B. Sequenzen aus Protaminobacter rubrum, Erwinia rhapontici, Enterobacter species SZ 62 und Pseudomonas mesoacidophila MX-45 in WO 95/20047 beschrieben. Auf die Offenbarung dieser Patentanmeldung wird hiermit ausdrücklich Bezug genommen, sowohl hinsichtlich der offenbarten Sequenzen selbst, als auch im Hinblick auf die Auffindung und Charakterisierung dieser und weiterer Saccharoseisomerase kodierender Sequenzen aus anderen Quellen.
Weitere für Saccharoseisomerasen kodierende DNA-Sequenzen kann der Fachmann u.a. den Gendatenbanken unter Verwendung geeigneter Suchprofile und Computerprogramme für das Durchmustern nach homologen Sequenzen bzw. für Sequenzvergleiche entnehmen. Darüber hinaus kann der Fachmann weitere Saccharoseisomerase kodierende Nukleinsäuresequenzen aus anderen Organismen mittels herkömmlicher molekularbiologischer Techniken selbst auffinden und im Rahmen der vorliegenden Erfindung einsetzen. So kann der Fachmann z.B. geeignete Hybridisierungssonden von den bekannten Saccharoseiso erase-Sequenzen ableiten und für das Durchmustern von cDNA-und/oder genomischen Banken des jeweils gewünschten Organismus, aus dem ein neues Saccharoseisomerase-Gen isoliert werden soll, einsetzen. Hierbei kann der Fachmann auf geläufige Hybridisierungs-. Klonierungs- und Sequenzierungsmethoden zurückgreifen (siehe z.B. Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) . Ebenso ist der Fachmann in der Lage, anhand bekannter Saccharoseisomerase-DNA-Sequenzen geeignete - gegebenenfalls degenerierte - Oligonukleotide als Primer für Klonierungen neuer Gene mittels PCR zu synthetisieren und erfolgreich einzusetzen.
Proteine mit Saccharoseisomerase Aktivität sowie die dafür kodierenden Nukleinsäuresequenzen kann der Fachmann in der ihm geläufigen Weise unschwer aus solchen Organismen isolieren, in denen solche Aktivitäten detektiert wurden. Entsprechende Verfahren sind beschrieben (z.B. DE 44 14 185) . So kann z.B. durch partiellen Verdau von genomischer DNA eines solchen Organismus (bevorzugt eines Mikroorganismus) und Einbringen der erhaltenen Fragmente in geeignete E.coli-Vektoren und Transformation eine Genbank gewonnen werden, deren Klone genomische Abschnitte zwischen 2 und 15 kb des SpenderOrganismus enthalten. Aus E.coli- Zellen, die diese Plasmide tragen, werden durch Plattierung auf McConkey-Palatinosemedium solche ausgewählt, die eine Rotfärbung der Kolonie aufweisen. Die in diesen Zellen enthaltene Plasmid- DNA wird in eine E . coli-Mutante überführt, die auf Galactose als einziger C-Quelle nicht wachsen kann (z.B. ED 8654, Sambrook et al., supra, Seiten A9-A13). Diese transformierte Zelllinie ist zur Identifikation von Palatinoseproduzenten in der wie oben beschrieben hergestellten Genbank aus DNA des Spenderorganismus in der Lage. Zur Identifikation der gesuchten Palatinose-bildenden Klone werden die Zellen der Genkbank auf Minimal-Salzmedien mit Galactose und Saccharose vereinzelt und angezogen. Nach Replika-Stempeln der Kolonien auf Platten mit dem gleichen Medium werden die Zellen durch Bedampfung mit Toluol abgetötet. Anschließend werden Zellen des Screeningstamms als Rasen in Minimalsalz-Weichagar ohne C-Quellenzusatz über die Kolonien der Genbank ausgebracht und bebrütet. Es entsteht signifikantes Wachstum der Zellen des Screeningstamms nur am Ort von Zellen der Genbank, die Palatinose produziert haben. Bei Prüfung der Zellen der Replikakontrolle ergibt sich der Gehalt an Isomerase. Diese so identifizierten E.coli-Klone sind auf Palatinose als einziger C-Quelle im Medium nicht wachstumsfähig, zeigen im Test der ganzen Zellen oder in Zellextrakten keine Fähigkeit zur Spaltung von Saccharose, bilden aber unter diesen Bedingungen und ohne Zusatz von Saccharose zum Medium bei der Anzucht Palatinose.
Alternativ können Isomerase-Klone auch unter Verwendung eines PCR-Fragments identifiziert werden. Verwendet man Plasmid- DNA den so identifizierten E.coli-Klonen als Sonden zur Hybridisierung an Filtern mit immobilisierter DNA aus dem SpenderOrganismus , lassen sich die Genbereiche, die Isomerase- gene tragen, nachweisen und gezielt verfügbar machen.
Funktionelle Äquivalente der im Rahmen dieser Erfindung offenbarten Proteine mit Saccharoseisomerase-Aktivität umfassen bevorzugt solche aus anderen Organismen, beispielsweise aus Mikroorganismen, deren genomische Sequenz ganz oder teilweise bekannt ist, wie beispielsweise aus Mikroorganismen der Gattungen Protaminobacter, Erwinia, Serratia, Leuconostoc, Pseudomonas, Agrobacterium, Klebsiella und Enterobacter. Diese können z.B. durch Datenbanksuche in Sequenzdatenbanken wie GenBank oder Durchmustern von Gen- oder cDNA-Banken - z.B. unter Verwendung der Sequenz gemäß SEQ ID NO: 1 oder eines Teils derselben als Suchsequenz bzw. Sonde - aufgefunden werden. Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste.
So kann der Fachmann, falls erwünscht, zusätzlich mittels Routinetechniken, verschiedenartige Mutationen in die die Saccharoseisomerase kodierende DNA-Sequenz einführen, wodurch es zur Synthese von Proteinen mit eventuell veränderten biologischen Eigenschaften kommt. So ist es z.B. möglich, gezielt Enzyme herzustellen, die durch Addition entsprechender Signal- Sequenzen in bestimmten Kompartimenten der Pflanzenzelle lokalisiert sind. Derartige Sequenzen sind in der Literatur beschrieben und dem Fachmann bekannt (siehe z.B. Braun et al . (1992) EMBO J 11:3219-3227; Wolter F et al. (1988) Proc Natl Acad Sei USA 85:846-850; Sonnewald U et al . (1991) Plant J 1:95-106).
Weiterhin ist auch die Einführung von Punktmutationen an Positionen denkbar, bei denen eine Veränderung der Aminosäuresequenz einen Einfluss beispielsweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z.B. Mutanten hergestellt werden, die nicht mehr den normalerweise in der Zelle herrschenden Regulationsmechanismen über allosterische Regulation oder kovalente Modifizierung unterliegen. Des weiteren können Mutanten hergestellt werden, die eine veränderte Substrat- oder Produktspezifität aufweisen. Weiterhin können Mutanten hergestellt werden, die ein verändertes Aktivitäts-, Temperatur- und/oder pH-Profil aufweisen.
Die Degeneration des genetischen Codes bietet dem Fachmann u.a. die Möglichkeit, die Nukleotidsequenz der DNA-Sequenz an die Codonpräferenz ("codon usage") der Zielpflanze, also der aufgrund der Expression der Saccharoseisomerase-Nukleinsäuresequenz pathogenresistenten Pflanze bzw. Pflanzenzelle, anzupassen und die Expression dadurch zu optimieren.
Für die gentechnische Manipulation in prokaryontisehen Zellen können die erfindungsgemäßen rekombinanten Nukleinsäuremoleküle oder Teile davon in Plasmide eingebracht werden, die eine Muta- genese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standardverfahren (siehe z.B. Sambrook et al. (1989), vide supra) können Basenaustausche vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente - wo erforderlich - Adapter oder Linker angefügt werden. Ferner können mittels enzymatischer und anderer Manipulationen passende Restriktionsschnittstellen zur Verfügung gestellt oder überflüssige DNA oder Restriktionsschnittstellen entfernt werden. Wo Insertionen, Deletionen oder Substitutionen in Frage kommen, können in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Als Analysemethoden werden im allgemeinen Sequenzanalyse, Restriktionsanalyse und weitere biochemisch-molekularbiologische Methoden durchgeführt.
Bevorzugt haben besagte funktioneile Äquivalente eine Homologie von mindestens 40 %, besonders bevorzugt mindestens 50 %, besonders bevorzugt mindestens 70 %, am meisten bevorzugt mindestens 90 % zu einer der Polypeptidsequenzen mit der
SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 36. Dabei erstreckt sich die Homologie über mindestens 30 Aminosäuren, bevorzugt mindestens 60 Aminosäuren besonders bevorzugt mindestens 90 Aminosäuren, am meisten bevorzugt über die gesamte Länge eines der Polypeptide gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 36.
Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweilige Sequenzlänge ver- standen, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:
Gap Weight: 8 Length Weight: 2
Average Match: 2,912 Average Mismatch:-2 , 003
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Proteinbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.
Funktionelle Äquivalente umfasst auch solche Proteine, die durch Nukleinsäuresequenzen kodiert werden, die eine Homologie von mindestens 40 %, besonders bevorzugt mindestens 50 %, besonders bevorzugt mindestens 70 %, am meisten bevorzugt mindestens 90 % zu einer der Nukleinsäuresequenzen mit der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35 haben. Dabei erstreckt sich die Homologie über mindestens 100 Basen, bevorzugt mindestens 200 Basen besonders bevorzugt mindestens 300 Basen, am meisten bevorzugt über die gesamte Länge einer der Sequenzen gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35. Unter Homologie zwischen zwei Nukleinsäuresequenzen- wird die Identität der beiden Nukleinsäuresequenzen über die jeweilige Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA; Altschul et al . (1997) Nucleic Acids Res . 25:3389ff) unter Einstellung folgender Parameter berechnet wird:
Gap Weight: 50 Length Weight: 3
Average Match: 10 Average Mismatch:0
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.
Funktionelle Äquivalente umfasst auch solche Proteine, die durch Nukleinsäuresequenzen kodiert werden, die unter Standardbedingungen mit einer der durch SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35 beschriebenen Nukleinsäuresequenz , der zu dieser komplementären Nukleinsäuresequenz oder Teilen der vor- genannten hybridisieren und die wesentlichen Eigenschaften einer Saacharoseisomerase aufweisen.
"Standardhybridisierungsbedingungen" ist breit zu verstehen und meint stringente als auch weniger stringente Hybridisierungs- bedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al . , in Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Pro- tocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.) beschrieben.
Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit ungefähr 0,2X SSC bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumeitrat, 3 M NaCl, pH 7,0). Darüber hinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:
(1) Hybridisierungbedingungen zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:
a) 4X SSC bei 65°C, b) 6X SSC bei 45°C, c) 6X SSC, 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA bei 68°C, f) 50 % Formamid, 4X SSC bei 42°C, h) 2X oder 4X SSC bei 50°C (schwach stringente Bedingung), i) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach stringente Bedingung) .
(2) Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:
a) 0,015 MNaCl/0,0015 M Natriumeitrat/0, 1 % SDS bei 50°C. b) 0,1X SSC bei 65°C. c) 0,1X SSC, 0,5 % SDS bei 68°C. d) 0,1X SSC, 0,5 % SDS, 50 % Formamid bei 42°C. e) 0,2X SSC, 0,1 % SDS bei 42°C. f) 2X SSC bei 65°C (schwach stringente Bedingung) .
In einer bevorzugten Ausführungsform umfasst die Nukleinsäure- sesequenz kodierend für ein Protein mit einer Saccharoseisomerase-Aktivität, Nukleinsäuresequenzen, die für Proteine mit Saccharoseisomerase-Aktivität kodierend, wobei die Nukleinsäuren ausgewählt sind aus der Gruppe bestehend aus
a) Nukleinsäuresequenzen kodierend eine Aminosäuresequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 36, und
b) Nukleinsäuresequenzen kodierend für Proteine mit einer Homo- logie von mindestens 40 % zu der Sequenz gemäß SEQ ID NO: 2,
4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 36 aufweisen, und
c) Nukleinsäuresequenzen gemäß SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35, und d) Nukleinsäuresequenzen, die zu einer Nukleinsäuresesequenz von c) degeneriert ist, und
e) Nukleinsäuresequenzen, die eine Homologie von mindestens 40 % zu einer Nukleinsäuresequenz gemäß SEQ ID No : 1 , 3 , 5 , 7 , 9 ,
11, 13, 15, 17, 19, 21 oder 35 aufweisen, und
f) Nukleinsäuresequenzen, die mit einem komplementären Strang der Nukleinsäuresequenz gemäß SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35 hybridisieren,
sowie funktionell äquivalenten Fragmenten der vorgenannten.
Funktionell äquivalente Fragmente meint in Bezug auf ein Protein mit Saccharoseisomerase-Aktivität bzw. eine Nukleinsäuresequenz kodierend für eine solche, all solche Polypeptide bzw. für diese kodierenden Nukleinsäuresesequenz, die gegenüber ihrer Ausgangssequenz eine Verkürzung am 5'- und/oder 3 '-Ende und/oder eine oder mehrere Deletionen aufweisen, aber nach wie vor über eine Saccharoseisomerase-Aktivität verfügen, bzw. für ein Protein mit derselben kodieren. Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletion vom 5 ' - oder vom 3 ' -Ende der kodierenden DNA-Sequenz die Synthese entsprechend verkürzter Proteine erreicht werden kann .
Wie oben erwähnt, können die kodierenden Sequenzen für Saccharoseisomerasen auch durch Signalsequenzen ergänzt sein, die für den Transport des Genprodukts, also vorliegend des Proteins mit Saccharoseisomerase-Aktivität, zu einem bestimmten Kompartiment sorgen.
In einer bevorzugten Ausführungsform der Erfindung sorgen Signalsequenzen dafür, dass die Saccharoseisomerase in die Zellwand bzw. den Apoplasten der transformierten Pflanzenzellen transportiert wird, d.h. die transformierten Pflanzen exprimieren eine chimäre Saccharoseisomerase, die ein Signalpeptid für den Transport in das Endoplasmatische Retikulum umfasst. Geeignete Signalsequenzen, die die Aufnahme in das Endoplasmatische Retikulum gewährleisten, kann der Fachmann der einschlägigen Literatur entnehmen. Besonders geeignet ist z.B. die für das Signalpeptid des Proteinase-Inhibitor II-Gens aus Kartoffel kodierende Sequenz (Keil et al. (1996) Nucl Acids Res 14:5641-5650; Genbank Accession No. X04118) . Andere geeignete Signalsequenzen sorgen z.B. für die Aufnahme der Saccharoseisomerase in die
Vakuole. Hier ist als Beispiel das Signalpeptid des Patatin-Gens aus Kartoffel (Sonnewald U et al. (1991) Plant J 1(1):95-106) zu nennen.
"Pathogenresistenz" meint das Vermindern oder Abschwächen von 5 Krankheitssymptomen einer Pflanze infolge eines Befalls durch ein Pathogen. Die Symptome können vielfältiger Art sein, umfassen aber bevorzugt solche die direkt oder indirekt zu einer Beeinträchtigung der Qualität der Pflanze, der Quantität des Ertrages, der Eignung zur Verwendung als Futter- oder Nahrungsmittel 10 führen oder aber auch Aussaat, Anbau, Ernte oder Prozessierung des Erntegutes erschweren.
"Verleihen", "bestehen", "erzeugen" oder "erhöhen" einer Pathogenresistenz meint, dass die Abwehrmechanismen einer bestimmten
15 Pflanzenart oder -sorte durch Anwendung des erfindungsgemäßen Verfahrens im Vergleich zu dem Wildtyp der Pflanze ("Ausgangspflanze"), auf den das erfindungsgemäße Verfahren nicht angewendet wurde, unter ansonsten gleichen Bedingungen (wie beispielsweise Klima- oder Anbaubedingungen, Pathogenart etc.) eine
20 erhöhte Resistenz gegen ein oder mehrere Pathogene aufweist. Dabei äußert sich die erhöhte Resistenz bevorzugt in einer verminderten Ausprägung der Krankheitssymptome, wobei Krankheitssymptome - neben den oben erwähnten Beeinträchtigungen - auch beispielsweise die Penetrationseffizienz eines Pathogens in die
25 Pflanze oder pflanzliche Zellen oder die Proliferationseffizienz in oder auf denselben umfasst. Dabei sind die Krankheitssymptome bevorzugt um mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens
30 90 % oder 95 % vermindert.
"Auswahl" umfasst in Bezug auf Pflanzen, bei denen - im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist, all die Ver-
35 fahren, die eine zur Erkennung einer vorliegenden oder erhöhten Pathogenresistenz geeignet sind. Dies können Symptome der Pathogeninfektion sein (z.B. Haustorium-Ausbildung bei Pilzinfektion) aber auch die oben beschriebenen Symptome umfassen, die die Qualität der Pflanze, die Quantität des Ertrages, die
40 Eignung zur Verwendung als Futter- oder Nahrungsmittel usw. betreffen.
"Pathogen" meint im Rahmen der Erfindung beispielsweise jedoch nicht einschränkend Pilze, pilzähnliche Pathogene (wie beispiels- 45 weise Chromista; z.B. Oomyceten) sowie tierische Schädlinge wie beispielsweise Nematoden. Besonders bevorzugt sind Nematoden und Pilze. Es ist jedoch anzunehmen, dass die Expression eines Saccharoseisomerase-Proteins auch eine Resistenz gegen weitere Pathogene bewirkt.
Beispielsweise jedoch nicht einschränkend seien nachfolgende 5 Pathogene zu nennen:
1. Pilzpathogene und pilzähnliche Pathogene:
Pilzpathogene und pilzähnliche Pathogene (wie z.B. Chromista) 0 umfassen biotrophe, hemibiotrophe und nekrotrophe Pilze und stammen vorzugsweise aus der Gruppe umfassend Plasmodiophora- ycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten (Fungi imperfecti) . Beispielhaft jedoch nicht einschränkend seien die in Tabelle 1 5 und 2 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.
Tabelle 1: Pflanzliche Pilzerkrankungen
Figure imgf000016_0001
Figure imgf000017_0001
Tabelle 2: Falscher Mehltau (Oomyceten)
Figure imgf000017_0002
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Besonders bevorzugt sind
Plasmodiophoromycota wie Plasmodiophora brassicae (Kohl- hernie, clubroot of crucifers) , Spongospora subterranea (powdery scab of potato tubers) , Polymyxa graminis (root disease of cereals and grasses),
Oomycota wie Bremia lactucae (Falscher Mehltau an Salat) , Peronospora (Falscher Mehltau) bei Löwenmaul (P- antirrhini), Zwiebel (P. destructor) , Spinat (P. effusa) , Sojabohne (P. manchurica) , Tabak ("blue mold" = Blauschimmel; P. tabacina) Alfalfa und Klee (P. trifolium) , Pseudo- peronospora humuli (Falscher Mehltau an Hopfen) , Plasmopara (Falscher Mehltau bei Trauben) (P. viticola) und Sonnenblume (P. halstedii) , Sclerophtohra macrospora (Falscher Mehltau bei Cerealien und Gräsern) , Pythium (seed rot, seedling damping-off , and root rot and all types of plants, z.B. Wurzelbrand an Beta-Rübe durch P. debaryanum) , Phytophthora infestans (Kraut- und Knollenfäule bei Kartoffel, Braunfäule bei Tomate etc.), Albugo spec. (white rust on cruciferous plants .
- Ascomycota wie Microdochium nivale (Schneeschimmel an Roggen und Weizen) , Fusarium graminearum, Fusarium culmorum (Ähren- faule v.a. bei Weizen) , Fusarium oxysporum (Fusarium-Welke an Tomate), Blumeria graminis (Echter Mehltau an Gerste (f.sp. hordei) und Weizen (f.sp. tritici) ) , Erysiphe pisi (Erbsen- mehltau) , Nectria galligena (Obstbaumkrebs) , Unicnula necator (Echter Mehltau der Weinrebe) , Pseudopeziza tracheiphila (Roter Brenner der Weinrebe) , Claviceps purpurea (Mutterkorn an z.B. Roggen und Gräsern), Gaeumannomyces graminis (Schwarzbeinigkeit an Weizen, Roggen u.a. Gräsern), Magna- porthe grisea (rice blast disease) , Pyrenophora graminea (Streifenkrankheit an Gerste) , Pyrenophora teres (Netzfleckenkrankheit an Gerste) , Pyrenophora tritici-repentis (Blattfleckenkrankheit (Blattdürre) an Weizen) , Venturia inaequalis (Apfelschorf) , Sclerotinia sclerotium (Weiß- stengeligkeit, Rapskrebs) , Pseudopeziza medicaginis (Klappenschorf an Luzerne, Weiß- und Rotklee) .
Basidiomyceten wie Typhula incarnata (Typhula-Fäule an Gerste, Roggen, Weizen) , Ustilago maydis (Beulenbrand an
Mais) , Ustilago nuda (Flugbrand an Gerste) , Ustilago tritici (Flugbrand an Weizen, Dinkel) , Ustilago avenae (Flugbrand an Hafer) , Rhizoctonia solani (Wurzeltöter an Kartoffeln) , Sphacelotheca spp. (head smut of sorghum) , Melampsora lini (rust of flax) , Puccinia graminis (Schwarzrost an Weizen, Gerste, Roggen, Hafer) , Puccinia recondita (Braunrost an Weizen) , Puccinia dispersa (Braunrost an Roggen) , Puccinia hordei (Braunrost an Gerste) , Puccinia coronata (Kronenrost an Hafer) , Puccinia striiformis (Gelbrost an Weizen, Gerste, Roggen sowie zahlreichen Gräsern) , Uromyces appendiculatus
(Bohnenrost), Sclerotium rolfsii (root and stem rots of any plants) .
- Deuteromyceten (Fungi imperfecti) wie Septoria nodorum (Spelzenbräune) an Weizen (Septoria tritici) , Pseudocerco- sporella herpotrichoides (Halmbruchkrankheit an Weizen, Gerste, Roggen) , Rynchosporium secalis (Blattfleckenkrankheit an Roggen und Gerste) , Alternaria solani (Dürrfleckenkrank- heit an Kartoffel, Tomate) , Phoma betae (Wurzelbrand an Beta- Rübe) , Cercospora beticola (Cercospora-Blattfleckenkrankheit an Beta-Rübe), (Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern) , Verticillium dahliae (Rapswelke und -Stengelfaule) , Colletotrichum lindemuthianum (Brennfleckenkrankheit an Bohne) , Phoma Ungarn - Umfallkrankheit (Schwarz- beinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps) ,
Botrytis cinerea (Grauschimmel an Weinrebe, Erdbeere, Tomate, Hopfen etc. ) .
Am meisten bevorzugt sind Phytophthora infestans (Kraut- und Knollenfäule, Braunfäule bei Tomate etc.), Microdochium nivale (vormals Fusarium nivale; Schneeschimmel an Roggen und Weizen) , Fusarium graminearum, Fusarium culmorum (Ährenfäule an Weizen) , Fusarium oxysporum (Fusarium-Welke an Tomate) , Blumeria graminis (Echter Mehltau an Gerste (f.sp. hordei) und Weizen (f.sp. tritici) ) , Magnaporthe grisea (rice blast disease) , Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs) , Septoria nodorum und Septoria tritici (Spelzenbräune an Weizen) , Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern) , Phoma Ungarn (Umfallkrankheit, Schwarzbeinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps) .
2. Tierische Schädlinge
Bei den im Rahmen dieser Erfindung als zur Bekämpfung bevorzugten pflanzenschädigenden Nematoden sind folgende Gruppen bespielhaft - jedoch nicht einschränkend - zu nennen:
a) Freilebende, wandernde Wurzelnematoden: (z.B. Pratylenchus , Xiphinema und Longidorus-Arten) .
Wandernden Nematoden sind nicht an eine Parasitierungsstelle ge- bunden, sondern können diese wechseln. Sie können von einer Wurzel zur anderen, von einer Pflanze zur anderen und zum Teil auch im Pflanzengewebe wandern. Lange Zeit hat man ihre Bedeutung als Schädlinge unterschätzt: Heute zählen sie zu den überaus gefährlichen pflanzenschädigenden Nematoden. Viele Wachstumsschaden (auch sog. "Bodenmüdigkeit") und frühzeitiges Vergilben der Kulturpflanzen konnten auf derartige WurzelSchädlinge zurückgeführt werden. Vor allem Pratylenchus Arten sind auch im Zierpflanzenbau als Ursache heftiger Wurzelschäden bekannt. Erkrankte Wurzeln sind daran zu erkennen, dass sie stellenweise braune Verfärbungen aufweisen. In die hervorgerufenen Wunden dringen nachträglich auch FäulnisOrganismen ein, die ein rasches Absterben des Gewebes und tiefgehende Fäulnis an diesen Stellen zur Folge haben. Wirtspflanzen sind unter anderen: div. Getreidearten, Erdäpfel, Karotten, Paradeiser, Gurken, Sellerie und Wein.
b) Wurzelgallenerzeugende Nematoden (z.B. Meloidogyne- Arten)
Die Larven dieser Arten bohren sich meist nahe der Spitze in die Wurzeln ein und verursachen durch Ausscheidungen ihrer Speichel- drüsen Verdickungen (Gallen) des sie umgebenden Pflanzengewebes. In diesen Gallen überdauern sie und gelangen entweder aktiv oder nach Zerfall der Gallen wieder in den Boden zurück. Die Störung im Stoffwechsel der Pflanze infolge des Schädlingsbefalls macht sich in mehr oder weniger kümmerlichem Wuchs und allgemeinem Kränkeln der Pflanze bemerkbar. Wurzelgallenälchen zählen vor allem in Gewächshäusern zu den größten Schädlingen, wurden aber auch im Freiland an Karotten, Sellerie und Petersilie nachgewiesen.
c) Nematoden als Schädlinge der Blütenanlagen: (Anguina tritici
Das Weizenälchen ist ein spezialisierter Parasit der Blütenanlage des Weizens, die sie in Gallen umwandelt. Bereits im Jungstadium der Pflanze ist der Nematodenbefall an den Wellungen oder Kräuselungen der Blatter zu erkennen.
d) Zystenbildende Wurzelnematoden: (Globodera- und Heterodera- Arten)
Das Kartoffelzystenälchen ist der Kartoffelfeind Nummer 1. Diese Art übertrifft hinsichtlich ihrer Schädlichkeit alle anderen He- terodera-Arten und kann bei massiven Ausbruch bis zu 80% der Ernte vernichten. Nach dem Befall mit zystenbildenden Nematoden kümmert die Pflanze ohne äußerlich erkennbare Ursache. Erst wenn man die Wurzeln untersucht, erkennt man stecknadelkopfgroße, bräunlich, gelbe oder weißliche Zysten. Die weiblichen Nematoden bohren sich in die Wurzel und sprengen durch ihren mit Eiern gefüllten und dadurch anschwellenden Hinterleib die Wurzel . Der Ne- matode steckt mit seinem Mundstachel noch in der Wurzel, während der prall gefüllte Hinterleib im Erdreich liegt. Das Muttertier stirbt und seine sich verfestigende Haut wird zur Schutzhülle
(Zyste) für die Eier und Larven. Die Zysten samt Inhalt sind sehr wiederstandsfähig und können lange Zeit überdauern. Bei geeigneten Umweltbedingungen bohren sich die Larven ins Freie und befallen neue Wurzeln. Die wichtigsten zystenbildende Nematoden sind Kartoffel-, Rüben-, Hafer-, Erbsen-, Klee-, Kohl-, Hopfen-, Möh- renzystenälchen (Untersuchung auf Kartoffelzystennematoden siehe auch unter: http://www.bfl.at/)
Als tierische Schädlinge sind insbesondere Nematoden bevorzugt. Beispielhaft jedoch nicht einschränkend seien die in Tabelle 3 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.
Tabelle 3 : Parasitäre Nematoden
Figure imgf000024_0001
Figure imgf000025_0001
Ganz besonders bevorzugt sind Globodera rostochiensis und G. pallida (Zystenälchen an Kartoffel, Tomate u.a. Nachtschattengewächsen) , Heterodera schachtii (Rübenzystenälchen an Zuckerund Futterrübe, Raps, Kohl etc.), Heterodera avenae (Hafer- zystenälchen an Hafer u.a. Getreidearten), Ditylenchus dipsaci (Stengel- oder Stockälchen, Rübenkopfälchen an Roggen, Hafer, Mais, Klee, Tabak, Rübe) , Anguina tritici (Weizenälchen, Radekrankheit an Weizen (Dinkel, Roggen) , Meloidogyne hapla (Wurzelgallenälchen an Möhre, Gurke, Salat, Tomate, Kartoffel, Zuckerrübe, Luzerne) .
Bevorzugt wird in den einzelnen Pflanzenarten eine Resistenz gegen nachfolgende beispielhaft genannte Pilzpathogene erzielt:
1. Gerste: Puccinia graminis f.sp. hordei (barley ste rust), Blumeria (Erysiphe) graminis f.sp. hordei (Barley Powdery Mildew) .
2. Sojabohne: Phytophthora megasperma fsp.glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum,
Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomop- sis sojae), Diaporthe phaseolorum var. caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina.-, Peronospora manshurica, Colletotrichum dematium (Colletotrichum trunca- tum) , Corynespora cassiicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Microsphaera diffussa, Fusarium semitectum, Phialophora gregata, Glomerella glycines, Phakopsorapachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Fusarium solani.
3. Canola: Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum,
Mycosphaerella brassiccola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata.
4. Alfalfa: Clavibater michiganese subsp. insidiosum, Pythium ultimum, Pythium irreguläre, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Lepto- trochila medicaginis, Fusarium, Aphanomyces euteiches, Stem- phylium herbarum, Stemphylium alfalfae.
5. Weizen: Urocystis agropyri, Alternaria alternata, Cladosporium herbarum, Fusarium graminearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum graminicola,
Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia recondita f.sp. tritici, Puccinia striiformis, Pyrenophora tritici-repentis, Septoria nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella herpotrichoides, Rhizoctonia solani, Rhizoctonia cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes , Pythium ultimum, Bipolaris sorokiniana, Claviceps purpurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes , Pythium gramicola, Pythium aphanidermatum, Puccinia graminis f.sp. tritici (Wheat stem rust), Blumeria (Erysiphe) graminis f.sp. tritici (Wheat Powdery Mildew)
6. Sonnenblume: Plasmophora halstedii, Sclerotinia sclerotiorum, Aster Yellows, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe ci- choracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis .
7. Mais: Fusarium moniliforme var. subglutinans, Fusarium moniliforme, Gibberella zeae (Fusarium graminearum) ,
Stenocarpella maydi (Diplodia maydis) , Pythium irreguläre, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus) , Helminthosporium carbonum I, II & III (Cochliobolus carbonum) , Exserohilum turcicum I, II & III, Helminthosporium pedicellatum, Physoderma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium oxalicum, Nigrospora oryzae, Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Trichoderma viride, Claviceps sorghi, Cornstunt spiroplasma, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora sorghi, Peronosclerospora philippinesis, Peronosclerospora maydis, Peronosclerospora sacchari, Spacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Caphalosporium acremonium.
8. Sorghum: Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola) , Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifonne, Alternaria alternate, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchari,
Sporisorium reilianum (Sphacelotheca reiliana) , Sphacelotheca cruenta, Sporisorium sorghi, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Sclerospora graminicola, Fusarium graminearum, Fusarium oxysporum, Pythium arrhenomanes , Pythium graminicola.
Bevorzugt wird in den einzelnen Pflanzenarten eine Resistenz gegen nachfolgende beispielhaft genannte Nematodenpathogene erzielt:
Figure imgf000027_0001
Figure imgf000028_0001
"Pflanzlicher Organismus oder von diesem abgeleitete Zellen" meint allgemein jede Zelle, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte) eines Organismus, der zur Photosynthese befähigt ist. Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niederer Pflanzen des Pflanzenreiches . Einjährige, mehrjährige, monocotyledone und dicotyledone Pflanzen sind bevorzugt. Eingeschlossen sind reife Pflanze, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Knollen, Samen oder Früchte) und Kulturen, zum Beispiel Zeil- oder Kalluskulturen. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium.
"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niederer Pflanzen des Pflanzenreiches . Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Ver- mehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktioneilen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium.
"Pflanze" umfasst alle einjährigen und mehrjährigen, mono- kotyledonen und dikotyledonen Pflanzen und schließt beispielhaft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon, Nicotiana, Solarium, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisum, Phaseolus, Loliu , Oryza, Zea, Avena, Hordeum, Seeale, Triticum, Sorghum, Picea und Populus ein.
Bevorzugt sind Pflanzen nachfolgender Pflanzenfamilien: Amaranth- aceae, Asteraceae, Brassicaceae, Carophyllaceae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Rubi- aceae, Saxifragaceae, Scrophulariaceae , Solanacea, Sterculiaceae, Tetragoniacea, Theaceae, Umbelliferae.
Bevorzugte monokotyle Pflanzen sind insbesondere ausgewählt aus den monokotylen Kulturpflanzen, wie zum Beispiel der Familie der Gramineae wie Reis, Mais, Weizen oder andere Getreidearten wie Gerste, Hirse, Roggen, Triticale oder Hafer sowie dem Zuckerrohr sowie alle Arten von Gräsern.
Die Erfindung wird ganz besonders bevorzugt auf dikotyledone pflanzliche Organismen angewendet. Bevorzugte dikotyle Pflanzen sind insbesondere ausgewählt aus den dikotylen Kulturpflanzen, wie zum Beispiel
- Asteraceae wie Sonnenblume, Tagetes oder Calendula und andere mehr,
- Compositae, besonders die Gattung Lactuca, ganz besonders die Art sativa (Salat) und andere mehr,
- Cruciferae, besonders die Gattung Brassica, ganz besonders die Arten napus (Raps) , campestris (Rübe) , oleracea cv Tastie (Kohl) , oleracea cv Snowball Y (Blumenkohl) und oleracea cv Emperor (Broccoli) und weitere Kohlarten; und der Gattung Arabidopsis, ganz besonders die Art thaliana sowie Kresse oder Canola und andere mehr,
- Cucurbitaceae wie Melone, Kürbis oder Zucchini und andere mehr,
- Leguminosae besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) sowie Alfalfa, Erbse, Bohnengewächsen oder Erdnuss und andere mehr - Rubiaceae, bevorzugt der Unterklasse Lamiidae wie- beispielsweise Coffea arabica oder Coffea liberica (Kaffeestrauch) und andere mehr,
- Solanaceae besonders die Gattung Lycopersicon, ganz besonders die Art esculentum (Tomate) , die Gattung Solanum, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) , und die Gattung Capsicum, ganz besonders die Art annum (Paprika) sowie Tabak und andere mehr,
- Sterculiaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Theobroma cacao (Kakaostrauch) und andere mehr,
- Theaceae, bevorzugt der Unterklasse Dilleniidae wie beispiels- weise Camellia sinensis oder Thea sinensis (Teestrauch) und andere mehr,
- Umbelliferae, besonders die Gattung Daucus (ganz besonders die Art carota (Karrotte) ) und Apium (ganz besonders die Art graveolens dulce (Seiarie) ) und andere mehr,
sowie Lein, Soja, Baumwolle, Hanf, Flachs, Gurke, Spinat, Möhre, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinarten, insbesondere Banane und Kiwi.
Umfasst sind ferner Schmuckpflanzen, Nutz- oder Zierbäume, Blumen, Schnittblumen, Sträucher oder Rasen. Beispielhaft aber nicht einschränkend seien zu nennen Angiospermen, Bryophyten wie zum Beispiel Hepaticae (Leberblümchen) und Musci (Moose) ; Pteridophyten wie Farne, Schachtelhalm und Lycopoden; Gymnospermen wie Koniferen, Cycaden, Ginkgo und Gnetalen, die Familien der Rosaceae wie Rose, Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringelblume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.
Am meisten bevorzugt sind landwirtschaftliche Nutzpflanzen, die von Natur aus einen hohen Anteil an Saccharose aufweisen oder deren Wurzeln, Knollen oder Speicherwurzeln wirtschaftlich verwertet werden, wie z.B. Kartoffel, Rübe oder Zuckerrübe. Ebenfalls bevorzugt sind Tomate, Banane, Karotte, Zuckerrohr, Erdbeere, Ananas, Papaya, Soja sowie Getreidearten wie Hafer, Gerste, Weizen, Roggen, Triticale, Hirse und Mais. Am meisten bevorzugt sind Kartoffel, Rübe, Zuckerrübe und Zuckerrohr.
Im Rahmen der vorliegenden Erfindung kommen Expressionskonstrukte zur Expression von Proteinen mit Saccharoseisomerase-Aktivität in Pflanzen zum Einsatz. Derartige Expressionskassetten sind beispielsweise in WO 01/59136 und WO 01/59135 beschrieben, worauf hiermit ausdrücklich Bezug genommen wird.
In besagten Expressionskonstrukten steht ein Nukleinsäuremolekül kodierend für ein Protein mit Saccharosisomerase-Aktivität (z.B. beschrieben durch SEQ ID NO: 2 oder eines funktioneilen Äquivalentes desselben oder eines funktionell äquivalenten Teils der vorgenannten) bevorzugt in funktioneller Verknüpfung mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor) , das eine transgene Expression in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle desselben gewährleistet.
Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit der zu exprimierenden Nukleinsäuresequenz (zum Beispiel der Sequenz gemäß SEQ ID NO: 1) und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regula- tiven Elemente seine Funktion bei der transgenen Expression der Nukleinsäuresequenz erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die transgen zu exprimierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind.
Die Herstellung einer funktioneilen Verknüpfung als auch die Herstellung eines Expressionskonstruktes kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) , in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) , in Ausubel FM et al . (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al . (1990) In: Plant Molecular Biology Manual beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten Restriktionsenzymschnittstellen, einer att-Sequenz für Rekombi- nasen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevor- zugt kann das transgene Expressionskonstrukt, bestehend aus einer Verknüpfung von Promoter und zu exprimierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation in ein pflanzliches Genom insertiert werden.
Unter einem Expressionskonstrukt sind aber auch solche Konstruktionen zu verstehen, bei denen die Nukleinsäuresequenz kodierend für das Proteins mit Saccharosisomerase-Aktivität (z.B. kodiert durch SEQ ID NO: 2 oder ein funktionelles Äqui- valent desselben oder ein funktionell äquivalentes Teil der vorgenannten) - zum Beispiel durch eine homologe Rekombination - so hinter einen endogenen pflanzlichen Promotor platziert wird, dass dieser die transgene Expression der besagten Nukleinsäuresequenz gewährleistet .
Pflanzenspezifische Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -zellen, -geweben, -kulturen steuern kann. Dabei kann der Promotor so gewählt sein, dass die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe oder Organ, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung und/oder zu einem durch äußere Einflüsse, biotische oder abiotische Stimuli bestimmten Zeitpunkt (induzierte Genexpression) . In Bezug auf die zu transformierende Pflanze kann der Promotor homolog oder heterolog sein. Bevorzugt sind:
a) Konstitutive Promotoren
"Konstitutive" Promotoren meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten (Benfey et al.(1989) EMBO J 8:2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt.
Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al . (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al . (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor
(US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195-2202). Ein weiterer geeigneter konstitutiver Promotor ist der LeguminB-Promotor (GenBank Acc.-No. X03677) , der Promotor der Nopalinsynthase aus Agrobacterium, der TR- Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubi uitin Promotor (Holtorf S et al . (1995) Plant Mol Biol 29:637-649), der Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sei USA 86:9692-9696), der Smas Promotor, der Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Unter- einheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991) , sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist. Als konstitutiver Promotor insbesondere bevorzugt ist der Promotor des Nitrilase-1 (nitl) Gens aus A. thaliana (GenBank Acc.-No. : Y07648.2, Nukleotide
2456-4340, Hillebrand et al. (1996) Gene 170:197-200).
Gewebespezifische Promotoren
Bevorzugt sind ferner Promotoren mit Spezifitäten für die Blätter, Stengel, Wurzeln oder Samen.
Samenspezifische Promotoren wie zum Beispiel der Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9) : 839-53 ; z.B. aus Phaseolus vulgari; van der Geest et al . (1996) Plant Mol Biol 32:579-588), des 2S Albumins (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989) Mol Gen Genet 215 (2) : 326-331) , des USP (unknown seed protein; Bäumlein H et al . (1991) Mol Gen Genet 225 (3 ) :459-467; Phillips et al . (1997) EMBO J 16:4489-4496), des Napin Gens (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), des Saccharosebindeproteins (WO 00/26388), der Hordein-Promotor (Brandt et al . (1985) Carlsberg Res . Commun. 50:333-345) oder der Legumin B4-Promotor (LeB4; Bäumlein H et al . (1991) Mol Gen Genet
225:121-128; Bäumlein H et al . (1992) Plant J 2 (2) : 233-239 ; Fiedler U et al . (1995) Biotechnology (NY) 13 (10) : 1090f) , der Oleosin-Promo er aus Arabidopsis (WO 98/45461) , der Bce4-Promoter aus Brassica (WO 91/13980) .
Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG) , Gliadin, Verzweigungsenzym, ADP Glucose Pyro- phosphatase (AGPase) , der Napin-Promotor, der ACP-Promotor und die FatB3- und FatB4-Promotoren, der Promotor der Stärke- synthase oder anderer Stärke bildender/modifizierender Enzyme wie z.B. Promotoren von Genen die für Verzweigungsenzyme kodieren (WO 92/14827, WO 92/11375). Bevorzugt .-sind ferner Promotoren, die eine samenspezifische Expression in Mono- kotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des lpt2 oder lptl-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens, des Glutelin-Gens , des Oryzin-Gens, des Prolamin-Gens , des Gliadin-Gens , des Glutelin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens) . Weitere samenspezifische Promotoren sind beschrieben in WO 89/03887.
Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren wie beispielsweise der Patatin Promotor Klasse I (B33), der Promotor des Cathepsin D Inhibitors aus Kartoffel .
Besonders bevorzugt ist dabei der B33-Promotor des Klasse I Patatin-Gens aus Solanum tuberosum (Rocha-Sosa et al .
(1989) EMBO J 8:23-29). Der Promotor des Klasse I Patatin-Gens ist in Knollen ca. 100 bis 1000 mal aktiver als in Blättern (Rocha-Sosa et al., vide supra) . Weitere
Gene mit knollenspezifischer oder zumindest in Knollen verstärkter Expression sind bekannt (z.B. der Promotor der ADP-Glukose-Pyrophosphorylase-Gene; Müller et al .
(1990) Mol Gen Genet 224:136-146).
Blattspezifische Promotoren wie Promotor der cyto- solischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1, 5-bis- phosphatcarboxylase; US 4,962,028) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al . (1989) EMBO J
8:2445-2451). Ganz besonders bevorzugt sind epidermis- spezifische Promotoren, wie beispielsweise der Promotor des OXLP-Gens ( "Oxalat-Oxidase like protein"; Wei et al . (1998) Plant Mol Biol 36:101-112).
Chemisch induzierbare Promotoren
Die transgenen Expressionskonstrukte können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al . (1997) Annu Rev Plant Physiol Plant Mol Biol
48:89-108), durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRPl Promotor (Ward et al . (1993) Plant Mol Biol 22:361-366), ein durch Salicylsäure induzierbarer Promotor (WO 95/19443) , ein durch Benzolsulfon- amid-induzierbarer Promotor (EP 0 388 186) , ein durch Tetra- zyklin-induzierbarer Promotor (Gatz et al . (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon- induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.
d) Entwicklungsabhängige Promotoren
Weitere geeignete Promotoren sind beispielsweise Fruchtreifung-spezifische Promotoren, wie beispielsweise der Fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625) . Entwicklungsabhängige Promotoren schließt zum Teil die Gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.
e) Stress- oder Pathogen-induzierbare Promotoren
Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRPl-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814) oder der licht-induzierbare PPDK Promotor.
Pathogen-induzierbare Promotoren umfassen die Promotoren von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, ß-1, 3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes et al . (1992) Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al . (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al . (1986) Proc Natl Acad Sei USA 83:2427-2430; Somssich et al . (1988) Mol Gen Genetics 2:93-98; Chen et al . (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sei USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al . (1989) Plant Cell 1:961-968(1989).
Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinll Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al . (1996) Nat Biotech 14:494-498; EP-A 375 091), des wunl und wun2-Gens (US 5,428,148), des winl- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin Gens (McGurl et al . (1992) Science 225:1570-1573), des WIPl-Gens (Rohmeier et al . (1993) Plant Mol Biol 22:783-792; Eckelkamp et al . (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) Plant J 6 2) :141-150) und dergleichen.
Besonders bevorzugt sind Promotoren, die speziell in Nähr- . zellsystemen (Syncytien) nach Nematodenbefall induziert werden. Beispielhaft seien zu nennen
i) der Δ0.3 TobRB7 Promotor aus Tabak (Opperman et al . (1994) Science 263: 221-223), insbesondere der durch SEQ ID NO: 24 beschriebene Promotor,
ii) der Lemmi9 Promotor aus Tomate (Escobar et al . (1999) Mol Plant Microbe Interact 12: 440-449), insbesondere der durch SEQ ID NO: 23 beschriebene Promotor, sowie
iii) Geminivirus V-sense Promotoren (WO 00/01832) , insbesondere die durch SEQ ID NO: 32, 33 oder 34 beschriebenen Promotoren.
Weitere im Rahmen dieser Erfindung bevorzugte nematoden-induzierbare Promotoren sind in WO 98/22599 beschrieben. Insbesondere bevorzugt sind dabei die regulatorischen Bereiche (d.h. die dem ATG-Startkodon vorgelagerten Bereiche) der Sequenzen mit den GenBank Acc.-No.: A91914 (Basenpaare 1 bis 3480). Ferner bevorzugt sind die in US 6,395,963 beschriebenen Promotorsequenzen, die in WO 03/033651 beschriebenen Promotorsequenzen, die in JP 2001508661-A beschriebenen Promotorsequenzen (insbesondere die Sequenz mit den GenBank Acc.-No.: BD056958) , sowie die in WO 97/46692 beschriebenen Promotorsequenzen (insbesondere die Se- quenz mit den GenBank Acc.-No.: A79355; Basenpaare 1 bis 2127, oder 1 bis 2160) . Weitere nemotoden-induzierbare Promotoren können von Genen abgeleitet werden, deren Induktion infolge eines Nematodenbefalls beschrieben ist. Beispielhaft - jedoch nicht einschränkend - sind zu nennen: Der Pollenin Promotor (Karimi M et al. (2002) J Nematol 34(2):75-79) sowie der Promotor einer pu- tativen Rezeptor Serin/Threonin Proteinkinase (Custers JHHV et al. (2002) Mol Plant Pathol 3 (4) :239-249 ) .
Besonders bevorzugt sind pathogen- oder stress-induzierbare, sowie Samen-, Knolle-, Wurzel-, Blatt- und/oder Stengelspezifische, wobei pathogen-induzierbare (insbesondere die oben spezifisch genannten nematoden-induzierbaren Promotoren) am meisten bevorzugt sind.
Ein weiterer - besonders bevorzugter - Gegenstand der Erfindung betrifft Expressionskonstrukte, in denen eine Nukleinsäuresequenz kodierend für ein Protein mit Saccharoseisomerase Aktivität in funktioneller Verknüpfung mit einem stress-, pathogen-, oder verwundungs-induzierbaren Promotor steht. Stress-, pathogen oder verwundungs-induzierbare Promotoren meint allgemein all solche Promotoren, die durch biotischen oder abiotischen Stress induziert werden können. Abiotischer Stress meint dabei Stimuli wie Hitze, Kälte, Trockenheit, Frost, Feuchte, Salz, UV-Licht usw. Biotischer Stress meint dabei den Befall durch ein Pathogen, wobei der Begriff "Pathogen" all die oben genannten Pathogene umfasst. Dabei hat der Stimulus bevorzugt eine Stärke, die zu einem Ertragsrückgang von mindestens 5 % im Vergleich zu durchschnittlichen Ertragswerten führt. Induzierbar meint dabei eine Erhöhung der Transkriptionsaktivität um mindestens 50 %, bevorzugt mindestens 100 %, besonders bevorzugt mindestens 500 %, ganz besonders bevorzugt mindestens 1000 %, am meisten bevorzugt mindestens 5000 % im Vergleich zu der Expressionsaktivität einer nicht-stimulierten Pflanze. Stress- oder pathogen-induzierbare Promotoren umfassen beispielhaft, jedoch nicht einschränkend den pathogen-induzierbaren Promotor des PRPl-Gens (Ward et al. (1993) Plant Mol Biol 22:361-366), den hitzeinduzierbaren hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), den kälteinduzierbaren -Amylase Promoter aus der Kartoffel (WO 96/12814) , den licht- induzierbaren PPDK Promotor oder den verwundungs-induzierbaren pinll-Promoter (EP-A 0 375 091) . Bevorzugt sind insbesondere pathogen-induzierbare Promotoren wie z.B. die Promotoren der PR-Proteine, SAR-Proteine, ß-1, 3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al . (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Inter- actions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sei USA 83:2427-2430; Somssich et al . (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sei USA 91:2507-2511; Warner, et al . (1993) Plant J 3:191-201; Siebertz et al . (1989) Plant Cell 1:961-968). Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinll Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al . (1996) Nat Biotech 14:494-498), des wunl- und wun2-Gens (US 5,428,148), des winl- und win2-Gens (Stanford et al . (1989) Mol Gen Genet 215:200-208), des Systemin-Gens (McGurl et al . (1992) Science 225:1570-1573), des WIPl-Gens (Rohmeier et al . (1993) Plant Mol Biol 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al . (1994) Plant J 6 (2) :141-150) und dergleichen. Verwundungs-induzierbare Promotoren sind bei Befall durch Fraßpathogene vorteilhaft einzusetzen. Der Durchschnittsfachmann kann darüber hinaus ohne weiteres zusätzliche Beispiele für Gene mit stress-, pathogen- oder verwundungs-induzierten Expressionsmustern der Literatur entnehmen. Ferner ist der Durchschnittsfachmann in der Lage, mittels Routinemethoden weitere geeignete Promotoren zu isolieren. So kann der Fachmann mit Hilfe gängiger molekularbiologischer Methoden, z.B. Hybridisierungsexperi enten oder DNA-Protein-Bindungsstudien entsprechende regulatorische Nuklein- säurelemente identifizieren. Dabei wird z.B. in einem ersten Schritt eine differentielle Expressionsbibliothek von beispielsweise pathogen-infizierten/befallenen und "normalem" Geweben angelegt. Anschließend werden mit Hilfe der so identifizierten pathogen-induzierten cDNAs Promotoren isoliert, die über pathogen-induzierbare regulatorische Elemente verfügen. Dem Fachmann stehen darüber hinaus weitere auf PCR basierende Methoden für die Isolierung geeigneter stress-, pathogen- oder verwundungs- induzierter Promotoren zur Verfügung.
Besonders bevorzugt sind gewebespezifische Promotoren, insbesondere samenspezifische, knollenspezifische, fruchtspezifische und blattspezifische Promotoren sowie pathogen- induzierte Promotoren.
Ganz besonders bevorzugt sind pathogeninduzierte Promotoren, insbesondere Nematoden-induzierte Promotoren.
Es können ferner weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine transgene Expression in weiteren Pflanzengeweben oder in anderen Organismen, wie zum Beispiel E.coli Bakterien ermöglichen. Als Pflanzenpromotoren kommen im Prinzip alle oben beschriebenen Promotoren in Frage.
Die in den Expressionskonstrukten oder Expressionsvektoren enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit zu verstehen und meint all solche Sequenzen, die einen Ein- fluss auf das Zustandekommen oder die Funktion eines Expressions- konstruktes haben. Genetische Kontrollsequenzen modifizieren zum Beispiel die Transkription und Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die Expressionskonstrukte 5 ' -stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen pflanzenspezifischen Promoter und 3 ' -stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz .
Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionsteuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasser- stress, Abscisinsäure (Lam E und Chua NH (1991) J Biol Chem 266(26) :17131- 17135) und Hitzestress (Schoffl F et al . (1989) Mol Gen Genetics 217 (2-3) :246-53) beschrieben.
Genetische Kontrollsequenzen umfassen ferner auch die 5'-untrans- latierte Regionen, Introns oder nichtkodierende 3 '-Region von Genen wie beipielsweise das Actin-1 Intron, oder die Adhl-S Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds . , Springer, New York (1994)). Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5 '-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5 ' -Leadersequenz aus dem Tabak-Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebes- pezifität fördern (Rouster J et al . (1998) Plant J 15:435-440).
Das transgene Expressionskonstrukt kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell ver- knüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3 '-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die trans- gen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.
Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens umfassen. Beispiele für besonders geeignete TerminatorSequenzen sind der OCS (Octopin-Synthase) -Terminator und der NOS (Nopalin-Synthase) -Terminator.
Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel die kodierende Sequenz eines bestimmten endogenen Gens gegen die für eine Saccharoseisomerase kodierende Sequenz gezielt ausgetauscht werden.
Ein transgenes Expressionskonstrukt und/oder die von ihm abgeleiteten transgenen Expressionsvektoren können weitere Funktionselemente enthalten. Der Begriff Funktionselernent ist breit zu verstehen und meint all solche Elemente, die einen Einfluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemäßen transgenen Expressionskonstrukte, der transgenen Expressionsvektoren oder der transgenen Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:
a) Selektionsmarker, die eine Resistenz gegen Biozide z.B. Metabolismusinhibitoren (wie 2-Desoxyglucose-6-phosphat (WO 98/45456), Antibiotika (wie z.B. Kanamycin, G 418, Bleomycin, Hygromycin) oder Herbizide (wie Gyphosat oder Phosphinotricin) verleihen.
Besonders bevorzugte Selektionsmarker sind solche, die eine Resistenz gegen Herbizide verleihen. Beispielhaft seien genannt: DNA Sequenzen, die für Phosphinothricinacetyl- transferasen (PAT) kodieren und Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen) , 5-Enolpyruvylshikimat-3- phosphatsynthasegene (EPSP Synthasegene) , die eine Resistenz gegen Glyphosat® (N- (phosphonomethyl) glycin) verleihen, das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase) , das deh Gen (kodierend für eine Dehalogenase, die Dalapon inaktiviert) , Sulfonylurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleiht, das Streptomycinphospho- transferase (spt) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neo ycinphosphotransferase (nptll) Gen, das eine Resistenz gegen Kanamycin oder Geneticin (G418) verleiht, das Hygromycinphosphotransferase (hpt) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthase Gen (als) , das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder Hra Mutation) .
b) Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine
Bewertung der Transformationseffizienz oder des Expressionsortes oder -Zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(l):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al.(1995) Plant Journal 8 (5) :777-784) , Chloramphenicoltransferase, Luziferase (Ow et al. (1986) Science 234:856-859),
Aequorin (Prasher et al. (1985) Biochem Biophys Res Commun 126 (3) :1259-1268) , ß-Galactosidase, ganz besonders bevorzugt ist ß-Glucuronidase (Jefferson et al. (1987) EMBO J 6:3901-3907) .
c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen transgenen Expressionskonstrukte oder transgenen Expressionsvektoren in zum Beispiel E.coli gewährleisten. Beispielhaft als ORI ("origin of DNA replication" ) seien genannt der pBR322 ori oder der P15A ori (Sambrook et al . : Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) .
d) Elemente, die für eine Agrobakterium-vermittelte Pflanzen- transformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.
Zur Selektion erfolgreich transformierter Zellen ist es in der Regel erforderlich, einen selektionierbaren Marker zusätz- lieh einzuführen, der den erfolgreich rekombinierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid) , einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein Antibiotikum verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten (McCormick et al. (1986) Plant Cell Reports 5:81-84) .
Die Einführung eines erfindungsgemäßen Expressionskonstruktes in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanzliche Zellen, Gewebe, Organe, Teile oder Samen) kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in denen die transgenen Expressionskonstrukte enthalten sind. Vektoren können beispielhaft Plasmide, Cos ide, Phagen, Viren oder auch Agrobakterien sein. Das trans- gene Expressionskonstrukt kann in den Vektor (bevorzugt ein
Plasmidvektor) über eine geeignete Restriktionsschnittstelle oder eine Rekombinase att-Sequenz eingeführt werden. Der entstandene transgene Expressionsvektor wird zunächst in E.coli eingeführt. Korrekt transformierte E.coli werden selektioniert, gezüchtet und der rekombinante Vektor mit den dem Fachmann geläufigen
Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu prüfen. Bevorzugt sind solche Vektoren, die eine stabile Integration des transgenen Expressionskonstruktes in das pflanzliche Genom ermöglichen.
Die Herstellung eines transformierten Organismus (bzw. einer 5 transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA (z.B. der Expressionsvektor) oder RNA in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung
10 (Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch
15 Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektro- poration ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen
20 Impuls permeabilisiert werden. Entsprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al. (1991) Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature
25 327:70-73; Howell et al . (1980) Science 208:1265; Horsch et al.(1985) Science 227:1229- 1231; DeBlock et al . (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.)
30 Academic Press Inc. (1989)).
Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation
35 genutzt. Geeignete Methoden sind vor allem die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnähme, das biolistische Verfahren mit der Genkanone, die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung und
40 die Mikroinjektion.
Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium tumefaciens oder Agrobacterium rhizogenes durchgeführt werden. 45 Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone Pflanzenzellen geeignet. Die Verfahren sind bei- spielsweise beschrieben bei Horsch RB et al. (1985). Science 225: 1229f) .
Werden Agrobakterien verwendet, so ist das transgene Expressions- konstrukt in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: Shuttle or intermediate vector) oder einen binären Vektor. Wird ein Ti oder Ri Plasmid zur Transformation verwendet, ist zumindest die rechte Begrenzung, meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit dem einzuführenden transgenen Expressionskonstrukt verbunden.
Bevorzugt werden binäre Vektoren verwendet . Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen für die
Selektion transformierter Pflanzen (z.B. das nptll Gen, das eine Resistenz gegen Kanamycin verleiht) und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungs- sequenz . Außerhalb der T-DNA-Begrenzungssequenz enthalten sie zudem noch einen Selektionsmarker, der eine Selektion transformierter E.coli und/oder Agrobakteria ermöglicht (z.B. das nptlll Gen, das eine Resistenz gegen Kanamycin verleiht) . Entsprechende Vektoren können direkt in Agrobakterium transformiert werden (Holsters et al. (1978) Mol Gen Genet 163:181-187).
Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V. , Alblasserda , Chapter V; An et al . (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Clontech Laboratories, Inc. USA).
Direkte Transformationstechniken eignen sich für jeden Organis- us und Zelltyp. Im Falle von Injektion oder Elektroporation von DNA bzw. RNA in pflanzliche Zellen werden keine besonderen Anforderungen an das verwendete Plasmid gestellt. Einfache Plasmide wie die der pUC-Reihe können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist es vorteilhaft, wenn sich auf dem Plasmid ein zusätzliches selektionierbares Markergen befindet. Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionier- barer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibiotika oder Herbizide (wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin etc.) zu verleihen vermag (s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines ent- sprechenden Antibiotikums oder Herbizides zu überleben, die einen untransformierten Wildtyp abtöten. Beispiel sind oben genannt und umfassen bevorzugt das bar Gen, dass Resistenz gegen das Herbizid Phosphinotricin verleiht (Rathore KS et al. (1993) Plant Mol Biol 21 (5) :871-884) , das nptll Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von untransformierten (McCormick et al . (1986) Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr
Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.
Die oben genannten Verfahren sind beispielsweise beschrieben in Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press, S.128-143 sowie in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225. Vorzugsweise wird das Expressionskonstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al. (1984) Nucl Acids Res 12:8711f) .
Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden.
Dem Fachmann sind Verfahren bekannt, um aus Pflanzenzellen, Pflanzenteile und ganze Pflanzen zu regenerieren. Beispielsweise werden hierzu Verfahren beschrieben von Fennell et al . (1992) Plant Cell Rep. 11:567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al . (1994) Theor Appl Genet 89:525-533 verwendet .
"Transgen" meint alle solche Konstruktionen und Verfahren, in denen sich entweder
a) die Nukleinsäuresequenz kodierend für ein Protein mit Saccharoseisomerase-Aktivität , oder
b) eine mit besagter Nukleinsäuresequenz unter a) funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
c) (a) und (b)
sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek.
Sequenzen
1. SEQ ID NO: 1 Nukleinsäuresequenz kodierend für Saccharoseisomerase aus Protaminobacter rubrum 5
2. SEQ ID NO: 2 Aminosäuresequenz kodierend für Saccharoseisomerase aus Protaminobacter rubrum
3. SEQ ID NO: 3 Nukleinsäuresequenz kodierend für Saccharose- 10 isomerase aus Saccharoseisomerase aus Erwinia rhaponthici (N-terminales Fragment)
4. SEQ ID NO: 4 Aminosäuresequenz kodierend für Saccharoseisomerase aus Saccharoseisomerase aus Erwinia 15 rhaponthici (N-terminales Fragment)
5. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für Saccharoseisomerase aus Erwinia rhaponthici
20 6. SEQ ID NO: 6 Aminosäuresequenz kodierend für Saccharoseisomerase aus Erwinia rhaponthici
7. SEQ ID NO : 7 Nukleinsäuresequenz kodierend für Saccharoseisomerase aus Protaminobacter rubrum (Variante) 25
8. SEQ ID NO: 8 Aminosäuresequenz kodierend für Saccharoseisomerase aus Protaminobacter rubrum (Variante)
9. SEQ ID NO: 9 Nukleinsäuresequenz kodierend für Saccharose- 30 isomerase aus Enterobacter species SZ62
10. SEQ ID NO: 10 Aminosäuresequenz kodierend für Saccharoseisomerase aus Enterobacter species SZ62
35 11. SEQ ID NO: 11 Nukleinsäuresequenz kodierend für Saccharoseisomerase aus Serratia plymuthica
12. SEQ ID NO: 12 Aminosäuresequenz kodierend für Saccharoseisomerase aus Serratia plymuthica 40
13. SEQ ID NO: 13 Nukleinsäuresequenz kodierend für Fusionsprotein aus Saccharoseisomerase aus Erwinia rhapontici (pall) und Signalpeptidesequenz des Proteinase Inhibitor II Gens 14. SEQ ID NO: 14 Aminosäuresequenz kodierend für- Fusionsprotein aus Saccharoseisomerase aus Erwinia rhapontici [pall) und Signalpeptidesequenz des Proteinase Inhibitor II Gens 5
15. SEQ ID NO: 15 Nukleinsäuresequenz (vollständige cDNA mit untranslatierter Region) kodierend für Saccharoseisomerase ( Iso altulosesynthase) aus Klebsiella sp. LX3 10
16. SEQ ID NO: 16 Aminosäuresequenz kodierend für Saccharoseisomerase (Isomaltulosesynthase) aus Klebsiella sp. LX3
15 17. SEQ ID NO: 17 Nukleinsäuresequenz (offenes Leseraster) kodierend für Saccharoseisomerase (Isomaltulosesynthase) aus Klebsiella sp. LX3
18. SEQ ID NO: 18 Aminosäuresequenz kodierend für Saccharose- 20 isomerase (Isomaltulosesynthase) aus Klebsiella sp. LX3
19. SEQ ID NO: 19 Nukleinsäuresequenz kodierend für Saccharoseisomerase aus Enterobacter species SZ62 25 (Fragment)
20. SEQ ID NO: 20 Aminosäuresequenz kodierend für Saccharoseisomerase aus Enterobacter species SZ62 (Fragment) 30
21. SEQ ID NO: 21 Nukleinsäuresequenz kodierend für Saccharoseisomerase aus Pseudomonas mesoacidophila MX45 (Fragment)
35 22. SEQ ID NO: 22 Aminosäuresequenz kodierend für Saccharoseisomerase aus Pseudomonas mesoacidophila MX45 (Fragment )
23. SEQ ID NO: 23 Nukleinsäuresequenz kodierend für
40 Lemmi9-Promotor aus Tomate (Lycopersicum esculatum)
24. SEQ ID NO: 24 Nukleinsäuresequenz kodierend für Δ0.3TobRB7
Promotorsequenz (Region: -298 bis +76) aus 45 Nicotiana tabacum 25. SEQ ID NO: 25 Oligonukleotidprimer FB83
5 ' -GGATCCGGTACCGTTCAGCAATCAAAT-3 '
26. SEQ ID NO: 26 Oligonukleotidprimer FB84
5 5 ' -GTCGACGTCTTGCCAAAAACCTT-3 '
27. SEQ ID NO: 27 Oligonukleotidprimer FB 97
5 ' -GTCGACCTACGTGATTAAGTTTATA-3 '
10 28. SEQ ID NO: 28 Oligonukleotidprimer Leml
5 ' -atcGAATTCATAATTTAACCATCTAGAG-3 '
29. SEQ ID NO: 29 Oligonukleotidprimer Lem2
5 ' -atcGGTACCTGCTTCTGGAACGAAAGGG-3 ' 15
30. SEQ ID NO: 30 Oligonukleotidprimer Tobl
5 ' -GGAATTCAGCTTATCTAAACAAAGTTTTAAATTC-3 '
31. SEQ ID NO: 31 Oligonukleotidprimer Tob2
20 5 ' -GGGTACCAGTTCTCACTAGAAAAATGCCCC-3
32. SEQ ID NO: 32 Nukleinsäuresequenz kodierend für V-sense
Promotor aus Wheat Dwarf Virus (GenBank Acc.- No.: AX006849; Sequenz 1 aus WO 00/01832) 25
33. SEQ ID NO: 33 Nukleinsäuresequenz kodierend für V-sense
Promotor aus Maize Streak Virus (GenBank Acc.- No.: AX006850; Sequenz 2 aus WO 00/01832)
30 34. SEQ ID NO: 34 Nukleinsäuresequenz kodierend für V-sense
Promotor aus Pepper huasteco Virus (GenBank Acc.-No.: AX006851; Sequenz 3 aus WO 00/01832)
35. SEQ ID NO: 35 Nukleinsäuresequenz kodierend für Saccharose- 35 isomerase aus Serratia plymuthica
36. SEQ ID NO: 36 Aminosäuresequenz kodierend für Saccharoseisomerase aus Serratia plymuthica
40
45 Abbildungen
1. Fig. 1: Schematische Darstellung der Expressionskassette im Plasmid p35S-cwIso. Bedeutung der Abkürzungen: 35S: 35S Cauliflower Mosaik Virus (CaMV) Promotor SP: Signalpeptid des Proteinase-Inhibitor II-Gens pall: Saccharoseisomerase Gen aus Erwinia rhapontici OCS: Polyadenylierungssignal des Octopin-Synthase Gens EcoRI ,Asp718 , BamHI , Sall, Hindlll : Restriktionschnittstellen Detaillierte Beschreibung der einzelnen Elemente siehe unten.
2. Fig 2: Schematische Darstellung der Expressionskassette im Plasmid pB33-cwIso. Bedeutung der Abkürzungen:
B33: Promotor des Klasse I Patatin-Gens B33 SP: Signalpeptid des Proteinase-Inhibitor II-Gens pall : Saccharoseisomerase Gen aus Erwinia rhapontici OCS: Polyadenylierungssignal des Octopin-Synthase Gens EcoRI ,Asp718 , BamHI , Sall , Hindlll : Restriktionschnittstellen Detaillierte Beschreibung der einzelnen Elemente siehe unten.
3. Fig. 3: Westernblot-Analyse von pall exprimierenden Kartoffelknollen verschiedener transgener Linien. Pro Spur wurden 20 μg lösliches Protein auf ein SDS-Gel aufgetragen, getrennt und auf Nitozellulose transferiert. Der Filter wurden an- schließend mit einem polyklonalen Pall Antikörper hybridisiert. Verglichen wurde die Expression in Knollen von Wildtyp-Kartoffelpflanzen (wt) mit der in den Kartoffellinien 5, 12, 26 und 33.
4. Fig. 4: HPLC-Analyse der löslichen Kohlenhydrate in Saccharoseisomerase exprimierenden Pflanzen. A: Zuckerstandards .
B: Extrakt einer transgenen Knolle. C: Extrakt einer Wildtypknolle.
5. Fig. 5: Gehalt an Palatinose, Saccharose, Glucose und Stärke in Wildtyp-Kartoffelknollen (wt) und Kartoffelknollen verschiedener transgener Linien (3 bis 37) , die das chimäre pall Gen in der Zellwand exprimieren. Die Werte des Wiltyps (wt; gestreifte Säulen) und der transgenen Kartoffelknollen (3 bis 37; schwarze Säulen) entsprechen den Mittelwerten von vier Messungen + Standardabweichung. Als zusätzliche Kontrolle wurde eine transgene jedoch pall nicht-expri ierende Linie (Control) analysiert. 6. Fig.6: Infektion von Kartoffelknollen mit Alternaria solani. Kartoffelscheiben von Wildtyp-Knollen und Knollen der pall exprimierenden transgene Linien 5 und 33 zum Zeitpunkt
14 Tage nach Infektion mit Alternaria solani . A: Kontrolle mit Kartoffelscheiben von Widtyp (wt)- und transgenen Knollen (Linien 5 und 33) nach 14-tägiger Inkubation ohne vorherige Alternaria Infektion. B: Wildtypknollen; 14 Tage nach Alternaria Infektion C : Transgene Linie-5 ; 14 Tage nach Alternaria Infektion D: Transgene Linie-33; 14 Tage nach Alternaria Infektion
7. Fig. 7: Schematische Darstellung der Expressionskassette im Plasmid pLemmi9-cwIso. Bedeutung der Abkürzungen:
Lemmi9 : Lemmi9-Promotor aus Tomate (Lycopersicon esculentum) SP: Signalpeptid des Proteinase-Inhibitor II-Gens pall: Saccharoseisomerase Gen aus Erwinia rhapontici OCS: Polyadenylierungssignal des Octopin-Synthase Gens EcoRI,Asp718,BamHI, Sall,Hindlll : Restriktionschnittstellen Detaillierte Beschreibung der einzelnen Elemente siehe unten.
8. Fig 8: Schematische Darstellung der Expressionskassette im Plasmid pΔ0.3TobRB7-cwIso. Bedeutung der Abkürzungen: Δ0.3TobRB: Δ0.3TobRB7-Promotor aus Nicotiana tabacum SP: Signalpeptid des Proteinase-Inhibitor II-Gens pall: Saccharoseisomerase Gen aus Erwinia rhapontici
OCS: Polyadenylierungssignal des Octopin-Synthase Gens EcoRI,Asp718, BamHI , Sall,Hindlll : Restriktionschnittstellen Detaillierte Beschreibung der einzelnen Elemente siehe unten.
Beispiele
Allgemeine Methoden:
Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamidit ethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungs- schritte - wie z.B. Restriktionsspaltungen, Agarosegelelektro- phorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA - werden wie bei Sambrook et al . (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Transformation von Agrobacterium tumefaciens wurde entsprechend der Methode von Hofgen und Willmitzer ((1988) Nucl. Acids Res. 16:9877) ausgeführt. Die Anzucht der Agrobacterien erfolgte in YEB Medium (Vervliet et al. (1975) Gen Virol 26:,-33). Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma MWG-Licor nach der Methode von Sanger (S nger et al. (1977) Proc Natl Acad Sei USA 74:5463-5467).
Beispiel 1: PCR-Amplifikation eines Subfrag ents der Saccharoseisomerase aus Erwinia rhaponitici
Die Klonierung eines Subfragments der Saccharoseisomerase erfolgte mittels Polymerase-Kettenreaktion (Polymerase Chain Reaction, PCR) . Als Matrizenmaterial diente genomische DNA aus E. rhapontici (DSM 4484) , die nach Standardprotokoll isoliert wurde. Die Amplifizierung erfolgte unter Verwendung der nach- folgenden spezifischen Primer, die von einer Saccharoseisomerase- Sequenz des Standes der Technik abgeleitet wurden:
FB83 5 ' -GGATCCGGTACCGTTCAGCAATCAAAT-3 ' (SEQ ID NO: 25)
FB84 5 ' -GTCGACGTCTTGCCAAAAACCTT-3 ' (SEQ ID NO: 26)
Primer FB83 umfaßt die Basen 109 bis 127 und Primer FB84 die Basen 1289 bis 1306 der kodierenden Region des Saccharose- isomerase-Gens von E. rhapontici.
Das PCR-Reaktionsgemisch (100 μl) enthielt:
- chromosomale Bakterien DNA (1 μg)
- Primer FB 83 und FB 84 (jeweils 250 ng) , - Pfu DNA-Polymerase-Reaktionspuffer (10 μl, Stratagene) ,
- 200 μM dNTPs (dATP, dCTP, dGTP, dTTP) und
- 2,5 Einheiten Pfu DNA-Polymerase (Stratagene).
Vor Beginn der Amplifikationszyklen wurde das Gemisch für 5 min auf 95°C erhitzt. Die Polymerisierungsschritte (30 Zyklen) wurden in einem automatischen T3-Thermocycler (Biometra) nach folgendem Programm durchgeführt: Denaturierung 95°C (1 Minute) , Anlagerung der Primer bei 55°C (40 Sekunden) , Polymerase-Reaktion bei 72°C (2 Minuten) . Das erhaltene Fragment wurde in den Vektor pCR-Blunt (Invitrogen) kloniert. Die Identität der amplifizierten DNA wurde mittels Sequenzanalyse verifiziert.
Das amplifizierte Subfragment kann auch als Hybridisierungssonde für die Isolierung weiterer Saccharoseisomerase-DNA-Sequenzen aus anderen Organismen oder als Sonde bei der Analyse transgener Zellen und Pflanzen eingesetzt werden. Beispiel 2 : PCR-Amplifikation einer Saccharoseisomerase aus Erwinia rhaponitici
Unter Verwendung des in Beispiel 1 amplifizierten Fragmentes wurde eine genomische Bank von Erwinia rhapontici nach Standardmethoden durchmustert. Anschließende Sequenzanalysen erlaubten die Bestimmung des offenen Leserahmens der Saccharoseisomerase. Von dieser Sequenz wurden die Oligonukleotidprimer FB83 und FB97 abgeleitet .
Die Klonierung des vollständigen offenen Leserasters der Saccharose-Isomerase erfolgte mittels Polymerase-Kettenreaktion (Polymerase Chain Reaction, PCR) . Als Matrizenmaterial diente genomische DNA aus E. rhapontici (DSM 4484) , die nach Standard- Protokoll isoliert wurde. Die Amplifizierung erfolgte unter Verwendung der nachfolgenden spezifischen Primer
FB83 5 ' -GGATCCGGTACCGTTCAGCAATCAAAT-3 ' (SEQ ID NO: 25)
FB97 5 ' -GTCGACCTACGTGATTAAGTTTATA-3 ' (SEQ ID NO: 27)
Primer FB83 umfaßt die Basen 109 bis 127 und Primer FB97 die Basen 1786 bis 1803 der kodierenden Region des Saccharose- isomerase-Gens . Zur Klonierung der amplifizierten DNA in Expressionsvektoren tragen die Primer zusätzlich folgende
Restriktonsschnittstellen: Primer FB 83, BamHI und Primer FB 97, Sall.
Das PCR-Reaktionsgemisch (100 μl) enthielt:
- chromosomale Bakterien-DNA (1 μg) ,
- Primer FB83 und FB97 jeweils 250 ng,
- Pfu DNA-Polymerase-Reaktionspuffer (10 μl Stratagene) ,
- 200 μM dNTPs (dATP, dCTP, dGTP, dTTP) und - 2,5 Einheiten Pfu DNA-Polymerase (Stratagene).
Vor Beginn der Amplifikationszyklen wurde das Gemisch für 5 min auf 95°C erhitzt. Die Polymerisierungsschritte (30 Zyklen) wurden in einem automatischen T3-Thermocycler (Biometra) nach folgendem Programm durchgeführt: Denaturierung 95°C (1 Minute) , Anlagerung der Primer bei 55°C (40 Sekunden) , Polymerase-Reaktion bei 72°C (2 Minuten) . Das amplifizierte Saccharoseisomerase-Fragment wurde in den Vektor pCR-Blunt (Invitrogen) kloniert, wodurch das Plasmid pCR-SucIso2 (ohne Translationsstart) erhalten wurde. Die Identität der amplifizierten DNA wurde mittels Sequenzanalyse verifiziert. Das PCR-Fragment beinhaltet somit die Sequenz einer Saccharoseisomerase aus E. rhapontici, die sich von- Nukleotid 109-1803 des Saccharoseisomerase-Gens erstreckt.
Beispiel 3: Herstellung von Plasmid p35S-cwIso
Eine DNA Sequenz, die für eine Saccharose-Isomerase kodiert, wurde aus dem Plasmid pCR-SucIso2 isoliert und mit dem 35S- Promotor des Cauliflower Mosaik Virus, der eine konstitutive Expression in transgenen Pflanzenzellen vermittelt sowie einem pflanzlichen Termmationssignal versehen. Das pflanzliche Terminationssignal beinhaltet das 3 '-Ende der Polyadenylierungs- stelle des Octopin-Synthase Gens .
Vor die kodierende Sequenz des Saccharoseisomerase-Gens wurde außerdem ein für die Aufnahme in das Endoplasmatische Retikulum notwendiges Signalpeptid eines pflanzlichen Gens (Proteinase- Inhibitor II-Gen aus Kartoffel (Keil et al. (1986) Nucl Acids Res 14:5641-5650; Genbank Acc . -No . : X04118) fusioniert. Dazu wurde das Saccharoseisomerase-Fragment aus dem Konstrukt pCR-SucIso2 über die Restriktionsschnittstellen BamHI und Sall herausgeschnitten und in einen BamHI/Sall-geöffneten pMA-Vektor ligiert. Der Vektor pMA stellt eine modifizierte Form des Vektors pBinAR (Höfgen und Willmitzer (1990) Plant Sei. 66:221-230) dar. Welche den 35S-Promotor des Cauliflower Mosaik Virus, der eine konstitu- tive Expression in transgenen Pflanzen vermittelt, ein Signalpeptid des Proteinase-Inhibitors II aus Kartoffel, welches die Zielsteuerung des Fusionsproteins in die Zellwand vermittelt, sowie ein pflanzliches Terminationssignal enthält. Das pflanzliche Terminationssignal beinhaltet das 3 '-Ende der Polyadenylierungs- stelle des Octopin-Synthase Gens. Zwischen der Teilsequenz des Proteinase-Inhibitors und dem Terminationssignal befinden sich Schnittstellen für die Restriktionsenzyme BamHI, Xbal, Sall, PstI und SphI (in dieser Reihenfolge) , welche die Insertion entsprechender DNA-Fragmente ermöglichen, so dass ein Fusion- sprotein zwischen dem Proteinase-Inhibitor Signalpeptid und dem eingefügten Protein entsteht, welches dann in die Zellwand von transgenen Pflanzenzellen befördert wird, die dieses Protein exprimieren. Die Expressionskassette im Plasmid p35S-cwIso besteht somit aus den Fragmenten A,B und C (Fig. 1) :
A) Fragment A beinhaltet den 35S-Promotor des Cauliflower Mosaik Virus (CaMV) . Es enthält ein Fragment, welches die Nukleotide 6909 bis 7437 des CaMV umfaßt (Franck (1980) Cell 21:285) . B) Fragment B enthält die Nukleotide 923 bis 1059 „-eines Proteinase-Inhibitor II-Gens aus der Kartoffel (Keil el al., supra) , welche über einen Linker mit der Sequenz ACC GAA
TTG GG an das Saccharoseisomerase Gen aus Erwinia rhapontici, welches die Nukleotide 109 bis 1803 umfaßt, fusioniert sind. Dadurch wird ein für die Aufnahme /on Proteinen in das Endoplasmatische Retikulum (ER) notwendige Signalpeptid eines pflanzlichen Proteins N-terminal an die Saccharoseisomerase Sequenz fusioniert.
C) Fragment C enthält das Polyadenylierungssignal des Octopin- Synthase Gens (Dhaese et al.(1983) EMBO J. 2:419-426. GenBank Acc.-No.: Z37515, Nukleotide 1344 bis 1533).
In p35S-cwIso (35S = 35S-Promotor, cw = Zellwand, Iso =
Saccharoseisomerase) steht die kodierende Region der Saccharoseisomerase aus E. rhapontici unter konstitutiver Kontrolle, das Genprodukt wird in das ER aufgenommen und anschließend sekretiert .
Beispiel 4: Herstellung von Plasmid pB33-cwIso
Das Plasmid pB33-cwIso wurde unter Verwendung des binären Plasmids p35S-cwIso hergestellt. Dabei wurde der 35S-Promoter gegen den Promotor des Klasse I Patatin-Gens (Rocha-Sosa et al (1989) EMBO J 8:23-29) ausgetauscht. Die Expressionskassette dieses Plasmids pB33-cwIso besteht somit aus den drei Fragmenten A, B und C (siehe Fig. 2) :
A) Fragment A beinhaltet die Region -1512 bis +14 relativ zur Transkriptionsinitiationsstelle des Klasse I Patatin- Gens. Die Promotorregion wurde als Dral-Fragment in den mit SstI geschnittenen Vektor pUCI8, dessen Enden unter Einsatz der T4-DNA-Polymerase aufgefüllt und somit geglättet worden waren, ligiert. Anschließend wurde das Fragment mit den Restriktionsenzymen EcoRI und Asp718 aus dem Vektor pUC18 wieder ausgeschnitten und in das Plasmid p35S-cwIso kloniert, aus dem vorher der 35S CaMV-Promotor nach partieller Restriktion mit den Enzymen EcoRI und Asp718 deletiert worden war.
B) Fragment B enthält die Nukleotide 923 bis 1059 eines
Proteinase-Inhibitor II-Gens aus der Kartoffel, welche über einen Linker mit der Sequenz ACC GAA TTG GG an das Saccharoseisomerase-Gen aus E. rhapontici, welches die
Nukleotide 109 bis 1803 umfasst, fusioniert sind. Dadurch wird ein für die Aufnahme von Proteinen in das ER notwendiges Signalpeptid eines pflanzlichen Proteins N-terminal an die Saccharoseisomerase-Sequenz fusioniert.
C) Fragment C enthält das Polyadenylierungssignal des Octopin- Synthase Gens (Dhaese et al. (1983) EMBO J 2:419-426; GenBank Acc.-No.: Z37515, Nukleotide 1344 bis 1533).
In pB33-cwIso (B33 = Promotor des Klasse I Patatin-Gens B33, cw = Zellwand, Iso = Saccharoseisomerase) steht die kodierende Region der Saccharoseisomerase aus E. rhapontici unter gewebespezifischer Kontrolle, das Genprodukt wird in das ER aufgenommen.
Beispiel 5: Kartoffeltransformation und Selektion transgener Pflanzen
20 kleine, mit einem Skalpell verwundete Blätter einer Kartoffel- Sterilkultur (Solanum tuberosum L. cv. Solara) wurden in 10 ml MS-Medium mit 2 % Saccharose gelegt, welches 50 μl einer unter Selektion gewachsenen Agrobacterium tumefaciens-Ubernachtkultur enthielt. Nach 5-minütigem, leichtem Schütteln wurden die Petri- schalen bei 25°C im Dunkeln inkubiert. Nach zwei Tagen wurden die Blätter auf MS-Medium mit 1,6 % Glucose, 2 mg/1 Zeatinribose, 0,02 mg/1 Giberellinsäure, 500 mg/1 Claforan, 50 mg/1 Kanamycin und 0,8 % Bacto-Agar ausgelegt. Nach einwöchiger Inkubation bei 25°C und 3000 Lux wurde die Claforankonzentration im Medium halbiert . Eine weitere Woche Kultivierung erfolgte unter bekannten Bedingungen (Rocha-Sosa et al. (1989) EMBO J 8:23-29).
Unter Verwendung des pB33-cwIso Plasmids wurden nach Agro- bakterien-vermittelter Transformation insgesamt 36 kanamycin- resistente Kartoffelpflanzen regeneriert. Die Knollen dieser Pflanzen wurden mit Hilfe eines polyklonalen Antikörpers gegen das rekombinante Pall Protein (Börnke et al. (2002) Planta 214:356-364) auf pall Expression untersucht. Bei
25 Linien konnte pall Expression im Westernblot nachgewiesen werden. Ein Westernblot von repräsentativen Linien ist in Fig. 3 dargestellt.
Beispiel 6: HPLC-Analyse der transgenen pB33-cwIso-Kartoffein
Mit dem Ziel des Nachweises der in vivo Konversion von Saccharose in Palatinose wurden Knollenextrakte der transgenen Linien mittels HPLC hinsichtlich ihres Gehaltes an löslichen Kohlen- hydraten untersucht. Die HPLC Analyse wurde nach der in Börnke et al. (2002) Planta 214:356-364 beschrieben Methode durchgeführt . Die Herstellung der Knollen Extrakte ist beschrieben bei Sonnewald et al.(1992) Plant J 2:571-581. Die Resultate der HPLC Analyse sind in Fig. 4 dargestellt.
Wie die Chromatogramme zeigen, führt die Expression der 5 Saccharoseisomerase in der Zellwand zu einer substantiellen Akkumulation von Palatinose in den Knollen der untersuchten pB33-cwIso-Linien. Der Wildtyp enthält keine Palatinose, wie ebenfalls aus den Chromatogrammen deutlich zu erkennen ist. Der Gehalt an löslichen Zuckern in transgenen Kartoffel- 10 knollen, die das Konstrukt pB33-cwIso enthalten, ist in Fig. 5 dargestellt. Der Gehalt an Palatinose in den Kartoffelknollen variiert zwischen den einzelnen transgenen Linien zwischen 1,7 μmol/g FW (FW: "fresh weight" = Frischgewicht) (Linie 14) und 16 μmol/g FW (Linie 5) .
15
Beispiel 7 : Infektion von Karoffelscheiben mit Alternaria solani
Alternaria solani (bereitgestellt von Dr. Jürgen Sigrist, Zentrum für Grüne Gentechnik, Neustadt an der Weinstraße) wurden auf
20 PDA-Agar (Duchefa, Niederlande) für 14 Tage bei 16°C gehalten (PDA = Potato Dextrose Agar) . Die Sporen wurden durch Abschaben in Wasser isoliert und die erhaltene Suspension durch Miracloth von festen Bestandteilen befreit. Die Sporenzahl wurde in einer Zählkammer (Thoma) bestimmt und auf 10000 Sporen/ml eingestellt.
25 25 μl (demnach 250 Sporen) wurden pro Kartoffelscheibe (1,5 cm Durchmesser) aufgetragen und gleichmäßig verteilt. Die inokulierten Scheiben wurden anschließend bei 16°C inkubiert. Die Bonitur erfolgte optisch. Das Ergebnis nach 14-tägiger Inkubation ist in Fig. 6 dargestellt. Wie aus der Abbildung ersichtlich ist, ist
30 das Wachstum des Pilzes auf transgenen Kartoffelknollen, die die Saccharoseisomerase exprimieren im Vergleich zum Wildtyp deutlich reduziert .
Beispiel 8 : Herstellung des Plasmids pLemmi9-cwIso
35
Zur Herstellung des Plasmids pLemmi9-cwIso wurde der Promotor des Klasse I Patatin-Gens B33 im Plasmid pB33-cwIso gegen den Lemmi9 Promotor Escobar et al. (1999) Mol Plant Microbe Interact 12:440-449) ausgetauscht und das Fusionsprotein aus Proteinase- 40 Inhibitor Il-Signalpeptid und der Saccharoseisomerase somit unter die Kontrolle des "Feeding cell"-spezifischen Promotor gestellt.
Die Funktionalität des "Feeding cell"-spezifischen Lemmi9- Promotors wurde bereits demonstriert (Escobar C et al. (1999) 45 Mol Plant Microbe Interact 12:440-449). Das Plasmid pLemmi9- cwlso beinhaltet drei Fragmente A, B und C (siehe Fig. 7) : A) Fragment A beinhaltet den Lemmi9-Promotor aus Tomate (Lyco- persicon esculentum) . Das Fragment beinhaltet die Sequenz von 1417 bp vor dem Translationsstart (ATG) des Lemmi9-Gens und wurde als funktionelles Promoterfragment charakterisiert (Escobar et al. (1999) Mol Plant Microbe Interact 12: 440-449, Accession Z69032) . Es wurde mittels PCR aus genomischer DNA von Tomate (Lycopersicon esculentum) ampli- fiziert. Die Amplifizierung erfolgte unter Verwendung der folgenden spezifischen Primer:
Leml: 5 ' atcGAATTCATAATTTAACCATCTAGAG 3' (SEQ ID NO: 28)
Lem2: 5 ' atcGGTACCTGCTTCTGGAACGAAAGGG 3' (SEQ ID NO: 29)
Zur Klonierung der DNA in die Expressionskassette tragen die Primer zusätzlich folgende Restriktionsschnittstellen: Primer Leml, EcoRI; Primer Lem2 , Asp718.
Das PCR-Reaktionsgemisch (100 μl) enthielt:
- genomische Tomaten-DNA (1 μg) ,
- Primer Leml und Lem2 (jeweils 250 ng) ,
- Pfu DNA-Polymerase-Reaktionspuffer (10 μl, Stratagene) ,
- 200 μM dNTPs (dATP, dCTP, dGTP, dTTP) und - 2,5 Einheiten Pfu DNA-Polymerase (Stratagene).
Vor Beginn der Amplifikationszyklen wurde das Gemisch für 5 min auf 95°C erhitzt. Die Polymerisierungsschritte (30 Zyklen) wurden in einem automatischen T3-Thermo- cycler (Biometra) nach folgendem Programm durchgeführt: Denaturierung 95°C (1 Minute) , Anlagerung der Primer bei 56°C (40 Sekunden) , Polymerase-Reaktion bei 72°C (3 Minuten) . Das Amplikon wurde mit den Restriktionsenzymen EcoRI und Asp718 verdaut und in die entsprechenden Restriktions- schnittsteilen des Polylinkers von pBluescript (Stratagene) kloniert. Die Identität der amplifizierten DNA wurde mittels Sequenzanalyse verifiziert. Anschließend wurde das Fragment mit den Restriktionsenzymen EcoRI und Asp718 verdaut und in das Plasmid pB33-cwIso kloniert aus dem vorher der B33-Promotor nach partieller Restriktion mit den Enzymen EcoRI und Asp718 deletiert wurde.
B) Fragment B enthält die Nukleotide 923 bis 1059 des
Proteinase-Inhibitor II-Gens aus der Kartoffel (Keil et al. (1986) Nucl Acids Res 14:5641-5650; Genbank Acc.No.: X04118) , welche über einen Linker mit der Sequenz ACC GAA TTG GG an das Saccharoseisomerase-Gen aus E. rhapontici, welches die Nukleotide 109 bis 1803 umfasst, fusioniert sind. Dadurch ist ein für die Aufnahme von Proteinen in das ER notwendiges Signalpeptid eines pflanzlichen Proteins N-terminal an die Saccharoseisomerase-Sequenz fusioniert .
C) Fragment C enthält das Polyadenylierungssignal des Octopin- Synthase Gens (Dhaese et al.(1983) EMBO J 2:419-426. Accession Z37515, Nukleotide 1344 bis 1533).
In pLemmi9-cwIso (Lemmi9 = Promotor des Lemmi9-Gens aus Tomate (Lycopersicon esculentum) , cw = Zellwand, Iso = Saccharoseisomerase) steht die kodierende Region des Saccharoseisomerase- Gens unter Feeding cell-spezifischer Kontrolle, das Genprodukt wird in das ER aufgenommen.
Analog wurde ein Kontrollkonstrukt zur Expression von ß-Glucuro- nidase (Jefferson et al. (1987) EMBO J 6:3901-3907) unter Kontrolle des Lemmi -Promotors hergestellt (pLemmi9-GUS) .
Kartoffelzellen wurden wie oben beschrieben mittels Agrobacterium-vermitteltem Gentransfer mit dem Konstrukt pLemmi9-cwIso bzw. pLemmi9-GUS transformiert und ganze Kartoffelpflanzen wurden regeneriert.
Beispiel 9: Herstellung des Plasmids pΔ0.3TobRB7-cwIso
Zur Herstellung des Plasmids pΔO .3TobRB7-cwIso wurde der Promotor des des Klasse I Patatin-Gens B33 im Plasmid pB33-cwIso gegen den Δ0.3TobRB7 Promotor (Opperman et al. (1994) Science 263:221-223) ausgetauscht und das Fusionsprotein aus Proteinase-Inhibitor- Signalpeptid und der Saccharoseisomerase somit unter Feeding cell-spezifische Kontrolle gestellt.
Die Funktionalität des "Feeding cell"-spezifischen Δ0.3TobRB7- Promotors wurde bereits demonstriert (Opperman et al. (1994) Science 263:221-223). Das pflanzliche Terminationssignal beinhaltet das 3 '-Ende der Polyadenylierungsstelle des Octopin- Synthase-Gens . Das Plasmid pΔO .3TobRB7-cwIso beinhaltet drei Fragmente A, B und C (Fig. 8) :
A) Fragment A beinhaltet den Δ0.3TobRB7-Promotor aus Nicotiana tabacum. Das Fragment beinhaltet die Region von -298 bp bis +76 des TobBR7-Gens befinden und als funktionelles Promotorfragment charakterisiert wurden (Opperman et al. (1994) Science. 263: 221-223, Acc.-No.: S45406) . Es wurde mittels PCR aus genomischer DNA von Nicotiana tabacum Var. Samsun NN amplifiziert . Die Amplifizierung erfolgte unter Verwendung der folgenden spezifischen Primer:
Tobl: 5 ' -GGAATTCAGCTTATCTAAACAAAGTTTTAAATTC-3 ' (SEQ ID NO: 30)
Tob2: 5 ' -GGGTACCAGTTCTCACTAGAAAAATGCCCC-3 ' (SEQ ID NO: 31)
Zur Klonierung der DNA in die Expressionskassette tragen die Primer zusätzlich folgende Restriktionsschnittstellen: Primer Tobl, EcoRI; Primer Tob2 , Asp718.
Das PCR-Reaktionsgemisch (100 μl) enthielt:
- genomische DNA aus Tabak (1 μg) , - Primer Tobl und Tob2 (jeweils 250 ng) ,
- Pfu DNA-Polymerase-Reaktionspuffer (10 μl, Stratagene) ,
- 200 μM dNTPs (dATP, dCTP, dGTP, dTTP) und
- 2,5 Einheiten Pfu DNA-Polymerase (Stratagene) .
Vor Beginn der Amplifikationszyklen wurde das Gemisch für 5 min auf 95°C erhitzt. Die Polymerisierungsschritte (30 Zyklen) wurden in einem automatischen T3-Thermo- cycler (Biometra) nach folgendem Programm durchgeführt: Denaturierung 95°C (1 Minute) , Anlagerung der Primer bei 56°C (40 Sekunden) , Polymerase-Reaktion bei 72°C (3 Minuten) . Das Amplikon wurde mit den Restriktionsenzymen EcoRI und Asp718 verdaut und in die entsprechenden Restriktionsschnittstellen des Polylinkers von pBluescript (Stratagene) kloniert. Die Identität der amplifizierten DNA wurde mittels Sequenzanalyse verifiziert. Anschließend wurde das Fragment mit den Restriktionsenzymen EcoRI und Asp718 verdaut und in das Plasmid pB33-cwIso kloniert aus dem vorher der B33-Promotor nach Restriktion mit den Enzymen EcoRI und Asp718 deletiert wurde.
Fragment B enthält die Nukleotide 923 bis 1059 eines
Proteinase-Inhibitor II-Gens aus der Kartoffel (Keil et al. (1986) Nucl. Acids Res. 14:5641-5650; Genbank Acc . o . : X04118) , welche an das Saccharoseisomerase-Gen aus E. rhapon- tici, welches die Nukleotide 109 bis 1803 umfasst, fusioniert sind. Dadurch wird ein für die Aufnahme von Proteinen in das ER notwendiges Signalpeptid eines pflanzlichen Proteins N-terminal an die Saccharoseisomerase-Sequenz fusioniert. C) Fragment C enthält das Polyadenylierungssignal .-des Octopin- Synthase Gens (Dhaese et al.(1983) EMBO J 2:419-426. Accession Z37515, Nukleotide 1344 bis 1533).
In pΔ0.3TobRB7-cwIso (Δ0.3TobRB7 = verkürzter Promotor des
TobRB7-Gens aus Tabak, cw = Zellwand, Iso = Saccharoseisomerase) steht die kodierende Region des Saccharoseisomerase-Gens unter "Feeding cell"-spezifischer Kontrolle, das Genprodukt wird in das ER aufgenommen.
Analog wurde ein Kontrollkonstrukt zur Expression von ß-Glucuro- nidase (Jefferson et al . (1987) EMBO J 6:3901-3907) unter Kontrolle des Δ0.3TobRB7-Promotors hergestellt (pΔO .3TobRB7-GUS) .
Kartoffelzellen wurden wie oben beschrieben mittels
Agrobacterium-vermitteltem Gentransfer mit dem Konstrukt pΔ0.3TobRB7-cwIso bzw. pΔO .3TobRB7-GUS transformiert und Kartoffelpflanzen wurden regeneriert
Beispiel 10: Infektion der Pflanzen mit Nematoden
Transformierte Pflanzen werden mit Hilfe von npt-spezifischen Primern über PCR bestätigt . Zur Infektion mit Nematoden werden die Stecklinge von transgenen Linien, die die Saccharoseisomerase unter Kontrolle eines „Feeding cell"-spezifischen Promotors exprimieren, zuerst auf Medium mit Kanamycin angezogen und später in Töpfe mit steriler Erde transferiert. Die Pflanzen werden bei 22°C (16 h Tag/8 h Nacht) angezogen. Die Infektion der Pflanzen wird wie folgt durchgeführt: 3 ml einer Suspension (ca. 500 J2-Larven) von Wurzelgallennematoden (Meloidogyne- Arten) werden direkt neben den Stengeln der Pflanzen in die Erde inokuliert . Die Pflanzen werden nach 2 bis 3 Wochen aus den Töpfen entfernt und die Wurzeln gewaschen. Anschließend wird die gesamte Wurzel einer jeden Pflanze mit Hilfe eines Stereo- mikroskopes untersucht und die Anzahl der Gallen am Wurzelsystem von transgenen Pflanzen und Wildtyppflanzen verglichen.
Transgene Pflanzen, die die Saccharoseisomerase unter Kontrolle eines „Feeding cell"-spezifischen Promotors exprimieren, zeigen eine deutliche Resistenz gegenüber endoparasitären Wurzelnematoden. Die Anzahl der Gallen am Wurzelsystem dieser Pflanzen nach Nematodenbefall ist im Vergleich zu nicht-transformierten Pflanzen signifikant reduziert.
Beispiel 11: In vitro Nematodenresistenz-Test
Materialien: Pflanzen: Kartoffel (Solanum tuberosum L. cv. Solara) Nematoden: Meloidogyne incognita
Medium: modifiziertes Murashige & Skoog Medium (MS ; verfestigt mit Agar) bestehend aus micro und 1/2 macro-Elementen einschließlich Vitaminen, Sucrose und Diachin-Agar (0,7%) pH 5,8.
Pflanzen: Sterile transgene Kartoffelpflanzen (Solanum tuberosum L. cv. Solara transformiert mit pΔ0.3TobRB7-cwIso bzw. pLemmi9-cwIso) und entsprechende transgene Kontrollpflanzen (Solanum tuberosum L. cv. Solara transformiert mit pΔO .3TobRB7-GUS bzw. pLemmi9-GUS) wurden in Gläsern mit jeweils mehreren Pflanzen bereitgestellt. Ausgehend von jeder Pflanze wurden jeweils drei Linien mittels Stengelabschnitten und nachfolgender Kultivierung auf modifiziertem Murashige & Skoog Medium (MSm; verfestigt mit Agar) generiert. Jede Linie wurde auf einer separaten 9 cm Petri- schale ausgepflanzt . Die Pflanzen wurden für 2 bis 3 Wochen unter einem Licht/Dunkel-Regim von 16h Licht / 8h Dunkelheit bei 25°C gezüchtet .
Nematoden-Stammkultur:
Nematoden wurden aus sterilen Stammkulturen gewonnen. M. inco- gnita wurde monoxenisch in der Dunkelheit bei 25°C auf Wurzelex- plantaten von Cucumis sativus gezüchtet, wie bei Wyss et al. beschrieben (Wyss U et al. (1992) Nematologica 38:98-111). Eiersäcke wurden aus den Sterilkulturen gesammelt und auf einem Sieb in einem Glastrichter mit sterilem Wasser plaziert. Die Trichter wurden mit einem Platikschlauch verbunden, welcher mit einer Klemme verschlossen wurde. Geschlüpfte Jungtiere wurden durch Öffnen der Klemme und Ablassen der Suspension in kleine Gefäße gewonnen. Die Viskosität der Suspension wurde durch Zufügen einer Suspension von sterilem "Gel Rite" erhöht. Die Dichte der Nemato- den in der Suspension wurde bestimmt und durch Zugabe von sterilem Wasser normiert.
Nematodeninfektion
Sobald die Pflanzenwurzeln ein Wurzelsystem entwickelt hatten, wurden die Wurzeln mit frisch geschlüpften Jungnematoden im zweiten Stadium (J2) infiziert. Zehn Tropfen mit jeweils 10 Jungtieren wurden dabei auf jede Pflanze appliziert.
Auswertung: Nach 2 bis 3 Wochen hatten die Nematoden die Wurzeln penetriert und in den Kontrollpflanzen hatten sich Gallen gebildet. Gallenbildung wurde als Zeichen einer erfolgreichen Penetration und Etablierung von Freßstellen in den Wurzeln herangezogen. Die Wurzeln der verschiedenen Pflanzenlinien wurden auf Gallen mikroskopisch untersucht und die Gallen auf der Petrischale vermerkt .
Im Vergleich zu den Kontrollpflanzen zeigen die mit pΔO .3TobRB7-cwIso bzw. pLemmi9-cwIso transformierten Kartoffellinien eine signifikante Verringerung der Gallenbildung. Dies bedeutet eine signifikante Minderung der Nematoden-bedingten Schädigung .

Claims

Patentansprüche
1. Verfahren zum Erzielen oder Erhöhen der Resistenz gegen mindestens ein Pathogen in pflanzlichen Organismen, wobei nachfolgende Arbeitsschritte umfasst sind
a) transgene Expression eines Proteins mit Saccharoseisomerase Aktivität in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle desselben, und
b) Auswahl der pflanzlichen Organismen, bei denen
- im Unterschied oder Vergleich zum Ausgangsorganismus - die Resistenz gegen mindestens ein Pathogen besteht oder erhöht ist.
2. Verfahren nach Anspruch 1, wobei die Saccharose-Iso erase beschrieben wird durch
i) ein Protein gemäß SEQ ID NO: 2, 6, 8, 10, 12, 14, 16,18 oder 36 , oder
ii) ein funktionelles Äquivalent zu einem Protein gemäß SEQ ID NO: 2, 6, 8, 10, 12, 14, 16, 18 oder 36, oder
iii) ein funktionell äquivalentes Fragment zu einem Protein gemäß i) und ii) .
3. Verfahren nach einem der Ansprüche 1 oder 2 , wobei die Expression der Saccharoseisomerase gewährleistet wird durch eine transgene Expressionskassette umfassend mindestens eine Nukleinsäuresequenz ausgewählt aus der Gruppe bestehend aus :
a) Nukleinsäuresequenzen kodierend eine Aminosäuresequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 36 , und
b) Nukleinsäuresequenzen kodierend für Proteine mit einer Homologie von mindestens 40% zu der Sequenz gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 26 aufweisen, und
c) Nukleinsäuresequenzen gemäß SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35, und
Zeichn. + Sequ. d) Nukleinsäuresequenzen, die zu einer Nukleinsäuresesequenz von c) degeneriert ist, und
e) Nukleinsäuresequenzen, die eine Homologie von mindestens 40% zu einer Nukleinsäuresequenz gemäß SEQ ID No: 1, 3,
5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35 aufweisen, und
f) Nukleinsäuresequenzen, die mit einem komplementären Strang der Nukleinsäuresequenz gemäß SEQ ID No: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 oder 35 hybridisieren.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Saccharose-Isomerase unter Kontrolle eines in Pflanzen funktioneilen pathogen-induzierbaren oder gewebespezifischen Promotors exprimiert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4 , wobei das Pathogen ausgewählt ist aus der Gruppe bestehend aus Pilzen und Nematoden.
Verfahren nach einem der Ansprüche 1 bis 5 , wobei das Pathogen ausgewählt ist aus der Gruppe der Pilze bestehend aus Piasmodiophoramycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten .
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Pflanze ausgewählt ist aus der Gruppe bestehend aus Kartoffel, Rübe, Zuckerrübe, Tomate, Banane, Karotte, Zuckerrohr, Erdbeere, Ananas, Papaya, Soja, Hafer, Gerste, Weizen, Roggen, Tri- ticale, Hirse und Mais.
8. Transgene Expressionskassette enthalten in funktioneller Verknüpfung mit einem in Pflanzen funktionellen pathogen- induzierbaren oder epidermis-spezifischen Promotor eine Nukleinsäuresequenz kodieren für eine Saccharose-Isomerase.
9. Transgene Expressionskassette nach Anspruch 8, wobei die Saccharoseisomerase wie in einem der Ansprüche 2 oder 3 definiert ist.
10. Transgene Expressionskassette nach Anspruch 8 oder 9, wobei der pathogen-induzierbare oder epider is-spezifische Promotor ausgewählt ist aus der Gruppe bestehend aus einer der Sequenzen gemäß SEQ ID NO: 23, 24, 32, 33 oder 34.
11. Transgener Expressionsvektor enthaltend eine transgene Expressionskassette gemäß einem der Ansprüche 8 bis 10.
12. Transgener Organismus enthaltend eine transgene Expressions- kassette gemäß einem der Ansprüche 8 bis 10 oder einen transgenen Expressionsvektor gemäß Anspruch 11.
13. Transgener Organismus nach Anspruch 12 , ausgewählt aus der Gruppe der Pflanzen bestehend aus Kartoffel, Rübe, Zucker- rübe, Tomate, Banane, Karotte, Zuckerrohr, Erdbeere, Ananas, Papaya, Soja, Hafer, Gerste, Weizen, Roggen, Triticale, Hirse und Mais .
14. Transgene Ernteprodukte, Vermehrungsmaterial, Zellen, Organe, Teile, Kalli, Zellkulturen, Samen, Knollen, Stecklinge oder transgene Nachkommen eines transgenen Organismus gemäß einem der Ansprüche 12 bis 13.
15. Verwendung eines transgenen Organismus nach einem der Ansprüche 12 bis 13 oder von diesem angeleitete transgene Ernteprodukte, Vermehrungsmaterial, Zellen, Organe, Teile, Kalli, Zellkulturen, Samen, Knollen, Stecklinge oder transgene Nachkommen nach Anspruch 14 zur Herstellung von Palatinose.
PCT/EP2003/007027 2002-07-04 2003-07-02 Verfahren zum erreichen einer pathogenresistenz in pflanzen WO2004005504A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/516,075 US7572950B2 (en) 2002-07-04 2003-07-02 Methods for obtaining pathogen resistance in plants
AU2003246353A AU2003246353A1 (en) 2002-07-04 2003-07-02 Methods for obtaining pathogen resistance in plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10230220.0 2002-07-04
DE10230220 2002-07-04

Publications (1)

Publication Number Publication Date
WO2004005504A1 true WO2004005504A1 (de) 2004-01-15

Family

ID=30009811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007027 WO2004005504A1 (de) 2002-07-04 2003-07-02 Verfahren zum erreichen einer pathogenresistenz in pflanzen

Country Status (2)

Country Link
AU (1) AU2003246353A1 (de)
WO (1) WO2004005504A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623031A4 (de) * 2003-05-12 2007-03-14 Univ Queensland Verfahren zur erhöhung des gesamt- oder löslichen kohlenhydratgehalts oder der süsse eines endogenen kohlenhydrats durch katalyse der umwandlung eines endogenen zuckers in einen fremdzucker
WO2008095916A1 (en) * 2007-02-08 2008-08-14 Basf Plant Science Gmbh Polynucleotides encoding truncated sucrose isomerase polypeptides for control of parasitic nematodes
US7811664B2 (en) 2005-04-19 2010-10-12 E. I. Du Pont De Nemours And Company Fluororesin coating film
WO2011076370A1 (de) * 2009-12-23 2011-06-30 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Sucrosemutase mit verbesserter produktspezifität
EP2681324A4 (de) * 2011-03-03 2014-08-27 Targeted Growth Inc Expression von saccharose-isomeren zur erhöhung eines samengewichts, einer samenanzahl oder einer samengrösse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020047A2 (de) * 1994-01-19 1995-07-27 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Herstellung von akariogenen zuckerersatzstoffen
WO2001059135A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels
WO2001059136A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Produktion nicht-kariogener zucker in transgenen pflanzen
WO2002027003A1 (de) * 2000-09-20 2002-04-04 Südzucker Aktiengesellschaft Isomalt produzierende transgene pflanze

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020047A2 (de) * 1994-01-19 1995-07-27 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Herstellung von akariogenen zuckerersatzstoffen
WO2001059135A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels
WO2001059136A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Produktion nicht-kariogener zucker in transgenen pflanzen
WO2002027003A1 (de) * 2000-09-20 2002-04-04 Südzucker Aktiengesellschaft Isomalt produzierende transgene pflanze

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOERNKE FREDERIK ET AL: "Potato tubers as bioreactors for palatinose production", JOURNAL OF BIOTECHNOLOGY, vol. 96, no. 1, 13 June 2002 (2002-06-13), pages 119 - 124, XP002259504, ISSN: 0168-1656 *
ROCHA-SOSA M ET AL: "BOTH DEVELOPMENTAL AND METABOLIC SIGNALS ACTIVATE THE PROMOTER OF A CLASS I PATATIN GENE", EMBO JOURNAL, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 8, no. 1, 1989, pages 23 - 29, XP002038303, ISSN: 0261-4189 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623031A4 (de) * 2003-05-12 2007-03-14 Univ Queensland Verfahren zur erhöhung des gesamt- oder löslichen kohlenhydratgehalts oder der süsse eines endogenen kohlenhydrats durch katalyse der umwandlung eines endogenen zuckers in einen fremdzucker
US8022269B2 (en) 2003-05-12 2011-09-20 The University Of Queensland Altered metabolism
US7811664B2 (en) 2005-04-19 2010-10-12 E. I. Du Pont De Nemours And Company Fluororesin coating film
WO2008095916A1 (en) * 2007-02-08 2008-08-14 Basf Plant Science Gmbh Polynucleotides encoding truncated sucrose isomerase polypeptides for control of parasitic nematodes
WO2011076370A1 (de) * 2009-12-23 2011-06-30 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Sucrosemutase mit verbesserter produktspezifität
CN102695793A (zh) * 2009-12-23 2012-09-26 甜糖(曼海姆/奥克森富特)股份公司 具有改进的产品特异性的蔗糖变位酶
US8691535B2 (en) 2009-12-23 2014-04-08 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Sucrose mutase with improved product specificity
EP2681324A4 (de) * 2011-03-03 2014-08-27 Targeted Growth Inc Expression von saccharose-isomeren zur erhöhung eines samengewichts, einer samenanzahl oder einer samengrösse

Also Published As

Publication number Publication date
AU2003246353A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
EP1525315B1 (de) Verfahren zum erreichen einer pathogenresistenz in pflanzen
EP1427833B1 (de) Neue nukleinsaeuresequenzen und deren verwendung in verfahren zum erreichen einer pathogenresistenz in pflanzen
Elnahal et al. Identification of natural resistance mediated by recognition of Phytophthora infestans effector gene Avr3aEM in potato
DE102008014041A1 (de) Verfahren zur Erzeugung einer Breitband-Resistenz gegenüber Pilzen in transgenen Pflanzen
DE69525529T2 (de) Antimikrobielle proteine aus impatiens
EP2081954B1 (de) Verfahren zur erhöhung der resistenz gegen biotrophe pilze in pflanzen
DE60035892T2 (de) Gene und verfahren zur wachstumsmanipulation
US7572950B2 (en) Methods for obtaining pathogen resistance in plants
EP1604029B1 (de) Verfahren zur erhöhung der resistenz gegen stressfaktoren in pflanzen
EP2487245A2 (de) Verfahren zur Erhöhung der Pathogenresistenz in transgenen Pflanzen
EP1759005B1 (de) Verfahren zur erhöhung der pathogenresistenz in transgenen pflanzen durch expression einer peroxidase
WO2004005504A1 (de) Verfahren zum erreichen einer pathogenresistenz in pflanzen
WO2007054441A2 (de) Verwendung von armadillo-repeat (arm1)-polynukleotiden zum erreichen einer pathogenresistenz in pflanzen
CN102325442A (zh) 改造植物热稳定的疾病抗性
Tripathi et al. Banana and plantain
JP5835727B2 (ja) 耐虫性タンパク質及び該耐虫性タンパク質をコードする耐虫性遺伝子
WO2008034876A1 (de) Verfahren zur erhöhung der pathogenresistenz in transgenen pflanzen
Narayanan et al. Overexpression of rice acyl-CoA-binding protein OsACBP5 protects Brassica napus against seedling infection by fungal phytopathogens
DE19621572A1 (de) Lokalisierter Zelltod in Pflanzen
WO2003014364A1 (de) Verfahren zur beeinflussung der mineralstoffaufnahme in transgenen pflanzen
Taller Gene functioning in pepper
DE10229729A1 (de) Neue Nukleinsäuresequenzen und deren Verwendung in Verfahren zum Erreichen einer Pathogenresistenz in Pflanzen
DE10142579A1 (de) Neue Nukleinsäuresequenzen und deren Verwendung in Verfahren zum Erreichen einer Pathogenresistenz in Pflanzen
DE10050233A1 (de) Verfahren zur genetischen Modifizierung einer Pflanze
DE10231587A1 (de) Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10516075

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10516075

Country of ref document: US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载