WO2003065024A2 - Ensemble capteur gmr et aimant antiferromagnetique synthetique associe - Google Patents
Ensemble capteur gmr et aimant antiferromagnetique synthetique associe Download PDFInfo
- Publication number
- WO2003065024A2 WO2003065024A2 PCT/EP2003/000605 EP0300605W WO03065024A2 WO 2003065024 A2 WO2003065024 A2 WO 2003065024A2 EP 0300605 W EP0300605 W EP 0300605W WO 03065024 A2 WO03065024 A2 WO 03065024A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ferromagnet
- synthetic anti
- ferromagnetic
- intermediate layer
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3272—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
Definitions
- the present invention relates to a GMR sensor arrangement with a GMR layer, which comprises a ferromagnetic layer with an easily rotatable magnetization orientation - the free layer -, a ferromagnetic layer with a fixed magnetic orientation - the pinned layer - and an intermediate non-magnetic intermediate layer, wherein the pinned layer simultaneously forms the first ferromagnetic layer of a synthetic anti-ferromagnet, which furthermore has a second ferromagnetic layer and an intermediate layer lying in between.
- Magnetic layer systems with anti-ferromagnetic interlayer coupling which are also referred to as synthetic anti-ferromagnets (SAF) are used in magnetic field sensors which are based on the principle of the so-called giant magnetoresistance (GMR).
- SAF synthetic anti-ferromagnets
- FIG. 1 a shows a known GMR sensor 1 of the type described above, which can be used to control rotary movements of an object.
- This GMR sensor comprises a GMR layer 2 with a ferro- magnetic layer with easily rotatable magnetization orientation - the free layer 3 -, a ferromagnetic layer with a fixed magnetic orientation - the pinned layer 4 - and an intermediate non-magnetic intermediate layer 5.
- the pinned layer 4 simultaneously forms the first ferromagnetic layer of one synthetic anti-ferromagnet 6, which further has a second ferromagnetic layer 8 and an intermediate layer 7 arranged between the layers 4, 8.
- the arrangement is supplemented by a natural anti-ferromagnet (NAF), which serves as substrate 9.
- NAF natural anti-ferromagnet
- a permanent magnet 10 which is rigidly connected to the rotating object, transmits the rotational movement of this object to the magnetization M £ ree of the ferromagnetic layer 3 (free layer) of the GMR layer 3, 4, 5, the electrical resistance changing, when the magnetization M free rotates relative to the magnetization M pinned of the ferromagnetic layer with a fixed magnetic orientation (pinned layer) 4 and thus generates the GMR signal shown in FIG. 1b.
- the synthetic anti-ferromagnet consists of purely metallic layers.
- the object of the invention is to create a GMR sensor arrangement of the type mentioned at the outset by which attenuations of the GMR signal are avoided, or at least reduced.
- a synthetic anti-ferromagnet (SAF) is to be specified for such a GMR sensor arrangement.
- the intermediate layer of the synthetic anti-ferromagnet consists of an electrically insulating or high-resistance material.
- the invention is therefore based on the consideration of carrying out the anti-ferromagnetic interlayer coupling in the SAF using an electrically insulating material.
- the electrical insulation can effectively avoid the disadvantage of a shunting effect with suitable contacting.
- the insulating intermediate layer permits the use of metallic substrates or alternatively the use of substrates which are formed from a natural anti-ferromagnet (NAF) made of metal. This has enormous advantages. In the past, it has been shown time and again that very high quality layers in the sense of an undisturbed crystal lattice can only be produced on metallic substrates.
- the configuration according to the invention thus creates the prerequisite for an undisturbed crystal lattice, so that any weakening of the GMR signal which is caused by interference in the crystal lattice is kept to a minimum.
- electrically insulating in the context of the present application should be understood to mean that the material of the intermediate layer is so high-resistance that it does not let the comparatively small currents flowing in the GMR layer through.
- semiconductor materials such as silicon can be used for the anti-ferromagnetic intermediate layers. It has been shown that the silicon material offers the required insulation properties with simultaneous anti-ferromagnetic interlayer coupling.
- the intermediate layer preferably has a layer thickness of 0.4 to 1.5 nm.
- the resistance across the intermediate layer is finite and inversely proportional to the area. It is therefore beneficial to keep the area as small as possible. This is also desirable in the sense of miniaturizing GMR sensors.
- the synthetic anti-ferromagnet is constructed in the form of a multi-layer system with a multiplicity of ferromagnetic layers and anti-ferromagnetic intermediate layers arranged therebetween from electrically insulating material. Through a .
- Such a multilayer system further increases the insulating effect of the synthetic anti-ferromagnet.
- FIG. 1 a shows a perspective view of a GMR sensor arrangement according to the prior art
- FIG. 1b is a diagram showing the profile of a GMR signal as a function of the angle of the magnetization of the free layer compared to the magnetization of the pinned layer of the GMR layer from the sensor arrangement according to FIG. 1b
- Figure 2 shows a GMR sensor arrangement according to the present invention in a perspective view.
- FIG. 2 shows a GMR sensor arrangement 1 according to the present invention.
- This GMR sensor arrangement 1 comprises a GMR layer 2, which comprises a ferromagnetic layer with easily rotatable magnetization alignment (free layer) 3, an intermediate layer 5 and a ferromagnetic layer with a fixed magnetic alignment (pinned layer) 4 from top to bottom.
- the pinned layer forms at the same time the first ferromagnetic layer of a synthetic anti-ferromagnet (SAF) 6, which also has a second ferroma has a magnetic layer 8 and an intermediate layer 7 arranged between the ferromagnetic layers 4, 8.
- SAF synthetic anti-ferromagnet
- the arrangement of GMR layering 2 and SAF 6 is arranged on a substrate 9, which consists of metal or a metallic natural anti-ferromagnet (NAF).
- the anti-ferromagnetic intermediate layer 7 of the SAF 6 consists of a semiconductor material, here a silicon material, and has a layer thickness of 0.4 to 1.5 nm.
- This silicon material is related to the currents I, which via the contacts 11 flow on the free layer 3 in the GMR sensor arrangement 1, electrically isolating and at the same time offering the required properties of an anti-ferromagnetic interlayer coupling.
- the coupling can be values up to about 5 mJ / m 2 .
- the proven insulating effect of the Si interlayers is surprisingly high. It is attributed to the formation of Schottky barriers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Hall/Mr Elements (AREA)
Abstract
L'invention concerne un ensemble capteur GMR comportant un empilage GMR (2) composé d'une couche ferromagnétique à sens de magnétisation légèrement orientable (la couche libre (3)), d'une couche ferromagnétique à orientation magnétique fixe (la couche fixe (4)) et d'une couche intermédiaire (5) non magnétique. La couche fixe (4) constitue la première couche ferromagnétique d'un aimant antiferromagnétique synthétique (6), lequel comprend en outre une deuxième couche ferromagnétique (8) et une couche intermédiaire (7). L'invention est caractérisée en ce que la couche intermédiaire (7) de l'aimant antiferromagnétique synthétique (6) est faite d'un matériau de valeur ohmique élevée et électriquement isolant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2002103466 DE10203466A1 (de) | 2002-01-28 | 2002-01-28 | GMR-Sensoranordnung und synthetischer Anti-Ferromagnet dafür |
DE10203466.4 | 2002-01-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003065024A2 true WO2003065024A2 (fr) | 2003-08-07 |
WO2003065024A3 WO2003065024A3 (fr) | 2003-12-24 |
Family
ID=27588132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/000605 WO2003065024A2 (fr) | 2002-01-28 | 2003-01-22 | Ensemble capteur gmr et aimant antiferromagnetique synthetique associe |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10203466A1 (fr) |
WO (1) | WO2003065024A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367109B2 (en) | 2005-01-31 | 2008-05-06 | Hitachi Global Storage Technologies Netherlands B.V. | Method of fabricating magnetic sensors with pinned layers with zero net magnetic moment |
US7554775B2 (en) | 2005-02-28 | 2009-06-30 | Hitachi Global Storage Technologies Netherlands B.V. | GMR sensors with strongly pinning and pinned layers |
WO2009150386A1 (fr) * | 2008-06-13 | 2009-12-17 | Parkeon | Système et procédé de vérification de la validité d'un article de valeur, et horodateur comprenant un tel système |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4243358A1 (de) * | 1992-12-21 | 1994-06-23 | Siemens Ag | Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung |
EP0971424A3 (fr) * | 1998-07-10 | 2004-08-25 | Interuniversitair Microelektronica Centrum Vzw | Structure à valve de spin et procédé de fabrication |
EP0971423A1 (fr) * | 1998-07-10 | 2000-01-12 | Interuniversitair Micro-Elektronica Centrum Vzw | Structure à valve de spin et méthode de fabrication |
DE19843350A1 (de) * | 1998-09-22 | 2000-03-23 | Bosch Gmbh Robert | Elektronisches Bauelement |
DE19983599T1 (de) * | 1998-09-28 | 2001-08-09 | Seagate Technology | Vierfachschicht-Riesenmagnetwiderstands-Sandwichstruktur |
US6331773B1 (en) * | 1999-04-16 | 2001-12-18 | Storage Technology Corporation | Pinned synthetic anti-ferromagnet with oxidation protection layer |
US6498707B1 (en) * | 1999-04-20 | 2002-12-24 | Seagate Technology, Llc | Giant magnetoresistive sensor with a CrMnPt pinning layer and a NiFeCr seed layer |
US6278592B1 (en) * | 1999-08-17 | 2001-08-21 | Seagate Technology Llc | GMR spin valve having a bilayer TaN/NiFeCr seedlayer to improve GMR response and exchange pinning field |
US6292336B1 (en) * | 1999-09-30 | 2001-09-18 | Headway Technologies, Inc. | Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient |
US6556390B1 (en) * | 1999-10-28 | 2003-04-29 | Seagate Technology Llc | Spin valve sensors with an oxide layer utilizing electron specular scattering effect |
DE10009944A1 (de) * | 2000-03-02 | 2001-09-13 | Forschungszentrum Juelich Gmbh | Anordnung zum Messen eines Magnetfeldes und Verfahren zum Herstellen einer Anordnung zum Messen eines Magnetfeldes |
-
2002
- 2002-01-28 DE DE2002103466 patent/DE10203466A1/de not_active Withdrawn
-
2003
- 2003-01-22 WO PCT/EP2003/000605 patent/WO2003065024A2/fr not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367109B2 (en) | 2005-01-31 | 2008-05-06 | Hitachi Global Storage Technologies Netherlands B.V. | Method of fabricating magnetic sensors with pinned layers with zero net magnetic moment |
US7554775B2 (en) | 2005-02-28 | 2009-06-30 | Hitachi Global Storage Technologies Netherlands B.V. | GMR sensors with strongly pinning and pinned layers |
WO2009150386A1 (fr) * | 2008-06-13 | 2009-12-17 | Parkeon | Système et procédé de vérification de la validité d'un article de valeur, et horodateur comprenant un tel système |
FR2932593A1 (fr) * | 2008-06-13 | 2009-12-18 | Parkeon | Systeme et procede de verification de la validite d'un article de valeur, et horodateur comprenant un tel systeme |
Also Published As
Publication number | Publication date |
---|---|
WO2003065024A3 (fr) | 2003-12-24 |
DE10203466A1 (de) | 2003-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60037790T2 (de) | Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems | |
DE69624323T2 (de) | Magnetoresistives Element, magnetoresistiver Kopf und magnetoresistiver Speicher | |
DE19836567C2 (de) | Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung | |
DE69407158T2 (de) | Magnetoresistive anordnung und diese verwendender magnetkopf | |
DE10028640A1 (de) | Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung | |
DE19649265C2 (de) | GMR-Sensor mit einer Wheatstonebrücke | |
DE10113853A1 (de) | Magnetspeicherelement, Magnetspeicher und Herstellungsverfahren für einen Magnetspeicher | |
DE10017374B4 (de) | Magnetische Koppeleinrichtung und deren Verwendung | |
DE19933209A1 (de) | Magnetfeldsensor mit Riesenmagnetoresistenzeffekt-Elementen sowie Verfahren und Vorrichtung zu seiner Herstellung | |
EP0905523A2 (fr) | Capteur pour mesurer la direction d'un champ magnétique extern au moyen d'un élément magnétorésistif | |
DE19532674C1 (de) | Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien | |
DE10128135A1 (de) | Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung | |
DE19949714A1 (de) | Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung | |
DE10024332B4 (de) | Magnetischer Schreib-/Lesekopf mit elektromagnetischem Feldkompensationselement | |
DE10046864A1 (de) | Magnetsensor, Magnetkopf und Magnetplattenvorrichtung | |
DE19742366C1 (de) | Einrichtung mit magnetoresistivem Sensorelement und zugeordneter Magnetisierungsvorrichtung | |
WO2003065024A2 (fr) | Ensemble capteur gmr et aimant antiferromagnetique synthetique associe | |
DE69635362T2 (de) | Magnetowiderstandseffekt-Element | |
DE19934717A1 (de) | Magnetwiderstands-Dünnschichtelement vom Drehventil-Typ und das Dünnschichtelement verwendender Magnetowiderstands-Dünnschichtkopf vom Drehventil-Typ | |
DE19844890C2 (de) | Dünnschichtenaufbau eines magnetfeldempfindlichen Sensors mit einem magnetoresistiven Mehrschichtensystem mit Spinabhängigkeit der Elektronenstreuung | |
EP1527351A1 (fr) | Systeme de couches magnetoresistif et element capteur comprenant ce systeme de couches | |
DE102018120127A1 (de) | Element mit magnetoresistivem Effekt, Herstellungsverfahren hierfür, und Positionsdetektionsvorrichtung | |
DE19720197C2 (de) | Dünnschichtenaufbau eines magnetfeldempfindlichen Sensors mit einem einen erhöhten magnetoresistiven Effekt zeigenden Magnetschichtensystem | |
DE69926191T2 (de) | Element mit schichtstruktur und stromorientierungsmittel | |
DE19652536C2 (de) | Dünnschichtenaufbau eines magnetfeldempfindlichen Sensors mit einem magnetoresistiven Magnetschichtsystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |