WO2003065024A2 - Gmr sensor assembly and a synthetic anti-ferromagnet - Google Patents
Gmr sensor assembly and a synthetic anti-ferromagnet Download PDFInfo
- Publication number
- WO2003065024A2 WO2003065024A2 PCT/EP2003/000605 EP0300605W WO03065024A2 WO 2003065024 A2 WO2003065024 A2 WO 2003065024A2 EP 0300605 W EP0300605 W EP 0300605W WO 03065024 A2 WO03065024 A2 WO 03065024A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ferromagnet
- synthetic anti
- ferromagnetic
- intermediate layer
- Prior art date
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 28
- 230000005291 magnetic effect Effects 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 11
- 230000005415 magnetization Effects 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000013517 stratification Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 57
- 230000005290 antiferromagnetic effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000009812 interlayer coupling reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3272—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
Definitions
- the present invention relates to a GMR sensor arrangement with a GMR layer, which comprises a ferromagnetic layer with an easily rotatable magnetization orientation - the free layer -, a ferromagnetic layer with a fixed magnetic orientation - the pinned layer - and an intermediate non-magnetic intermediate layer, wherein the pinned layer simultaneously forms the first ferromagnetic layer of a synthetic anti-ferromagnet, which furthermore has a second ferromagnetic layer and an intermediate layer lying in between.
- Magnetic layer systems with anti-ferromagnetic interlayer coupling which are also referred to as synthetic anti-ferromagnets (SAF) are used in magnetic field sensors which are based on the principle of the so-called giant magnetoresistance (GMR).
- SAF synthetic anti-ferromagnets
- FIG. 1 a shows a known GMR sensor 1 of the type described above, which can be used to control rotary movements of an object.
- This GMR sensor comprises a GMR layer 2 with a ferro- magnetic layer with easily rotatable magnetization orientation - the free layer 3 -, a ferromagnetic layer with a fixed magnetic orientation - the pinned layer 4 - and an intermediate non-magnetic intermediate layer 5.
- the pinned layer 4 simultaneously forms the first ferromagnetic layer of one synthetic anti-ferromagnet 6, which further has a second ferromagnetic layer 8 and an intermediate layer 7 arranged between the layers 4, 8.
- the arrangement is supplemented by a natural anti-ferromagnet (NAF), which serves as substrate 9.
- NAF natural anti-ferromagnet
- a permanent magnet 10 which is rigidly connected to the rotating object, transmits the rotational movement of this object to the magnetization M £ ree of the ferromagnetic layer 3 (free layer) of the GMR layer 3, 4, 5, the electrical resistance changing, when the magnetization M free rotates relative to the magnetization M pinned of the ferromagnetic layer with a fixed magnetic orientation (pinned layer) 4 and thus generates the GMR signal shown in FIG. 1b.
- the synthetic anti-ferromagnet consists of purely metallic layers.
- the object of the invention is to create a GMR sensor arrangement of the type mentioned at the outset by which attenuations of the GMR signal are avoided, or at least reduced.
- a synthetic anti-ferromagnet (SAF) is to be specified for such a GMR sensor arrangement.
- the intermediate layer of the synthetic anti-ferromagnet consists of an electrically insulating or high-resistance material.
- the invention is therefore based on the consideration of carrying out the anti-ferromagnetic interlayer coupling in the SAF using an electrically insulating material.
- the electrical insulation can effectively avoid the disadvantage of a shunting effect with suitable contacting.
- the insulating intermediate layer permits the use of metallic substrates or alternatively the use of substrates which are formed from a natural anti-ferromagnet (NAF) made of metal. This has enormous advantages. In the past, it has been shown time and again that very high quality layers in the sense of an undisturbed crystal lattice can only be produced on metallic substrates.
- the configuration according to the invention thus creates the prerequisite for an undisturbed crystal lattice, so that any weakening of the GMR signal which is caused by interference in the crystal lattice is kept to a minimum.
- electrically insulating in the context of the present application should be understood to mean that the material of the intermediate layer is so high-resistance that it does not let the comparatively small currents flowing in the GMR layer through.
- semiconductor materials such as silicon can be used for the anti-ferromagnetic intermediate layers. It has been shown that the silicon material offers the required insulation properties with simultaneous anti-ferromagnetic interlayer coupling.
- the intermediate layer preferably has a layer thickness of 0.4 to 1.5 nm.
- the resistance across the intermediate layer is finite and inversely proportional to the area. It is therefore beneficial to keep the area as small as possible. This is also desirable in the sense of miniaturizing GMR sensors.
- the synthetic anti-ferromagnet is constructed in the form of a multi-layer system with a multiplicity of ferromagnetic layers and anti-ferromagnetic intermediate layers arranged therebetween from electrically insulating material. Through a .
- Such a multilayer system further increases the insulating effect of the synthetic anti-ferromagnet.
- FIG. 1 a shows a perspective view of a GMR sensor arrangement according to the prior art
- FIG. 1b is a diagram showing the profile of a GMR signal as a function of the angle of the magnetization of the free layer compared to the magnetization of the pinned layer of the GMR layer from the sensor arrangement according to FIG. 1b
- Figure 2 shows a GMR sensor arrangement according to the present invention in a perspective view.
- FIG. 2 shows a GMR sensor arrangement 1 according to the present invention.
- This GMR sensor arrangement 1 comprises a GMR layer 2, which comprises a ferromagnetic layer with easily rotatable magnetization alignment (free layer) 3, an intermediate layer 5 and a ferromagnetic layer with a fixed magnetic alignment (pinned layer) 4 from top to bottom.
- the pinned layer forms at the same time the first ferromagnetic layer of a synthetic anti-ferromagnet (SAF) 6, which also has a second ferroma has a magnetic layer 8 and an intermediate layer 7 arranged between the ferromagnetic layers 4, 8.
- SAF synthetic anti-ferromagnet
- the arrangement of GMR layering 2 and SAF 6 is arranged on a substrate 9, which consists of metal or a metallic natural anti-ferromagnet (NAF).
- the anti-ferromagnetic intermediate layer 7 of the SAF 6 consists of a semiconductor material, here a silicon material, and has a layer thickness of 0.4 to 1.5 nm.
- This silicon material is related to the currents I, which via the contacts 11 flow on the free layer 3 in the GMR sensor arrangement 1, electrically isolating and at the same time offering the required properties of an anti-ferromagnetic interlayer coupling.
- the coupling can be values up to about 5 mJ / m 2 .
- the proven insulating effect of the Si interlayers is surprisingly high. It is attributed to the formation of Schottky barriers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
GMR-Sensoranordnunα und synthetischer Anti-Ferromagnet dafürGMR sensor arrangement and synthetic anti-ferromagnet therefor
Die vorliegende Erfindung betrifft eine GMR- Sensoranordnung mit einer GMR-Schichtung, welche eine ferromagnetische Schicht mit leicht drehbarer Magnetisierungsausrichtung - die free layer -, eine ferromagnetische Schicht mit einer festen magnetischen Ausrichtung - die pinned layer - und eine dazwischen liegende nicht magnetische Zwischenschicht umfaßt, wobei die pinned layer gleichzeitig die erste ferromagnetische Schicht eines synthetischen Anti-Ferromagnets bildet, der weiterhin eine zweite ferromagnetische Schicht und eine dazwischen liegende Zwischenschicht aufweist.The present invention relates to a GMR sensor arrangement with a GMR layer, which comprises a ferromagnetic layer with an easily rotatable magnetization orientation - the free layer -, a ferromagnetic layer with a fixed magnetic orientation - the pinned layer - and an intermediate non-magnetic intermediate layer, wherein the pinned layer simultaneously forms the first ferromagnetic layer of a synthetic anti-ferromagnet, which furthermore has a second ferromagnetic layer and an intermediate layer lying in between.
Magnetische Schichtsysteme mit anti-ferromagnetischer Zwischenschichtkopplung, die auch als synthetische Anti- Ferromagnete (SAF) bezeichnet werden, finden Verwendung in Magnetfeldsensoren, die auf dem Prinzip des sogenannten Riesen agnetowiderstands (giant magneto resistance = GMR) beruhen.Magnetic layer systems with anti-ferromagnetic interlayer coupling, which are also referred to as synthetic anti-ferromagnets (SAF), are used in magnetic field sensors which are based on the principle of the so-called giant magnetoresistance (GMR).
In Figur 1 a ist ein bekannter GMR-Sensor 1 der zuvor beschriebenen Art dargestellt, der zur Kontrolle von Drehbewegungen eines Objektes eingesetzt werden kann. Dieser GMR-Sensor umfaßt eine GMR-Schichtung 2 mit einer ferro- magnetischen Schicht mit leicht drehbarer Magnetisierungsausrichtung - die free layer 3 -, einer ferromagne- tischen Schicht mit einer festen magnetischen Ausrichtung - die pinned layer 4 - und einer dazwischen liegenden nicht magnetischen Zwischenschicht 5. Die pinned layer 4 bildet dabei gleichzeitig die erste ferromagnetische Schicht eines synthetischen Anti-Ferromagneten 6, der weiterhin eine zweite ferromagnetische Schicht 8 und eine zwischen den Schichten 4, 8 angeordnete Zwischenschicht 7 aufweist. Ergänzt wird die Anordnung durch einen natürlichen Anti-Ferromagneten (NAF), der als Substrat 9 dient.FIG. 1 a shows a known GMR sensor 1 of the type described above, which can be used to control rotary movements of an object. This GMR sensor comprises a GMR layer 2 with a ferro- magnetic layer with easily rotatable magnetization orientation - the free layer 3 -, a ferromagnetic layer with a fixed magnetic orientation - the pinned layer 4 - and an intermediate non-magnetic intermediate layer 5. The pinned layer 4 simultaneously forms the first ferromagnetic layer of one synthetic anti-ferromagnet 6, which further has a second ferromagnetic layer 8 and an intermediate layer 7 arranged between the layers 4, 8. The arrangement is supplemented by a natural anti-ferromagnet (NAF), which serves as substrate 9.
Ein Permanentmagnet 10, der mit dem sich drehenden Objekt starr verbunden ist, überträgt die Drehbewegung dieses Objekts auf die Magnetisierung M£ree der ferromagnetischen Schicht 3 (free layer) der GMR-Schichtung 3, 4, 5, wobei sich der elektrische Widerstand ändert, wenn sich die Magnetisierung Mfree relativ zur Magnetisierung Mpinned der ferromagnetischen Schicht mit fester magnetischer Ausrichtung (pinned layer) 4 dreht und erzeugt so das in Figur lb gezeigte GMR-Signal.A permanent magnet 10, which is rigidly connected to the rotating object, transmits the rotational movement of this object to the magnetization M £ ree of the ferromagnetic layer 3 (free layer) of the GMR layer 3, 4, 5, the electrical resistance changing, when the magnetization M free rotates relative to the magnetization M pinned of the ferromagnetic layer with a fixed magnetic orientation (pinned layer) 4 and thus generates the GMR signal shown in FIG. 1b.
Bei diesen bekannten GMR-Sensoranordnungen besteht der synthetische Anti-Ferromagnet aus rein metallischen Schichtungen. Dies bringt den Nachteil mit sich, daß über den synthetischen Anti-Ferromagneten ein Nebenschluß, auch Shunting-Effekt genannt, erfolgt, durch welchen das GMR-Signal abgeschwächt wird, weil der Strom durch den SAF nicht zum GMR-Signal beiträgt. Aufgabe der Erfindung ist es, eine GMR-Sensoranordnung der eingangs genannten Art zu schaffen, durch welche Ab- schwächungen des GMR-Signals vermieden, zumindest aber verringert werden. Des weiteren soll ein synthetischer Anti-Ferromagnet (SAF) für eine solche GMR- Sensoranordnung angegeben werden.In these known GMR sensor arrangements, the synthetic anti-ferromagnet consists of purely metallic layers. This has the disadvantage that the synthetic anti-ferromagnet is shunted, also known as the shunting effect, by which the GMR signal is weakened because the current through the SAF does not contribute to the GMR signal. The object of the invention is to create a GMR sensor arrangement of the type mentioned at the outset by which attenuations of the GMR signal are avoided, or at least reduced. Furthermore, a synthetic anti-ferromagnet (SAF) is to be specified for such a GMR sensor arrangement.
Diese Aufgabe ist erfindungsgemäß dadurch gelöst, daß die Zwischenschicht des synthetischen Anti-Ferromagneten aus einem elektrisch isolierenden bzw. hochohmigen Material besteht. Die Erfindung beruht damit auf der Überlegung, die anti-ferromagnetische Zwischenschichtkopplung in dem SAF durch ein elektrisch isolierendes Material vorzunehmen. Durch die elektrische Isolierung kann der Nachteil eines Shunting-Effekts bei geeigneter Kontaktierung wirksam vermieden werden. Des weiteren erlaubt die isolierende Zwischenschicht die Verwendung von metallischen Substraten oder alternativ die Verwendung von Substraten, die durch einen natürlichen Anti-Ferromagneten (NAF) aus Metall gebildet sind. Dies bringt enorme Vorteile mit sich. In der Vergangenheit hat sich nämlich immer wieder gezeigt, daß Schichtungen sehr hoher Qualität im Sinn eines möglichst ungestörten Kristallgitters nur auf metallischen Substraten erzeugen werden können. Durch die erfindungsgemäße Ausbildung wird somit die Voraussetzung für ein ungestörtes Kristallgitter geschaffen, so daß Ab- schwachungen des GMR-Signals, welche durch Störungen im Kristallgitter bewirkt werden, gering gehalten werden. Der Begriff elektrisch isolierend ist im Zusammenhang mit der vorliegenden Anmeldung so zu verstehen, daß das Material der Zwischenschicht so hochohmig ist, daß es die in der GMR-Schichtung fließenden, vergleichsweise geringen Ströme nicht durchläßt. Beispielsweise können Halbleitermaterialien wie Silicium für die anti-ferromagnetische Zwischenschichten eingesetzt werden. Es hat sich gezeigt, daß das Silicium-Material die geforderten Isolationseigenschaften bei gleichzeitiger anti-ferromagnetischer Zwischenschichtkopplung bietet. Im Falle von Silicium besitzt die Zwischenschicht vorzugsweise eine Schichtdicke von 0,4 bis 1,5 nm.This object is achieved in that the intermediate layer of the synthetic anti-ferromagnet consists of an electrically insulating or high-resistance material. The invention is therefore based on the consideration of carrying out the anti-ferromagnetic interlayer coupling in the SAF using an electrically insulating material. The electrical insulation can effectively avoid the disadvantage of a shunting effect with suitable contacting. Furthermore, the insulating intermediate layer permits the use of metallic substrates or alternatively the use of substrates which are formed from a natural anti-ferromagnet (NAF) made of metal. This has enormous advantages. In the past, it has been shown time and again that very high quality layers in the sense of an undisturbed crystal lattice can only be produced on metallic substrates. The configuration according to the invention thus creates the prerequisite for an undisturbed crystal lattice, so that any weakening of the GMR signal which is caused by interference in the crystal lattice is kept to a minimum. The term electrically insulating in the context of the present application should be understood to mean that the material of the intermediate layer is so high-resistance that it does not let the comparatively small currents flowing in the GMR layer through. For example, semiconductor materials such as silicon can be used for the anti-ferromagnetic intermediate layers. It has been shown that the silicon material offers the required insulation properties with simultaneous anti-ferromagnetic interlayer coupling. In the case of silicon, the intermediate layer preferably has a layer thickness of 0.4 to 1.5 nm.
Trotz der guten elektrisch isolierenden Wirkungen des Si- liciums ist der Widerstand über die Zwischenschicht endlich und umgekehrt proportional zur Fläche. Daher ist es günstig, die Fläche möglichst klein zu halten. Dies ist auch erwünscht im Sinn einer Miniaturisierung von GMR- Sensoren.Despite the good electrically insulating effects of silicon, the resistance across the intermediate layer is finite and inversely proportional to the area. It is therefore beneficial to keep the area as small as possible. This is also desirable in the sense of miniaturizing GMR sensors.
Gemäß einer bevorzugten Ausführungsform ist vorgesehen, daß der synthetische Anti-Ferromagnet in Form eines Mul- tischichtsystems mit einer Vielzahl von ferromagnetischen Schichten und dazwischen angeordneten anti-ferro- magnetischen Zwischenschichten aus elektrisch isolierendem Material aufgebaut ist. Durch ein . solches Mul- tischichtsystem wird die isolierende Wirkung des synthetischen Anti-Ferromagneten weiter verstärkt. Hinsichtlich weiterer vorteilhafter Ausgestaltungen der Erfindung wird auf die Unteransprüche sowie die nachfolgende Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beiliegende Zeichnung verwiesen. In der Zeichnung zeigt.According to a preferred embodiment, it is provided that the synthetic anti-ferromagnet is constructed in the form of a multi-layer system with a multiplicity of ferromagnetic layers and anti-ferromagnetic intermediate layers arranged therebetween from electrically insulating material. Through a . Such a multilayer system further increases the insulating effect of the synthetic anti-ferromagnet. With regard to further advantageous refinements of the invention, reference is made to the subclaims and the following description of an exemplary embodiment with reference to the accompanying drawing. In the drawing shows.
Figur la eine GMR-Sensoranordnung nach dem Stand der Technik in perspektivischer Ansicht,FIG. 1 a shows a perspective view of a GMR sensor arrangement according to the prior art,
Figur lb ein Diagramm, das den Verlauf eines GMR-Signals in Abhängigkeit von dem Winkel der Magnetisierung der free layer gegenüber der Magnetisierung der pinned layer der GMR-Schichtung von der Sensoranordnung gemäß der Figur la zeigt, undFIG. 1b is a diagram showing the profile of a GMR signal as a function of the angle of the magnetization of the free layer compared to the magnetization of the pinned layer of the GMR layer from the sensor arrangement according to FIG
Figur 2 eine GMR-Sensoranordnung gemäß der vorliegenden Erfindung in perspektivischer Ansicht.Figure 2 shows a GMR sensor arrangement according to the present invention in a perspective view.
In der Figur 2 ist eine GMR-Sensoranordnung 1 gemäß der vorliegenden Erfindung dargestellt. Diese GMR-Sensoranordnung 1 umfaßt eine GMR-Schichtung 2, die von oben nach unten eine ferromagnetische Schicht mit leicht drehbarer Magnetisierungsausrichtung (free layer) 3, eine Zwischenschicht 5 und eine ferromagnetische Schicht mit einer festen magnetischen Ausrichtung (pinned layer) 4 umfaßt. Die pinned layer bildet dabei gleichzeitig die erste ferromagnetische Schicht eines synthetischen Anti- Ferromagneten (SAF) 6, der weiterhin eine zweite ferroma- gnetische Schicht 8 und eine zwischen den ferromagnetischen Schichten 4, 8 angeordnete Zwischenschicht 7 aufweist. Die Anordnung aus GMR-Schichtung 2 und SAF 6 ist auf einem Substrat 9 angeordnet, welches aus Metall oder einem metallischen natürlich Anti-Ferromagnet (NAF) besteht.FIG. 2 shows a GMR sensor arrangement 1 according to the present invention. This GMR sensor arrangement 1 comprises a GMR layer 2, which comprises a ferromagnetic layer with easily rotatable magnetization alignment (free layer) 3, an intermediate layer 5 and a ferromagnetic layer with a fixed magnetic alignment (pinned layer) 4 from top to bottom. The pinned layer forms at the same time the first ferromagnetic layer of a synthetic anti-ferromagnet (SAF) 6, which also has a second ferroma has a magnetic layer 8 and an intermediate layer 7 arranged between the ferromagnetic layers 4, 8. The arrangement of GMR layering 2 and SAF 6 is arranged on a substrate 9, which consists of metal or a metallic natural anti-ferromagnet (NAF).
Gemäß der vorliegenden Erfindung besteht die anti- ferromagnetische Zwischenschicht 7 des SAF 6 aus einem Halbleitermaterial, hier einem Siliciummaterial und besitzt eine Schichtdicke von 0,4 bis 1,5 nm. Dieses Siliciummaterial ist in Bezug auf die Ströme I, welche über die Kontakte 11 an der free layer 3 in der GMR- Sensoranordnung 1 fließen, elektrisch isolierend und bietet gleichzeitig die erforderlichen Eigenschaften einer anti-ferromagnetischen Zwischenschichtkopplung. Die Kopplung kann dabei Werte bis zu etwa 5 mJ/m2 betragen. Angesichts der Tatsache, daß massives Silicium ein Halbleiter ist, ist die nachgewiesene isolierende Wirkung der Si- Zwischenschichten erstaunlich hoch. Es wird auf die Ausbildung von Schottky-Barrieren zurückgeführt. According to the present invention, the anti-ferromagnetic intermediate layer 7 of the SAF 6 consists of a semiconductor material, here a silicon material, and has a layer thickness of 0.4 to 1.5 nm. This silicon material is related to the currents I, which via the contacts 11 flow on the free layer 3 in the GMR sensor arrangement 1, electrically isolating and at the same time offering the required properties of an anti-ferromagnetic interlayer coupling. The coupling can be values up to about 5 mJ / m 2 . In view of the fact that solid silicon is a semiconductor, the proven insulating effect of the Si interlayers is surprisingly high. It is attributed to the formation of Schottky barriers.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10203466.4 | 2002-01-28 | ||
DE2002103466 DE10203466A1 (en) | 2002-01-28 | 2002-01-28 | GMR sensor assembly and synthetic anti-ferromagnet therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003065024A2 true WO2003065024A2 (en) | 2003-08-07 |
WO2003065024A3 WO2003065024A3 (en) | 2003-12-24 |
Family
ID=27588132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/000605 WO2003065024A2 (en) | 2002-01-28 | 2003-01-22 | Gmr sensor assembly and a synthetic anti-ferromagnet |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10203466A1 (en) |
WO (1) | WO2003065024A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367109B2 (en) | 2005-01-31 | 2008-05-06 | Hitachi Global Storage Technologies Netherlands B.V. | Method of fabricating magnetic sensors with pinned layers with zero net magnetic moment |
US7554775B2 (en) | 2005-02-28 | 2009-06-30 | Hitachi Global Storage Technologies Netherlands B.V. | GMR sensors with strongly pinning and pinned layers |
WO2009150386A1 (en) * | 2008-06-13 | 2009-12-17 | Parkeon | System and method for checking the validity of a valuable article, and time clock including such system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4243358A1 (en) * | 1992-12-21 | 1994-06-23 | Siemens Ag | Magnetic resistance sensor with artificial antiferromagnet and method for its production |
EP0971423A1 (en) * | 1998-07-10 | 2000-01-12 | Interuniversitair Micro-Elektronica Centrum Vzw | Spin-valve structure and method for making same |
EP0971424A3 (en) * | 1998-07-10 | 2004-08-25 | Interuniversitair Microelektronica Centrum Vzw | Spin-valve structure and method for making spin-valve structures |
DE19843350A1 (en) * | 1998-09-22 | 2000-03-23 | Bosch Gmbh Robert | Electronic magneto-resistive memory cell of Magnetic RAM type has magnetic sensor element in form of AMR or GMR (Giant-Magneto-resistance), enabling more compact data densities to be achieved |
WO2000019226A1 (en) * | 1998-09-28 | 2000-04-06 | Seagate Technology Llc | Quad-layer gmr sandwich |
US6331773B1 (en) * | 1999-04-16 | 2001-12-18 | Storage Technology Corporation | Pinned synthetic anti-ferromagnet with oxidation protection layer |
KR100563521B1 (en) * | 1999-04-20 | 2006-03-27 | 시게이트 테크놀로지 엘엘씨 | Giant magnetoresistive sensor with CrnMnPett pinning layer and NiFerc seed layer |
US6278592B1 (en) * | 1999-08-17 | 2001-08-21 | Seagate Technology Llc | GMR spin valve having a bilayer TaN/NiFeCr seedlayer to improve GMR response and exchange pinning field |
US6292336B1 (en) * | 1999-09-30 | 2001-09-18 | Headway Technologies, Inc. | Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient |
US6556390B1 (en) * | 1999-10-28 | 2003-04-29 | Seagate Technology Llc | Spin valve sensors with an oxide layer utilizing electron specular scattering effect |
DE10009944A1 (en) * | 2000-03-02 | 2001-09-13 | Forschungszentrum Juelich Gmbh | Arrangement for measuring magnetic field comprises first layer and second layer having electrically conducting antiferromagnetic layer bordering soft magnetic layer |
-
2002
- 2002-01-28 DE DE2002103466 patent/DE10203466A1/en not_active Withdrawn
-
2003
- 2003-01-22 WO PCT/EP2003/000605 patent/WO2003065024A2/en not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367109B2 (en) | 2005-01-31 | 2008-05-06 | Hitachi Global Storage Technologies Netherlands B.V. | Method of fabricating magnetic sensors with pinned layers with zero net magnetic moment |
US7554775B2 (en) | 2005-02-28 | 2009-06-30 | Hitachi Global Storage Technologies Netherlands B.V. | GMR sensors with strongly pinning and pinned layers |
WO2009150386A1 (en) * | 2008-06-13 | 2009-12-17 | Parkeon | System and method for checking the validity of a valuable article, and time clock including such system |
FR2932593A1 (en) * | 2008-06-13 | 2009-12-18 | Parkeon | SYSTEM AND METHOD FOR VERIFYING THE VALIDITY OF A VALUE ARTICLE, AND HORODATOR COMPRISING SUCH A SYSTEM |
Also Published As
Publication number | Publication date |
---|---|
DE10203466A1 (en) | 2003-08-14 |
WO2003065024A3 (en) | 2003-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60208224T2 (en) | MAGNETORESISTIVE HIGH-PERFORMANCE SPIN VALVE ASSEMBLY | |
DE60037790T2 (en) | MAGNETIC MEASURING SYSTEM WITH IRREVERSIBLE CHARACTERISTICS, AND METHOD FOR THE PRODUCTION, REPAIR AND USE OF SUCH A SYSTEM | |
DE69624323T2 (en) | Magnetoresistive element, magnetoresistive head and magnetoresistive memory | |
DE19836567C2 (en) | Memory cell arrangement with memory elements with a magnetoresistive effect and method for their production | |
DE10028640A1 (en) | Wheatstone bridge and method for producing it contains interconnected bridge elements such as a spin valve system, adjacent half-bridges with a non-parallel bias magnetization direction and non-adjacent bridge elements | |
DE19649265C2 (en) | GMR sensor with a Wheatstone bridge | |
DE10113853A1 (en) | Magnetic memory element, magnetic memory and manufacturing method for a magnetic memory | |
DE10017374B4 (en) | Magnetic coupling device and its use | |
DE19933209A1 (en) | Magnetic field sensor with several giant magneto resistance effect elements including at least one exchange premagnetizing layer d and fixed magnetic layer with magnetizing direction | |
EP0905523A2 (en) | Sensor for direction measurement of an external magnetic field with a magnetoresistive element | |
DE19532674C1 (en) | Rotational angle encoder using giant magnetoresistance striplines | |
DE10128135A1 (en) | Magneto-resistive layer arrangement used in a GMR sensor element, an AMR sensor element or a gradiometer comprises a non-magnetic electrically conducting intermediate layer arranged between magnetic layers, and a hard magnetic layer | |
DE19949714A1 (en) | Magnetically sensitive component used as a sensor element operating according to a spin-valve principle in vehicles comprises two magneto-resistive layer systems with a reference layer, an intermediate layer and a detection layer | |
DE10024332B4 (en) | Magnetic read / write head with electromagnetic field compensating element | |
DE10046864A1 (en) | Magnetic sensor, magnetic head and magnetic disk device | |
DE19742366C1 (en) | Linear or rotary position sensor device using GMR sensor element | |
WO2003065024A2 (en) | Gmr sensor assembly and a synthetic anti-ferromagnet | |
DE69635362T2 (en) | Magnetoresistance effect element | |
DE19934717A1 (en) | Spin valve magnetoresistive thin film elements | |
DE19844890C2 (en) | Thin-layer structure of a magnetic field sensitive sensor with a magnetoresistive multilayer system with spin dependence of the electron scattering | |
EP1527351A1 (en) | Magnetoresistive layer system and sensor element comprising said layer system | |
DE102018120127A1 (en) | Magnetoresistive effect element, manufacturing method therefor, and position detecting device | |
DE19720197C2 (en) | Thin-layer structure of a magnetic field-sensitive sensor with a magnetic layer system showing an increased magnetoresistive effect | |
DE69926191T2 (en) | ELEMENT WITH LAYER STRUCTURE AND POWER SUPPORT | |
DE19652536C2 (en) | Thin-film structure of a magnetic field sensitive sensor with a magnetoresistive magnetic layer system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |