+

WO1999011818A1 - Method for detecting highly functional polypeptides or nucleic acids - Google Patents

Method for detecting highly functional polypeptides or nucleic acids Download PDF

Info

Publication number
WO1999011818A1
WO1999011818A1 PCT/JP1998/003854 JP9803854W WO9911818A1 WO 1999011818 A1 WO1999011818 A1 WO 1999011818A1 JP 9803854 W JP9803854 W JP 9803854W WO 9911818 A1 WO9911818 A1 WO 9911818A1
Authority
WO
WIPO (PCT)
Prior art keywords
shuffling
sequence
fitness
nucleic acids
polypeptides
Prior art date
Application number
PCT/JP1998/003854
Other languages
French (fr)
Japanese (ja)
Other versions
WO1999011818A8 (en
Inventor
Isao Karube
Yoichi Okabe
Koichi Sumikura
Original Assignee
Isao Karube
Yoichi Okabe
Koichi Sumikura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isao Karube, Yoichi Okabe, Koichi Sumikura filed Critical Isao Karube
Priority to AU88867/98A priority Critical patent/AU8886798A/en
Publication of WO1999011818A1 publication Critical patent/WO1999011818A1/en
Publication of WO1999011818A8 publication Critical patent/WO1999011818A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1027Mutagenizing nucleic acids by DNA shuffling, e.g. RSR, STEP, RPR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1058Directional evolution of libraries, e.g. evolution of libraries is achieved by mutagenesis and screening or selection of mixed population of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules

Definitions

  • the present invention relates to the field of biotechnology, and more particularly to the design of polypeptides or nucleic acids.
  • Bio macromolecules such as proteins, DNA, and RNA exhibit various functions such as physiological activity, molecular recognition, and catalytic activity. If it becomes possible to freely design the functions of such polymers, it will be possible to create entirely new functional polymers, which will have a major impact on a wide range of fields such as pharmaceuticals and foods. There is expected.
  • the SELEX method (Ellington, AD & Szostak, JW, 1990, Nature 346, 818-822; Tuerk, C. & Gold, L., 1990, Science 249, 505-510.) Is a method of searching the sequence space.
  • One. Creates a molecular population that contains all sequences of a specific length for DNA or RNA, and has the desired function by repeating selection using specific activity as an index and amplification of the selected molecule It concentrates molecules. Do the same for peptides by associating genetic information with phenotypes
  • the phage display method (Scott, JK & Smith, GP, 1990, Science 249, 386-390.)
  • the polysome display method (Mattheakis, LC et.
  • the enriched sequence is optimized because reactions of many molecules occur in the same solution, and in practice there is competition or inhibition that cannot occur in the case of single molecule reactions. It does not necessarily have the functions provided.
  • Another disadvantage is that when two different sequences have the same activity, the longer sequence is less likely to be detected in the final base sequence decoding stage because of its low percentage in the population. (Sumikura, K. et. Al., Nucleic Acids Symp. Ser., In press.).
  • An object of the present invention is to provide a method for efficiently designing a highly functional biopolymer.
  • a protein has a higher function by connecting a variety of genes encoding polypeptides having a certain length as basic units, and connecting those units. Is believed to have acquired Most eukaryotic genes consist of a region that is translated into amino acids (exons) and an untranslated region between exons (introns). The amino acid sequence of a protein is encoded in multiple exons. In the long term, exons are the basic unit of protein evolution, and introns are thought to be an area for exon shuffling. (De Souza, SJ et. Al., 1996, Genes Cels 1, 493-505.).
  • the present inventors have focused on this exon shuffling mechanism of evolution, and have basically made it possible to artificially rearrange exon shuffling-like genes among multiple individuals using a computer.
  • a molecular design method called “shuffling strategy” was developed. By using this method, it is possible to make the evolution of molecules more dramatic and faster than conventional genetic algorithms, and thus it is possible to search for functional macromolecules more efficiently. .
  • the present invention includes the following.
  • a method for searching for a highly functional polypeptide or nucleic acid comprising the following steps: (a) synthesizing a plurality of polypeptides or nucleic acids having different sequences from each other, (b) measuring the fitness of the synthesized polypeptide or nucleic acid at the laboratory level,
  • step (c) ranking the polypeptides or nucleic acids synthesized in step (a) according to their fitness
  • step (d) a sequence in which a mutation has been introduced into a specific sequence is prepared separately from the polypeptide or nucleic acid having the sequence obtained by shuffling.
  • step (c) The method according to claim 2, wherein the specific sequence is a sequence having a certain rank or more in step (c).
  • step (d) at least one of the sequences obtained by shuffling is subjected to further mutation-introduced sequences and added to the “shuffling library”.
  • step (d) The method according to any one of (1) to (4), wherein in step (d), shuffling is performed only between individuals having a certain rank or higher.
  • a non-naturally occurring polypeptide or nucleic acid obtained by the method according to any one of (1) to (6) and having a certain degree of fitness or more.
  • the term “shuffling” refers to dividing a polypeptide or nucleic acid sequence into a plurality of specific blocks (named “virtual exons”). This refers to the operation of exchanging virtual exons among a number of individuals to create a new polypeptide or nucleic acid sequence.
  • the term “shuffling 'library 1'” refers to a sequence group resulting from performing "shuffling" on a specific polypeptide or nucleic acid sequence.
  • a method known to those skilled in the art can be used to synthesize a polypeptide or a nucleic acid.
  • a polypeptide for a polypeptide, the t-Boc method (Merrifield, B., 1986, Science 232, 34, 347.) or Fmoc method (Gorka, J. et. Al., 1989, Pept. Res. 2, 376-80.).
  • the phosphoramidite method Itakura, K. et. Al., 1984, Ann. Rev. Biochem. 53, 323-356.
  • Etc. for nucleic acids, the phosphoramidite method (Itakura, K. et. Al., 1984, Ann. Rev. Biochem. 53, 323-356.) Etc. can be used.
  • fitness is an index indicating how much a polypeptide or nucleic acid having an individual sequence exhibits a specific biological activity, and is usually determined by measurement at a laboratory level.
  • the fitness of a polypeptide includes binding activity to a target molecule or activity as an antibiotic. The former is based on the EUSA method (Creigh ton, TE (Ed), 1989, Protein Structure. A Practical Approach, IRL). Pres s.) Or BIAcore (Griffiths, DG & Hall, G, 1993, Tibtech 11, 122-130.), And the latter can be measured by examining the ability to inhibit the growth of cells.
  • examples of the fitness of nucleic acid include binding activity to a protein and catalytic activity of cleaving a nucleic acid having a specific base sequence.
  • the former is an ELISA method, a BIAcore, or a gel shift method (Latchman, DS, 1993, Transcription Factors). , IRL pres s.) And the latter using a radioactive label (Santoro, SW & Joyce, G.
  • the cycle of activity measurement and shuffling is usually performed 5 times (generation) or more, preferably 8 times or more, and more preferably 10 times or more.
  • care must be taken if the array to be shuffled is too limited, because it is easy to end up with a local solution instead of the optimal solution.
  • individuals with a certain rank or higher can be divided into a plurality of groups according to the rank, and shuffling can be performed in each group.
  • This allows for global shuffling between a large number of arrays and local shuffling between a small number of arrays in parallel.
  • it is possible to set up two groups within the top 20% and within the top 40%.
  • the optimal solution search can be performed more quickly.
  • Mutations include all common mutations, including point mutations, deletion mutations, insertion mutations, inversions, and translocations.
  • a sequence in which a mutation has been introduced into a specific individual is created, and a “shuffling library” is created.
  • a sequence in which a mutation is introduced into a polypeptide or nucleic acid having a sequence obtained by shuffling is further prepared and added to “Shuffling 'Library 1'”. it can.
  • an array having a high degree of “isolation” in addition to the degree of fitness can be preferentially selected.
  • the “isolation degree” of a sequence is an index indicating the low similarity of a specific sequence to another sequence of the same generation, and is a measure of the similarity of another sequence of the same generation to the specific sequence. It can be defined as being inversely proportional to the sum of "similarity” with the sequence.
  • the term “similarity” of a sequence refers to an index indicating the similarity between two sequences.For example, when two sequences are compared and the same residue or base is present at the same position, 1 Points can be quantified by the total number of points.
  • each sequence of the same generation is ranked by the product of “fitness” and “isolation”, and shuffling can be performed only between individuals having a certain rank or higher.
  • each sequence of the same generation is ranked by the product of “fitness” and “isolation”, and individuals having a certain rank or more are further divided into a plurality of groups according to the rank. Shuffling can also be performed.
  • the initial sequence population (from which the first shuffling is performed) may include naturally occurring sequences. In this case, it is possible to further improve the function of the molecule that exists in nature.
  • a random sequence may be used as the initial sequence. Even if a random sequence is used as the starting sequence, there is no problem in practical use because the fitness is markedly increased by the “shuffling strategy”. Rather, it can be said that using a random sequence as the starting sequence increases the possibility of reaching a highly active biopolymer having a structure significantly different from that of the natural type.
  • FIG. 1 shows the ratio of the binding constant (KA) between the peptide and the antibody.
  • Figure 2 compares the shuffling strategy and the genetic algorithm.
  • the horizontal axis represents the variation of the molecule, and the vertical axis represents the average of the maximum value in 100 trials.
  • FIG. 3 is a diagram showing the structure of a double G quartet.
  • FIG. 4 is a diagram showing the structure of a triple G quartet. BEST MODE FOR CARRYING OUT THE INVENTION
  • Example 1 Simulation of design of a novel peptide that binds to a known protein (Search for topography of fitness based on binding data between a hemagglutinin-derived peptide and a monoclonal antibody)
  • Influenza virus hemagglutinin is a viral membrane protein that is used as an antigen to produce antibodies against the virus in the host body.
  • HA is a trimer consisting of the same subunit of 550 residues, and its monomer is composed of two polypeptide chains, HA1 and HA2 (Wilson, IA. Et. Al., 1981). , Nature 289, 366-73.)
  • the IC50 may be considered to be proportional to the dissociation constant (KD) between the peptide and the antibody (Aita, T. & Husimi, Y., 1996, J. theor. Biol. 182, 469-485.)
  • KD dissociation constant
  • KA binding constant
  • Figure 1 shows the value obtained by dividing the reciprocal of the IC 50 of each analog by the reciprocal of the IC 50 of the control peptide.
  • the letters represent the one-letter code for amino acids). For the above reasons, these values can be considered to be the ratio of the KA values of the analog and the control peptide.
  • the relative value of the equilibrium binding constant (KA) for Fab 17/9 can be determined.
  • the calculation of fitness and the generation of next-generation individuals based on the results were performed for 40 generations.
  • the search for 40 generations was counted as one trial, and 100 trials were performed to examine the directed evolution of the binding ability.
  • the calculation of fitness and the generation of next-generation individuals based on the results were performed for 40 generations.
  • the search for 40 generations was counted as one trial, and 100 trials were performed to examine the directed evolution of the binding ability.
  • the shuffling strategy is also more genetic for the average of the fitness values for each generation, averaged over 100 trials, and for the average of the minimum fitness values for each generation, averaged over 100 trials. It was found that the search for the optimal solution was more efficient than the genetic algorithm. Comparing how many individuals must be synthesized before the fitness exceeds 1 for the first time, the shuffling strategy shows 129 individuals and the genetic algorithm has 155 individuals. Can also see the high search efficiency of shuffling strategies for genetic algorithms.
  • the topography of the fitness was set and the computer simulation was performed.
  • the topography of the fitness was set and the computer simulation was performed.
  • the topography of the fitness was set and the computer simulation was performed.
  • multiple amino acid-substituted / substituted salt substitutions may affect the fitness in some cases.
  • the situation that is different from the simulation occurs, for example, the fitness of all the arrays cannot be measured due to the detection limit of the measuring device. Therefore, we conducted the following experiments, including the process of actually synthesizing molecules and measuring fitness.
  • Thrombin is a type of serine protease and has various functions including blood coagulation.
  • 5'-GGTTGGTGTGGTTGG-3 a single-stranded DNA consisting of 15 residues (SEQ ID NO: 1), called thrombin-abumauma, is known to bind to thrombin and inhibit its biological activity (Bock, LC et. Al., 1992, Nature 355, 564-566.) 0 As shown in Fig. 3, this molecule has a three-dimensional structure stabilized by two G-quartet structures. (Wang, KY et. Al., 19 93, Biochemistry 32, 1899-1904.).
  • N represents A, C, G ⁇ or T
  • the fitness of each sequence was measured using BIAcore2000 (BIAcore AB), an experimental device using the principle of surface plasmon resonance.
  • the synthesized single-stranded DNA was immobilized on a sensor chip for BIAcore2000 via carboxymethyl dextran and streptavidin, and 20 M of thrombin was passed thereto, and the response was examined.
  • BIAcore when a molecule binds to an immobilized substance, the refractive index near the sensor chip changes, and this is detected as a change in the resonance unit.
  • polypeptides or nucleic acids it has become possible to efficiently search for highly functional polypeptides or nucleic acids. For example, it has become possible to dramatically improve the function of naturally occurring polypeptides or nucleic acids. Furthermore, it has become possible to freely search for a polypeptide or nucleic acid having a specific function and a novel structure that does not exist in nature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Ecology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A molecular design method which fundamentally comprises artificially reconstructing genes by means of exon shuffle among a number of individuals. More particularly, this method comprises the steps of (a) synthesizing a number of polypeptides or nucleic acids differing in sequence from each other; (b) measuring the fitness of the synthesized polypeptides or nucleic acids on the laboratory level, (c) ranking the polypeptides or nucleic acids synthesized in step (a) depending on the fitness; (d) preparing a 'shuffling library' of the sequences obtained by shuffling the partial structures among individuals selected depending on the rank; (e) synthesizing polypeptides or nucleic acids belonging to the above library; and (f) repeating the procedures of steps (b) to (e) arbitrary times with the use of the polypeptides or nucleic acids obtained in step (e). By using this method, molecules can be evolved drastically and quickly as compared with the conventional genetic algorithm, which makes it possible to efficiently detect functional polymers, in particular, polypeptides or nucleic acids having specific functions and having novel structures which never occur in nature.

Description

機能性の高いポリべプチド又は核酸を探索する方法 技術分野  Method for searching for highly functional polypeptide or nucleic acid
本発明は生物工学の分野、 詳しくは、 ポリペプチド又は核酸の設計に関する, 背景技術  The present invention relates to the field of biotechnology, and more particularly to the design of polypeptides or nucleic acids.
蛋白質、 DNA、 RNAなどの生体高分子は、 生理活性、 分子認識、 触媒活性といつ た多様な機能を示す。 もしこのような高分子の機能を自由にデザィンすることが 可能になれば、 全く新しい機能性高分子を創出することが可能になり、 医薬、 食 品などの広範な分野に大きな影響を与えることが期待される。  Biological macromolecules such as proteins, DNA, and RNA exhibit various functions such as physiological activity, molecular recognition, and catalytic activity. If it becomes possible to freely design the functions of such polymers, it will be possible to create entirely new functional polymers, which will have a major impact on a wide range of fields such as pharmaceuticals and foods. There is expected.
ところで、 最近、 配列空間を探索して新しい機能性生体高分子を設計するとい う研究が精力的に行われている。 N種類の基本となるュニットが L個つながって できた分子に対しては、 N L種類の配列が可能であり、 L次元の配列空間を設定 することができる。 任意の配列は、 この配列空間上の 1点として表される。 特定 の活性に注目すると、 各配列はそれそれ異なる大きさの活性を示すので、 配列空 間上の各点の上に、 対応する配列が示す当該活性の大きさをプロットすると、 L 次元の曲面が現れる。 これが適応度の地形であり、 配列空間の探索は、 適応度の 地形の歩行と言い換えることもできる。  By the way, recently, research on designing a new functional biopolymer by exploring the sequence space has been actively conducted. For molecules formed by connecting L basic units of N types, NL types of arrays are possible, and an L-dimensional array space can be set. An arbitrary array is represented as one point in this array space. Focusing on a specific activity, each sequence shows an activity of a different size, so plotting the magnitude of the activity indicated by the corresponding sequence on each point in the sequence space gives an L-dimensional surface Appears. This is the fitness terrain, and searching the array space can be translated into walking on the fitness terrain.
SELEX法(Ell ington, A. D. & Szostak, J. W. , 1990, Nature 346, 818-822; Tuerk, C. & Gold, L., 1990, Science 249, 505-510. )は、 配列空間を探索する 手法の一つである。 DNA又は RNAに関して、 特定の長さの配列をすベて含むような 分子集団を作っておき、 特定の活性を指標とした選択と選択された分子の増幅を 繰り返すことにより、 目的の機能を持つ分子を濃縮するというものである。 遺伝 情報と表現型を対応づけることによってべプチドに対してこれと同じことを行う のが、 ファージディスプレイ法(Scott, J. K. & Smith, G. P. , 1990, Science 249, 386- 390. )やポリソームディスプレイ法(Mattheakis, L. C. et. al., 1994, Proc . Natl . Acad. Sci . USA 91, 9022-9026. )である。 しかし、 これらの手法に おいては、 多数の分子の反応が同じ溶液内で起こり、 実際には単一分子の反応の 時は起こり得ない競争や阻害が生じるため、 濃縮された配列が最適化された機能 を持っているとは限らない。 また、 2種類の異なる配列が同程度の活性を持って いるとき、 長い方の配列はもともと集団内の存在割合が低いために、 最終的な塩 基配列解読の段階で検出されにくいという欠点もある(Sumikura, K. et. al ., N ucleic Acids Symp. Ser. , in press. )。 The SELEX method (Ellington, AD & Szostak, JW, 1990, Nature 346, 818-822; Tuerk, C. & Gold, L., 1990, Science 249, 505-510.) Is a method of searching the sequence space. One. Creates a molecular population that contains all sequences of a specific length for DNA or RNA, and has the desired function by repeating selection using specific activity as an index and amplification of the selected molecule It concentrates molecules. Do the same for peptides by associating genetic information with phenotypes The phage display method (Scott, JK & Smith, GP, 1990, Science 249, 386-390.) And the polysome display method (Mattheakis, LC et. Al., 1994, Proc. Natl. Acad. Sci. USA 91) , 9022-9026.). However, in these methods, the enriched sequence is optimized because reactions of many molecules occur in the same solution, and in practice there is competition or inhibition that cannot occur in the case of single molecule reactions. It does not necessarily have the functions provided. Another disadvantage is that when two different sequences have the same activity, the longer sequence is less likely to be detected in the final base sequence decoding stage because of its low percentage in the population. (Sumikura, K. et. Al., Nucleic Acids Symp. Ser., In press.).
それに対して、 配列空間内の一つ一つの配列について別個に活性測定を行うの が、 固相合成法(Fodor, S. P. A. et. al ., 1991, Science 251 , 767- 773. )であ る。 これは、 基板上のどの位置にどの配列が存在するかが分かるようにしておき、 その基板上で反応を行って反応性の大小をモニタリングし、 高活性な配列はどれ かを知るというものである。 この手法は、 可能なすべての配列の活性をそれそれ 個別に調べるため、 扱える配列の長さに限界がある上、 結合能などの固相上で確 認できる活性についてしか調べることができない。 また、 プ一リング 'ストラテ ジ一(Kauffman, S. A. & Macready, W. G., 1995, J. theor. Biol . 173, 427-4 40. )は、 配列上の個々の残基について順に最適なュニットを決めてゆくことによ り、 左記の手法の長さや活性に関する制約を克服しょうとしたものであるが、 こ の手法は個々の残基が活性に対してそれそれ独立に寄与している場合のみにしか 有効ではない。  On the other hand, a solid-phase synthesis method (Fodor, SP A. et. Al., 1991, Science 251, 767-773.) Separately measures the activity of each sequence in the sequence space. In this method, it is necessary to know which sequence is present at which position on the substrate, perform a reaction on the substrate, monitor the magnitude of the reactivity, and know which sequence is highly active. is there. Since this technique examines the activity of all possible sequences individually, the length of the sequence that can be handled is limited, and it is only possible to examine activities that can be confirmed on the solid phase such as binding ability. Also, the Purging 'Strategy (Kauffman, SA & Macready, WG, 1995, J. theor. Biol. 173, 427-440.) Determines the optimal unit for each residue in the sequence in turn. This approach attempts to overcome the constraints on length and activity described on the left, but only when individual residues contribute independently to activity. Only valid.
以上のように、 分子集団をひとまとめに扱って選択と増幅を繰り返す戦略では、 多くの配列を検証できるものの得られた配列が最適なものかどうかが疑わしく、 一方、 すべての配列の活性を個別に測定する戦略では、 検証可能な条件が限られ てしまう。 そこで、 配列空間の中の一部分の個体の活性を個別に調べ、 その結果 に基づいて次に活性を調べる配列を決める、 という操作を何世代かにわたって繰 り返して最適解に近づいてゆくという手法が考案された(Yokobayashi, Y. , 1996, J. Chem. Soc , Perkin Trans. 1, 2435-2437. )0 この戦略が適切に働けば、 配 列空間の中のごくわずかな数の分子を調べるだけで最適な配列を知ることができ、 しかも得られた配列の最適解としての信頼性も高いと考えられる。 As described above, in the strategy of repeating selection and amplification by treating the molecular population collectively, it is possible to verify many sequences, but it is doubtful that the obtained sequence is the optimal one. The measurement strategy limits the conditions that can be verified. Therefore, the operation of individually examining the activity of a part of individuals in the sequence space and deciding the next sequence whose activity is to be examined based on the results is repeated for several generations. A method was devised to return to approach the optimal solution (Yokobayashi, Y., 1996, J. Chem. Soc, Perkin Trans. 1, 2435-2437.) 0 If this strategy works properly, By examining only a small number of molecules in space, the optimal sequence can be known, and the obtained sequence is considered to be highly reliable as the optimal solution.
横林らは、 上記の戦略をとる際に、 「遺伝的アルゴリズム」 を用いて次の世代 の個体を決めるという実験を行った(Yokobayashi, Y., 1996, J. Chem. Soc , P erkin Trans. 1, 2435-2437. ) 0 生命の進化においては、 環境に適した遺伝子の選 択、 遺伝子の組み換え、 それに突然変異が重要な役割を果たしていると考えられ るが、 遺伝的アルゴリズムとは、 このような進化のメカニズムを数学的にモデル 化したものである(Forrest, S. , 1993, Science 261 , 872-878. )。 遺伝的ァルゴ リズムにおいては、 通常、 電算機上で、 遺伝子に見立てた一組の文字列の集合に 対して、 選択、 組み換え、 突然変異の 3つの過程をモデルとした数学的な演算を 施すことによって、 文字列の集合を目的に叶ったものへと進化させてゆく。 Yokobayashi et al. Conducted an experiment to determine the next generation of individuals using a “genetic algorithm” when adopting the above strategy (Yokobayashi, Y., 1996, J. Chem. Soc, Perkin Trans. 1, 2435-2437.) 0 In the evolution of life, selection of genes suitable for the environment, gene recombination, and mutations are thought to play important roles. It is a mathematical model of such an evolutionary mechanism (Forrest, S., 1993, Science 261, 872-878.). In a genetic algorithm, usually, a computer performs a mathematical operation on a set of character strings that resembles a gene by modeling three processes of selection, recombination, and mutation. Through this, we evolve a set of character strings into something that fulfills the purpose.
前述の横林らの実験では、 6アミノ酸からなるぺプチドのトリプシン阻害活性 を、 1世代あたり 24配列、 6世代にわたって調べている。 阻害活性の平均値は初 期世代から最終世代までコンスタントに上昇したが、 阻害活性の最大値に関して は、 最終世代の値と初期世代の値の比が 1.03であり、 ほとんど変わらない大きさ であった。 このことから、 従来の遺伝的アルゴリズムは各世代の活性の平均値の 上昇にはある程度機能するものの、 最適解の探索効率は低いと考えられる。 発明の開示  In the experiment described above, Yokobayashi et al. Examined the trypsin inhibitory activity of a peptide consisting of 6 amino acids over 24 generations per generation over 6 generations. The average value of the inhibitory activity increased constantly from the first generation to the last generation, but the maximum inhibitory activity was almost the same as the ratio of the final generation value to the initial generation value, which was 1.03. Was. This suggests that the conventional genetic algorithm works to some extent to increase the average value of the activity of each generation, but the search efficiency for the optimal solution is low. Disclosure of the invention
本発明は、 効率的に、 機能性の高い生体高分子を設計する手法を提供すること を課題とする。  An object of the present invention is to provide a method for efficiently designing a highly functional biopolymer.
自然界におけるタンパク質の進化は、 それをコードする遺伝子の突然変異、 2 つの親個体の遺伝子の間で生じる組み換え、 そして環境に適応した個体の選択と いう過程を経て進むと考えられており、 遺伝的アルゴリズムもこの過程をモデル 化している。 The evolution of a protein in nature is thought to proceed through the process of mutation of the gene that encodes it, recombination occurring between the genes of two parent individuals, and selection of individuals that adapt to the environment. The algorithm also models this process Is becoming
一方、 長期的なスパンでの進化の様子を眺めると、 タンパク質は、 ある程度の 長さを持ったポリペプチドをコードする多種多様な遺伝子を基本ュニットとし、 それらのュニットをつなぎ合わせることでより高い機能を獲得したと考えられて いる。 真核生物の遺伝子の多くは、 アミノ酸に翻訳される領域 (ェキソン) とェ キソン間の非翻訳領域 (イントロン) から成り、 タンパク質のアミノ酸配列は複 数のェキソンに分かれてコードされている。 長いスパンで見ると、 ェキソンが夕 ンパク質の進化の基本ユニッ トであり、 イントロンはェキソンの切り混ぜ (ェキ ソン 'シャフリング) を行うための領域であると考えるのが、 遺伝子のェキソン 説(de Souza, S. J. et. al . , 1996, Genes Cel ls 1, 493- 505. )である。 実際、 上皮増殖因子蛋白質のあるドメインをコ一ドしているェキソンと同じものが、 低 密度リポ蛋白質受容体、 血液凝固因子 IX及び Xという全く関連のない蛋白質に見出 されており(Sudhof, T. C. et. al . , 1985, Science 228, 815-828. )、 ェキソン On the other hand, looking at the evolution over a long period of time, a protein has a higher function by connecting a variety of genes encoding polypeptides having a certain length as basic units, and connecting those units. Is believed to have acquired Most eukaryotic genes consist of a region that is translated into amino acids (exons) and an untranslated region between exons (introns). The amino acid sequence of a protein is encoded in multiple exons. In the long term, exons are the basic unit of protein evolution, and introns are thought to be an area for exon shuffling. (De Souza, SJ et. Al., 1996, Genes Cels 1, 493-505.). In fact, the same exons encoding certain domains of the epidermal growth factor protein have been found in completely unrelated proteins, the low-density lipoprotein receptor and blood coagulation factors IX and X (Sudhof, TC et.al., 1985, Science 228, 815-828.), Exon
•シャフリングが夕ンパク質の進化の駆動力となったことを示唆している。 アミ ノ酸を基本ユニットとして、 可能な組み合わせをすベて検証するよりも、 ェキソ ン ·シャフリングの方がより迅速に高機能のタンパク質を作り上げることができ ると考えられる。 • Suggests that shuffling has been a driving force in the evolution of evening protein. Exon shuffling may be able to produce a highly functional protein more quickly than testing all possible combinations using amino acid as a basic unit.
本発明者らは、 このェキソン ·シャフリングという進化のメカニズムに注目し、 電算機を利用して複数の個体間でのェキソン ·シャフリング様の遺伝子の再編成 を人工的に行うことを基本とする 「シャフリング戦略」 という分子設計法を開発 した。 この方法を用いることにより、 従来の遺伝的アルゴリズムよりも劇的で迅 速な分子の進化を行わせることができ、 従って、 より効率的に機能性高分子を検 索することが可能となった。  The present inventors have focused on this exon shuffling mechanism of evolution, and have basically made it possible to artificially rearrange exon shuffling-like genes among multiple individuals using a computer. A molecular design method called “shuffling strategy” was developed. By using this method, it is possible to make the evolution of molecules more dramatic and faster than conventional genetic algorithms, and thus it is possible to search for functional macromolecules more efficiently. .
すなわち、 本発明は、 以下のものを含む。  That is, the present invention includes the following.
( 1 ) 以下の工程を含む、 機能性の高いポリペプチド又は核酸を探索する方法。 ( a ) 互いに異なる配列を有する複数のポリぺプチド又は核酸を合成し、 (b) 合成されたポリべプチド又は核酸の適応度を実験室レベルで測定し、(1) A method for searching for a highly functional polypeptide or nucleic acid, comprising the following steps: (a) synthesizing a plurality of polypeptides or nucleic acids having different sequences from each other, (b) measuring the fitness of the synthesized polypeptide or nucleic acid at the laboratory level,
(c) 工程 (a) で合成されたポリペプチド又は核酸を適応度に応じて順位付け し、 (c) ranking the polypeptides or nucleic acids synthesized in step (a) according to their fitness,
(d) 順位に応じて選択した個体間で部分構造の切り混ぜ (シャフリング) を行 うことにより得られた配列からなる 「シャフリング ·ライブラリー」 を作成し、 (d) Create a “shuffling library” consisting of sequences obtained by performing shuffling of partial structures among individuals selected according to the rank,
(e) 「シャフリング 'ライブラリー」 に属するポリペプチド又は核酸を合成し、 (f ) 工程 (e) で得られたポリペプチド又は核酸について、 さらに工程 (b) ないし工程 (e) を任意の回数繰り返す。 (e) synthesizing a polypeptide or nucleic acid belonging to the “shuffling 'library”, and (f) further performing any of the steps (b) to (e) on the polypeptide or nucleic acid obtained in the step (e). Repeat several times.
(2) 工程 (d) において、 シャフリングを行うことにより得られた配列を有す るポリべプチド又は核酸とは別個に、 特定の配列に対して突然変異を導入した配 列を作成し 「シャフリング 'ライブラリ一」 に加えることを特徴とする、 ( 1) 記載の方法。  (2) In step (d), a sequence in which a mutation has been introduced into a specific sequence is prepared separately from the polypeptide or nucleic acid having the sequence obtained by shuffling. (1) The method according to (1), wherein the method is added to shuffling 'library one'.
(3) 特定の配列を、 工程 (c) における一定以上の順位を有する配列とする、 請求項 2記載の方法。  (3) The method according to claim 2, wherein the specific sequence is a sequence having a certain rank or more in step (c).
(4) 工程 (d) において、 シャフリングを行うことにより得られた配列の少な くとも 1つに対して、 更に突然変異を導入した配列を作成し 「シャフリング · ラ イブラリー」 に加えることを特徴とする、 ( 1) 記載の方法。  (4) In step (d), at least one of the sequences obtained by shuffling is subjected to further mutation-introduced sequences and added to the “shuffling library”. (1) The method according to (1).
(5) 工程 (d) において、 一定の順位以上の個体間のみでシャフリングを行う ことを特徴とする、 ( 1) 〜 (4) のいずれかに記載の方法。  (5) The method according to any one of (1) to (4), wherein in step (d), shuffling is performed only between individuals having a certain rank or higher.
(6) 工程 (d) において、 一定の順位以上の個体を更に、 上位から下位に複数 のグループとし、 それそれのグループの中でシャフリングを行うことを特徴とす る、 (5) 記載の方法。  (6) The process according to (5), wherein in the step (d), individuals having a certain rank or higher are further divided into a plurality of groups from a higher rank to a lower rank, and shuffling is performed in each group. Method.
(7) ( 1) 〜 (6) のいずれかに記載の方法により得られ一定以上の適応度を 有する、 天然には存在しないポリべプチド又は核酸。  (7) A non-naturally occurring polypeptide or nucleic acid obtained by the method according to any one of (1) to (6) and having a certain degree of fitness or more.
なお、 本明細書において、 「シャフリング」 とは、 ポリべプチド又は核酸の配 列を複数の特定のブロック (これを 「仮想ェクソン」 と名付ける) に分割し、 複 数の個体の間で仮想ェクソンを入れ替え、 新しいポリべプチド又は核酸の配列を 作成する操作を指す。 また、 本明細書において 「シャフリング 'ライブラリ一」 とは、 特定のポリペプチド又は核酸の配列に対する 「シャフリング」 の操作を行 つた結果生じた配列群を指す。 In this specification, the term “shuffling” refers to dividing a polypeptide or nucleic acid sequence into a plurality of specific blocks (named “virtual exons”). This refers to the operation of exchanging virtual exons among a number of individuals to create a new polypeptide or nucleic acid sequence. As used herein, the term "shuffling 'library 1'" refers to a sequence group resulting from performing "shuffling" on a specific polypeptide or nucleic acid sequence.
本発明において、 ポリペプチド又は核酸を合成するには、 当業者に知られた手 段、 例えばポリペプチドについては t-Boc法 (Merrifield, B., 1986, Science 23 2, 34卜 347. )又は Fmoc法(Gorka, J. et. al ., 1989, Pept. Res. 2, 376-80. )、 核酸についてはホスホアミダイ ト法(Itakura, K. et. al ., 1984, Ann. Rev. Bi ochem. 53, 323-356. )等を用いることができる。  In the present invention, a method known to those skilled in the art can be used to synthesize a polypeptide or a nucleic acid. For example, for a polypeptide, the t-Boc method (Merrifield, B., 1986, Science 232, 34, 347.) or Fmoc method (Gorka, J. et. Al., 1989, Pept. Res. 2, 376-80.). For nucleic acids, the phosphoramidite method (Itakura, K. et. Al., 1984, Ann. Rev. Biochem. 53, 323-356.) Etc. can be used.
本明細書において 「適応度」 とは、 個々の配列を有するポリペプチド又は核酸 が特定の生理活性をどれくらい示すかを表す指標であり、 通常、 実験室レベルで の測定により決定される。 例えば、 ポリペプチドの適応度としては、 標的分子に 対する結合活性又は抗生物質としての活性等があげられ、 前者は EUSA法(Creigh ton, T. E. (Ed) , 1989, Protein Structure. A Practical Approach, IRL Pres s. )又は BIAcore(Griffiths, D. G. & Hall , G,, 1993, Tibtech 11 , 122- 130. )に より、 また後者は菌体に対する生育阻害能を調べることにより、 測定することが できる。 また、 核酸の適応度としては、 タンパク質に対する結合活性又は特定の 塩基配列を持つ核酸を切断する触媒活性等があげられ、 前者は ELISA法、 BIAcore, 又はゲルシフト法(Latchman, D. S. , 1993, Transcription Factors, IRL pres s. )により、 また後者は放射性ラベルを用いた方法(Santoro, S. W. & Joyce, G. As used herein, “fitness” is an index indicating how much a polypeptide or nucleic acid having an individual sequence exhibits a specific biological activity, and is usually determined by measurement at a laboratory level. For example, the fitness of a polypeptide includes binding activity to a target molecule or activity as an antibiotic. The former is based on the EUSA method (Creigh ton, TE (Ed), 1989, Protein Structure. A Practical Approach, IRL). Pres s.) Or BIAcore (Griffiths, DG & Hall, G, 1993, Tibtech 11, 122-130.), And the latter can be measured by examining the ability to inhibit the growth of cells. In addition, examples of the fitness of nucleic acid include binding activity to a protein and catalytic activity of cleaving a nucleic acid having a specific base sequence. The former is an ELISA method, a BIAcore, or a gel shift method (Latchman, DS, 1993, Transcription Factors). , IRL pres s.) And the latter using a radioactive label (Santoro, SW & Joyce, G.
F. , 1997, Proc . Natl . Acad. Sci . USA 94, 4262- 4266. )又は電気泳動(Cantor,Natl. Acad. Sci. USA 94, 4262-4266.) Or electrophoresis (Cantor,
C. R. & Schi翻 el, P. R., 1980, Biophysical Chemistry, Chapter 12, Freem an. )により、 測定することができる。 C. R. & Schi, el, P. R., 1980, Biophysical Chemistry, Chapter 12, Freeman.).
本発明において、 活性測定とシャフリングのサイクルは通常 5回 (世代) 以上 行い、 好ましくは 8回以上行い、 更に好ましくは 10回以上行う。 また、 シャフリ ングは適応度が上位の配列を対象に行うことが好ましく、 通常上位 50%以内で行 い、 好ましくは上位 40 %以内で行い、 更に好ましくは上位 25 %以内で行う。 ただ し、 シャフリングを行う配列をあまりに限定しすぎると、 最適解でなく局所解に 行き着いてしまいやすいので、 注意が必要である。 In the present invention, the cycle of activity measurement and shuffling is usually performed 5 times (generation) or more, preferably 8 times or more, and more preferably 10 times or more. In addition, it is preferable to perform the shuffling on the array having the higher fitness, and generally perform the shuffling within the upper 50%. Preferably within the top 40%, more preferably within the top 25%. However, care must be taken if the array to be shuffled is too limited, because it is easy to end up with a local solution instead of the optimal solution.
更に、 一定の順位以上の個体を、 順位に応じて複数のグループに分け、 それそ れのグループの中でシャフリングを行うこともできる。 これにより、 多数の配列 の間の大域的なシャフリングと少数の配列の間の局所的シャフリングを並行して 行うことができる。 この場合、 例えば、 上位 20%以内、 及び上位 40 %以内の 2つ のグループを設定することが可能であるが、 上位個体のグループからはより多数 の次世代個体が生じるように設定すると、 多くの場合において、 より迅速に最適 解探索を行うことができると考えられる。  Furthermore, individuals with a certain rank or higher can be divided into a plurality of groups according to the rank, and shuffling can be performed in each group. This allows for global shuffling between a large number of arrays and local shuffling between a small number of arrays in parallel. In this case, for example, it is possible to set up two groups within the top 20% and within the top 40%. In the case of, it is thought that the optimal solution search can be performed more quickly.
更に、 本発明においては、 仮想ェクソンのシャフリングによる配列の再編成だ けでは使用できる材料が限定されてしまうので、 仮想ェクソンとして存在する配 列に対して突然変異を導入することによって、 より多くの多様性を配列群に与え ることが重要となる。 突然変異には、 点突然変異、 欠失変異、 挿入変異、 逆位、 転座など、 通常のあらゆる変異が含まれる。 具体的には、 シャフリングを行うこ とにより得られた配列を有するポリぺプチド又は核酸とは別個に、 特定の個体に 対して突然変異を導入した配列を作成し 「シャフリング ·ライブラリー」 に加え ることができる。 突然変異を導入する個体としては、 適応度の高い個体を選択す ることが好ましい。 また、 別の方法として、 シャフリングを行うことにより得ら れた配列を有するポリべプチド又は核酸に対して、 更に突然変異を導入した配列 を作成し 「シャフリング 'ライブラリ一」 に加えることができる。  Furthermore, in the present invention, since only the rearrangement of sequences by shuffling virtual exons limits the materials that can be used, more mutations can be introduced by introducing mutations into sequences existing as virtual exons. It is important to give the diversity of sequences to the sequence group. Mutations include all common mutations, including point mutations, deletion mutations, insertion mutations, inversions, and translocations. Specifically, separately from a polypeptide or nucleic acid having a sequence obtained by shuffling, a sequence in which a mutation has been introduced into a specific individual is created, and a “shuffling library” is created. Can be added to As the individual into which the mutation is to be introduced, it is preferable to select an individual having high fitness. As another method, a sequence in which a mutation is introduced into a polypeptide or nucleic acid having a sequence obtained by shuffling is further prepared and added to “Shuffling 'Library 1'”. it can.
なお、 本発明においてシャフリングを行う対象となる配列として、 適応度の高 さに加えて、 配列の 「孤立度」 の高い配列を優先的に選択することができる。 こ こで、 配列の 「孤立度」 とは、 特定の配列について、 同一世代の他の配列との類 似性の低さを示す指標であり、 特定の配列と同一世代の他のそれそれの配列との 「類似度」 の総和に反比例するものとして定義することができる。 なお、 ここで いう配列の 「類似度」 とは、 2つの配列の間の類似性を示す指標のことであり、 例えば、 2つの配列を比較して、 同一位置に同一残基又は塩基が存在する時を 1 ポイントとし、 合計のポイント数で定量化することが可能である。 具体的には、 同一世代の各配列を 「適応度」 と 「孤立度」 との積によって順位付けし、 一定の 順位以上の個体間のみでシャフリングを行うことができる。 また、 同一世代の各 配列を 「適応度」 と 「孤立度」 との積によって順位付けし、 一定の順位以上の個 体を更に、 順位に応じて複数のグループとし、 それそれのグループの中でシャフ リングを行うこともできる。 In the present invention, as an array to be shuffled, an array having a high degree of “isolation” in addition to the degree of fitness can be preferentially selected. Here, the “isolation degree” of a sequence is an index indicating the low similarity of a specific sequence to another sequence of the same generation, and is a measure of the similarity of another sequence of the same generation to the specific sequence. It can be defined as being inversely proportional to the sum of "similarity" with the sequence. Here, The term “similarity” of a sequence refers to an index indicating the similarity between two sequences.For example, when two sequences are compared and the same residue or base is present at the same position, 1 Points can be quantified by the total number of points. Specifically, each sequence of the same generation is ranked by the product of “fitness” and “isolation”, and shuffling can be performed only between individuals having a certain rank or higher. In addition, each sequence of the same generation is ranked by the product of “fitness” and “isolation”, and individuals having a certain rank or more are further divided into a plurality of groups according to the rank. Shuffling can also be performed.
なお、 本発明において、 当初の (第 1回目のシャフリングを行うもととなる) 配列集団は、 天然に存在する配列を含んでいてもよい。 この場合は、 天然に存在 する分子の機能を更に向上させることが可能となる。  In the present invention, the initial sequence population (from which the first shuffling is performed) may include naturally occurring sequences. In this case, it is possible to further improve the function of the molecule that exists in nature.
また、 本発明において、 当初の配列として、 ランダムな配列を用いることもで きる。 ランダムな配列を出発配列としても、 「シャフリング戦略」 によって適応 度が顕著に上昇していくので、 実用上何ら問題はない。 むしろ、 ランダムな配列 を出発配列とする方が、 天然型とは構造が大きく異なる高活性の生体高分子にた どり着く可能性が高くなるともいえる。  In the present invention, a random sequence may be used as the initial sequence. Even if a random sequence is used as the starting sequence, there is no problem in practical use because the fitness is markedly increased by the “shuffling strategy”. Rather, it can be said that using a random sequence as the starting sequence increases the possibility of reaching a highly active biopolymer having a structure significantly different from that of the natural type.
従来の生物工学においては、 まず生体高分子を探索し、 その後該分子の機能を 解析していくという手法、 又は、 まず特定の生命現象を解析し、 該現象を誘導し ている生体高分子を探索するという手法がとられていた。 いずれの手法にせよ、 得られる生体高分子は、 生命現象に直接関与しているものに限られていた。 本発 明においては、 生命現象に直接関与していないポリペプチド又は核酸も、 探索の 対象となる。 即ち、 本発明においては、 生命現象のみならず、 あらゆる化学反応、 特定の機能を有する構造の形成などに関与するポリべプチド又は核酸を、 自由に 探索できるところが大きな特徴といえる。 図面の簡単な説明 図 1は、 ペプチドと抗体の間の結合定数 (KA) の比を表す図である。 In conventional biotechnology, a method of first searching for a biopolymer and then analyzing the function of the molecule, or analyzing a specific biological phenomenon first, and identifying a biopolymer that induces the phenomenon The technique of searching was taken. Regardless of the method, the biopolymers obtained were limited to those directly involved in life phenomena. In the present invention, polypeptides or nucleic acids that are not directly involved in life phenomena are also searched for. That is, the major feature of the present invention is that it is possible to freely search for polypeptides or nucleic acids involved in not only life phenomena but also all chemical reactions and formation of structures having specific functions. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows the ratio of the binding constant (KA) between the peptide and the antibody.
図 2は、 シャフリング戦略と遺伝的アルゴリズムを比較した図である。 横軸は 分子のバリエーション、 縦軸は 100回の試行における最大値の平均を表す。  Figure 2 compares the shuffling strategy and the genetic algorithm. The horizontal axis represents the variation of the molecule, and the vertical axis represents the average of the maximum value in 100 trials.
図 3は、 ダブル Gカルテツトの構造を表す図である。  FIG. 3 is a diagram showing the structure of a double G quartet.
図 4は、 トリプル Gカルテツトの構造を表す図である。 発明を実施するための最良の形態  FIG. 4 is a diagram showing the structure of a triple G quartet. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例によりさらに詳細に説明するが、 本発明は下記実施例に 制限されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例 1 ] 既知のタンパク質に結合する新規べプチドの設計のシミュレ一シ ヨン (赤血球凝集素由来のぺプチドとモノクローナル抗体との結合データに基づ く、 適応度の地形の探索)  [Example 1] Simulation of design of a novel peptide that binds to a known protein (Search for topography of fitness based on binding data between a hemagglutinin-derived peptide and a monoclonal antibody)
シャフリング戦略による分子設計の特徴を明らかにするために、 実際の測定デ 一夕に基づいて適応度の地形を設定し、 シャフリングを行い、 インフルエンザゥ ィルスの赤血球凝集素 (HA) と親和性の高いタンパク質の検索を行った。  To characterize the molecular design based on the shuffling strategy, we set the topography of the fitness based on the actual measurement data, performed shuffling, and showed affinity for influenza virus hemagglutinin (HA). High protein was searched.
( 1 ) 適応度の地形のもとになつた実験デ一夕  (1) Experiments conducted under the topography of fitness
インフルエンザウイルスの赤血球凝集素(HA)は、 ウィルスの膜面タンパク質で あり、 これを抗原として宿主の体内でウィルスに対する抗体が産生される。 HAは 550残基の同一サブユニットからなる三量体で、 その単量体は、 HA1及び HA2という 2つのポリペプチド鎖から構成されている(Wi lson, I . A. et. al ., 1981, Natu re 289, 366-73. ) o  Influenza virus hemagglutinin (HA) is a viral membrane protein that is used as an antigen to produce antibodies against the virus in the host body. HA is a trimer consisting of the same subunit of 550 residues, and its monomer is composed of two polypeptide chains, HA1 and HA2 (Wilson, IA. Et. Al., 1981). , Nature 289, 366-73.) O
HA1の 100〜108番に相当するペプチドは、 Fab 17/9というモノクローナル抗体と 結合することが知られている(Rini, J. M. et. al . , 1992, Science 255 , 959-96 5. ) o Churchil lらは、 HA1の 101〜107番に相当するペプチド(101D- 102V- 103P-104 D- 105Y- 106A- 107S)のすベての 1アミノ酸置換体 (計 113個) について、 Fab 17/9 に対する結合能を競合 ELISA法によって調べ、 IC 5 0の値をそれそれについて計算 した(Churchill, M. E. A. et. al. , 1994, J. Mol. Biol. 241, 534-556. )0 IC 50は、 ここでは、 野生型の配列を持つコントロ一ル .ぺプチドの Fab 17/9に対 する結合を 50%阻害するのに必要なそれそれのアナ口グの濃度のことである。 It is known that a peptide corresponding to HA100 at positions 100 to 108 binds to a monoclonal antibody called Fab 17/9 (Rini, JM et. Al., 1992, Science 255, 959-96 5.) o Churchil l, for all 1 amino acid substitutions (113 in total) of peptides corresponding to positions 101-107 of HA1 (101D-102V-103P-104D-105Y-106A-107S), Fab 17/9 The binding capacity to IC50 is determined by competitive ELISA, and the IC 50 value is calculated for each. (Churchill, MEA et. Al., 1994, J. Mol. Biol. 241, 534-556.) 0 The IC50 here is the Fab 17/9 of the control peptide having the wild-type sequence. Is the concentration of each anatomical substance required to inhibit binding by 50%.
( 2 ) 適応度の計算  (2) Calculation of fitness
IC50はべプチドと抗体の間の解離定数(KD)に比例すると考えてよいので(A ita, T. & Husimi, Y., 1996, J. theor. Biol. 182, 469-485. )、 IC50の逆数 は、 ペプチドと抗体の間の結合定数(KA)に比例する。 図 1 (Churchillらの Fig ure 7をもとにして作成) は、 各アナログの IC 50の逆数をコントロール ·ぺプチ ドの IC 50の逆数で割った値を示す (なお、 図 1中の英文字は、 アミノ酸の 1文 字コードを表す) 。 上の理由によりこれらの値はアナログとコントロール 'ぺプ チドの K A値の比であると考えて良い。  Since the IC50 may be considered to be proportional to the dissociation constant (KD) between the peptide and the antibody (Aita, T. & Husimi, Y., 1996, J. theor. Biol. 182, 469-485.) The inverse of is proportional to the binding constant (KA) between the peptide and the antibody. Figure 1 (created based on Churchill et al., Figure 7) shows the value obtained by dividing the reciprocal of the IC 50 of each analog by the reciprocal of the IC 50 of the control peptide. The letters represent the one-letter code for amino acids). For the above reasons, these values can be considered to be the ratio of the KA values of the analog and the control peptide.
タンパク質同士の相互作用やタンパク質と DNAの結合に関しては、 統計的に見て、 自由エネルギー変化の加算性が成り立つ(Wells, J. Aリ 1990, Biochem. 29, 85 09-8517.)。 そこで、 7アミノ酸から成るペプチドの Fab 17/9に対する結合能につ いても、 すべての部位のアミノ酸置換は、 概ね、 結合能に対してれそれ独立に作 用すると考えることができる。 つまり、 野生型配列に対するある 1アミノ酸置換 体を X、 それとは別の部位に 1アミノ酸置換が入った配列を Y、 それら 2つのァ ミノ酸置換を合わせ持つ配列を (X, Υ) で表すと、  In terms of protein-protein interaction and protein-DNA binding, statistically, the free energy change is additive (Wells, J.A. 1990, Biochem. 29, 8509-8517.). Therefore, regarding the binding ability of a peptide consisting of 7 amino acids to Fab 17/9, it can be considered that amino acid substitution at all sites acts independently on the binding ability. In other words, X represents a certain amino acid substitution with respect to the wild-type sequence, Y represents a sequence having a single amino acid substitution at another site, and (X, Υ) represents a sequence having both of these two amino acid substitutions. ,
△△G (X, Y) =AAG (X) +AAG (Y)  △△ G (X, Y) = AAG (X) + AAG (Y)
と考えられる (なお AGは結合による自由エネルギー変化を表し、 AAGは野生 型に対するアミノ酸置換による AGの変化量を表す) 。 結合定数 KAと自由エネ ルギー AGとの関係は、  (Note that AG represents the change in free energy due to binding, and AAG represents the change in AG due to amino acid substitution with respect to the wild-type.) The relationship between the coupling constant KA and free energy AG is
KA=exp (-AG/RT)  KA = exp (-AG / RT)
で表される(Aita, T. & Husimi, Y., 1996, J. theor. Biol. 182, 469- 485.)の で、 上の仮定のもとでは、  (Aita, T. & Husimi, Y., 1996, J. theor. Biol. 182, 469-485.) Under the above assumption,
KA (置換型)/ KA (野生型) = exp (— AAG (置換型)/ RT) が成り立つ。 従って、 KA (substitution type) / KA (wild type) = exp (— AAG (substitution type) / RT) Holds. Therefore,
八 , )/!^八(野生型)= 6 (-AAG(X,Y)/RT)  8,) /! ^ 8 (wild type) = 6 (-AAG (X, Y) / RT)
= exp (- (AAG(X) + AAG(Y)) / T) = exp (-(AAG (X) + AAG (Y)) / T)
= exp (-AAG(X)/RT) · exp (-AAG(Y)/RT) = exp (-AAG (X) / RT) exp (-AAG (Y) / RT)
二 (KA(X)/KA (野生型)) · (KA(Y)/KA (野生型)) Two (KA (X) / KA (wild type)) · (KA (Y) / KA (wild type))
となり、 任意のアミノ酸配列について、 図 1の値を掛け合わせることにより、 Fa b 17/9に対する平衡結合定数( K A)の相対値を求めることができる。 By multiplying the value of FIG. 1 for an arbitrary amino acid sequence, the relative value of the equilibrium binding constant (KA) for Fab 17/9 can be determined.
(3) コンピュータ一 'シミュレーションの条件  (3) Computer simulation conditions
シャフリング戦略及び単純な遺伝的ァルゴリズムによる分子設計のシミュレ一 シヨンを行った。 条件の詳細は次の通りである。  We simulated the molecular design using a shuffling strategy and a simple genetic algorithm. Details of the conditions are as follows.
[シャフリング戦略]  [Shuffling strategy]
最初に、 ランダムな配列を持つ 20個のペプチドを生成させた。 それぞれのぺプ チドの適応度 (Fab 17/9に対する結合能) は、 (2) により、 図 1の値に基づく 計算から求められる。 この結合能に従って、 ペプチドを順位付けした。 次に、 7 つのアミノ酸を 2-2- 3に分割して 3つの仮想ェクソンを設定し、 上位 8個体の間で 仮想ェクソンのシャフリングを行って次の世代の個体を 8個体作製した。 シャフ リングにあたっては、 適応度に比例して仮想ェクソンを残しやすくした。 上位 2 個体については、 仮想ェクソンのすべての組み合わせが生じるようにして 6個体 を作製した。 それに加えて、 上位 3個体のそれそれに対して、 1個体につき 1残 基の突然変異が生じるようにして新しい個体を作製した。 1個体から 2つの突然 変異体が生じるものとした。 このようにして、 ある世代の 20個の個体から、 次の 世代の 20個の個体が作られた。  First, we generated 20 peptides with random sequences. The fitness (binding ability to Fab 17/9) of each peptide can be obtained from the calculation based on the values in Fig. 1 by (2). The peptides were ranked according to their binding capacity. Next, 7 amino acids were divided into 2-2-3 to set 3 virtual exons, and virtual exons were shuffled among the top 8 individuals to create 8 individuals of the next generation. In shuffling, we made it easier to leave virtual exons in proportion to fitness. For the top two individuals, six individuals were created so that all combinations of virtual exons occurred. In addition, a new individual was created so that each of the top three individuals had one mutation per individual. Two sudden mutants were generated from one individual. In this way, 20 individuals of the next generation were created from 20 individuals of one generation.
このような、 適応度の計算とその結果に基づく次世代個体の作製を 40世代にわ たって行った。 また、 この 40世代にわたる探索を 1回の試行と数え、 100回の試行 を行って結合能の定向進化の様子を調べた。  The calculation of fitness and the generation of next-generation individuals based on the results were performed for 40 generations. The search for 40 generations was counted as one trial, and 100 trials were performed to examine the directed evolution of the binding ability.
[遺伝的アルゴリズム] 最初に、 ランダムな配列を持つ 60個のペプチドを生成させた。 それそれの配列 の適応度の計算に関しては、 上に同じである。 次世代個体の作製の際には、 結合 能に比例した確率で 2つの親個体を選び、 それらの間でランダムな位置での組換 えを生じさせることにより新たな 2つの個体を作製した。 また、 0. 1の確率で突然 変異が入るものとした。 このようにして次の世代の 60個体が作製された。 [Genetic algorithm] First, we generated 60 peptides with random sequences. The calculation of the fitness of each array is the same as above. In the generation of the next generation individuals, two new individuals were created by selecting two parent individuals with a probability proportional to the binding ability and causing recombination between them at random positions. In addition, mutation was assumed to occur suddenly with a probability of 0.1. Thus, 60 individuals of the next generation were produced.
このような、 適応度の計算とその結果に基づく次世代個体の作製を 40世代にわ たって行った。 また、 この 40世代にわたる探索を 1回の試行と数え、 100回の試行 を行って結合能の定向進化の様子を調べた。  The calculation of fitness and the generation of next-generation individuals based on the results were performed for 40 generations. The search for 40 generations was counted as one trial, and 100 trials were performed to examine the directed evolution of the binding ability.
( 4 ) コンビュ一夕一'シミュレーションの結果  (4) Simulation results
各世代における適応度の最大値を 100回の試行に関して平均した値、 各世代にお ける適応度の平均値を 100回の試行に関して平均した値、 各世代における適応度の 最小値を 100回の試行に関して平均した値、 その世代にいたるまでに集団中に存在 したした分子のバリエーション (つまり、 実際に合成しなくてはならない分子は 何種類か、 を示す値) を 100回の試行に関して平均した値、 をそれそれ算出した。 図 2は、 横軸に分子のバリエーション、 縦軸に 100回の試行における最大値の平 均をとり、 シャフリング戦略と遺伝的アルゴリズムを比較したものである。 これ を見ると、 シャフリング戦略の方が遺伝的アルゴリズムよりも効率よく最適解を 探索していることが分かる。 同様にして、 各世代における適応度の平均値を 100回 の試行に関して平均した値、 各世代における適応度の最小値を 100回の試行に関し て平均した値についても、 シャフリング戦略の方が遺伝的アルゴリズムよりも効 率よく最適解を探索していることが判明した。 また、 適応度が初めて 1を超える までにいくつの個体を合成しなくてはならないか、 について比較してみると、 シ ャフリング戦略の場合は 129個体、 遺伝的ァルゴリズムが 155個体となり、 ここか らも遺伝的アルゴリズムに対するシャフリング戦略の探索効率の高さを見て取る ことができる。  The average value of fitness in each generation was averaged over 100 trials, the average value of fitness in each generation was averaged over 100 trials, and the minimum value of fitness in each generation was 100 Averaged for trials, averaged over 100 trials for the variation of molecules that were present in the population up to that generation (that is, the number of molecules that actually need to be synthesized) Values were calculated for each. Figure 2 compares the shuffling strategy and the genetic algorithm with the variation of the molecule on the horizontal axis and the average of the maximum value in 100 trials on the vertical axis. This shows that the shuffling strategy searches for the optimal solution more efficiently than the genetic algorithm. In the same way, the shuffling strategy is also more genetic for the average of the fitness values for each generation, averaged over 100 trials, and for the average of the minimum fitness values for each generation, averaged over 100 trials. It was found that the search for the optimal solution was more efficient than the genetic algorithm. Comparing how many individuals must be synthesized before the fitness exceeds 1 for the first time, the shuffling strategy shows 129 individuals and the genetic algorithm has 155 individuals. Can also see the high search efficiency of shuffling strategies for genetic algorithms.
( 5 ) 別の条件によるシャフリング シャフリング戦略の探索効率の再現性を確かめるために、 上とは別の条件でシ ャフリングを行ってみた。 上と異なる点は、 シャフリングにあたって、 適応度に 比例して仮想ェクソンを残す際に、 個体間の適応度の差が激しい初期世代におい ても配列の多様性が保たれるよう、 適応度に関してシグマ ·スケ一リングを行つ たことである。 本実施例においては、 もとの適応度を f、 変換後の適応度を f ' 、 その世代の個体の適応度の平均値を f avr、 適応度の標準偏差をびとすると、 f = f - ( f avr- 3 x σ ) (5) Shuffling under different conditions In order to confirm the reproducibility of the search efficiency of the shuffling strategy, shuffling was performed under different conditions. The difference from the above is that when shuffling leaves a virtual exon in proportion to the fitness, the fitness of the sequence is maintained so that the diversity of the sequence is maintained even in the early generations where the fitness difference between individuals is large. That is, we performed sigma scheduling. In the present embodiment, the original fitness is f, the fitness after conversion is f ′, the average fitness of individuals of the generation is f avr, and the standard deviation of the fitness is calculated as f = f− (f avr- 3 x σ)
という式で変換を行った。 100回の試行の平均を取ると、 適応度が初めて 1を超え るまでに合成した分子の数は、 119個体となり、 シャフリング戦略の探索効率の高 さが確かめられた。 Was converted by the following equation. Taking the average of 100 trials, the number of molecules synthesized until the fitness exceeded 1 for the first time was 119, confirming the high search efficiency of the shuffling strategy.
[実施例 2 ] トロンビンに結合する一本鎖 DNAの配列の最適化  [Example 2] Optimization of sequence of single-stranded DNA binding to thrombin
実施例 1では、 統計的な知見に従って、 自由エネルギー変化の加算性が完全に 成立するという仮定に基づき、 適応度の地形を設定してコンピューター ·シミュ レーシヨンを行った。 一方、 実際に実験室レベルで適応度を測定して分子設計を 行うにあたっては、 複数のァミノ酸置換ゃ塩 置換が相関して適応度に影響して いる場合もあると考えられる。 また、 測定機器に検出限界によりすベての配列の 適応度を測定できるとは限らないなど、 シミュレーションとは異なる状況が生じ る。 そこで、 実際に分子を合成して適応度を測定するという過程を含む、 次のよ うな実験を行った。  In the first embodiment, based on the statistical knowledge, based on the assumption that the additivity of the free energy change is completely established, the topography of the fitness was set and the computer simulation was performed. On the other hand, when designing a molecule by actually measuring the fitness at the laboratory level, it is considered that multiple amino acid-substituted / substituted salt substitutions may affect the fitness in some cases. In addition, the situation that is different from the simulation occurs, for example, the fitness of all the arrays cannot be measured due to the detection limit of the measuring device. Therefore, we conducted the following experiments, including the process of actually synthesizing molecules and measuring fitness.
( 1 ) トロンビンとトロンビン .ァプ夕マ一  (1) Thrombin and thrombin.
トロンビンは、 セリンプロテアーゼの一種のタンパク質であり、 血液凝固をは じめとする様々な機能を担っている。 5' - GGTTGGTGTGGTTGG- 3, (配列番号: 1) と いう 15残基から成る一本鎖 DNAは、 トロンビン ·アブ夕マ一と呼ばれ、 トロンビン に結合しその生理活性を阻害することが知られている(Bock, L. C. et. al ., 19 92, Nature 355, 564-566. ) 0 またこの分子は、 図 3のように、 2つの G—カルテ ッ ト構造によって安定化される立体構造をとっている(Wang, K. Y. et. al ., 19 93, Biochemistry 32, 1899-1904. )。 Thrombin is a type of serine protease and has various functions including blood coagulation. 5'-GGTTGGTGTGGTTGG-3, a single-stranded DNA consisting of 15 residues (SEQ ID NO: 1), called thrombin-abumauma, is known to bind to thrombin and inhibit its biological activity (Bock, LC et. Al., 1992, Nature 355, 564-566.) 0 As shown in Fig. 3, this molecule has a three-dimensional structure stabilized by two G-quartet structures. (Wang, KY et. Al., 19 93, Biochemistry 32, 1899-1904.).
今回、 トロンビン 'アブ夕マーの 2つの G—カルテツト構造以外の 3つの部分 を仮想ェクソンとして設定し、 これらの部分がどのような配列に最適化されるか を調べた。 すなわち、  In this study, we set three parts other than the two G-quartet structures of the thrombin 'abnumer as virtual exons, and examined how these parts are optimized. That is,
5' -GGNNGGNNNGGNNGG-3' (Nは、 A、 C、 Gヽ 又は Tを表す)  5 '-GGNNGGNNNGGNNGG-3' (N represents A, C, G ヽ or T)
なる 20個のォリゴヌクレオチドを出発点とし、 シャフリング戦略による次世代の 設計と合成 ·適応度の測定を繰り返し、 生じてくる配列を追跡したのである。 Starting with the next 20 oligo nucleotides, the next generation of shuffling strategies, synthesis and fitness measurements were repeated to track the resulting sequences.
( 2 ) 適応度の測定法  (2) Fitness measurement method
それそれの配列の適応度 (トロンビンに対する親和性) の測定は、 表面プラズ モン共鳴の原理を利用した実験装置である BIAcore2000 (BIAcore AB社) を用いて 行った。  The fitness of each sequence (affinity to thrombin) was measured using BIAcore2000 (BIAcore AB), an experimental device using the principle of surface plasmon resonance.
合成された一本鎖 DNAを BIAcore2000用のセンサーチップ上にカルボキシメチル デキストラン及びストレブトアビジンを介して固定化し、 それに対して 20 Mの トロンビンを流し、 応答を調べた。 BIAcoreにおいては、 固定化された物質に分子 が結合すると、 センサーチップ付近の屈折率が変化し、 それがレゾナンス 'ュニ ッ 卜の変化として検出されるようになっている。  The synthesized single-stranded DNA was immobilized on a sensor chip for BIAcore2000 via carboxymethyl dextran and streptavidin, and 20 M of thrombin was passed thereto, and the response was examined. In BIAcore, when a molecule binds to an immobilized substance, the refractive index near the sensor chip changes, and this is detected as a change in the resonance unit.
( 3 ) シャフリング戦略の実際  (3) Practical shuffling strategy
最初の世代の 20個体を合成し、 適応度を測定したところ、 上位 8個体は次のよ うになつた。 なお、 配列の右の数値は、 BIAcore2000によって得られた、 適応度の 高さを表す数値である。  We synthesized 20 individuals of the first generation and measured fitness. The top 8 individuals were as follows. The numerical value on the right side of the sequence is a numerical value obtained by BIAcore2000 and indicating the degree of fitness.
0-12 : GG TC GG GTG GG TT GG (配列番号: 2) 1299.9  0-12: GG TC GG GTG GG TT GG (SEQ ID NO: 2) 1299.9
0 - 8: GG CC GG TTC GG TT GG (配列番号: 3) 1281.5  0-8: GG CC GG TTC GG TT GG (SEQ ID NO: 3) 1281.5
0-15 : GG TG GG TAC GG CT GG (配列番号: 4) 1101.9  0-15: GG TG GG TAC GG CT GG (SEQ ID NO: 4) 1101.9
0-17: GG CG GG GCG GG TG GG (配列番号: 5) 1077.8  0-17: GG CG GG GCG GG TG GG (SEQ ID NO: 5) 1077.8
0- 3 : GG CA GG TAG GG TA GG (配列番号: 6) 1000. 1  0-3: GG CA GG TAG GG TA GG (SEQ ID NO: 6) 1000. 1
0- 9 : GG GC GG GTC GG AT GG (配列番号: 7) 740.3 0-10: GG GC GG TTA GG CA GG (配列番号: 8) 526.5 0-9: GG GC GG GTC GG AT GG (SEQ ID NO: 7) 740.3 0-10: GG GC GG TTA GG CA GG (SEQ ID NO: 8) 526.5
0- 14: GG TA GG GCA GG AG GG (配列番号: 9) 452.3  0-14: GG TA GG GCA GG AG GG (SEQ ID NO: 9) 452.3
適応度が高かった上位 2個体間でシャフリングを行うことにより、 新たに以下 のような 6個体を作製した。 なお、 以下で左から数えて 1番目、 2番目、 3番目の仮 想ェクソンを(1),(2),(3)と表す。  By shuffling between the top two individuals with the highest fitness, the following six individuals were newly created. In the following, the first, second, and third virtual exons counted from the left are denoted as (1), (2), and (3).
- 1: GG TC GG GTG GG TT GG :0-12(1), 0-12(2), 0- 8(3) (配列番号: 2) - 2: GG TC GG TTC GG TT GG :0-12(1), 0- 8(2), 0- 8(3) (配列番号: 10) ― 3: GG CC GG TTC GG TT GG :0- 8(1), 0- 8(2), 0-12(3) (配列番号: 3) - 4: GG CC GG GTG GG TT GG :0 - 8(1), 0-12(2), 0-12(3) (配列番号: 11) ― 5: GG TC GG TTC GG TT GG :0-12(1), 0 - 8(2), 0-12(3) (配列番号: 10) - 6: GG CC GG GTG GG TT GG :0- 8(1), 0-12(2), 0- 8(3) (配列番号: 11) また、 適応度が高かった上位 8個体間で、 適応度の大きさに比例して仮想ェクソ ンを残しやすいようにシャフリングを行うことにより、 新たに以下のような 8個体 を作製した。  -1: GG TC GG GTG GG TT GG: 0-12 (1), 0-12 (2), 0-8 (3) (SEQ ID NO: 2)-2: GG TC GG TTC GG TT GG: 0: 12 (1), 0-8 (2), 0-8 (3) (SEQ ID NO: 10) ― 3: GG CC GG TTC GG TT GG: 0: 0-8 (1), 0-8 (2), 0 -12 (3) (SEQ ID NO: 3)-4: GG CC GG GTG GG TT GG: 0-8 (1), 0-12 (2), 0-12 (3) (SEQ ID NO: 11)-5 : GGTC GG TTC GG TT GG: 0-12 (1), 0-8 (2), 0-12 (3) (SEQ ID NO: 10)-6: GG CC GG GTG GG TT GG: 0-8 ( 1), 0-12 (2), 0-8 (3) (SEQ ID NO: 11) Also, among the top 8 individuals with the highest fitness, virtual exoxons tend to remain in proportion to the magnitude of the fitness. By shuffling as described above, the following eight individuals were newly created.
1- 7: GG GC GG TTC GG TT GG :0-10(1), 0- 8(2), 0-12(3) (配列番号: 12) 1 - 8: GG TC GG TAC GG AG GG :0-12(1), 0-15(2), 0-14(3) (配列番号: 13) 1- 9: GG CG GG GCA GG AT GG :0-17(1), 0-14(2), 0- 9(3) (配列番号: 14) 1-10: GG TG GG TAC GG TT GG :0-15(1), 0-15(2), 0- 8(3) (配列番号: 15) 1-11: GG CG GG TAG GG AT GG :0-17(1), 0 - 3(2), 0- 9(3) (配列番号: 16) 1-12: GG TC GG TAC GG TT GG :0-12(1), 0-15(2), 0- 8(3) (配列番号: 17) 1-13: GG GC GG GCG GG TT GG :0- 9(1), 0-17(2), 0- 8(3) (配列番号: 18) 1-14: GG CG GG GCG GG CT GG :0-17(1), 0-17(2), 0-15(3) (配列番号: 19) さらに、 上位 3個体に対して 2/7の確率で突然変異を導入し、 新たに以下のよう な 6個体を作製した。  1-7: GG GC GG TTC GG TT GG: 0-10 (1), 0-8 (2), 0-12 (3) (SEQ ID NO: 12) 1-8: GG TC GG TAC GG AG GG: 0-12 (1), 0-15 (2), 0-14 (3) (SEQ ID NO: 13) 1-9: GG CG GG GCA GG AT GG: 0-17 (1), 0-14 (2 ), 0-9 (3) (SEQ ID NO: 14) 1-10: GG TG GG TAC GG TT GG: 0-15 (1), 0-15 (2), 0-8 (3) (SEQ ID NO: 15) 1-11: GG CG GG TAG GG AT GG: 0-17 (1), 0-3 (2), 0-9 (3) (SEQ ID NO: 16) 1-12: GG TC GG TAC GG TT GG: 0-12 (1), 0-15 (2), 0-8 (3) (SEQ ID NO: 17) 1-13: GG GC GG GCG GG TT GG: 0-9 (1), 0-17 (2), 0-8 (3) (SEQ ID NO: 18) 1-14: GG CG GG GCG GG CT GG: 0-17 (1), 0-17 (2), 0-15 (3) (sequence No .: 19) Furthermore, mutations were introduced into the top three individuals with a probability of 2/7, and the following six individuals were newly created.
1-15: GG TC GG GTT GG TA GG :0-12に変異を導入 (配列番号: 20)  1-15: GG TC GG GTT GG TA GG: Mutation introduced into 0-12 (SEQ ID NO: 20)
1-16: GG TG GG GGG GG TT GG :0 - 12に変異を導入 (配列番号: 21) 1-17: GG CC GG TCC GG TG GG :0- 8に変異を導入 (配列番号: 22) 1-18: GG CC GG CTC GG AT GG :0- 8に変異を導入 (配列番号: 23) 1-16: GG TG GG GGG GG TT GG: Mutation introduced into 0-12 (SEQ ID NO: 21) 1-17: Mutation introduced into GG CC GG TCC GG TG GG: 0: 8 (SEQ ID NO: 22) 1-18: Mutation introduced into GG CC GG CTC GG AT GG: 0-8 (SEQ ID NO: 23)
1-19: GG TG GG TAA GG AT GG :0-15に変異を導入 (配列番号: 24) 1-19: GG TG GG TAA GG AT GG: Mutation introduced in 0-15 (SEQ ID NO: 24)
1-20: GG TT GG TAT GG CT GG :0-15に変異を導入 (配列番号: 25) 1-20: GG TT GG TAT GG CT GG: Mutation introduced into 0-15 (SEQ ID NO: 25)
このようにして、 第 2世代の 20個体が準備された。 この中で、 1-2と卜 5、 及び 1 - 4と卜 6はそれそれ同じものである。 また、 1-1と卜 3は前の世代に存在したのと同 じものである。 従って、 実際には、 16種類の配列を新たに合成した。  In this way, 20 individuals of the second generation were prepared. Of these, 1-2 and u5, and 1-4 and u6 are the same. Also, 1-1 and 3 are the same as those that existed in the previous generation. Therefore, 16 types of sequences were newly synthesized.
以下同様にして、 新世代の設計 ·合成と適応度の測定が繰り返された。  In the same way, the design, synthesis and fitness measurement of the new generation were repeated.
(4) 結果  (4) Result
以上のようにして世代を重ねてゆくと、 トロンビン ·アブ夕マーとして知られ ている配列(5' - GGTTGGTGTGGTTGG- 3, /配列番号: 1)に近いものが上位を占めるよ うになつてきたが、 同時に、 それにあまり近くない Gリッチな配列も一定の割合 で残った。 それらの Gリッチな配列をよく見てみると、 上に示した 0-12や 0-17の ように、 本来存在する 2つの G—カルテツトとは別のもうひとつの G—カルテツ ト構造を部分的に組み得るような配列であると予想された。 このことから、 G— カルテットを 3つ持つような配列も、 トロンビンに対して高い結合能を持ってい るのではないかと推測された。  As the generations were repeated as described above, those close to the sequence known as thrombin abdomer (5'-GGTTGGTGTGGTTGG-3, / SEQ ID NO: 1) came to dominate. At the same time, a certain percentage of G-rich sequences that were not so close remained. If you look closely at these G-rich sequences, you can see that another G-quartet structure that is different from the two G-quartets that originally exist, like 0-12 and 0-17 shown above, It was expected that the sequence could be assembled together. From this, it was speculated that a sequence having three G-quartets may also have high binding ability to thrombin.
そこで、 5, -GGGTTGGGTTGGGTTGGG-3' (配列番号: 26) という、 図 4のような形 で 3つの G—カルテットを組むと予想される配列 ( 「tril8」 と呼ぶ) を合成し、 トロンビンとの結合を BIAcore2000で調べた。 血中に近いイオン条件のバッファー (lOmM Hepes(pH 7.4), 150mM NaCl, 5mM KCl, 2mM CaC12 , ImM MgCl 2 ) のもと、 37°Cで、 「tril8」 とトロンビンを相互作用させ、 解析ソフト (BIAevaluation v er2.1/Biocore AB社) を用いて平衡解離定数を求めたところ、 この条件下で、 プ ロトタイプのトロンビン 'アブ夕マ一と 「tril8」 はほぼ等しい KD値 (8.96x1 0— 8 M及び 9.16x10— 8 M、 「tril8」 の KD値はプロトタイプの KD値の 1. 02倍) を示した。 3つの G—カルテットによってもたらされる構造の安定性の高 さを考慮すると、 「tril8」 はプロトタイプをしのく、有効なトロンビン阻害剤とし て臨床応用されると期待される。 Therefore, we synthesized 5, -GGGTTGGGTTGGGTTGGG-3 '(SEQ ID NO: 26), a sequence expected to form three G-quartets in the form shown in Fig. 4 (referred to as "tril8"). Binding was checked on a BIAcore2000. In a buffer (lOmM Hepes (pH 7.4), 150mM NaCl, 5mM KCl, 2mM CaC12, ImM MgCl2) with ionic conditions close to the blood, `` tril8 '' and thrombin interact at 37 ° C, and analysis software When the equilibrium dissociation constants were determined using (BIAevaluation ver 2.1 / Biocore AB), under these conditions, the prototype thrombin 'Abuma-maichi' and 'tril8' had almost the same KD value (8.96x10- The KD values of 8M and 9.16x10-8M, "tril8" were 1.02 times the KD value of the prototype). High structural stability provided by three G-quartets Considering this, “tril8” is expected to be clinically applied as an effective thrombin inhibitor, surpassing the prototype.
このように、 シャフリング戦略による分子設計の過程で得られた配列の情報に 基づいて、 これまで知られていなかった配列が、 既知のものとほぼ等しいトロン ビン結合能を示すことが明らかになった。 産業上の利用可能性  Thus, based on the sequence information obtained during the molecular design process using the shuffling strategy, it became clear that the previously unknown sequence exhibited almost the same thrombin binding ability as the known sequence. Was. Industrial applicability
本発明によって、 機能の高いポリべプチド又は核酸を効率的に探索することが 可能となった。 例えば、 天然に存在するポリぺプチド又は核酸の機能を飛躍的に 向上させることが可能となった。 更に、 特定の機能を有し、 天然には存在しない 新規な構造を有するポリべプチド又は核酸を、 自由に探索することが可能となつ た。  According to the present invention, it has become possible to efficiently search for highly functional polypeptides or nucleic acids. For example, it has become possible to dramatically improve the function of naturally occurring polypeptides or nucleic acids. Furthermore, it has become possible to freely search for a polypeptide or nucleic acid having a specific function and a novel structure that does not exist in nature.

Claims

請求の範囲 The scope of the claims
1. 以下の工程を含む、 機能性の高いポリペプチド又は核酸を探索する方法。1. A method for searching for a highly functional polypeptide or nucleic acid, comprising the following steps:
(a) 互いに異なる配列を有する複数のポリべプチド又は核酸を合成し、 (a) synthesizing a plurality of polypeptides or nucleic acids having different sequences from each other,
(b) 合成されたポリべプチド又は核酸の適応度を実験室レベルで測定し、 (b) measuring the fitness of the synthesized polypeptide or nucleic acid at the laboratory level,
(c) 工程 (a) で合成されたポリペプチド又は核酸を適応度に応じて順位付け し、 (c) ranking the polypeptides or nucleic acids synthesized in step (a) according to their fitness,
(d) 順位に応じて選択した個体間で部分構造の切り混ぜ (シャフリング) を行 うことにより得られた配列からなる 「シャフリング ·ライブラリ一」 を作成し、 (d) Create a “shuffling library 1” consisting of sequences obtained by performing shuffling of partial structures between individuals selected according to the rank,
(e) 「シャフリング 'ライブラリ一」 に属するポリペプチド又は核酸を合成し、 (f ) 工程 (e) で得られたポリペプチド又は核酸について、 さらに工程 (b) ないし工程 (e) を任意の回数繰り返す。 (e) synthesizing a polypeptide or nucleic acid belonging to "shuffling 'library 1'"; and (f) subjecting the polypeptide or nucleic acid obtained in step (e) to optional steps (b) to (e). Repeat several times.
2. 工程 (d) において、 シャフリングを行うことにより得られた配列を有す るポリべプチド又は核酸とは別個に、 特定の配列に対して突然変異を導入した配 列を作成し 「シャフリング ·ライブラリー」 に加えることを特徴とする、 請求項 2. In step (d), a sequence in which a mutation has been introduced into a specific sequence is prepared separately from the polypeptide or nucleic acid having the sequence obtained by shuffling, and “shuffling” is performed. Ring library "
1記載の方法。 Method according to 1.
3. 特定の配列を、 工程 (c) における一定以上の順位を有する配列とする、 請求項 2記載の方法。  3. The method according to claim 2, wherein the specific sequence is a sequence having a certain rank or more in step (c).
4. 工程 (d) において、 シャフリングを行うことにより得られた配列の少な くとも 1つに対して、 更に突然変異を導入した配列を作成し 「シャフリング -ラ イブラリー」 に加えることを特徴とする、 請求項 1記載の方法。  4. In step (d), at least one of the sequences obtained by shuffling is subjected to further mutation-introduced sequences and added to the “shuffling-library”. The method of claim 1, wherein:
5. 工程 (d) において、 一定の順位以上の個体間のみでシャフリングを行う ことを特徴とする、 請求項 1〜4のいずれかに記載の方法。  5. The method according to any one of claims 1 to 4, wherein in step (d), shuffling is performed only between individuals having a certain rank or higher.
6. 工程 (d) において、 一定の順位以上の個体を更に、 上位から下位に複数 のグループとし、 それそれのグループの中でシャフリングを行うことを特徴とす る、 請求項 5記載の方法。 6. The method according to claim 5, wherein in the step (d), individuals having a certain rank or higher are further divided into a plurality of groups from a higher rank to a lower rank, and shuffling is performed in each group. .
7 . 請求項 1〜 6のいずれかに記載の方法により得られ一定以上の適応度を有 する、 天然には存在しないポリべプチド又は核酸。 7. A non-naturally occurring polypeptide or nucleic acid obtained by the method according to any one of claims 1 to 6 and having a certain degree of fitness or more.
PCT/JP1998/003854 1997-08-28 1998-08-28 Method for detecting highly functional polypeptides or nucleic acids WO1999011818A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU88867/98A AU8886798A (en) 1997-08-28 1998-08-28 Method for detecting highly functional polypeptides or nucleic acids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24967997 1997-08-28
JP9/249679 1997-08-28

Publications (2)

Publication Number Publication Date
WO1999011818A1 true WO1999011818A1 (en) 1999-03-11
WO1999011818A8 WO1999011818A8 (en) 1999-04-15

Family

ID=17196601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003854 WO1999011818A1 (en) 1997-08-28 1998-08-28 Method for detecting highly functional polypeptides or nucleic acids

Country Status (2)

Country Link
AU (1) AU8886798A (en)
WO (1) WO1999011818A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG95640A1 (en) * 2001-02-12 2003-04-23 Council Scient Ind Res Safe, eco-friendly, health protective herbal colours and aroma useful for cosmaceutical applications
JP2003521933A (en) * 2000-02-10 2003-07-22 ゼンコー Protein design automation for protein libraries
JP2008118923A (en) * 2006-11-13 2008-05-29 Nec Soft Ltd Method for predicting higher-order structure of nucleic acid, device for predicting higher-order structure of nucleic acid, and program for predicting higher-order structure of nucleic acid
US7462469B2 (en) * 2000-01-11 2008-12-09 Maxygen, Inc. Integrated system for diversity generation and screening
JP2012005458A (en) * 2010-06-28 2012-01-12 Tdk Corp Method of screening aptamer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022625A1 (en) * 1994-02-17 1995-08-24 Affymax Technologies N.V. Dna mutagenesis by random fragmentation and reassembly
JPH1014578A (en) * 1996-07-01 1998-01-20 Mitsubishi Chem Corp Construction of transgenic mutant gene DNA
WO1998004580A1 (en) * 1996-07-26 1998-02-05 Yamanouchi Pharmaceutical Co., Ltd. Method for searching for peptides and process for producing compounds
WO1998005764A1 (en) * 1996-08-07 1998-02-12 Novo Nordisk A/S Nucleic acid pool and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022625A1 (en) * 1994-02-17 1995-08-24 Affymax Technologies N.V. Dna mutagenesis by random fragmentation and reassembly
JPH1014578A (en) * 1996-07-01 1998-01-20 Mitsubishi Chem Corp Construction of transgenic mutant gene DNA
WO1998004580A1 (en) * 1996-07-26 1998-02-05 Yamanouchi Pharmaceutical Co., Ltd. Method for searching for peptides and process for producing compounds
WO1998005764A1 (en) * 1996-08-07 1998-02-12 Novo Nordisk A/S Nucleic acid pool and method for producing the same

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BEAUDRY A A, JOYCE G F: "DIRECTED EVOLUTION OF AN RNA ENZYME", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 257, 31 July 1992 (1992-07-31), US, pages 635 - 641, XP002917374, ISSN: 0036-8075, DOI: 10.1126/science.1496376 *
BERKHOUT B, KLAVER B: "IN VIVO SELECTION OF RANDOMLY MUTATED RETROVIRAL GENOMES", NUCLEIC ACIDS RESEARCH, INFORMATION RETRIEVAL LTD., GB, vol. 21, no. 22, 1 January 1993 (1993-01-01), GB, pages 5020 - 5024, XP002917375, ISSN: 0305-1048 *
CHATEAU DE M, BJOERCK L: "IDENTIFICATION OF INTERDOMAIN SEQUENCES PROMOTING THE INTRONLESS EVOLUTION OF A BACTERIAL PROTEIN FAMILY", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 93, 1 August 1996 (1996-08-01), US, pages 8490 - 8495, XP002918472, ISSN: 0027-8424, DOI: 10.1073/pnas.93.16.8490 *
FISCH I, ET AL.: "A STRATEGY OF EXON SHUFFLING FOR MAKING LARGE PEPTIDE REPERTOIRES DISPLAYED ON FILAMENTOUS BACTERIOPHAGE", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 93, 1 July 1996 (1996-07-01), US, pages 7761 - 7766, XP002917368, ISSN: 0027-8424, DOI: 10.1073/pnas.93.15.7761 *
FORREST S: "GENETIC ALGORITHMS: PRINCIPLES OF NATURAL SELECTION APPLIED TO COMPUTATION", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 261, 13 August 1993 (1993-08-13), US, pages 872 - 878, XP002917371, ISSN: 0036-8075, DOI: 10.1126/science.8346439 *
KOICHI SUMIKURA, ET AL.: "THROMBIN-BINDING PROPERTIES OF THROMBIN APTAMER DERIVATIVES", NUCLEIC ACIDS SYMPOSIUM SERIES, OXFORD UNIVERSITY PRESS, GB, vol. 37, 1 January 1997 (1997-01-01), GB, pages 257/258, XP002917373, ISSN: 0261-3166 *
MARKS J D, ET AL.: "BY-PASSING IMMUNIZATION: BUILDING HIGH AFFINITY HUMAN ANTIBODIES BY CHAIN SHUFFLING", BIOTECHNOLOGY. THE INTERNATIONAL MONTHLY FOR INDUSTRIAL BIOLOGY, NATURE PUBLISHING GROUP, US, vol. 10, no. 07, 1 July 1992 (1992-07-01), US, pages 779 - 783, XP002917376, ISSN: 0733-222X, DOI: 10.1038/nbt0792-779 *
SINGH J, ET AL.: "APPLICATION OF GENETIC ALGORITHMS TO COMBINATORIAL SYNTHESIS: A COMPUTATIONAL APPROACH TO LEAD INDENTIFICATION AND LEAD OPTIMIZATION", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, US, vol. 118, 1 January 1996 (1996-01-01), US, pages 1669 - 1676, XP002917370, ISSN: 0002-7863, DOI: 10.1021/ja953172i *
STEMMER W P C: "DNA SHUFFLING BY RANDOM FRAGMENTATION AND REASSEMBLY: IN VITRO RECOMBINATION FOR MOLECULAR EVOLUTION", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 91, 1 October 1994 (1994-10-01), US, pages 10747 - 10751, XP002917366, ISSN: 0027-8424, DOI: 10.1073/pnas.91.22.10747 *
STEMMER W P C: "RAPID EVOLUTION OF A PROTEIN IN VITRO BY DNA SHUFFLING", NATURE, NATURE PUBLISHING GROUP, UNITED KINGDOM, vol. 370, 1 January 1994 (1994-01-01), United Kingdom, pages 389 - 391, XP002917367, ISSN: 0028-0836, DOI: 10.1038/370389a0 *
WEBER L, ET AL.: "OPTIMIZATION OF THE BIOLOGICAL ACTIVITY OF COMBINATORIAL COMPOUND LIBRARIES BY A GENETIC ALGORITHM", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 34, no. 20, 1 January 1995 (1995-01-01), DE, pages 2280 - 2282, XP002917372, ISSN: 1433-7851, DOI: 10.1002/anie.199522801 *
YOHEI YOKOBAYASHI, ET AL.: "DIRECTED EVOLUTION OF TRYPSIN INHIBITING PEPTIDES USING A GENETIC ALGORITHM", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 01, 1 January 1996 (1996-01-01), GB, pages 2435 - 2437, XP002917369, ISSN: 0300-922X *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462469B2 (en) * 2000-01-11 2008-12-09 Maxygen, Inc. Integrated system for diversity generation and screening
JP2003521933A (en) * 2000-02-10 2003-07-22 ゼンコー Protein design automation for protein libraries
SG95640A1 (en) * 2001-02-12 2003-04-23 Council Scient Ind Res Safe, eco-friendly, health protective herbal colours and aroma useful for cosmaceutical applications
JP2008118923A (en) * 2006-11-13 2008-05-29 Nec Soft Ltd Method for predicting higher-order structure of nucleic acid, device for predicting higher-order structure of nucleic acid, and program for predicting higher-order structure of nucleic acid
JP2012005458A (en) * 2010-06-28 2012-01-12 Tdk Corp Method of screening aptamer

Also Published As

Publication number Publication date
WO1999011818A8 (en) 1999-04-15
AU8886798A (en) 1999-03-22

Similar Documents

Publication Publication Date Title
Emmrich et al. A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume
US7435542B2 (en) Exhaustive selection of RNA aptamers against complex targets
JP2015119718A (en) Method of selecting aptamers
US8697607B2 (en) Generation and application of standardized universal libraries
EA004002B1 (en) Method for predicting protein-protein interactions
US6455254B1 (en) Sequence based screening
Roy-Barman et al. Rice blast fungus sequenced
Cao et al. Combinatorial pooled sequencing: experiment design and decoding
WO1999011818A1 (en) Method for detecting highly functional polypeptides or nucleic acids
Fletcher et al. The genome of the oomycete Peronosclerospora sorghi, a cosmopolitan pathogen of maize and sorghum, is inflated with dispersed pseudogenes
Kong et al. Evolutionary outcomes of diversely functionalized aptamers isolated from in vitro evolution
JP5210620B2 (en) Method and use of peptide aptamer library
EP1230615A2 (en) Method for manipulating protein or dna sequence data in order to generate complementary peptide ligands
Savory et al. In silico maturation: Processing sequences to improve biopolymer functions based on genetic algorithms
ES2292467T3 (en) PROCEDURE FOR IDENTIFYING SIGNIFICANT CHANGES FROM THE EVOLUTIONARY VIEWPOINT IN SEQUENCES OF POLINUCLEOTIDES AND POLYPEPTIDES IN DOMESTICATED PLANTS AND ANIMALS.
Rowe et al. Convergent evolution to an aptamer observed in small populations on DNA microarrays
WO2001096558A1 (en) Polyfunctional base sequence and artificial gene containing the same
Wang et al. Comparative genome analyses highlight transposon-mediated genome expansion shapes the evolutionary architecture of 3D genomic folding in cotton
US20020031771A1 (en) Sequence based screening
US7872120B2 (en) Methods for synthesizing a collection of partially identical polynucleotides
El-Garhy et al. Utilizing In-Silico Techniques for Synthesizing Branched DNA for Crop Disease Diagnosis
Zeama et al. Utilizing In-Silico Techniques for Synthesizing bDNA for Crop Disease Diagnosis.
Wang et al. The complete genome of lettuce reveals centromere landscape and empowers breeding
Wijesuriya et al. Selection of RNA Aptamers to Distinguish the V600E Mutation Status of BRAF Protein: A Potential in silico Approach
Li et al. Q (2021) Genome-Wide Analysis of NLR Disease Resistance Genes in an Updated Reference Genome of Barley

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: C1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载