+

WO1998007720A1 - Substituierte 2-arylpyridine als herbizide - Google Patents

Substituierte 2-arylpyridine als herbizide Download PDF

Info

Publication number
WO1998007720A1
WO1998007720A1 PCT/EP1997/004421 EP9704421W WO9807720A1 WO 1998007720 A1 WO1998007720 A1 WO 1998007720A1 EP 9704421 W EP9704421 W EP 9704421W WO 9807720 A1 WO9807720 A1 WO 9807720A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkoxy
butyl
substituted
cooch
Prior art date
Application number
PCT/EP1997/004421
Other languages
English (en)
French (fr)
Inventor
Peter Schäfer
Gerhard Hamprecht
Markus Menges
Olaf Menke
Michael Rack
Cyrill Zagar
Helmut Walter
Karl-Otto Westphalen
Ulf Misslitz
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU42049/97A priority Critical patent/AU4204997A/en
Publication of WO1998007720A1 publication Critical patent/WO1998007720A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/761,3-Oxazoles; Hydrogenated 1,3-oxazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to new substituted 2-aryl pyridines of the formula I.
  • n zero or 1;
  • R 1 mercapto, hydroxysulfonyl, chlorosulfonyl, aminosulfonyl, C ⁇ -C 6 -alkylthio, C ⁇ -C 6 -alkylsulfinyl, Ci -C 6 -alkylsulfonyl, Ci -C 6 -alkylaminosulfonyl or di- (Ci-C ⁇ -alkyl) aminosulfonyl, -
  • R 2 , R 3 independently of one another are hydrogen or halogen
  • R 4 is hydrogen, Cx-Ce-alkyl, Ci -C 6 -haloalkyl, cyano-C ⁇ -C 6 -alkyl, C ⁇ -C 6 -alkoxy, CI-C ⁇ -alkoxy-Ci-C ⁇ -alkyl, Ci -C -halogen - Alkoxy -CC-alkyl, -CC 6 -alkylthio -CC 6 -alkyl, -C-C 6 -alkyl-sulfinyl -CC-C 6 - alkyl, -C-C 6 -alkylsulfonyl -C ⁇ -C 6 -alkyl, -C-C 4 -alkoxy-C ⁇ -C 4 -alkoxy-C ⁇ -C 4 -alkyl, (Cj .
  • X is oxygen, sulfur, -NH-, -N (CH 3 ) - or methylene; Y is a chemical bond, carbonyl or C (R 5 , R 6 ), where
  • R 5 , R 6 independently of one another for hydrogen, nitro
  • the invention also relates to the use of the compounds I as herbicides or for
  • WO 95/02590 describes a large number of herbicidally active 2-phenylpyridines.
  • the present invention was based on new herbicidally active compounds as a task with which undesired plants can be controlled more effectively than before.
  • the task also extends to the provision of new desiccant / defoliant connections.
  • substituted 2-arylpyridines of the formula I defined at the outset with herbicidal activity and new intermediates X, XVI, XXXIa, XXXIb, XXXIIa, XXXIIc, XXVIa, XXXVIb, XXXVIIa and XXXVIIb for their preparation were found.
  • herbicidal compositions have been found which contain the compounds I and have a very good herbicidal action.
  • processes for the preparation of these compositions and processes for controlling unwanted vegetation using the compounds I have been found.
  • the compounds I are also suitable for the desiccation / defoliation of parts of plants, for which crop plants such as cotton, potato, rapeseed, sunflower, soybean or field beans, in particular cotton and potato, are suitable.
  • crops plants such as cotton, potato, rapeseed, sunflower, soybean or field beans, in particular cotton and potato
  • agents for the desiccation and / or defoliation of plants, methods for producing these agents and methods for the desiccation and / or defoliation of plants with the compounds I have been found.
  • the compounds of the formula I can contain one or more centers of chirality and are then present as mixtures of enantiomers or diastereomers.
  • the invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • Particularly suitable salts are those of the alkali metals, preferably sodium and potassium salts, of the alkaline earth metals, preferably calcium and magnesium salts, those of the transition metals, preferably zinc and iron salts, and also ammonium salts in which the ammonium ion, if desired, has one to four C 1 -C 4 -Alkyl-, hydroxy-C-C-alkyl substituents and / or can carry a phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylamium, triethylbenzylammonium and trimethyl (2-hydroxyethyl) ammonium salts , furthermore phosphonium salts, sulfonium salts such as preferably tri- (C 1 -C 4 -alkyl) sulfonium salts, and sulfoxonium salts such as preferably tri- (C ⁇ -C-al
  • the organic molecule parts mentioned for the substituents R 1 and R 4 to R 6 or as residues on a phenyl ring represent collective terms for individual enumeration of the individual groups - members.
  • Halogenated substituents preferably carry one to five identical or different halogen atoms.
  • Halogen is in each case fluorine, chlorine, bromine or iodine, in particular fluorine or chlorine.
  • C 1 -C 4 alkyl fr CH 3 , C 2 H 5 , n-propyl, CH (CH 3 ) 2 , n-butyl, 1-methylpropyl, 2-methylpropyl or C (CH) 3 , in particular for CH 3 , C 2 H 5 , CH (CH 3 ) 2 or C (CH 3 ) 3 ;
  • -C 1 -C 6 alkyl for: for example CH 3 , C 2 H 5 , n-propyl, CH (CH 3 ) 2 , n-butyl, 1-methylpropyl, 2-methylpropyl, C (CH 3 ) 3 , n- Pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2- Methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1,3-diethylbutyl, 2, 2-dimethylbutyl, 2, 3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1, 2-trimethylpropyl,
  • -C-C 4 haloalkyl for: a C ⁇ -C 4 alkyl radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example for CH 2 F, CHF 2 , CF 3 , CH 2 C1, CH (C1) 2 , C (C1) 3 , CHFC1, CF (C1) 2 , CF 2 C1, CF 2 Br,
  • Ci-C ö haloalkyl for: a Ci-Ce alkyl radical as mentioned above, which is partially or completely replaced by fluorine, chlorine,
  • Bromine and / or iodine is substituted, for example for CH 2 F, CHF 2 , CF 3 , CH 2 C1, CH (C1) 2 , C (C1) 3 , CHFC1, CF (C1) 2 , CF 2 C1, CF.
  • Cyano-C ⁇ -C 6 alkyl for: for example CH 2 CN, 1-cyanoethyl, 2-cyanoethyl, 1-cyanoprop-l-yl, 2-cyanoprop-l-yl, 3-cyanoprop-l-yl, 1-cyanobut -l-yl, 2-cyanobut-l-yl, 3-cyanobut-l-yl, 4-cyano-but-l-yl, l-cyanobut-2-yl, 2-cyanobut-2-yl, 3-cyanobut -2-yl, 4-cyanobut-2-yl, 1- (CH 2 CN) -eth-1-yl, 1- (CH 2 CN) -1- (CH 3 ) -eth- 1-yl, 1- (CH 2 CN) prop-1-yl or 2-cyano-hex-6-yl, in particular for CH 2 CN or 2-cyanoethyl;
  • C 3 -C 7 cycloalkyl for: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, in particular for cyclopentyl or cyclohexyl;
  • cycloalkyl-C 6 -C 6 alkyl for: cyclopropyl -CH 2 , 1-cyclopropyl-ethyl, 2-cyclopropyl-ethyl, 1-cyclopropyl-prop-l-yl, 2-cyclopropyl-prop -l-yl, 3-cyclopropyl-prop-l-yl, 1-cyclopropyl-but-1-yl, 2-cyclopropyl-but-l-yl, 3-cyclopropyl-but-l-yl, 4-cyclopropyl -but-1-yl, 1-cyclopropyl-but-2-yl, 2-cyclopropyl-but-2-yl, 3-cyclopropyl-but-2-yl, 4-cyclopropyl-but-2-yl, 1 - (Cyclopropyl -CH 2 ) eth-l-yl, 1- (cyclopropyl -CH 2 ) -1- (CH 3
  • (-C-C 6 alkyl) carbonyl for: for example CO-CH 3 , CO-C 2 H 5 , CO-CH 2 -C 2 H 5 , CO-CH (CH 3 ) 2 . n-butylcarbonyl, CO-CH (CH 3 ) -C 2 H 5 , 2-methylpropylcarbonyl, CO-C (CH 3 ) 3 , n-pentylcarbonyl, 1-methylbutylcarbonyl, 2-methylbutylcarbonyl, 3-methylbutylcarbonyl, 1, 1-dimethylpropylcarbonyl, 1, 2-dimethylpropylcarbonyl, 2, 2-dimethylpropylcarbonyl, 1-ethylpropylcarbonyl, n-hexylcarbonyl, 1-methylpentylcarbonyl, 2-methylpentylcarbonyl, 3-methylpentylcarbonyl, 4-methylpentylcarbonyl, 1, 1- Dimethylbutyl - carbonyl, 1, 2-di
  • -C-C 6 alkoxy for: for example 0CH 3 , OC 2 H 5 , n-propoxy, OCH (CH 3 ) 2 , n-butoxy, OCH (CH 3 ) -C 2 H 5 , 0CH 2 -CH (CH 3 ) 2 , OC (CH 3 ) 3 , n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1, 1-dimethylpropoxy, 1, 2-dimethylpropoxy, 2, 2-dimethylpropoxy, 1-ethyl- propoxy, n-hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy, 1, 2-dimethylbutoxy, 1, 3-dimethylbutoxy, 2, 2-dimethylbutoxy, 2, 3- Dimethylbutoxy, 3, 3-dimethylbutoxy, 1-ethylbutoxy,
  • 2-ethylbutoxy 1, 1, 2-trimethylpropoxy, 1, 2, 2-trimethylprop oxy, 1-ethyl-l-methylpropoxy or l-ethyl-2-methylpropoxy, in particular 0CH 3 , OC 2 H 5 , 0CH (CH 3 ) 2 or OC (CH 3 ) 3 ;
  • C 1 -C 6 -alkoxy-C 6 -C 6 -alkyl for: C 1 -C 6 -alkoxy as mentioned above substituted C 1 -C 6 -alkyl, for example for
  • CH 2 OCH 3 CH 2 OC 2 H 5 , CH 2 OCH 2 -C 2 H 5 , CH 2 OCH (CH 3 ) 2 , CH 2 OCH 2 CH 2 -C 2 H 5 , (l-methylpropoxy) methyl, (2-Methylpropoxy) methyl, CH 2 OC (CH) 3 , CH 2 0 (CH 2 ) 3 -C 2 H 5 , CH 2 0 (CH 2 ) 4 -C 2 H 5 , CH (CH 3 ) OCH 3 , CH (CH 3 ) OC 2 H 5 , CH 2 CH 2 OCH 3 , CH 2 CH 2 0C 2 H 5 , CH 2 CH 2 0CH 2 -C 2 H5, CH 2 CH 2 0CH (CH 3 ) 2 , CH 2 CH 2 OCH 2 CH 2 -C 2 H 5 , 2- (1-methylpropoxy) ethyl, 2- (2-methylpropoxy) ethyl, CH 2 CH 2 OC (CH 3 ) 3 , 2-
  • C 1 -C 4 -alkoxy-C 4 -alkoxy-C 4 -C 4 -alkyl for: by 0CH 3 , OC 2 H 5 , n-propoxy, OCH (CH 3 ) 2 , n-butoxy, 1-methylpropoxy, 2-methyl-propoxy or OC (CH 3 ) 3 , preferably OCH 3 , substituted C 1 -C 4 -alkoxy-C 4 -C 4 -alkyl, that is, for example, for CH 2 OCH OCH 3 , CH 2 OCH 2 OC 2 H 5 , CH 2 OCH 2 OCH (CH 3 ) 2 or CH 2 OCH 2 OC (CH 3 ) 3 ;
  • Ci -C-C 4 haloalkoxy -CC 4 - alkyl for: by Ci -C 4 haloalkoxy such as OCH 2 F, OCHF 2 , 0CF 3 , 0CH 2 C1, 0CH (C1) 2 , 0C (C1) 3 , 0CHFC1 , 0CF (C1) 2 , 0CF 2 C1, 0CF 2 Br, 1-fluoroethoxy, 2-fluoroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2, 2-difluoroethoxy, 2, 2, 2-trifluoro ethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2, 2-difluoroethoxy, 2, 2-dichloro-2-fluoroethoxy, 2, 2, 2-trichloroethoxy, OC 2 F 5 , 2-fluoropropoxy, 3-fluoropropoxy , 2-chloropropoxy, 3-chloropropoxy,
  • C 3 -C Cycloalkyloxy -CC 6 alkyl for: by C 3 -C cycloalkyloxy such as cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and cycloheptyloxy, preferably cyclopropyloxy, substituted -CC 6 alkyl, for example for cyclopropyl -OCH 2 , 1-cyclopropyloxy-ethyl, 2-cyclopropyloxy-ethyl, 1-cyclopropyloxy-prop-l-yl, 2-cyclopropyloxy-prop-1-yl, 3-cyclopropyloxy-prop-l-yl, 1- Cyclopropyloxy-but-1-yl, 2-cyclopropyloxy-but-l-yl, 3-cyclopropyloxy-but-1-yl, 4-cyclopropyloxy-but-l-yl, 1-cyclopropyloxy-but-2- y
  • (C ⁇ -C 4 -alkoxy) carbonyl for: COOCH 3 , COOC 2 H 5 , n-propoxycarbonyl, OCH (CH 3 ) 2 , n-butoxycarbonyl, 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl or OC (CH 3 ) 3 , in particular for C00CH 3 , COOC 2 H 5 or COOC (CH 3 ) 3 ;
  • (Ci-C ö -alkoxy) carbonyl for: C00CH 3 , COOC 2 H 5 , n-propoxycarbonyl, OCH (CH 3 ), n-butoxycarbonyl, 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl, OC (CH 3 ) 3 , n-pentoxycarbonyl, 1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl, 3-methylbutoxycarbonyl, 2, 2-dimethylpropoxycarbonyl, 1-ethyl-propoxycarbonyl, n-hexoxycarbonyl, 1, 1-dimethylpropoxycarbonyl, 1, 2-dimethylpropoxycarbonyl, 1-methylpentoxycarbonyl, 2-methylpentoxycarbonyl, 3-methylpentoxycarbonyl, 4-methylpentoxycarbonyl, 1, 1-dimethylbutoxycarbonyl, 1,2-diethylbutoxycarbonyl, 1, 3-dimethylbutoxycarbonyl, 2,2-dimethylbutoxycarbonyl, 2, 3-
  • (C 1 -C 4 alkoxy) carbonyl -C ⁇ -C 4 alkyl by (C 1 -C 4 alkoxy) - carbonyl - as mentioned above - substituted C 1 -C 4 alkyl, eg CH 2 COOCH 3 , CH 2 COOC 2 H 5 , CH 2 COOCH 2 -C 2 H 5 , CH 2 COOCH (CH 3 ) 2 , CH 2 COOCH 2 CH 2 -C 2 H 5 , (1-methylpropoxycarbonyl) - ethyl, ( 2-Methylpropoxy-carbonyDmethyl, CH 2 COOC (CH 3 ) 3 , CH 2 COO (CH 2 ) 3 -C 2 H 5 , CH 2 COO (CH 2 ) 4 -C 2 H 5 , CH (CH 3 ) COOCH 3 , CH (CH 3 ) COOC 2 H 5 , CH 2 CH 2 COOCH 3 , CH 2 CH COOC 2 H 5 , CH CH COOCH 2 H
  • C ! -C 6 alkylthio for: e.g. SCH 3 , SC 2 H 5 , n-propylthio, SCH (CH 3 ) 2 , n-butylthio, SCH (CH 3 ) -CH 5 , SCH 2 -CH (CH 3 ) 2 , SC (CH 3 ) 3 , n-pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2, 2-dimethylpropylthio, 1-ethylpropylthio, n-hexylthio, 1, 1-dimethylpropylthio, 1, 2 -Dimethylpropylthio, l-methyl-pentylthio, 2-methylpentylthio, 3-methylpentylthio, 4 -methyl - pentylthio, 1, 1-dimethylbutylthio, 1, 2-dimethylbutylthio, 1, 3-dimethyl
  • C 1 -C 6 -alkylthio-C 1 -C 6 -alkyl for: C 1 -C 6 -alkyl-substituted by C 1 -C 6 -alkylthio as mentioned above, for example for CH 2 SCH 3 , CH 2 SC 2 H 5 , CH 2 SCH 2 -C 2 H 5 , CH 2 SCH (CH 3 ) 2 , CH 2 SCH 2 CH 2 -C 2 H 5 , (l-methylpropylthio) methyl, (2-methylpropylthio) methyl, CH 2 SC (CH 3 ) 3 , CH 2 S (CH 2 ) 3- 2 H5, CH 2 S (CH 2 ) 4- 2H5, CH ( CH 3 ) SCH 3 , CH (CH 3 ) SC 2 H 5 , CH 2 CH SCH 3 , CH 2 CH 2 SC 2 H 5 , CH 2 CH 2 SCH 2 -C 2 H 5 , CH 2 CH 2 SCH (CH 3 ) 2 , CH 2 CH 2
  • C 3 -C 7 cycloalkylthio-C 6 -C 6 alkyl for: by C 3 -C 7 cycloalkyl thio such as cyclopropylthio, cyclobutylthio, cyclopentyl thio, cyclohexylthio and cycloheptylthio, preferably cyclopropylthio, substituted C 1 -C 6 alkyl, that is e.g.
  • cyclopropyl-SCH 2 1-cyclopropylthio-ethyl, 2-cyclopropylthio-ethyl, 1-cyclopropylthio-prop-l-yl, 2-cyclopropylthio-prop-l-yl, 3-cyclopropylthio-prop-l-yl, 1 -Cyclopropylthio-but-l-yl, 2-cyclopropylthio-but-l-yl, 3-cyclopropylthio-but-l-yl, 4-cyclopropylthio-but-l-yl, l-cyclopropylthio-but-2-yl, 2 -Cyclopropylthio-but-2-yl, 3-cyclopropylthio-but-2-yl 4-cyclopropyl thio-but-2-yl, 1- (cyclopropyl-SCH 2 -) -eth-l-yl, 1- (cyclopropyl- SCH 2
  • C -Cg-alkylsulfinyl for: e.g. SOCH 3 , S0C 2 H 5 , n-propylsulfinyl, SOCH (CH 3 ) 2 , n-butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, SOC (CH 3 ) 3 , n-pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 2, 2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, n-hexylsulfinyl, 1, 1-dimethylpropylsulfinyl, 1, 2-dimethylpropylsulfinyl, 1 -Methylpentylsulfinyl, 2-methylpentyls
  • Ci-Ce-alkylsulfonyl for: e.g. S0 2 CH 3 , S0 2 C 2 H 5 , n-propylsulfonyl, S0CH (CH 3 ) 2 , n-butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, S0 2 C (CH 3 ) 3 , n-pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl,
  • C 6 -C 6 -alkylsulfonyl-C 6 -C 6 -alkyl for: Cx-Cg-alkylsulfonyl substituted as C above ! -C 6 alkyl, e.g.
  • CH 2 S0 2 - (CH 2 ) 4 -C 2 H 5 CH (CH 3 ) S0 2 -CH 3 , CH (CH 3 ) S0 2 -C 2 H 5 , CH 2 CH 2 S0 2 -CH 3 , CH 2 CH 2 S0 2 -C 2 H 5 , CH 2 CH 2 S0 2 -CH 2 -C 2 H 5 , CH 2 CH 2 S0 2 -CH (CH 3 ) 2 , CH 2 CH 2 S0 2 -CH 2 CH -C 2 H 5 , 2- (1-methylpropylsulfonyl) ethyl, 2- (2-methylpropylsulfonyl) ethyl, CH 2 CH 2 S0 2 -C (CH 3 ) 3 , CH 2 CH 2 S0 2 - ( CH 2 ) 3 -C 2 H 5 , CH 2 CH 2 S0 2 - (CH 2 ) 4 -C 2 H 5 ,
  • Di- (Ci-Ce-alkyaminosulfonyl for: e.g. (CH 3 ) 2 N-S0 2 -, (C 2 H 5 > 2 N-S0 2 -, N, N-Dipropylamino-S0 2 -, N, N- Di (1-methyl-ethyl) amino-S0-, N, N-dibutylamino-S0 2 -, N, N-Di (1-methyl-propyl) amino-S02-, N, N-Di (2-methylpropyl) amino-S02-, N, N-Di (1, l-dimethylethyl) amino-S0 2 -, N-ethyl-N-methyl - amino-S0 2 -, N-methyl-N-propylamino-S0-, N- Methyl-N- (1-methylethyl) amino-S02-, N-butyl-N-methylamino-S ⁇ 2-, N-methyl-
  • C 3 -C 8 alkenyl for: C 3 -C ⁇ alkenyl as mentioned above, or for example for n-hept-2-en-1-yl, n-hept-3 -en- 1-yl, n-oct- 2 -en- 1-yl, n-oct-3-en-l-yl, especially for allyl;
  • C 3 -C 8 haloalkenyl for: C 3 -C 8 alkenyl as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example for 2-chloroallyl, 3-chloroallyl, 2, 3-dichlorallyl, 3, 3-dichlorallyl, 2,3,3-trichlorallyl, 2,3-dichlorobut-2-enyl, 2-bromoallyl, 3-bromoallyl, 2, 3-dibromoallyl, 3, 3-dibromoallyl, 2, 3, 3-tribromoallyl or 2,3-dibromobut-2-enyl, in particular for 3 -chloroallyl;
  • C 1 -C 6 -alkoxy-C 3 -C 8 -alkenyl for: C 3 -C 8 -alkoxy substituted by -C-C 6 -alkoxy as mentioned above, for example for 3- (methoxy) allyl; C 3 -C 6 alkenyloxy for: e.g. B.
  • C 2 -C 4 -Alkenyloxy-C ⁇ -C 4 alkyl for: by C 3 -C 4 ⁇ alkenyloxy such as vinyloxy, allyloxy, but-l-en-3-yloxy, but-l-en-4 -yloxy, but -2-en-l-yloxy, l-methylprop-2-enyloxy or 2-methyl-prop-2-enyloxy substituted C 1 -C 4 -alkyl, for example for vinyloxymethyl, allyloxymethyl, 2-allyloxyethyl or but-l- en-4-yloxymethyl, especially for 2-allyloxyethyl;
  • C 3 -C 6 alkynyl for: e.g. B. Prop-1-in-l-yl, propargyl, n-but-1 - in-l-yl, n-but-l-in-3-yl, n-but-l-in-4-yl, n- But-2-in-1-yl, n-pent-1-in-1-yl, n-pent-1-in-3-yl, n-pent-1-in-4-yl, n-pent l-in-5-yl, n-pent-2-in-l-yl, n-pent-2 -in-4-yl, n-pent-2-in- 5-yl, 3-methyl-but-l-in-3-yl, 3-methyl-but-l-in-4-yl, n-hex-1-in-l-yl, n-hex-l- in-3-yl, n-hex-1-in-4-yl, n-hex-1
  • haloalkynyl C 3 -C ⁇ alkynyl as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example for 1,1-difluoroprop-2- in-l-yl, 4-fluorobut-2-in-l-yl, 4-chlorobut-2-in-l-yl, 1, 1-difluorobut-2-in-l-yl, 5-fluoropent-3- in-l-yl or 6-fluoro-hex-4-in-l-yl;
  • C 1 -C 6 -alkoxy-C 3 -C 8 -alkynyl for: C 3 -C 8 -alkynyl substituted by C ⁇ -C 6 -alkoxy as mentioned above, for example for 3-methoxy-prop-2 - in-1- yl;
  • C 3 -C 8 alkynyloxy for: for example propargyloxy, prop-2-in-1-yloxy, n-but-1-in-1-yloxy, n-but-1-in-3-yloxy, n-but- l-in-4-yloxy, n-but-2-in-l-yloxy, n-pent-1-in-l-yloxy, n-pent-l-in-3-yloxy, n-pent-l- in-4-yloxy, n-pent-1-in-5-yloxy, n-pent-2-in-1-yl-oxy, n-pent-2-in-4-yloxy, n-pent-2- in-5-yloxy, 3-methyl-but-l-in-3-yloxy, 3-methyl-but-l-in-4-yloxy, n-hex-1-in-l-yl-oxy, n- Hex-l-in-3-yloxy, n-hex-
  • C 3 -C 4 alkynyloxy -CC -alkyl for: by C 3 -C 4 -alkynyloxy such as propargyloxy, but-l-in-3-yloxy, but-l-in-4-yloxy, but-2- in-l-yloxy, l-methylprop-2-inyloxy and 2-methylprop-2-inyloxy, preferably propargyloxy, substituted C 1 -C 4 -alkyl, for example for propargyloxymethyl or 2-propargoxyethyl, in particular for 2-propargyloxyethyl;
  • the benzyl group (as one of the meanings of R 4 ) is preferably unsubstituted or carries a nitro, halogen, Cx -C 4 alkyl, Ci -C 4 alkoxy or (Ci -C 4 alkoxy) carbonyl substituent .
  • the variables preferably have the following meanings, individually or in combination:
  • R 1 mercapto, hydroxysulfonyl, chlorosulfonyl, aminosulfonyl,
  • Ci-C ⁇ -alkylthio Ci-C ⁇ -alkylsulfinyl or -C-C 6 -alkylsulfonyl, in particular Ci-C 6 -alkylsulfonyl;
  • R 2 halogen, especially chlorine
  • R 3 is hydrogen or halogen, preferably halogen, especially fluorine or chlorine;
  • R 4 is hydrogen, C 1 -C 6 -alkyl, cyano-C 1 -C 6 -alkyl, C ⁇ -C 6 -alkoxy, Ci -C 6 -alkoxy-C ⁇ -C 6 - alkyl, Ci -C 6 -alkylthio-Ci - C 6 - alkyl, (Ci -C 6 alkoxy) carbonyl -C ⁇ -C 6 alkyl, C 3 -C 8 alkenyl, C 3 -C 8 alkynyl, C 3 -C 6 alkenyloxy or C3-C6 - Alkynyloxy, especially hydrogen, -C 6 alkyl, cyano -C 6 alkyl, (-C 6 alkoxy) carbonyl -C] . -C 6 alkyl, C 3 -C 8 alkenyl or C 3 -C 8 alkynyl;
  • R 5 , R 6 independently of one another are hydrogen, C 1 -C 4 alkyl or (C] .- C 4 alkoxy) carbonyl, in particular a chemical bond or Methylene.
  • substituted 2-arylpyridines of the formulas Ib, Ic, Id, le, If, Ig, Ih, Ii, Ik, Im and In are particularly preferred, in particular
  • the substituted 2-arylpyridines of the formula I can be obtained in various ways, for example by one of the following processes:
  • oxidizing agents customary for the oxidation of the pyridine ring are peracetic acid, trifluoroperacetic acid, perbenzoic acid, m-chloroperbenzoic acid, monopermaleic acid, magnesium onoperphthalate, sodium perborate and oxones
  • Suitable solvents are e.g. Water, sulfuric acid, carboxylic acids such as acetic acid and trifluoroacetic acid and halogenated hydrocarbons such as dichloromethane and chloroform.
  • the oxidation is usually successful at temperatures from 0 ° C to the boiling point of the reaction mixture.
  • the oxidizing agent is normally used in at least equimolar amounts, based on the starting compound. In general, an excess of oxidizing agent has proven to be particularly advantageous.
  • IIIIIVM 1 stands for B (OH) 2 , Mg-Cl, Mg-Br, Mg-J, Zn-Cl, Zn-Br, Zn-J, lithium, copper or tin tri (C 1 -C 4 alkyl), preferably for B (OH) 2 , Mg-Cl, Mg-Br, Mg-J, Zn-Cl, Zn-Br or Zn-J.
  • Palladium catalysts such as tetrakis (triphenylphosphine) palladium (0), bis (triphenylphosphine) palladium (II) chloride, 1,4-bis (diphenylphosphino) butane-palladium (II) chloride come in particular as catalysts , 1,2-bis (diphenylphosphino) ethane-palladium (II) chloride, palladiu (II) acetate + triphenylphosphine, palladium (II) acetate + tri - (o-tolyl) -phosphine or palladium on activated carbon, and nickel catalysts such as bis (triphenylphosphine) nickel (II) chloride, 1,3-bis (diphenylphosphino) propane nickel (II) chloride or nickel (II) acetylacetonate.
  • nickel catalysts such as bis (triphenylphosphine) nickel (I
  • aminophenol VIII can also be reacted with oxalic acid (derivatives) XI such as oxalic acid chloride and (if desired substituted) maleic anhydride:
  • Sulfur, -NH- or -N (CH 3 ) - means can be prepared according to synthesis scheme (3):
  • X ' represents oxygen, sulfur, -NH- or -N (CH 3 ) -;
  • R 4 ' represents one of the meanings of R 4 with the exception of hydrogen.
  • the p-fluorophenylpyridines of the formula XII are, for example, analogously to process C) by transition metal-catalyzed cross-coupling reaction of II with XVII
  • R 4 represents one of the meanings of R 4 with the exception of hydrogen.
  • Synthesis scheme (3) ⁇ is obtained by nucleophilic aromatic substitution of the fluorine by a malonic ester residue and subsequent acid hydrolysis with decarboxylation to give the phenylacetic acid derivative XX. With its reduction occurs ⁇ as in the case of XVI; see.
  • Such implementations are also known per se, for example from the following literature:
  • CH 2 can be prepared according to synthesis scheme (5):
  • Alkyl is preferably
  • R 4 represents one of the meanings of R 4 with the exception of hydrogen.
  • Transition metal-catalyzed cross-coupling reaction of the halopyridine II with a boronic acid or trialkyltin compound of the formula XXIII leads to the aldehyde XXIV.
  • XXIV can also be obtained by reacting II with the metal organyl XXI and hydrolysis of the reaction product XXII.
  • the nitro group on the pyridine can be reduced both before and after the alkylation of the benzoxazinone XXXIIa.
  • XXIX one first obtains XXXa or XXXb depending on the reducing agent, its amount and the reduction conditions.
  • O-alkyl preferably Ci-Cg
  • X ' represents oxygen, sulfur, -NH-, -N (CH 3 ) -;
  • R 4 represents one of the meanings of R 4 with the exception of hydrogen.
  • D the literature cited for methods D
  • G the literature cited for methods D
  • the 2 - (-Fluoro-3-nitrophenyl) - 5-nitropyridines XXXV can be obtained by nitrating the corresponding 2 - (4-fluorophenyl) - 5-nitropyridines ⁇ cf. refer to the literature ⁇ listed in Method D ( Figure 2 -. (4-fluorophenyl) - 5 -nitropyridine in turn are, for example analogously to Process C> by cross-coupling reaction of the 2-halo-5-nitropyridine XXXIV with XVII accessible.
  • the substituted 2-arylpyridines I can normally be prepared by one of the synthesis processes mentioned above. For economic or procedural reasons, however, it may be more expedient to prepare some compounds I from similar 2-arylpyridines, but which differ in the meaning of a radical.
  • reaction mixtures are generally worked up by methods known per se, for example by diluting the reaction solution with water and subsequent
  • Solvent extraction or by removing the solvent, distributing the residue in a mixture of water and a suitable organic solvent and working up the organic phase on the
  • the substituted 2-arylpyridines I can be obtained as isomer mixtures which, however, can be separated, if desired, by customary methods such as crystallization or chromatography, also on an optically active adsorbate, in the far ⁇ continuously pure isomers in the production. Pure optically active isomers can advantageously be prepared from corresponding optically active starting products.
  • Agricultural salts of the compounds I can be formed by reaction with a base of the corresponding cation, preferably an alkali metal hydroxide or hydride.
  • Salts of I, the metal ion of which is not an alkali metal ion, can also be prepared in a conventional manner by salting the corresponding alkali metal salt, as can ammonium, phosphonium, sulfonium and sulfoxonium salts using ammonia, phosphonium, sulfonium or sulfoxonium hydroxides.
  • the compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • the herbicidal compositions containing I control vegetation very well on non-cultivated areas, particularly when high amounts are applied. In crops such as wheat, rice, corn, soybeans and cotton, they act against weeds and grass weeds without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds I or herbicidal compositions comprising them can also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops are considered, for example:
  • the compounds I can also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • the substituted 2-arylpyridines I are also suitable for the desiccation and / or defoliation of plants.
  • the compounds I or the compositions containing them can be, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, and also high-strength aqueous, oily or other suspensions or dispersions, emulsions,
  • Old dispersions, pastes, dusts, sprinkles or granules by spraying, atomizing, dusting, scattering or pouring can be used.
  • the application forms depend on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • inert auxiliaries mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tarols as well as oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. Paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, e.g. Amines such as N-methylpyrrolidone and water.
  • mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tarols as well as oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e.g. Paraffins, tetrahydronaphthalene, alky
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water.
  • emulsions, pastes or old dispersions can be carried out as such or dissolved in a substrate or solvent, can be homogenized in water using wetting agents, adhesives, dispersants or emulsifiers.
  • wetting agents adhesives, dispersants or emulsifiers.
  • concentrates consisting of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • alkali, alkaline earth, ammonium salts of aromatic sulfonic acids e.g. Lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, as well as of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols as well as of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its derivatives Formaldehyde, condensation products of naphthalene or naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl or nonylphenol, alkylphenyl, tributylphenyl poly
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, Urea and vegetable products such as flour, tree bark, wood and nutshell flour, cellulose powder or other solid carriers.
  • the concentrations of the active ingredients I in the ready-to-use preparations can be varied over a wide range.
  • the formulations contain from about 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • the following formulation examples illustrate the preparation of such preparations:
  • Benzene 10 parts by weight of the adduct of 8 to 10 moles of ethylene oxide in 1 mole of oleic acid-N-monoethanolamide, 5 parts by weight of calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of the adduct of 40 moles of ethylene oxide in 1 mole of castor oil.
  • an aqueous dispersion is obtained which contains 0.02% by weight of the active ingredient.
  • Wettol ® EM 31 nonionic emulsifier based on ethoxylated castor oil; BASF AG.
  • the active ingredients I or the herbicidal compositions can be applied pre- or post-emergence. If the active ingredients are less compatible for certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not hit as far as possible, while the active ingredients are applied to the leaves of undesirable plants growing below them or the uncovered floor area (post-directed, lay-by).
  • the application rates of active ingredient I are 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance (a.S.) depending on the control target, the season, the target plants and the growth stage.
  • the substituted 2-arylpyridines I can be mixed with numerous representatives of other herbicidal or growth-regulating active ingredient groups and applied together.
  • a suspension of 55.4 g 3 was added in portions at 15 to 20 ° C. to a solution of 24.3 g of 3-chlorine -2 - (4-methoxyphenyl) -5-methyl-thiopyridine (from stage 1) in 150 ml of trichloromethane -Chlorper- benzoic acid (from Aldrich; content 56 to 87 wt .-%) in 250 ml trichloromethane. After the addition was complete, stirring was continued for 45 minutes. The resulting 3-chlorobenzoic acid was then filtered off and washed with trichloromethane.
  • Plastic flower pots with loamy sand with about 3.0% humus as substrate served as culture vessels.
  • the seeds of the test plants were sown separately according to species.
  • the active ingredients suspended or emulsified in water were applied directly after sowing using finely distributing nozzles.
  • the tubes were lightly sprinkled to promote germination and growth, and then covered with clear plastic hoods until the plants had grown. This cover causes the test plants to germinate evenly, provided that this has not been impaired by the active ingredients.
  • test plants For the purpose of post-emergence treatment, the test plants, depending on the growth habit, were first grown to a height of 3 to 15 cm and only then treated with the active ingredients suspended or emulsified in water. The test plants were either sown directly and grown in the same containers or they were first grown separately as seedlings and transplanted into the test vessels a few days before the treatment.
  • the application rate for the post-emergence treatment was 15.6 or 7.8 g / ha aS (active substance).
  • the plants were kept in a species-specific manner at temperatures of 10 to 25 ° C and 20 to 35 ° C.
  • the trial period lasted 2 to 4 weeks. During this time, the plants were cared for and their response to each treatment was evaluated.
  • Evaluation was carried out on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the aerial parts and 0 means no damage or normal growth.
  • the plants used in the greenhouse experiments are composed of the following types:
  • the young cotton plants were dripping wet with aqueous preparations of the active ingredients (with an addition of 0.15 wt -.% Of the fatty alcohol alkoxylate Plurafac LF ® 700 1), based on the
  • Spray broth treated with leaves.
  • the amount of water applied was the equivalent of 1000 l / ha. After 13 days, the number of leaves dropped and the degree of defoliation in% were determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Substituierte 2-Arylpyridine (I) und deren Salze, wobei R1 = SH, SO¿2?OH, SO2C1, SO2NH2, C1-C6-Alkylthio, C1-C6-Alkylsulfinyl, C1-C6-Alkylsulfonyl, C1-C6-Alkylaminosulfonyl, Di(C1-C6-alkyl)aminosulfonyl; R?2, R3¿ = H, Halogen; R4 = H, C¿1?-C6-Alkyl, C1-C6-Halogenalkyl, Cyano-C1-C6-alkyl, C1-C6-Alkoxy, C1-C6-Alkoxy-C1-C6-alkyl, C1-C4-Halogenalkoxy-C1-C4-alkyl, C1-C6-Alkylthio-C1-C6-alkyl, C1-C6-Alkylsulfinyl-C1-C6-alkyl, C1-C6-Alkylsulfonyl-C1-C6-alkyl, C1-C4-Alkoxy-C1-C4-alkoxy-C1-C4-alkyl, C1-C6-Alkoxycarbonyl-C1-C6-alkyl, C1-C3-Alkoxy-C1-C3-alkoxycarbonyl-C1-C6-alkyl, C2-C4-Alkenyloxy-C1-C4-alkyl, C3-C4-Alkinyloxy-C1-C4-alkyl, C3-C7-Cycloalkyl, C3-C7-Cycloalkyl-C1-C6-alkyl, C3-C7-Cycloalkyloxy-C1-C6-alkyl, C3-C7-Cycloalkylthio-C1-C6-alkyl, C3-C8-Alkenyl, C3-C8-Alkinyl, C3-C8-Halogenalkenyl, C3-C8-Halogenalkinyl, C1-C6-Alkoxy-C3-C8-alkenyl, C1-C6-alkoxy-C3-C8-alkinyl, C1-C6-Alkylcarbonyl, C1-C6-Alkylsulfonyl, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy oder geg. subst. Benzyl; X = -O-, -S-, -NH-, -N(CH3)-, -CH2-; Y = chemische Bindung, -CO-, C(R?5,R6); R5,R6¿ = H, NO¿2?, CN, OCH3, SCH3, Halogen, C1-C4-Alkyl, C1-C4-Halogenalkyl, C1-C4-Alkoxycarbonyl, C2-C6-Alkenyl, C3-C6-Alkinyl, C1-C4-Alkoxycarbonyl-C1-C4-alkyl. Verwendung: als Herbizide; zur Desikkation/Defoliation von Pflanzen.

Description

Substituierte 2-arylpyridine als herbizlde
Beschreibung
Die vorliegende Erfindung betrifft neue substituierte 2-Aryl pyridine der Formel I
Figure imgf000003_0001
in der die Variablen folgende Bedeutungen haben:
n Null oder 1;
R1 Mercapto, Hydroxysulfonyl, Chlorsulfonyl, Aminosulfonyl , Cχ-C6 -Alkylthio, Cι-C6-Alkylsulfinyl, Ci -C6 -Alkylsulfonyl, Ci -C6 -Alkylaminosulfonyl oder Di- (Ci-Cβ-alkyl) aminosulfonyl ,-
R2 , R3 unabhängig voneinander Wasserstoff oder Halogen;
R4 Wasserstoff, Cx-Ce-Alkyl, Ci -C6-Halogenalkyl, Cyano-Cι-C6- alkyl, Cι-C6-Alkoxy, CI-CΘ -Alkoxy-Ci-Cβ -alkyl, Ci -C -Halogen- alkoxy-Cι-C - alkyl, Cι-C6-Alkylthio-Cι-C6-alkyl, Cι-C6-Alkyl- sulfinyl-Cι-C6- alkyl, Cι-C6 -Alkylsulfonyl -Cι-C6-alkyl , Cι-C4-Alkoxy-Cι-C4-alkoxy-Cι-C4-alkyl, (Cj.-C6 -Alkoxy) - carbonyl -C -C6 -alkyl, Ci -C3 -Alkoxy- (Ci -C3 -alkoxy) carbonyl - Cι-C6- alkyl, C2 -C -Alkenyloxy-Cι-C -alkyl, C3-C -Alkinyl - oxy-Cχ-C - alkyl, C3-C -Cycloalkyl, C3-C7-Cycloalkyl -Ci -C6 - alkyl, C3-C7-Cycloalkyloxy-Cι-C6 -alkyl, C3-C7-Cycloalkyl- thio-Cι-C6- alkyl, C3-C8-Alkenyl, C3-C8 -Alkinyl,
C3-C8-Halogenalkenyl, C -Cβ-Halogenalkinyl, Cx-Ce-Alkoxy- C3-C8-alkenyl, Ci -C6 -Alkoxy-C3-C8- alkinyl, (Ci -C6-Alkyl) - carbonyl, Cι-C6 -Alkylsulfonyl, C3-C6 -Alkenyloxy, C3-C6-Alkinyloxy oder Benzyl, das unsubstituiert sein oder am Phenylring ein bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Nitro, Halogen, Cι-C6 -Alkyl, Ci-Ce -Alkoxy und (Cι-C6 -Alkoxy) carbonyl;
X Sauerstoff, Schwefel, -NH-, -N(CH3)- oder Methylen; Y eine chemische Bindung, Carbonyl oder C(R5,R6), wobei
R5,R6 unabhängig voneinander für Wasserstoff, Nitro,
Cyano, Methoxy, Methylthio, Halogen, Cι-C4 -Alkyl, Cχ-C4-Halogenalkyl, (C -C4 -Alkoxy) carbonyl,
C2-C6-Alkenyl, C3 -C6 -Alkinyl oder (Ci -C4 -Alkoxy) - carbonyl -Cx -C4 -alkyl stehen,
sowie die landwirtschaftlich brauchbaren Salze der Verbindungen I mit R1 = Hydroxysulfonyl .
Außerdem betrifft die Erfindung die Verwendung der Verbindungen I als Herbizide oder zur
Desikkation/Defoliation von Pflanzen, - herbizide Mittel und Mittel zur Desikkation und/oder
Defoliation von Pflanzen, welche die Verbindungen I als wirksame Substanzen enthalten,
Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs und zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I,
Verfahren zur Herstellung der Verbindungen I und von herbiziden Mitteln und Mitteln zur Desikkation und/oder
Defoliation von Pflanzen unter Verwendung der Verbindungen I sowie - Zwischenprodukte der Formeln X, XVI, XXXIa, XXXIb, XXXIIa,
XXXIIc, XXXVIa, XXXVIb und XXXVII.
In der WO 95/02590 wird eine Vielzahl von herbizid wirksamen 2 - Phenylpyridinen beschrieben. Unter deren allgemeine Formel fallen zwar auch einige der vorliegenden Verbindungen I mit R1 = Cι-C4-Alkylthio, doch werden in der Druckschrift als Einzelverbindungen nur solche mit einer Trifluormethylgruppe in 5 -Position des Pyridinringes genannt.
Da die herbizide Wirkung der aus der WO 95/02590 bekannten Verbindungen bezuglich der Schadpflanzen nicht immer völlig befriedigend ist, lagen der vorliegenden Erfindung neue herbizid wirksame Verbindungen als Aufgabe zugrunde, mit denen sich unerw nschte Pflanzen noch besser als bisher gezielt bekämpfen lassen. Die Aufgabe erstreckt sich auch auf die Bereitstellung neuer desikkant/defoliant wirksamer Verbindungen.
Demgemäß wurden die eingangs definierten substituierten 2-Aryl- pyridine der Formel I mit herbizider Wirkung sowie neue Zwischen- Produkte X, XVI, XXXIa, XXXIb, XXXIIa, XXXIIc, XXXVIa, XXXVIb, XXXVIIa und XXXVIIb zu deren Herstellung gefunden. Ferner wurden herbizide Mittel gefunden, die die Verbindungen I enthalten und eine sehr gute herbizide Wirkung besitzen. Außerdem wurden Verfahren zur Herstellung dieser Mittel und Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs mit den Verbindungen I gefunden.
Des weiteren wurde gefunden, daß die Verbindungen I auch zur Desikkation/Defoliation von Pflanzenteilen geeignet sind, wofür Kulturpflanzen wie Baumwolle, Kartoffel, Raps, Sonnenblume, Soja- bohne oder Ackerbohnen, insbesondere Baumwolle und Kartoffel, in Betracht kommen. Diesbezüglich wurden Mittel zur Desikkation und/ oder Defoliation von Pflanzen, Verfahren zur Herstellung dieser Mittel und Verfahren zur Desikkation und/oder Defoliation von Pflanzen mit den Verbindungen I gefunden.
Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren enthalten und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder Diastereomere als auch deren Gemische.
Die substituierten 2-Arylpyridine I mit R1 = Hydroxysulfonyl können in Form ihrer landwirtschaf lich brauchbaren Salze vorliegen, wobei es auf die Art des Salzes in der Regel nicht ankommt. Im allgemeinen kommen die Salze von solchen Basen in Betracht, bei denen die herbizide Wirkung im Vergleich zu der freien Verbindung I nicht negativ beeinträchtigt ist.
Als Salze eignen sich besonders diejenigen der Alkalimetalle, vorzugsweise Natrium- und Kaliumsalze, der Erdalkalimetalle, vorzugsweise Calcium- und Magnesiumsalze, die der Übergangs - metalle, vorzugsweise Zink- und Eisensalze, sowie Ammoniumsalze, bei denen das Ammoniumion gewünschtenfalls ein bis vier Cι-C4-Alkyl-, Hydroxy-Cι-C-alkylsubstituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diiso - propylammonium-, Tetramethylammonium-, Tetrabutylam onium-, Tri- ethylbenzylammonium- und Trimethyl- (2-hydroxyethyl) -ammoniumsalze, des weiteren Phosphoniumsalze, Sulfoniumsalze wie vorzugsweise Tri- (Cι-C4-alkyl) sulfonium-salze, und Sulfoxoniumsalze wie vorzugsweise Tri- (Cχ-C-alkyl) sulfoxoniumsalze.
Die für die Substituenten R1 und R4 bis R6 oder als Reste an einem Phenylring genannten organischen Molekülteile stellen Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppen - mitglieder dar. Sämtliche Kohlenstoffketten, also alle Alkyl-, Halogenalkyl-, Cyanoalkyl-, Alkylcarbonyl- , Alkoxy-, Halogen - alkoxy-, Alkoxycarbonyl - , Alkylthio-, Alkylsulfinyl-, Alkyl- sulfonyl-, Alkylamino-, Alkenyl-, Halogenalkenyl- , Alkenyloxy-, Alkinyl-, Halogenalkinyl - und Alkinyloxy-Teile können geradkettig oder verzweigt sein. Halogenierte Substi uenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome.
Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder lod, insbesondere für Fluor oder Chlor.
Ferner stehen beispielsweise:
C1-C -Alkyl f r: CH3 , C2H5, n-Propyl, CH(CH3)2, n-Butyl, 1-Methylpropyl, 2-Methylpropyl oder C(CH )3, insbesondere für CH3, C2H5, CH(CH3)2 oder C(CH3)3;
- Cι-C6-Alkyl für: z.B. CH3 , C2H5, n-Propyl, CH(CH3)2, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, C(CH3)3, n-Pentyl, 1-Methyl - butyl, 2-Methylbutyl, 3-Methylbutyl , 2, 2-Dimethylpropyl , 1-Ethylpropyl, n-Hexyl, 1 , 1-Dimethylpropyl, 1 , 2-Dimethyl - propyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1 , 2-Dimethylbutyl , 1,3-Di- ethylbutyl, 2, 2-Dimethylbutyl, 2 , 3-Dimethylbutyl , 3,3-Di- methylbutyl, 1-Ethylbutyl , 2-Ethylbutyl, 1, 1, 2-Trimethyl- propyl, 1, 2 , 2-Trimethylpropyl, 1-Ethyl-l-methylpropyl oder l-Ethyl-2-methylpropyl, insbesondere für CH3 , C2H5, n-Propyl, CH(CH3)2, n-Butyl, C(CH3)3, n-Pentyl oder n-Hexyl ,-
Cι-C4 -Halogenalkyl für: einen Cχ-C4 -Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. für CH2F, CHF2, CF3, CH2C1, CH(C1)2, C(C1)3, CHFC1, CF(C1)2, CF2C1, CF2Br,
1-Fluorethyl, 2-Fluorethyl , 2-Chlorethyl , 2-Bromethyl, 2-Iod- ethyl, 2, 2-Difluorethyl, 2, 2 , 2-Trifluorethyl, 2-Chlor-2- fluorethyl, 2-Chlor-2 , 2-dif luorethyl, 2 , 2-Dichlor-2-fluorethyl, 1, 2-Dichlorethyl, 2 , 2 , 2-Trichlorethyl , C2F5, 2-Fluor- propyl, 3-Fluorpropyl, 2, 2-Difluorpropyl , 2 , 3-Dif luorpropyl , 2-Chlorpropyl, 3-Chlorpropyl, 2 , 3-Dichlorpropyl , 2-Brom- propyl, 3-Brompropyl, 3 , 3 , 3-Trifluorpropyl , 3 , , 3-Trichlor - propyl, 2 , 2 , 3, 3 , 3-Pentafluorpropyl, Heptafluorpropyl , 1- (Fluormethyl )-2-fluorethyl, 1- (Chlormethyl) -2-chlorethyl , 1- (Brommethyl) -2-bromethyl , 4-Fluorbutyl, 4-Chlorbutyl , 4-Brombutyl oder Nonafluorbutyl, insbesondere für CHF, CHF2, CF3, CH2C1 oder 2 -Fluorethyl;
Ci-Cö-Halogenalkyl für: einen Ci-Ce-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor,
Brom und/oder lod substituiert ist, also z.B. für CH2F, CHF2, CF3, CH2C1, CH(C1)2, C(C1)3, CHFC1, CF(C1)2, CF2C1, CF2Br, 1-Fluorethyl, 2-Fluorethyl, 2-Chlorethyl , 2-Bromethyl, 2-Iod- ethyl, 2, 2-Difluorethyl, 2 , 2, 2-Trifluorethyl, 2-Chlor-2- fluorethyl, 2-Chlor-2 , 2-difluorethyl, 2 , 2-Dichlor-2-fluorethyl, 1, 2-Dichlorethyl, 2 , 2 , 2-Trichlorethyl, C2F5, 2-Fluor- propyl, 3-Fluorpropyl, 2 , 2-Dif luorpropyl , 2 , 3-Difluorpropyl , 2-Chlorpropyl, 3-Chlorpropyl, 2 , 3-Dichlorpropyl , 2-Brom- propyl, 3-Brompropyl, 3, 3 , 3-Trifluorpropyl, 3 , 3 , 3-Trichlor- propyl, 2, 2, 3 , 3 , 3-Pentafluorpropyl, Heptafluorpropyl, 1- (Fluormethyl) -2-fluorethyl, 1- (Chlormethyl) -2-chlorethyl, 1- (Brommethyl) -2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl,
4-Brotnbutyl, Nonafluorbutyl, 5-Fluorpentyl, 5-Chlorpentyl , 5-Brompentyl, 5-Iodpentyl, 5, 5, 5-Trichlorpentyl, Undecafluor- pentyl, 6-Fluorhexyl, 6-Chlorhexyl, 6-Bromhexyl, 6-Iodhexyl, 6, 6, 6-Trichlorhexyl oder Dodecafluorhexyl , insbesondere für CH2F, CHF2, CF3, CH2C1 , 2-Fluorethyl, 2-Chlorethyl , 1,2-Di- chlorethyl, 2, 2, 2-Trifluorethyl oder C2F5;
Cyano-Cι-C6-alkyl für: z.B. CH2CN, 1-Cyanoethyl , 2-Cyanoethyl, 1-Cyanoprop-l-yl, 2-Cyanoprop-l-yl, 3-Cyanoprop-l-yl , 1-Cyanobut-l-yl, 2-Cyanobut-l-yl, 3-Cyanobut-l-yl , 4-Cyano- but-l-yl, l-Cyanobut-2-yl, 2-Cyanobut-2-yl , 3-Cyanobut-2-yl, 4-Cyanobut-2-yl, 1- (CH2CN) -eth-l-yl, 1- (CH2CN) -1- (CH3) -eth- 1-yl, 1- (CH2CN) -prop-1-yl oder 2-Cyano-hex-6-yl , insbesondere für CH2CN oder 2-Cyanoethyl ;
C3-C7-Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl, insbesondere für Cyclopentyl oder Cyclohexyl ;
c3-C7-Cycloalkyl-Cι-C6-alkyl für: Cyclopropyl -CH2, 1-Cyclo- propyl-ethyl, 2-Cyclopropyl-ethyl, 1-Cyclopropyl-prop-l-yl , 2-Cyclopropyl-prop-l-yl, 3-Cyclopropyl-prop-l-yl, 1-Cyclo- propyl-but-1-yl, 2-Cyclopropyl-but-l-yl, 3-Cyclopropyl- but-l-yl, 4-Cyclopropyl-but-l-yl, l-Cyclopropyl-but-2-yl, 2-Cyclopropyl-but-2-yl, 3-Cyclopropyl-but-2-yl, 4-Cyclo- propyl-but-2-yl, 1- (Cyclopropyl -CH2) eth-l-yl, 1- (Cyclopropyl -CH2) -1- (CH3) -eth-l-yl, 1- (Cyclopropyl -CH2) prop-1-yl, Cyclobutyl -CH2, 1-Cyclobutyl-ethyl, 2-Cyclobutyl-ethyl , 1-Cyclobutyl-prop-l-yl , 2-Cyclobutyl-prop-l-yl, 3-Cyclobutyl- prop-1-yl, 1-Cyclobutyl-but-l-yl, 2-Cyclobutyl-but-l-yl ,
3-Cyclobutyl-but-l-yl, 4-Cyclobutyl-but-l-yl, 1-Cyclobutyl- but-2-yl, 2-Cyclobutyl-but-2-yl, 3-Cyclobutyl-but-2-yl, 4-Cyclobutyl-but-2-yl, 1- (Cyclobutyl -CH2) eth-l-yl, 1- (Cyclo- butyl-CH2)-l- (CH3) -eth-l-yl, 1- (Cyclobutyl -CH2) prop-1-yl , Cyclopentyl -CH2, 1-Cyclopentyl-ethyl, 2-Cyclopentyl-ethyl, 1-Cyclopentyl-prop-l-yl, 2-Cyclopentyl-prop-l-yl, 3-Cyclo- pentyl-prop-1-yl, 1-Cyclopentyl-but-l-yl , 2-Cyclopentyl- but-l-yl, 3-Cyclopentyl-but-l-yl, 4-Cyclopentyl-but-l-yl, l-Cyclopentyl-but-2-yl, 2-Cyclopentyl-but-2-yl, 3-Cyclo- pentyl-but-2-yl, 4-Cyclopentyl-but-2-yl , 1- (Cyclopentyl - CH2) eth-l-yl, 1- (Cyclopentyl -CH2) -1- (CH3 ) -eth-l-yl , l-(Cyclo- pentyl-CH2)prop-l-yl, Cyclohexyl -CH2, 1-Cyclohexyl-ethyl , 2-Cyclohexyl-ethyl, 1-Cyclohexyl-prop-l-yl , 2-Cyclohexyl- prop-1-yl, 3-Cyclohexyl-prop-l-yl, 1-Cyclohexyl-but-l-yl, 2-Cyclohexyl-but-l-yl , 3-Cyclohexyl-but-l-yl , 4-Cyclohexyl- but-l-yl, l-Cyclohexyl-but-2-yl, 2-Cyclohexyl-but-2-yl, 3-Cyclohexyl-but-2-yl, 4-Cyclohexyl-but-2-yl, l-(Cyclo- hexyl-CH2)eth-l-yl, 1- (Cyclohexyl -CH ) -1- (CH3) -eth-l-yl, 1- (Cyclohexyl -CH2)prop-l-yl, Cycloheptyl-CH2, 1-Cycloheptyl- ethyl, 2-Cycloheptyl-ethyl, 1-Cycloheptyl-prop-l-yl, 2-Cyclo- heptyl-prop-1-yl, 3-Cycloheptyl-prop-l-yl, 1-Cycloheptyl- but-l-yl, 2-Cycloheptyl-but-l-yl, 3-Cycloheptyl-but-l-yl, 4-Cycloheptyl-but-l-yl, l-Cycloheptyl-but-2-yl , 2-Cyclo- heptyl-but-2-yl, 3-Cycloheptyl-but-2-yl , 4-Cycloheptyl- but-2-yl, 1- (Cycloheptyl-CH2) eth-l-yl, 1- (Cycloheptyl- CH2) -1- (CH3) -eth-l-yl oder 1- (Cycloheptyl -CH2)prop-l-yl , insbesondere für C3 -Ce-Cycloalkyl -CH2;
(Cι-C6-Alkyl) carbonyl für: z.B. CO-CH3, CO-C2H5, CO-CH2-C2H5, CO-CH(CH3)2. n-Butylcarbonyl, CO-CH(CH3) -C2H5, 2-Methylpropyl - carbonyl, CO-C(CH3)3, n-Pentylcarbonyl, 1-Methylbutylcarbonyl , 2-Methylbutylcarbonyl, 3-Methylbutylcarbonyl, 1 , 1-Dimethyl - propylcarbonyl, 1, 2-Dimethylpropylcarbonyl, 2, 2-Dimethyl- propylcarbonyl, 1-Ethylpropylcarbonyl, n-Hexylcarbonyl , 1-Methylpentylcarbonyl, 2-Methylpentylcarbonyl, 3-Methyl- pentylcarbonyl, 4-Methylpentylcarbonyl, 1 , 1-Dimethylbutyl - carbonyl, 1 , 2-Dimethylbutylcarbonyl, 1, 3-Dimethylbutyl - carbonyl, 2 , 2-Dimethylbutylcarbonyl , 2 , 3-Dimethylbutyl - carbonyl, 3 , 3-Dimethylbutylcarbonyl , 1-Ethylbutylcarbonyl , 2-Ethylbutylcarbonyl, 1,1, 2-Trimethylpropylcarbonyl, 1, 2,2-Trimethylpropylcarbonyl, 1-Ethyl-l-methylpropylcarbonyl oder l-Ethyl-2-methylpropylcarbonyl, insbesondere für CO-CH3 oder CO-C2H5;
Cι-C6-Alkoxy für: z.B. 0CH3, OC2H5, n-Propoxy, OCH(CH3)2, n-Butoxy, OCH(CH3) -C2H5, 0CH2 -CH (CH3) 2, OC(CH3)3, n-Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1 , 1-Dimethyl- propoxy, 1 , 2-Dimethylpropoxy, 2 , 2-Dimethylpropoxy, 1-Ethyl- propoxy, n-Hexoxy, 1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1, 1-Dirnethylbutoxy, 1, 2-Dimethylbutoxy, 1, 3-Dimethylbutoxy, 2 , 2-Dimethylbutoxy, 2, 3-Dimethylbutoxy, 3 , 3-Dimethylbutoxy, 1-Ethylbutoxy,
2-Ethylbutoxy, 1, 1, 2-Trimethylpropoxy, 1, 2 , 2-Trimethylprop- oxy, 1-Ethyl-l-methylpropoxy oder l-Ethyl-2-methylpropoxy, insbesondere 0CH3 , OC2H5, 0CH(CH3)2 oder OC(CH3)3;
Cι-C6-Alkoxy-Cι-C6-alkyl für: durch Cι-C6-Alkoxy wie vor- stehend genannt substituiertes Ci-Cβ-Alkyl, also z.B. für
CH2OCH3, CH2OC2H5, CH2OCH2-C2H5, CH2OCH (CH3 ) 2 , CH2OCH2CH2-C2H5 , (l-Methylpropoxy)methyl, (2-Methylpropoxy)methyl , CH2OC(CH )3, CH20(CH2)3-C2H5, CH20(CH2)4-C2H5, CH(CH3)OCH3, CH (CH3 ) OC2H5 , CH2CH2OCH3, CH2CH20C2H5, CH2CH20CH2-C2H5, CH2CH20CH (CH3) 2 , CH2CH2OCH2CH2-C2H5, 2- (1-Methylpropoxy) ethyl, 2-(2-Methyl- propoxy)ethyl, CH2CH2OC (CH3) 3, CH2CH20 (CH2) 3-C2H5, CH2CH20(CH2) -C2H5, 2- (OCH3) propyl, 2- (OC2H5) propyl, 2- (OCH2-C2H5) propyl, 2- [OCH (CH3) 2] propyl, 2- (OCH2CH2-C2H5) - propyl, 2- (1-Methylpropoxy) propyl, 2- (2-Methylpropoxy) propyl , 2- [OC(CH3)3] propyl, 3- (OCH3) ropyl, 3- (OC2H5) propyl ,
3- (OCH2-C2H5) propyl, 3- [OCH (CH3) 2] propyl, 3- (OCH2CH2-C2H5) - propyl, 3- (1-Methylpropoxy) propyl , 3- (2-Methylpropoxy) - propyl, 3- [OC (CH3) 3j propyl, 3- [0(CH2) 3-C2H5] propyl, 3- [0(CH2)4-C2H5] propyl, 2- (OCH3)butyl, 2- (OC2H5)butyl, 2- (OCH -C2H5)butyl, 2- [OCH(CH3) 2] butyl, 2- (OCH2CH2-C2H5) - butyl, 2- (1-Methylpropoxy) butyl, 2- (2-Methylpropoxy) butyl , 2-[OC(CH3)3]butyl, 3- (OCH3)butyl , 3- (OC2H5) butyl, 3-(OCH2-C2H5)butyl, 3-[OCH(CH3)2]butyl, 3- (OCH2CH2-C2H5) - butyl, 3- (1-Methylpropoxy) butyl, 3- (2-Methylpropoxy) butyl , 3-[OC(CH3)3]butyl, 4- (OCH3)butyl , 4- (OC2H5)butyl ,
4-(OCH2-C2H5)butyl, 4- [OCH (CH3) 2] butyl, 4- (OCH2CH2-C2H5) - butyl, 4- (1-Methylpropoxy) butyl, 4- (2-Methylpropoxy)butyl , 4-[OC(CH3)3]butyl, 4- [0 (CH2) 3-C2H5] butyl , 4- [0 (CH2) 4-C H5] - butyl, 5- (OCH3) pentyl, 5- (OC2H5) pentyl , 5- (OCH2-C2H5) pentyl, 5- [OCH (CH3) 2] pentyl, 5- (OCH2CH2-C2H5) pentyl , 5-(l-Methyl- propoxy) pentyl, 5- (2-Methylpropoxy) pentyl , 5- [OC (CH3) 3] pentyl , 5- [0(CH2)3-C2H5] pentyl, 5- [0(CH2) 4-C2H5] pentyl, 6- (0CH3) hexyl , 6-(OC2H5)hexyl, 6- (OCH2-C2H5) hexyl , 6- [OCH(CH3) 2] hexyl, 6- (OCH2CH2-C2H5) hexyl, 6- (1-Methylpropoxy) hexyl , 6-(2-Methyl- propoxy) hexyl, 6- [OC (CH3) 3] hexyl, 6- [0(CH2) 3-C2H5] hexyl oder 6- [0(CH2)4-C2H5] hexyl, insbesondere für CH2OCH3 oder CH2OC H5;
Cι-C4-Alkoxy-Cι-C4-alkoxy-Cι-C4-alkyl für: durch 0CH3, OC2H5, n-Propoxy, OCH(CH3)2, n-Butoxy, 1-Methylpropoxy, 2-Methyl- propoxy oder OC(CH3)3, vorzugsweise OCH3, substituiertes Cι.-C4-Alkoxy-Cι-C4-alkyl, also z.B. für CH2OCH OCH3, CH2OCH2OC2H5, CH2OCH2OCH(CH3)2 oder CH2OCH2OC (CH3) 3;
Cι-C4 -Halogenalkoxy-Cι-C4- alkyl für: durch Ci -C4 -Halogenalkoxy wie OCH2F, OCHF2 , 0CF3, 0CH2C1, 0CH(C1)2, 0C(C1)3, 0CHFC1, 0CF(C1)2, 0CF2C1, 0CF2Br, 1-Fluorethoxy, 2-Fluorethoxy, 2-Bromethoxy, 2-Iodethoxy, 2 , 2-Dif luorethoxy, 2 , 2 , 2-Trifluor- ethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-2, 2-difluorethoxy, 2, 2-Dichlor-2-fluorethoxy, 2, 2, 2-Trichlorethoxy, OC2F5, 2-Fluorpropoxy, 3-Fluorpropoxy, 2-Chlorpropoxy, 3-Chlor- propoxy, 2-Brompropoxy, 3-Brompropoxy, 2 , 2-Difluorpropoxy, 2, 3-Difluorpropoxy, 2 , 3-Dichlorpropoxy, 3 , 3, 3-Trif luorpropoxy, 3, 3, 3-Trichlorpropoxy, 2 , 2 , 3 , 3 , 3-Pentafluorpropoxy, Heptaf luorpropoxy, 1- (CH2F) -2-fluorethoxy, 1- (CH2C1) -2-chlor- ethoxy, 1- (CHBr) -2-bromethoxy, 4-Fluorbutoxy, 4-Chlorbutoxy, 4-Brombutoxy und Nonafluorbutoxy substituiertes C1-C4 -Alkyl, also z.B. für 2 - (OCHF2) ethyl, 2 - (OCF3) ethyl oder 2- (OC2F5) -ethyl;
C3-C -Cycloalkyloxy-Cι-C6-alkyl für: durch C3-C -Cycloalkyloxy wie Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclo- hexyloxy und Cycloheptyloxy, vorzugsweise Cyclopropyloxy, substituiertes Cι-C6-Alkyl, also z.B. für Cyclopropyl-OCH2, 1-Cyclopropyloxy-ethyl , 2-Cyclopropyloxy-ethyl, 1-Cyclopropyloxy-prop-l-yl, 2-Cyclo- propyloxy-prop-1-yl, 3-Cyclopropyloxy-prop-l-yl, 1-Cyclo- propyloxy-but-1-yl, 2-Cyclopropyloxy-but-l-yl, 3-Cyclopropyl- oxy-but-1-yl, 4-Cyclopropyloxy-but-l-yl, 1-Cyclopropyloxy- but-2-yl, 2-Cyclopropyloxy-but-2-yl, 3-Cyclopropyloxy-but- 2-yl, 4-Cyclopropyloxy-but-2-yl, 1- (Cyclopropyl-OCH -) -eth- l-yl, 1- (Cyclopropyl-OCH2)-1- (CH3) -eth-l-yl, 1- (Cyclopropyl- OCH2) -prop-1-yl, 2-Cyclopropyloxy-hex-6-yl, Cyclobutyl-OCH2, 1-Cyclobutyloxy-ethyl, 2-Cyclobutyloxy-ethyl, 1-Cyclobutyl - oxy-prop-1-yl, 2-Cyclobutyloxy-prop-l-yl, 3-Cyclobutyloxy- prop-1-yl, 1-Cyclobutyloxy-but-l-yl , 2-Cyclobutyloxy-but- 1-yl, 3-Cyclobutyloxy-but-l-yl, 4-Cyclobutyloxy-but-l-yl , l-Cyclobutyloxy-but-2-yl, 2-Cyclobutyloxy-but-2-yl , 3-Cyclo- butyloxy-but-2-yl, 4-Cyclobutyloxy-but-2-yl , 1- (Cyclobutyl- OCH2) -eth-l-yl, 1- (Cyclobutyl-OCH2) -1- (CH3) -eth-l-yl , 1- (Cyclobutyl-OCH2) -prop-1-yl, 2-Cyclobutyloxy-hex-6-yl, Cyclopentyl-OCH2, 1-Cyclopentyloxy-ethyl , 2-Cyclopentyloxy- ethyl, 1-Cyclopentyloxy-prop-l-yl, 2-Cyclopentyloxy-prop-
1-yl, 3-Cyclopentyloxy-prop-l-yl, 1-Cyclopentyloxy-but-l-yl, 2-Cyclopentyloxy-but-l-yl, 3-Cyclopentyloxy-but-l-yl , 4-Cyclopentyloxy-but-l-yl, l-Cyclopentyloxy-but-2-yl , 2-Cyclopentyloxy-but-2-yl, 3-Cyclopentyloxy-but-2-yl 4-Cyclo- pentyloxy-but-2-yl, 1- (Cyclopentyl-OCH2) -eth-l-yl , l-(Cyclo- pentyl-OCH2)-l- (CH3) -eth-l-yl, 1- (Cyclopentyl-OCH2) -prop-1-yl , 2-Cyclopentyloxy-hex-6-yl, Cyclohexyl-OCH2, 1-Cyclohexyloxy- ethyl, 2-Cyclohexyloxy-ethyl, 1-Cyclohexyloxy-prop-l-yl , 2-Cyclohexyloxy-prop-l-yl, 3-Cyclohexyloxy-prop-l-yl , 1-Cyclohexyloxy-but-l-yl, 2-Cyclohexyloxy-but-l-yl , 3-Cyclo- hexyloxy-but-1-yl, 4-Cyclohexyloxy-but-l-yl, 1-Cyclohexyloxy- but-2-yl, 2-Cyclohexyloxy-but-2-yl, 3-Cyclohexyloxy-but-2-yl, 4-Cyclohexyloxy-but-2-yl, 1- (Cyclohexyl-OCH2) -eth-l-yl , 1- (Cyclohexyl-OCH2) -1- (CH3) -eth-l-yl, 1- (Cyclohexyl-OCH2) - prop-1-yl, 2-Cyclohexyloxy-hex-6-yl , Cycloheptyl-OCH2, 1-Cycloheptyloxy-ethyl, 2-Cycloheptyloxy-ethyl, 1-Cyclo- heptyloxy-prop-1-yl, 2-Cycloheptyloxy-prop-l-yl, 3-Cyclo- heptyloxy-prop-1-yl, 1-Cycloheptyloxy-but-l-yl , 2-Cyclo- heptyloxy-but-1-yl, 3-Cycloheptyloxy-but-l-yl, 4-Cyclo- heptyloxy-but-1-yl, l-Cycloheptyloxy-but-2-yl , 2-Cyclo- heptyloxy-but-2-yl, 3-Cycloheptyloxy-but-2-yl , 4-Cyclo- heptyloxy-but-2-yl, 1- (Cycloheptyl-OCH2) -eth-l-yl, l-(Cyclo- heptyl-OCH2) -1- (CH3) -eth-l-yl, 1- (Cycloheptyl-OCH2) -prop-1-yl oder 2-Cycloheptyloxy-hex-6-yl;
(Cχ-C4 -Alkoxy) carbonyl für: COOCH3, COOC2H5, n- Propoxy- carbonyl, OCH(CH3)2, n-Butoxycarbonyl, 1-Methylpropoxy- carbonyl, 2-Methylpropoxycarbonyl oder OC(CH3)3, insbesondere für C00CH3, COOC2H5 oder COOC(CH3)3;
(Ci-Cö-Alkoxy) carbonyl für: C00CH3 , COOC2H5, n-Propoxy- carbonyl, OCH(CH3) , n-Butoxycarbonyl, 1-Methylpropoxy- carbonyl, 2-Methylpropoxycarbonyl, OC(CH3)3, n-Pentoxy- carbonyl , 1-Methylbutoxycarbonyl, 2-Methylbutoxycarbonyl, 3-Methylbutoxycarbonyl, 2, 2-Dimethylpropoxycarbonyl, 1-Ethyl- propoxycarbonyl , n-Hexoxycarbonyl , 1, 1-Dimethylpropoxy- carbonyl, 1, 2-Dimethylpropoxycarbonyl , 1-Methylpentoxy- carbonyl, 2-Methylpentoxycarbonyl, 3-Methylpentoxycarbonyl, 4-Methylpentoxycarbonyl, 1, 1-Dimethylbutoxycarbonyl , 1,2-Di- ethylbutoxycarbonyl, 1, 3-Dimethylbutoxycarbonyl, 2,2-Di- methylbutoxycarbonyl, 2 , 3-Dimethylbutoxycarbonyl, 3,3-Di- methylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxy- carbonyl, 1, 1, 2-Trimethylpropoxycarbonyl, 1, 2 , 2-Trimethyl - propoxycarbonyl , l-C2Hs-l-CH3-propoxycarbonyl oder l-C2H5-2-CH3-propoxycarbonyl , insbesondere für COOCH3, COOC2H5 oder COOC(CH3)3;
(C1-C4 -Alkoxy) carbonyl -Cι-C4-alkyl für: durch (C1-C4 -Alkoxy) - carbonyl - wie vorstehend genannt - substituiertes C1-C4 -Alkyl, also z.B. für CH2COOCH3, CH2COOC2H5, CH2COOCH2-C2H5, CH2COOCH(CH3)2, CH2COOCH2CH2 -C2H5, (1-Methylpropoxycarbonyl) - ethyl, (2-Methylpropoxy- carbonyDmethyl, CH2COOC(CH3) 3 , CH2COO (CH2) 3-C2H5, CH2COO(CH2)4-C2H5, CH(CH3)COOCH3, CH (CH3 ) COOC2H5, CH2CH2COOCH3 , CH2CH COOC2H5, CH CH COOCH2-C2H5, CH2CH2COOCH (CH3) 2, CH2CH2COOCH2CH2-C2H5 , 2- ( 1-Methylpropoxycarbonyl ) ethyl , 2- (2-Methylpropoxycarbonyl)ethyl, CH2CH2COOC (CH3) 3,
CH2CH2COO(CH2)3-C2H5, CH2CH2COO (CH2) 4-C2H5, 2-(COOCH3)- propyl, 2- (COOC2H5) propyl, 2- (COOCH2-C2H5) propyl, 2- [COOCH(CH3)2] propyl, 2- (COOCH2CH2-C2H5) propyl , 2- (1 -Methyl - propoxycarbonyl ) propyl , 2- ( 2-Methylpropoxycarbonyl) propyl , 2- [COOC(CH3)3] propyl, 3- (COOCH3) propyl , 3- (COOC2H5) propyl , 3- (COOCH2-C2H5) propyl, 3- [COOCH(CH3) 2] propyl , 3- (COOCH2CH2- C2H5) propyl, 3- (1-Methylpropoxycarbonyl ) propyl , 3-(2-Methyl- propoxycarbonyl) propyl, 3- [COOC (CH3) 3] propyl , 3- [COO (CH2) 3- C2H5] propyl, 3- [COO (CH2) 4-C2H5] propyl, 2- (C00CH3) butyl , 2-(C00C2H5)butyl, 2- (C00CH2-C2H5) butyl , 2- [COOCH (CH3 ) 2] butyl , 2- (COOCH2CH2-C2H5) butyl , 2 - ( 1-Methylpropoxycarbonyl ) butyl , 2- (2-Methylpropoxycarbonyl) butyl, 2- [COOC (CH3) 3] butyl, 3- (COOCH3)butyl, 3-(COOC2H5)butyl, 3- (COOCH2-C2H5) butyl, 3- [COOCH (CH3) 2] butyl, 3- (COOCH2CH2-C2H5) butyl, 3- (l-Methyl - propoxycarbonyl) butyl, 3- (2-Methylpropoxycarbonyl ) butyl , 3- [COOC (CH3) 3] butyl, 4-(COOCH3)butyl, 4- (COOC2H5)butyl , 4- (COOCH2-C2H5) butyl, 4- [COOCH (CH3) 2] butyl, 4- (COOCH2CH2-
C2H5)butyl, 4- (1-Methylpropoxycarbonyl) butyl, 4-(2-Methyl- propoxycarbonyl) butyl oder 4- [COOC (CH3) 3] butyl ;
(Ci-Cö-AlkoxyJcarbonyl-Ci-Ce-alkyl für: durch (Cχ~C6-Alkoxy) - carbonyl wie vorstehend genannt substituiertes Cι-C6-Alkyl, also z.B. für CH2COOCH3, CH2COOC2H5, CH2COOCH2-C H5, CH2COOCH(CH3)2- CH2COOCH2CH2-C2H5, ( 1-Methylpropoxycarbonyl ) - methyl, (2-Methylpropoxycarbonyl )methyl, CH2COOC (CH3) 3, CH2COO(CH2)3-C2H5, CH2COO(CH2)4-C2H5, CH (CH3) COOCH3 , CH(CH3)COOC2H5, CH2CH2COOCH3 , CH2CH2COOC2H5, CH2CH2COOCH2-C2H5, CH2CHCOOCH(CH3)2, CH2CH2COOCH2CH2-C2H5 , 2- (1-Methylpropoxy - carbonyl) ethyl , 2- (2-Methylpropoxycarbonyl) ethyl , CH2CH2COOC(CH3)3, CH2CH2COO(CH2)3-C2H5, CH2CH2COO (CH2) 4-C2H5, 2- (COOCH3) ropyl, 2- (COOC2H5) propyl , 2- (COOCH2-C2H5) propyl , 2- [COOCH (CH3)2] propyl, 2- (COOCH2CH2-C2H5) propyl, 2- (l-Methyl - propoxycarbonyl ) propyl , 2- ( 2-Methylpropoxycarbony1 ) ropyl , 2- [COOC (CH3)3] propyl, 3- (COOCH3) propyl , 3- (COOC2H5) propyl, 3- (COOCH2-C2H5) propyl, 3- [COOCH (CH3) 2] propyl, 3- (COOCH2CH2- C2H5) propyl, 3- (1-Methylpropoxycarbonyl) propyl, 3- (2 -Methyl - propoxycarbonyl) propyl, 3- [COOC (CH3) 3] propyl, 3- [COO (CH2) 3- C2H5] propyl, 3- [COO (CH2)4-C2H5] propyl, 2- (COOCH3)butyl , 2- (COOC2H5) butyl, 2-(COOCH2-C H5)butyl, 2- [COOCH (CH3) 2] butyl , 2- (COOCH2CH2-C2H5 ) butyl , 2- ( 1-Methylpropoxycarbonyl ) butyl , 2- (2-Methylpropoxycarbonyl) butyl, 2- [COOC(CH3) 3] butyl, 3-(COOCH3)butyl, 3- (COOC2H5) butyl, 3- (COOCH2-C2H5) butyl ,
3- [COOCH(CH3)2]butyl, 3- (COOCH2CH2-C2H5) butyl, 3- (l-Methyl - propoxycarbonyl) butyl, 3- ( 2-Methylpropoxycarbonyl) butyl , 3- [COOC (CH3)3] butyl, 4- (COOCH3)butyl , 4- (COOC2H5) butyl , 4- (COOCH -C H5) butyl, 4- [COOCH (CH3) 2] butyl , 4- (COOCH2CH2- C2H5)butyl, 4- (1-Methylpropoxycarbonyl) butyl, 4-{2-Methyl- propoxycarbonyl) butyl, 4- [COOC (CH3) 3] butyl, 4- [COO (CH2) 3- C2H5] butyl, 4-[COO(CH2)4-C2H5]butyl, 5- (COOCH3) pentyl , 5- (COOC2H5) pentyl, 5- (COOCH2-C2H5) pentyl, 5- [COOCH(CH3) 2] - pentyl, 5- (COOCH2CH2-C2H5) pentyl , 5- (1 -Methylpropoxycarbonyl ) pentyl , 5- ( 2 -Methylpropoxycarbonyl ) pentyl , 5- [COOC (CH3) 3] pentyl, 5- [COO (CH2) 3-C2H5] pentyl, 5- [COO (CH2) 4- C2H5] pentyl, 6- (COOCH3) hexyl, 6- (COOC2H5) hexyl, 6-(COOCH2-
C2H5) hexyl, 6- [COOCH (CH3)2] hexyl, 6- (COOCH2CH2-C2H5) hexyl , 6- (1 -Methylpropoxycarbonyl) hexyl, 6- (2 -Methylpropoxycarbonyl) hexyl, 6- [COOC (CH3)3] hexyl, 6- [COO (CH2) 3-C2H5] hexyl oder 6- [COO(CH2)4-C2H5] hexyl, insbesondere für CH2COOCH3 oder CH2COOC2H5;
C!-C3-Alkoxy- (Cι-C3-alkoxy) carbonyl-Ci-Cö-alkyl für: durch OCH3, OC2H5, OCH2-C2H5 oder OCH(CH3)2 substituiertes (Cι-C3-Alkoxy)carbonyl-Cι-C6-alkyl wie CH2COOCH3 , CH COOC2H5, CH2COOCH2-C2H5, CH2COOCH (CH3 ) 2 , CH (CH3 ) COOCH3 , CH (CH3 ) COOC2H5,
CH2CH2COOCH3, CH2CH2COOC2H5, CH CH2COOCH2-C2H5, CH2CH2COOCH(CH3)2, 2- (COOCH3 ) propyl , 2- (COOC2H5) propyl , 2- (COOCH2-C2H5) propyl, 2- [COOCH (CH3) 2] propyl , 3- (COOCH3) propyl, 3- (COOC2H5) propyl, 3- (COOCH2-C2H5) propyl , 3- [COOCH (CH3)2] propyl, 2- (COOCH3) butyl, 2- (COOC2H5) butyl,
2- (COOCH2-C H5) butyl, 2- [COOCH (CH3) 2] butyl , 3- (COOCH3) butyl ,
3- (COOC2H5) butyl, 3- (COOCH2-C2H5) butyl , 3- [COOCH (CH3) 2] butyl , 4-(COOCH3)butyl, 4- (COOC2H5) butyl , 4- (COOCH2-C2H5) butyl ,
4- [COOCH (CH3)2] butyl, 5- (COOCH3) pentyl , 5- (COOC2H5) pentyl , 5- (COOCH2-C2H5) pentyl, 5- [COOCH (CH3) 2] pentyl , 6- (COOCH3) hexyl,
6- (COOC2H5) hexyl, 6- (COOCH2-C2H5) hexyl oder
6- [COOCH (CH3)2] hexyl, vorzugsweise CH2COOCH3 oder CH2COOC2H , also z.B. für CH2COOCH2OCH3, CH2COOCH2OC2H5, CH2COOCH2OCH (CH3 ) 2 oder CH2COOCH OC(CH3)3;
(Ci-Cβ-AlkoxyJcarbonyl-Ci-Ce-alkoxy für: durch (Cι-C6-Alkoxy) - carbonyl wie vorstehend genannt substituiertes Cι-C6-Alkoxy, also z.B. für OCH COOCH3, OCH2COOC2H5, OCH COOCH2-C2H5 , OCH2COOCH(CH3)2, OCH COOCH2CH2-C2H5, (1-Methylpropoxycarbonyl ) - methoxy, (2-Methylpropoxycarbonyl) ethoxy, OCH2COOC (CH ) 3,
OCH2COO(CH2)3-C2H5, OCH2COO(CH2)4-C2H5, OCH (CH3) COOCH3 , OCH(CH3)COOC2H5, OCH2CH2COOCH3, OCH2CH2COOC2H5, OCH2CH2COOCH2-C2H5, OCH2CH2COOCH (CH3) 2 , OCH2CH2COOCH2CH2-C2H5, 2- (l-Methylpropoxycarbonyl)ethoxy, 2- (2-Methylpropoxy- carbonyl )ethoxy, OCH2CH2COOC (CH3) 3, OCH2CH2COO (CH2) 3-C2H5,
OCH2CH2COO(CH2)4-C2H5, 2- (COOCH3) propoxy, 2- (COOC2H5) ropoxy,
2- (COOCH2-C2H5) propoxy, 2- [COOCH (CH3 ) 2] propoxy,
2- (COOCH2CH2-C2H5) propoxy, 2- ( 1 -Methylpropoxycarbonyl) propoxy ,
2- (2 -Methylpropoxycarbonyl) propoxy, 2- [COOC (CH3) 3] propoxy, 3- (COOCH3) propoxy, 3- (COOC2H5) propoxy, 3- (COOCH2-C2H5) propoxy,
3- [COOCH (CH3)2] propoxy, 3- (COOCH2CH2-C2H5) propoxy,
3- (1 -Methylpropoxycarbonyl) propoxy, 3- (2-Methylpropoxy- carbonyl) propoxy, 3- [COOC (CH ) 3] propoxy, 3- [COO (CH2)3-C2H5] propoxy, 3- [COO (CH2) 4-C2H5] propoxy, 2- (COOCH3)butoxy, 2- (COOC2H5)butoxy, 2- (COOCH2-C2H5) butoxy , 2- [COOCH(CH3)2]butoxy, 2- (COOCH2CH2-C2H5) butoxy, 2- (l-Methyl - propoxycarbonyl )butoxy, 2- (2-Methylpropoxycarbonyl) butoxy , 2- [COOC(CH3)3]butoxy, 3- (COOCH3) butoxy, 3- (COOC2H5) butoxy, 3- (COOCH2-C2H5) butoxy, 3- [COOCH (CH3 ) 2] butoxy, 3- (COOCH2CH2-C2H5) butoxy, 3- ( 1-Methylpropoxycarbonyl ) butoxy,
3- (2-Methylpropoxycarbonyl) butoxy, 3- [COOC (CH3) 3] butoxy, 4- (COOCH3) butoxy, 4- (COOC2H5) butoxy, 4- (COOCH2-C2H5) butoxy,
4- [COOCH (CH3)2] butoxy, 4- (COOCH2CH2-C2H5) butoxy, 4- (l-Methyl - propoxycarbonyl) butoxy, 4- (2-Methylpropoxycarbonyl)butoxy,
4- [COOC (CH3) 3] butoxy, 4- [COO (CH2) 3-C2H5] butoxy,
4- [COO (CH )4- 2H5] butoxy, 5- (COOCH3) pentoxy , 5-(COOC2H5)- pentoxy, 5- (COOCH2-C H5) pentoxy, 5- [COOCH (CH3) 2] pentoxy,
5- (COOCH2CH2-C2H5) pentoxy, 5- (1-Methylpropoxycarbonyl) pentoxy, 5- (2-Methylpropoxycarbonyl) pentoxy, 5- [COOC (CH3) 3] pentoxy,
5- [COO (CH2)3-C2H5] pentoxy, 5- [COO (CH2) 4-C2H5] pentoxy,
6- (COOCH3)hexoxy, 6- (COOC2H5) hexoxy, 6- (COOCH2-C2H5) hexoxy, 6- [COOCH (CH3)2] hexoxy, 6- (COOCH2CH2-C2H5) hexoxy, 6- (l-Methyl - propoxycarbonyl) hexoxy, 6- (2-Methylpropoxycarbonyl) hexoxy, 6- [COOC (CH3) 3] hexoxy, 6- [COO (CH2) 3-C2H5] hexoxy oder 6- [COO (CH2) 4-C2H5] hexoxy, insbesondere für OCHCOOCH3 oder OCH2COOC2H5;
C!-C6-Alkylthio für: z.B. SCH3, SC2H5, n-Propylthio, SCH(CH3)2, n-Butylthio, SCH (CH3) -C H5, SCH2 -CH (CH3) 2, SC(CH3)3, n-Pentyl - thio, 1-Methylbutylthio, 2-Methylbutylthio, 3-Methylbutyl - thio, 2, 2-Dimethylpropylthio, 1-Ethylpropylthio, n-Hexylthio, 1, 1-Dimethylpropylthio, 1 , 2-Dimethylpropylthio, l-Methyl - pentylthio, 2-Methylpentylthio, 3-Methylpentylthio, 4 -Methyl - pentylthio, 1, 1-Dimethylbutylthio, 1, 2-Dimethylbutylthio, 1, 3-Dimethylbutylthio, 2, 2-Dimethylbutylthio, 2 , 3-Dimethyl - butylthio, 3 , 3-Dimethylbutylthio, 1-Ethylbutylthio, 2-Ethyl- butylthio, 1, 1, 2-Trimethylpropylthio, 1, 2 , 2-Trimethylpropyl - thio, 1-Ethyl-l-methylpropylthio oder l-Ethyl-2-methylpropyl- thio, insbesondere für SCH3 oder SC2H5;
Cι-C6-Alkylthio-Cι-C6-alkyl für: durch Ci-Cö-Alkylthio wie vorstehend genannt substituiertes Cχ-C6-Alkyl, also z.B. für CH2SCH3, CH2SC2H5, CH2SCH2-C2H5, CH2SCH (CH3) 2 , CH2SCH2CH2-C2H5, (l-Methylpropylthio)methyl, (2-Methylpropylthio) methyl , CH2SC(CH3)3, CH2S(CH2)3- 2H5, CH2S (CH2 ) 4- 2H5, CH(CH3)SCH3, CH(CH3)SC2H5, CH2CH SCH3, CH2CH2SC2H5, CH2CH2SCH2-C2H5, CH2CH2SCH(CH3)2, CH2CH2SCH2CH2-C2H5, 2- ( 1-Methylpropyl - thio)ethyl, 2- (2-Methylpropylthio) ethyl, CH2CH2SC (CH3) 3, CH2CH2S(CH2)3-C2H5, CH2CH2S(CH2)4-C2H5, 2- (SCH3) propyl , 2- (SC2H5) propyl, 2- (SCH2-C2H5) propyl , 2- [SCH (CH3) 2] propyl , 2- (SCH2CH2-C2H5) propyl, 2- (1-Methylpropylthio) propyl , 2- (2-Methylpropylthio) propyl, 2- [SC (CH3 ) 3] propyl , 3- (SCH3) propyl, 3- (SC2H5) propyl, 3- (SCH2-C2H5) propyl, 3- [SCH (CH3)21 propyl, 3- (SCH2CH2-C2H5) propyl , 3- { l-Methyl - propylthio) propyl, 3- (2-Methylpropylthio) propyl , 3-[SC(CH3)3]propyl, 3- [S (CH2) 3-C2H5] propyl, 3- [S(CH2)4-C2H5] propyl, 2- (SCH3)butyl, 2- (SC2H5)butyl, 2-(SCH2-C2H5)butyl, 2-[SCH(CH3)2]butyl, 2- (SCH2CH2-C2H5)butyl , 2- (1-Methylpropylthio) butyl, 2- (2-Methylpropylthio) butyl , 2- [SC(CH3)3]butyl, 3-(SCH3)butyl, 3- (SC2H5)butyl, 3-(SCH2-C2H5)butyl, 3- [SCH (CH3) 2] butyl, 3- (SCH2CH2-C2H5) butyl , 3- (1-Methylpropylthio) butyl, 3- (2-Methylpropylthio) butyl, 3- [SC(CH3)3)butyl, 4- (SCH3)butyl, 4- (SC2H5)butyl, 4-(SCH -C2H5)butyl, 4- [SCH (CH3) 21 butyl , 4- (SCH2CH2-C2H5)butyl , 4- (1-Methylpropylthio) butyl, 4- (2-Methylpropylthio) butyl, 4- [SC(CH3)3]butyl, 4- [S(CH2)3-C2H5]butyl,
4- [S(CH2)4-C2H5] butyl, 5- (SCH3) pentyl, 5- (SC2H5) pentyl, 5- (SCH2-C2H5)pentyl, 5- [SCH (CH3) 2] pentyl, 5- (SCH2CH2-C2H5) pentyl, 5- (1-Methylpropylthio) entyl,
5- (2-Methylpropylthio) pentyl, 5- [SC (CH3) 3] pentyl ,
5- [S(CH2)3-C2H5] pentyl, 5- [S (CH2) 4-C2H5] pentyl , 6- (SCH3) hexyl, 6-(SC2H5)hexyl, 6- (SCH2-C2H5) hexyl, 6- [SCH (CH3) 23 hexyl ,
6- (SCH2CH2-C2H5) hexyl, 6- (1-Methylpropylthio) hexyl, 6- (2-Methylpropylthio) hexyl, 6- [SC (CH3) 3] hexyl ,
6- [S (CH2) 3-C2H5] hexyl oder 6- [S (CH2) 4-C2H5] hexyl, insbesondere für CH2SCH3 oder CH2SC2H5;
C3-C7-Cycloalkylthio-Cι-C6-alkyl für: durch C3-C7-Cycloalkyl- thio wie Cyclopropylthio, Cyclobutylthio, Cyclopentyl thio, Cyclohexylthio und Cycloheptylthio, vorzugsweise Cyclopropylthio, substituiertes Cι-C6-Alkyl, also z.B. für Cyclopropyl-SCH2, 1-Cyclopropylthio-ethyl, 2-Cyclopropylthio-ethyl, 1-Cyclopropylthio-prop-l-yl, 2-Cyclopropylthio-prop-l-yl, 3-Cyclopropylthio-prop-l-yl, 1-Cyclopropylthio-but-l-yl , 2-Cyclopropylthio-but-l-yl , 3-Cyclopropylthio-but-l-yl, 4-Cyclopropylthio-but-l-yl, l-Cyclopropylthio-but-2-yl, 2-Cyclopropylthio-but-2-yl , 3-Cyclopropylthio-but-2-yl 4-Cyclopropyl thio-but-2-yl, 1- (Cyclopropyl-SCH2-) -eth-l-yl, 1- (Cyclopropyl-SCH2) -1- (CH3) - eth-l-yl, 1- (Cyclopropyl-SCH2) -prop-1-yl, 2-Cyclopropylthio- hex-6-yl, Cyclobutyl-SCH2, 1-Cyclobutylthio-ethyl , 2-Cyclo- butylthio-ethyl, 1-Cyclobutylthio-prop-l-yl, 2-Cyclobutyl - thio-prop-1-yl, 3-Cyclobutylthio-prop-l-yl, 1-Cyclobutylthio- but-l-yl, 2-Cyclobutylthio-but-l-yl, 3-Cyclobutylthio-but- 1-yl, 4-Cyclobutylthio-but-l-yl, l-Cyclobutylthio-but-2-yl, 2-Cyclobutylthio-but-2-yl, 3-Cyclobutylthio-but-2-yl, 4-Cyclobutylthio-but-2-yl, 1- (Cyclobutyl-SCH2) -eth-l-yl, 1- (Cyclobutyl-SCH2) -1- (CH3) -eth-l-yl , 1- (Cyclobutyl-SCH2) - prop-1-yl, 2-Cyclobutylthio-hex-6-yl, Cyclopentyl-SCH2 , 1-Cyclopentylthio-ethyl, 2-Cyclopentylthio-ethyl, 1-Cyclo- pentylthio-prop-1-yl, 2-Cyclopentylthio-prop-l-yl , 3-Cyclo- pentylthio-prop-1-yl, 1-Cyclopentylthio-but-l-yl, 2-Cyclo- pentylthio-but-1-yl, 3-Cyclopentylthio-but-l-yl, 4-Cyclo- pentylthio-but-1-yl, l-Cyclopentylthio-but-2-yl , 2-Cyclo- pentylthio-but-2-yl, 3-Cyclopentylthio-but-2-yl 4-Cyclo- pentylthio-but-2-yl, 1- (Cyclopentyl-SCH2) -eth-l-yl, l-(Cyclo- pentyl-SCH2)-l- (CH3) -eth-l-yl, 1- (Cyclopentyl-SCH2) -prop-1-yl, 2-Cyclopentylthio-hex-6-yl, Cyclohexyl-SCH2, 1-Cyclohexyl - thio-ethyl, 2-Cyclohexylthio-ethyl, 1-Cyclohexylthio-prop- 1-yl, 2-Cyclohexylthio-prop-l-yl , 3-Cyclohexylthio-prop-l-yl , 1-Cyclohexylthio-but-l-yl, 2-Cyclohexylthio-but-l-yl , 3-Cyclohexylthio-but-l-yl, 4-Cyclohexylthio-but-l-yl , l-Cyclohexylthio-but-2-yl, 2-Cyclohexylthio-but-2-yl, 3-Cyclohexylthio-but-2-yl, 4-Cyclohexylthio-but-2-yl, 1- (Cyclohexyl-SCH2) -eth-l-yl, 1- (Cyclohexyl-SCH2) -1- (CH3)- eth-l-yl, 1- (Cyclohexyl-SCH2) -prop-1-yl, 2-Cyclohexylthio- hex-6-yl, Cycloheptyl-SCH2, 1-Cycloheptylthio-ethyl , 2-Cyclo- heptylthio-ethyl, 1-Cycloheptylthio-prop-l-yl, 2-Cycloheptyl - thio-prop-1-yl, 3-Cycloheptylthio-prop-l-yl , 1-Cycloheptyl- thio-but-1-yl, 2-Cycloheptylthio-but-l-yl, 3-Cycloheptylthio- but-l-yl, 4-Cycloheptylthio-but-l-yl, 1-Cycloheptylthio-but- 2-yl, 2-Cycloheptylthio-but-2-yl, 3-Cycloheptylthio-but-2-yl , 4-Cycloheptylthio-but-2-yl, 1- (Cycloheptyl-SCH2) -eth-l-yl, 1- (Cycloheptyl-SCH2)-l-(CH3) -eth-l-yl, 1- (Cycloheptyl-SCH2) - prop-1-yl oder 2-Cycloheptylthio-hex-6-yl;
C -Cg-Alkylsulfinyl für: z.B. SOCH3, S0C2H5, n-Propylsulf inyl , SOCH(CH3)2, n-Butylsulfinyl, 1-Methylpropylsulfinyl , 2-Methyl- propylsulf inyl, SOC(CH3)3, n-Pentylsulfinyl, 1-Methylbutyl - sulfinyl, 2-Methylbutylsulf inyl , 3-Methylbutylsulfinyl , 2, 2-Dimethylpropylsulfinyl, 1-Ethylpropylsulfinyl, n-Hexyl- sulfinyl, 1 , 1-Dimethylpropylsulfinyl, 1, 2-Dimethylpropyl - sulfinyl, 1-Methylpentylsulfinyl, 2-Methylpentylsulfinyl, 3-Methylpentylsulfinyl, 4-Methylpentylsulf inyl , 1 , 1-Dimethyl - butylsulfinyl, 1, 2-Dimethylbutylsulfinyl, 1 , 3-Dimethylbutyl - sulfinyl, 2 , 2-Dimethylbutylsulfinyl, 2 , 3-Dimethylbutyl - sulfinyl, 3 , 3-Dimethylbutylsulf inyl , 1-Ethylbutylsulfinyl , 2-Ethylbutylsulfinyl, 1, 1, 2-Trimethylpropylsulfinyl, 1,2, 2-Trimethylpropylsulfinyl, 1-Ethyl-l-methylpropylsulfinyl oder l-Ethyl-2-methylpropylsulfinyl, insbesondere für SOCH3 oder SOC2H5; Cι-C-6-Alkylsulf inyl-Ci-Cβ-alkyl für: durch Cι-C6-Alkylsulf inyl wie vorstehend genannt substi uiertes Cι-C6-Alkyl, also z.B. für CH2SO-CH3, CH2SO-C2H5, CH2SO-CH2-C2H5, CH2SO-CH (CH3 ) 2 , CH2SO-CH2CH2-C2H5, ( 1-Methylpropylsulf inyl ) methyl, (2-Methyl- propylsulf inyl) methyl, CH2SO-C (CH3) 3, CH2SO- (CH2) 3-C2H5,
CH2SO-(CH2)4-C2H5, CH(CH3)SO-CH3, CH (CH3) SO-C2H5, CH2CH2SO-CH3 , CH2CH2SO-C2H5, CH2CH2SO-CH2-C2H5, CH2CH2SO-CH (CH3) 2 , CH2CH2SO-CH2CH2-C2H5 , 2- ( 1-Methylpropylsulf inyl ) ethyl , 2- (2-Methylpropylsulfinyl) ethyl, CH2CH2SO-C (CH3) 3 , CH2CH2SO-(CH2)3-C2H5, CH2CH2SO- (CH2) -C2H5, 2- (SO-CH3) propyl ,
2- (SO-C2H5) propyl, 2- (SO-CH2-C H5) propyl,
2- [SO-CH(CH3) ] propyl, 2- (SO-CH2CH2-C2H5) propyl, 2- (l-Methyl - propylsulf inyl ) propyl , 2- ( 2-Methylpropylsulf inyl ) propyl , 2- [SO-C(CH3)3] propyl, 3- (S0-CH3) ropyl, 3- (SO-C2H5) propyl, 3- (SO-CH2-C2H5) propyl, 3- [SO-CH(CH3) 2] propyl ,
3- (SO-CH2CH2-C2H5) propyl, 3- (1-Methylpropylsulf inyl ) propyl, 3- ( 2 -Methylpropylsulf inyl) propyl, 3- [SO-C(CH3) 3]propyl, 3- [SO- (CH2 ) 3-C2H5] propyl , 3- [SO- (CH2 ) 4-C2H5] propyl ,
2- (SO-CH3) butyl, 2-(SO-C2H5)butyl, 2- (SO-CH2-C2H5)butyl, 2- [SO-CH (CH3)2] butyl, 2- (SO-CH2CH2-C2H5) butyl , 2-(l-Methyl- propylsulfinyl) butyl, 2- (2-Methylpropylsulf inyDbutyl, 2- [SO-C(CH3)3]butyl, 3-(SO-CH3)butyl, 3- (SO-C2H5) butyl ,
3- (SO-CH2-C2H5)butyl, 3- [SO-CH (CH3) ] butyl ,
3- (SO-CH2CH2-C2H5)butyl, 3- (1-Methylpropylsulf inyl ) butyl , 3- (2-MethylpropylsulfinyDbutyl, 3- [SO-C (CH3) 3] butyl,
4-(SO-CH3)butyl, 4- (SO-C2H5) butyl , 4- (SO-CH2-C2H5) butyl , 4-[SO-CH(CH3)2]butyl, 4- (SO-CH2CH2-C2H5)butyl , 4- (l-Methyl - propylsulfinyDbutyl, 4- (2-Methylpropylsulf inyDbutyl ,
4- [SO-C (CH3) 3] butyl, 4-[SO-(CH2)3-C2H5]butyl, 4- [SO-(CH2)4-C2H5]butyl, 5- (SO-CH3) pentyl , 5- (SO-C2H5)pentyl,
5- (SO-CH2-C2H5) pentyl, 5- [SO-CH (CH3) 21 pentyl ,
5- (SO-CH2CH2-C2H5) pentyl , 5- ( 1-Methylpropylsulf inyl ) pentyl , 5- (2-Methylpropylsulf inyl) entyl, 5- [SO-C (CH3) 3] pentyl ,
5- [SO- (CH2) 3-C2H5] pentyl , 5- [SO- (CH ) 4-C2H5] pentyl , 6- (SO-CH3) hexyl, 6- (SO-C2H5) hexyl, 6- (SO-CH2-C2H5) hexyl,
6- [SO-CH (CH3)2] hexyl, 6- (SO-CH2CH2-C2H5) hexyl , 6- (l-Methyl - propylsulf inyl) hexyl, 6- (2-Methylpropylsulfinyl) hexyl ,
6- [SO-C (CH3)3] hexyl, 6- [SO- (CH2) 3-C2H5] hexyl oder 6- [SO- (CH2)4-C2H5] hexyl, insbesondere für CH2SO-CH3 oder CH2SO-C2H5;
Ci-Ce-Alkylsulfonyl für: z.B. S02CH3, S02C2H5, n-Propyl- sulfonyl, S0CH(CH3)2, n-Butylsulfonyl, 1-Methylpropyl - sulfonyl, 2-Methylpropylsulfonyl, S02C(CH3)3, n-Pentyl - sulfonyl, 1-Methylbutylsulfonyl, 2-Methylbutylsulfonyl ,
3-Methylbutylsulfonyl, 2, 2-Dimethylpropylsulfonyl , 1-Ξthyl- propylsulfonyl, n-Hexylsulfonyl, 1, l-Dimethylpropylsulfonyl , 1, 2-Dimethylpropylsulfonyl, 1-Methylpentylsulfonyl , 2-Methyl - pentylsulfonyl, 3-Methylpentylsulfonyl, 4-Methylpentyl - sulfonyl, 1 , 1-Dimethylbutylsulfonyl, 1, 2-Dimethylbutyl - sulfonyl, 1 , 3-Dimethylbutylsulfonyl , 2, 2-Dimethylbutyl - sulfonyl, 2 , 3-Dimethylbutylsulfonyl , 3 , 3-Dimethylbutyl - sulfonyl, 1-Ethylbutylsulfonyl, 2-Ethylbutylsulfonyl , 1,1, 2-Trimethylpropylsulfonyl, 1, 2 , 2-Trimethylpropylsulfonyl , 1-Ethyl-l-methylpropylsulfonyl oder l-Ethyl-2-methylpropyl - sulfonyl, insbesondere für SO2CH3 oder S02C2H5,-
Cι-C6-Alkylsulfonyl-Cι-C6-alkyl für: durch Cx-Cg-Alkylsulf onyl wie vorstehend genannt substituiertes C!-C6-Alkyl, also z.B. für CH2S02-CH3, CH2S02-C2H5, CH2S02-CH2-C2H5, CH2S02-CH (CH3 ) 2 , CH2S02-CH2CH2-C2H5, ( 1-Methylpropylsulf onyl) methyl , (2-Methyl- propyl sulf onyl) methyl, CH S02-C (CH3) 3 , CH S02- (CH2) 3-C2H5,
CH2S02-(CH2)4-C2H5, CH(CH3)S02-CH3, CH (CH3 ) S02-C2H5 , CH2CH2S02-CH3, CH2CH2S02-C2H5, CH2CH2S02-CH2-C2H5, CH2CH2S02-CH(CH3)2, CH2CH2S02-CH2CH -C2H5, 2- ( 1-Methylpropyl - sulfonyl) ethyl, 2- (2 -Methylpropylsulf onyl) ethyl , CH2CH2S02-C(CH3)3, CH2CH2S02- (CH2) 3-C2H5, CH2CH2S02- (CH2) 4-C2H5,
2- (S02-CH3) propyl, 2- (S02-C2H5) propyl, 2- (S02-CH2-C H5) propyl, 2- [S02-CH(CH3)2] propyl, 2- (S02-CH2CH2-C2H5) propyl , 2-(l-Methyl- propylsulfonyl) propyl, 2- (2-Methylpropylsulfonyl) propyl, 2- [S02-C(CH3)3] propyl, 3- (S02-CH3) propyl , 3- (S02-C2H5) propyl , 3- (S02-CH2-C2H5) propyl, 3- [S02-CH (CH3) 2] propyl,
3- (S02-CH2CH2-C2H5) propyl, 3- (1-Methylpropylsulf onyl) propyl , 3- (2-Methylpropylsulfonyl) propyl, 3- [S02-C(CH3) 3] propyl, 3- [S02- (CH2) 3-C2H5] propyl, 3- [S02- (CH2) 4-C2H5] propyl ,
2- (S02-CH3) butyl, 2-(S02-C2H5)butyl, 2- (S02-CH2-C2H5)butyl , 2- [S02-CH(CH3)2] butyl, 2- (S02-CH2CH2-C2H5)butyl, 2- (l-Methyl - propyl sulf onyl) butyl, 2- (2 -Methylpropylsulf onyl) butyl , 2- [S02-C(CH3)3]butyl, 3- (S0 -CH3) butyl, 3- (S02-C2H5) butyl ,
3- (S02-CH2-C2H5) butyl, 3- [S02-CH (CH3) 2] butyl,
3- (S02-CH2CH2-C H5) butyl, 3- (1-Methylpropylsulf onyl) butyl, 3- (2-Methylpropylsulf onyl) butyl, 3- [S02-C (CH3) 3] butyl,
4-(S0 -CH3)butyl, 4- (S02-C2H5)butyl, 4- (S02-CH2-C2H5)butyl ,
4- [S02-CH(CH3)2] butyl, 4- (S02-CH2CH2-C2H5) butyl, 4-(l-Methyl- propylsulfonyl) butyl, 4- (2-Methylpropylsulfonyl) butyl,
4- [S02-C(CH3)3]butyl, 4- [S02- (CH2) 3-C2H5]butyl , 4- [S02- (CH2) -C2H5] butyl, 5- (S02-CH3) pentyl ,
5- (S02-C2H5) pentyl, 5- (S02-CH2-C2H5) pentyl,
5- [S02-CH(CH3)2]pentyl, 5- (S02-CH2CH2-C2H5) pentyl , 5- (l-Methyl - propylsulfonyl ) pentyl , 5- ( 2-Methylpropylsulfonyl ) pentyl ,
5- [S02-C(CH3)3] pentyl, 5- [S02- (CH2) 3-C2H5J pentyl, 5- [S02-(CH2) -C2H5] pentyl, 6- (S02-CH3) hexyl, 6- (S02-C2H5) hexyl , 6- (S02-CH2-C2H5) hexyl, 6- [S02-CH (CH3) 2] hexyl,
6- (SO2-CH2CH2-C2H5) hexyl, 6- ( 1-Methylpropylsulfonyl) hexyl , 6- (2-Methylpropylsulfonyl) hexyl, 6- [S02-C (CH3) 3] hexyl, 6- [S02-(CH2)3-CH5] hexyl oder 6- [S02- (CH2) 4-C2H5] hexyl , insbesondere für CH2S02-CH oder CH2S02-C2H5;
Cι-C6-Alkylaminosulfonyl für: z.B. H3C-NHS02-, H5C2-NHS02-, n-Propyl-NHS02-, (CH3 ) 2CH-NHS02- , n-Butyl-NHS02- , l-Methyl - propyl-NHS02-, 2-Methylpropyl-NHS02-, (CH3) 3C-NHS0- , n-Pentyl-NHS02-, 1-Methylbutyl-NHS0- , 2-Methylbutyl-NHS02- , 3-Methylbutyl-NHS02-, 2, 2-Dimethylpropyl-NHS02- , 1-Ethyl- propyl-NHS02-, n-Hexyl-NHS02-, 1, 1-Dimethylpropyl-NHS02-, l,2-Dimethylpropyl-NHS02-, 1-Methylpentyl-NHS02- , 2-Methyl- pentyl-NHS02-, 3-Methylpentyl-NHS02-, 4-Methylpentyl-NHS02- , 1, 1-Dimethylbutyl-NHS02-, 1, 2-Dimethylbutyl-NHS0-, 1,3-Di- methylbutyl-NHS02-, 2 , 2-Dimethylbutyl-NHS02-, 2, 3-Dimethyl - butyl-NHS02-, 3, 3-Dimethylbutyl-NHS02- , 1-Ethylbutyl-NHS02-, 2-Ethylbutyl-NHS02-, 1 , 1 , 2-Trimethylpropyl-NHS02- , 1,2,2-Tri- methylpropyl-NHS02-, l-Ethyl-l-methylpropyl-NHS02- oder l-Ethyl-2-methylpropyl-NHS02-, insbesondere für H3C-NHS02- oder H5C2-NHS02-;
Di- (Ci-Ce-alky aminosulfonyl für: z.B. (CH3)2N-S02-, (C2H5>2N-S02-, N,N-Dipropylamino-S02-, N,N-Di (1-methyl - ethyl) amino-S0-, N,N-Dibutylamino-S02-, N,N-Di (1-methyl - propyl) amino-S02-, N,N-Di (2-methylpropyl) amino-S02-, N,N-Di (1, l-dimethylethyl)amino-S02-, N-Ethyl-N-methyl - amino-S02-, N-Methyl-N-propylamino-S0-, N-Methyl-N- (1- methylethyl)amino-S02-, N-Butyl-N-methylamino-Sθ2-, N-Methyl-N- (1-methylpropyl) amino-S02-, N-Methyl-N- (2-methyl - propyl) amino-S02-, N- (1, 1-Dimethylethyl) -N-methylamino-S02-, N-Ethyl-N-propylamino-S02-, N-Ethyl-N- (1-methylethyl) amino- S02-, N-Butyl-N-ethylamino-S02-, N-Ethyl-N- (1-methylpropyl ) - amino-S0-, N-Ethyl-N- (2-methylpropyl) mino-S02- , N-Ethyl-N- (1,1-dimethylethyl) amino-S02-, N- (1-Methylethyl) -N-propyl - amino-S02-, N-Butyl-N-propylamino-S02-, N- (1-Methylpropyl) -N- propylamino-S02-, N- (2-Methylpropyl) -N-propylamino-S02- , N- (1, 1-Dimethylethyl) -N-propylamino-S0-, N-Butyl-N- (1- methylethyl)amino-S02-, N- (1-Methylethyl) -N- (1-methyl - propyl ) amino-S02-, N- (1-Methylethyl) -N- ( 2-methylpropyl ) - amino-S02-, N- (1, 1-Dimethylethyl) -N- (1-methylethyl) amino-S02-, N-Butyl-N- (1-methylpropyl) amino-S02-, N-Butyl-N- (2-methyl - propyl ) amino-S02- , N-Butyl-N- (1, 1-dimethylethyl) amino-S02- , N- (1-Methylpropyl) -N- (2-methylpropyl) amino-S^-, N- (1, 1-Dimethylethyl) -N- (1-methylpropy amino-SC^- oder N- (1, 1-Dimethylethyl) -N- (2-methylpropyl)amino-S02-, insbesondere für (CH3)2N-S02- oder (C2H5) N-S02- ; C2~C6-Alkenyl für: Vinyl und C3-C6-Alkenyl wie Prop-1-en-l-yl , Allyl, 1-Methylethenyl, n-Buten-1-yl , n-Buten-2-yl , n-Buten- 3-yl, 1-Methylprop-l-en-l-yl, 2-Methylprop-l-en-l-yl, l-Methylprop-2-en-l-yl , 2-Methylprop-2-en-l-yl , n-Penten- 1-yl, n-Penten-2-yl, n-Penten-3-yl, n-Penten-4-yl, l-Methyl - but-1-en-l-yl, 2-Methylbut-l-en-l-yl , 3-Methylbut-l-en-l-yl, l-Methylbut-2-en-l-yl, 2-Methylbut-2-en-l-yl, 3-Methylbut- 2-en-l-yl, l-Methylbut-3-en-l-yl, 2-Methylbut-3-en-l-yl, 3-Methylbut-3-en-l-yl, 1, l-Dimethyl-prop-2-en-l-yl , 1,2-Di- methyl-prop-1-en-l-yl, 1, 2-Dimethyl-prop-2-en-l-yl, 1-Ethyl- prop-l-en-2-yl, l-Ethylprop-2-en-l-yl, n-Hex-1-en-l-yl, n-Hex-2-en-l-yl, n-Hex-3-en-l-yl, n-Hex-4-en-l-yl , n-Hex-5- en-l-yl, 1-Methyl-pent-l-en-l-yl, 2-Methylpent-l-en-l-yl, 3-Methylpent-l-en-l-yl, 4-Methylpent-l-en-l-yl, l-Methyl - pent-2-en-l-yl, 2-Methylpent-2-en-l-yl, 3-Methylpent-2- en-l-yl, 4-Methylpent-2-en-l-yl , l-Methylpent-3-en-l-yl , 2-Methylpent-3-en-l-yl , 3-Methylpent-3-en-l-yl, 4-Methyl- pent-3-en-l-yl, l-Methylpent-4-en-l-yl, 2-Methylpent-4- en-l-yl, 3-Methylpent-4-en-l-yl , 4-Methylpent-4-en-l-yl , 1, l-Dimethyl-but-2-en-l-yl, 1, l-Dimethyl-but-3-en-l-yl , 1, 2-Dimethyl-but-l-en-l-yl, 1, 2-Dimethyl-but-2-en-l-yl , 1, 2-Dimethyl-but-3-en-l-yl, 1, 3-Dimethyl-but-l-en-l-yl, 1, 3-Dimethyl-but-2-en-l-yl, 1, 3-Dimethyl-but-3-en-l-yl, 2, 2-Dimethyl-but-3-en-l-yl, 2, 3-Dimethyl-but-l-en-l-yl, 2,3-Dimethyl-but-2-en-l-yl, 2, 3-Dimethyl-but-3-en-l-yl , 3, 3-Dimethyl-but-l-en-l-yl, 3, 3-Dimethyl-but-2-en-l-yl , 1-Ethylbut-l-en-l-yl, l-Ethylbut-2-en-l-yl, l-Ethylbut-3- en-l-yl, 2-Ethylbut-l-en-l-yl, 2-Ethylbut-2-en-l-yl , 2-Ethyl- but-3-en-l-yl, 1, 1, 2-Trimethyl-prop-2-en-l-yl , 1-Ethyl-l- methyl-prop-2-en-l-yl, l-Ethyl-2-methyl-prop-l-en-l-yl und l-Ethyl-2-methyl-prop-2-en-l-yl, insbesondere für Allyl;
C3 -C8-Alkenyl für: C3 -Cβ-Alkenyl wie vorstehend genannt, oder z.B. für n-Hept-2-en-l-yl, n-Hept-3 -en- 1-yl , n-Oct-2 -en- 1-yl , n-Oct-3-en-l-yl, insbesondere für Allyl;
C3-C8-Halogenalkenyl für: C3-C8-Alkenyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. für 2-Chlorallyl, 3-Chlorallyl, 2, 3-Dichlorallyl, 3, 3-Dichlorallyl , 2,3,3-Tri- chlorallyl, 2, 3-Dichlorbut-2-enyl, 2-Bromallyl, 3-Bromallyl, 2, 3-Dibromallyl, 3, 3-Dibromallyl, 2 , 3 , 3-Tribromallyl oder 2, 3-Dibrombut-2-enyl , insbesondere für 3 -Chlorallyl;
Cι-C6-Alkoxy-C3-C8-alkenyl für: durch Cι-C6-Alkoxy wie oben genannt substituiertes C3 -C8-Alkenyl , also z.B. für 3- (Methoxy) allyl; C3-C6-Alkenyloxy für : z . B . Prop-1-en- l-yloxy, Alkyloxy, 1-Methylethenyloxy, n-Buten-1-yloxy, n-Buten-2-yloxy, n-Buten-3-yloxy, 1-Methylprop-l-en-l-yloxy, 2-Methylprop- 1-en-l-yloxy, l-Methylprop-2-en-l-yloxy, 2-Methylprop-2 -en- 1-yloxy, n-Penten-1-yloxy, n-Penten-2-yloxy, n-Penten-3 -yl - oxy, n-Penten-4 -yloxy, 1-Methylbut-l-en-l-yloxy, 2-Methyl - but-1-en-l-yloxy, 3-Methylbut-l-en- l-yloxy, l-Methylbut-2 - en-1 -yloxy, 2-Methylbut-2-en- l-yloxy, 3-Methylbut-2-en-l-yl - oxy, l-Methylbut-3-en-l-yloxy, 2-Methylbut-3-en-l-yloxy, 3-Methylbut-3-en-l-yloxy, 1 , l-Dimethyl-prop-2-en-l-yloxy,
1 , 2-Dimethyl-prop- l-en-l-yloxy, 1 , 2-Dimethyl-prop-2-en- l-yl - oxy, l-Ethylprop-l-en-2-yloxy, l-Ethylprop-2-en-l-yloxy, n-Hex-1-en-l-yloxy, n-Hex-2-en-l-yloxy, n-Hex-3 -en-l-yloxy, n-Hex-4-en-l-yloxy, n-Hex-5-en-l-yloxy, 1-Methylpent- l-en- 1-yloxy, 2-Methylpent-l-en-l-yloxy, 3-Methylpent-l-en-l-yl - oxy, 4-Methylpent-l-en-l-yloxy, l-Methylpent-2-en-l-yloxy, 2-Methylpent-2-en-l-yloxy, 3-Methylpent-2-en-l-yloxy, 4-Methylpent-2-en-l-yloxy, l-Methylpent-3-en-l-yloxy, 2-Methylpent-3-en-l-yloxy, 3-Methylpent-3-en-l-yloxy, 4-Methylpent-3-en-l-yloxy, l-Methylpent-4-en-l-yloxy, 2-Methylpent-4-en-l-yloxy, 3-Methylpent-4-en-1-yloxy, 4-Methylpent-4-en-l-yloxy, 1, l-Dimethyl-but-2-en-l-yloxy, 1, l-Dimethyl-but-3-en-l-yloxy, 1, 2-Dimethyl-but-l-en-l-yloxy, 1, 2-Dimethyl-but-2-en-l-yloxy, 1 , 2-Dimethyl-but-3-en-l-yloxy, 1, 3-Dimethyl-but-l-en-l-yloxy, 1, 3-Dimethyl-but-2-en-l-yloxy,
1 , 3-Dimethyl-but-3-en-l-yloxy, 2 , 2-Dimethyl-but-3-en-l-yloxy,
2 , 3-Dimethyl-but-l-en-l-yloxy, 2 , 3-Dimethyl-but-2-en-l-yloxy,
2, 3-Dimethyl-but-3-en-l-yloxy, 3 , -Dimethyl-but-l-en-l-yloxy,
3 , 3-Dimethyl-but-2-en-l-yloxy, 1-Ethylbut-l-en-l-yloxy, l-Ethylbut-2-en-l-yloxy, l-Ethylbut-3-en-l-yloxy, 2-Ethyl- but-1-en-l-yloxy, 2-Ethylbut-2-en-l-yloxy, 2-Ethylbut-3-en- 1-yloxy, 1, 1, 2-Trimethyl-prop-2-en-l-yloxy, 1-Ethyl-l-methyl- prop-2-en-l-yloxy, l-Ethyl-2-methyl-prop-l-en-l-yloxy oder l-Ethyl-2-methyl-prop-2-en-l-yloxy, insbesondere für Allyl - oxy;
C2-C4-Alkenyloxy-Cι-C4-alkyl für : durch C3-C4~Alkenyloxy wie Vinyloxy, Allyloxy, But-l-en-3-yloxy, But-l-en-4 -yloxy, But-2-en-l-yloxy, l-Methylprop-2-enyloxy oder 2-Methyl - prop-2-enyloxy substi tuiertes Cι~C4-Alkyl , also beispielsweise für Vinyloxymethyl , Allyloxymethyl , 2-Allyloxyethyl oder But-l-en-4-yloxymethyl , insbesondere für 2 -Al lyloxyethyl ;
C3-C6-Alkinyl für : z . B . Prop-1-in-l-yl , Propargyl , n-But-1 - in-l-yl , n-But-l-in-3-yl , n-But-l-in-4-yl , n-But-2-in-l -yl , n-Pent-1-in-l-yl , n-Pent-l-in-3-yl , n-Pent-l-in-4-yl , n-Pent- l-in-5-yl , n-Pent-2-in-l-yl , n-Pent-2 -in-4-yl , n-Pent-2-in- 5-yl, 3-Methyl-but-l-in-3-yl, 3-Methyl-but-l-in-4-yl, n-Hex- 1-in-l-yl, n-Hex-l-in-3-yl, n-Hex-l-in-4-yl, n-Hex-l-in-5-yl , n-Hex-l-in-6-yl, n-Hex-2-in-l-yl, n-Hex-2-in-4-yl , n-Hex-2- in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-l-yl , n-Hex-3-in-2-yl, 3-Methyl-pent-l-in-l-yl, 3-Methyl-pent-l-in-3-yl, 3-Methyl- pent-l-in-4-yl, 3-Methyl-pent-l-in-5-yl , 4-Methyl-pent-l- in-l-yl, 4-Methyl-pent-2-in-4-yl oder 4-Methyl-pent-2-in- 5-yl, insbesondere für Propargyl ;
- C3-C8-Halogenalkinyl: C3-Cθ-Alkinyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod substituiert ist, also z.B. für 1,1-Difluor- prop-2-in-l-yl, 4-Fluorbut-2-in-l-yl, 4-Chlorbut-2-in-l-yl, 1, 1-Difluorbut-2-in-l-yl, 5-Fluorpent-3-in-l-yl oder 6-Fluor- hex-4-in-l-yl;
Cι-C6-Alkoxy-C3-C8-alkinyl für: durch Cι-C6-Alkoxy wie oben genannt substituiertes C3-C8-Alkinyl , also z.B. für 3-Methoxy- prop-2 - in-1-yl ;
C3-C8-Alkinyloxy für: z.B. Propargyloxy, Prop-2-in-l-yloxy, n-But-1-in-l-yloxy, n-But-l-in-3-yloxy, n-But-l-in-4-yloxy, n-But-2-in-l-yloxy, n-Pent-1-in-l-yloxy, n-Pent-l-in-3-yloxy, n-Pent-l-in-4-yloxy, n-Pent-l-in-5-yloxy, n-Pent-2-in-l-yl - oxy, n-Pent-2-in-4-yloxy, n-Pent-2-in-5-yloxy, 3-Methyl- but-l-in-3-yloxy, 3-Methyl-but-l-in-4-yloxy, n-Hex-1-in-l-yl - oxy, n-Hex-l-in-3-yloxy, n-Hex-l-in-4-yloxy, n-Hex-l-in-5-yl - oxy, n-Hex-l-in-6-yloxy, n-Hex-2-in-l-yloxy, n-Hex-2-in-4-yl - oxy, n-Hex-2-in-5-yloxy, n-Hex-2-in-6-yloxy, n-Hex-3-in-l-yl - oxy, n-Hex-3-in-2-yloxy, 3-Methylpent-l-in-l-yloxy, 3-Methyl - pent-l-in-3-yloxy, 3-Methylpent-l-in-4-yloxy, 3-Methylpent-l- in-5-yloxy, 4-Methylpent-l-in-l-yloxy, 4-Methylpent-2-in-4-yl oder 4-Methylpent-2-in-5-yloxy, insbesondere für Propargyloxy;
C3-C4-Alkinyloxy-Cι-C -alkyl für: durch C3-C4-Alkinyloxy wie Propargyloxy, But-l-in-3-yloxy, But-l-in-4-yloxy, But-2-in-l- yloxy, l-Methylprop-2-inyloxy und 2-Methylprop-2-inyloxy, vorzugsweise Propargyloxy, substituiertes Cι-C -Alkyl, also beispielsweise für Propargyloxymethyl oder 2-Propargyioxy- ethyl, insbesondere für 2-Propargyloxyethyl;
Die Benzylgruppe (als eine der Bedeutungen von R4) ist vorzugsweise unsubstituiert oder trägt einen Nitro-, Halogen-, Cx -C4 -Alkyl - , Ci -C4 -Alkoxy- oder (Ci -C4-Alkoxy) carbonyl - Substituenten. Im Hinblick auf die Verwendung der substituierten 2-Arylpyridine I als Herbizide und/oder als desikkant/defoliant wirksame Verbindungen haben die Variablen vorzugsweise folgende Bedeutungen, und zwar jeweils für sich allein oder in Kombination:
n Null;
R1 Mercapto, Hydroxysulfonyl, Chlorsulfonyl, Aminosulfonyl ,
Cj-Cβ -Alkylthio, Ci-Cβ -Alkylsulfinyl oder Cι-C6-Alkylsulfonyl , insbesondere Ci -C6 -Alkylsulfonyl ;
R2 Halogen, insbesondere Chlor;
R3 Wasserstoff oder Halogen, vorzugsweise Halogen, insbesondere Fluor oder Chlor;
R4 Wasserstoff, Cι-C6-Alkyl, Cyano-Cι-C6 -alkyl, Cχ-C6 -Alkoxy, Ci -C6 -Alkoxy-Cι-C6- alkyl, Ci -C6 -Alkylthio-Ci -C6- alkyl, (Ci -C6 -Alkoxy) carbonyl -Cι-C6- alkyl, C3 -C8-Alkenyl, C3-C8 -Alkinyl, C3-C6-Alkenyloxy oder C3-C6 -Alkinyloxy, insbesondere Wasserstoff, Cι-C6 -Alkyl, Cyano-Cι-C6- alkyl, (Cι-C6 -Alkoxy) carbonyl -C].-C6- alkyl, C3 -C8-Alkenyl oder C3 -C8-Alkinyl;
X Sauerstoff ;
eine chemische Bindung oder C(R5,R6), wobei R5 und R6 unabhängig voneinander für Wasserstoff, C1-C4 -Alkyl oder (C].-C4 -Alkoxy) carbonyl stehen, insbesondere eine chemische Bindung oder Methylen.
Ganz besonders bevorzugt sind die Verbindungen der Formel Ia (= I mit n = Null; R1 = Methylsulfonyl; R2 = Chlor, R3 = Fluor und X = Sauerstoff), insbesondere die Verbindungen der Tabelle 1:
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0003
Des weiteren sind die substituierten 2-Arylpyridine der Formeln Ib, Ic, Id, le, If , Ig, Ih, Ii, Ik, Im und In besonders bevorzugt, insbesondere
die Verbindungen Ib.l bis Ib.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R3 für Chlor steht:
Figure imgf000033_0001
die Verbindungen Ic.l bis Ic.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R3 für Wasserstoff steht:
Figure imgf000033_0002
die Verbindungen Id.l bis Id.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Ethylsulfonyl steht:
Figure imgf000034_0001
die Verbindungen Ie.l bis Ie.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Ethylsulfonyl und R3 für Chlor stehen:
Figure imgf000034_0002
die Verbindungen If.l bis If .363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Ethylsulfonyl und R3 für Wasserstoff stehen:
Figure imgf000034_0003
die Verbindungen Ig.l bis Ig.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Methylsulfinyl steht:
ig
Figure imgf000034_0004
die Verbindungen Ih.l bis Ih.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Methylsulf inyl und R3 für Chlor stehen:
Figure imgf000035_0001
die Verbindungen Ii.l bis Ii.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Methylsulfinyl und R3 für Wasserstoff stehen:
Figure imgf000035_0002
die Verbindungen Ik.l bis Ik.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Methylthio steht:
Figure imgf000035_0003
die Verbindungen Im.l bis Im.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Methylthio und R3 für Chlor stehen:
Figure imgf000035_0004
die Verbindungen In.l bis In.363, die sich von den entsprechenden Verbindungen la.l bis Ia.363 lediglich dadurch unterscheiden, daß R1 für Methylthio und R3 für Wasserstoff stehen:
Figure imgf000036_0001
Die substituierten 2 -Arylpyridine der Formel I sind auf verschiedene Weise erhältlich, beispielsweise nach einem der folgenden Verfahren:
Verfahren A> Oxidation von substituierten 2-Arylpyridinen der Formel I, bei denen n Null bedeutet und die Substituenten R1 und R4 sowie X und Y keinen oxidierbaren Schwefel enthalten, auf an sich bekannte Weise {vgl. z.B. A. Albini & S. Pietra, Heterocyclic N-Oxides, CRC-Press Inc., Boca Raton, USA 1991; H.S. Mosher et al . , Or . Synth. Coll. Vol. IV 1963, Seite 828; E.C. Taylor et al . , Org. Synth. Coll. Vol. IV 1963, Seite 704; T.W. Bell et. al., Org. Synth. 9_, Seite 226 (1990)}:
Oxidation l(n=0) ► I(n=l)
Unter den zur Oxidation des Pyridinrings üblichen Oxidations- mitteln sei beispielhaft auf Peressigsäure, Trifluorperessig- säure, Perbenzoesäure, m-Chlorperbenzoesäure, Monopermalein- säure, Magnesium onoperphthalat, Natriumperborat, Oxone
(enthält Peroxidisulfat) , Perwolframsäure und Wasserstoffperoxid verwiesen.
Geeignete Lösungsmittel sind z.B. Wasser, Schwefelsäure, Carbonsäuren wie Essigsäure und Trifluoressigsäure sowie halogenierte Kohlenwasserstoffe wie Dichlormethan und Chloroform.
Normalerweise gelingt die Oxidation bei Temperaturen von 0°C bis Siedetemperatur des Reaktionsgemisches. Das Oxidationsmittel wird normalerweise in mindestens äuquimolaren Mengen, bezogen auf die Ausgangsverbindung, eingesetzt. Im allgemeinen hat sich ein Überschuß an Oxidationsmittel als besonders vorteilhaft erwiesen.
Verfahren B)
Oxidation von substituierten 2 -Arylpyridinen der Formel I, bei denen R1 für Ci-Cδ-Alkylthio oder Cι-C6 -Alkylsulfinyl steht und die Variablen R4 , X und Y keinen oxidierbaren Schwefel enthalten, auf an sich bekannte Weise (vgl. z.B. C.S. Giam et al., Org. Prep. Proced. Int. 11(2), S. 137 (1981); S.G. Woods et al., J. Heterocycl. Chem. 21, Nl, 97-101 (1984); S.G. Woods, U.S. 4,616,087; N. Finch et al., J. Med. Chem. 21(12), 1269-1274 (1978); H. Ban-Oganowska, Pol. J. Chem. £2(9), 1609-1613 (1993); A.D. Dünn & R. Norrie, J. Prakt. Chem./Chem. -Ztg. 335. 269-272 (1993) } :
Figure imgf000037_0001
I (n = 0; R1 = Alkylthio) I (n = 0: R1 = Alkylsulfinyl)
R = Ci- -Alkyl
Figure imgf000037_0002
I (n = 0; R1 = Alkylsulfonyl)
Bezüglich geeigneter Lösungsmittel, Oxidationsmittel und Reaktionstemperaturen sei auf die Angaben bei Verfahren A> verwiesen.
Zur Herstellung von Wertprodukten I mit R1 = Alkylsulfinyl empfiehlt es sich, nicht mehr als ca. 1,1 Äquivalente des Oxidationsmittels einzusetzen. Zur Herstellung von I mit R1 = Alkylsulfonyl ist es notwendig, mindestens ein Äquivalent oder mindestens zwei Äquivalente des Oxidationsmittels einzusetzen, je nachdem, ob man von den entsprechenden Verbindungen I mit R1 = Alkylthio oder mit R1 = Alkylsulfinyl ausgeht. Verfahren C>
Übergangsmetall -katalysierte Kreuzkupplungsreaktion von 2-Halogenpyridinen II (Hai = Chlor oder Brom) mit metall- organischen Verbindungen der Formel III auf an sich bekannte Weise (vgl. z.B. WO 95/02580 und die dort auf den Seiten 21 und 22 zitierte Literatur} :
Figure imgf000038_0001
(Cι-C6-Alkoxy)
I I I I I V M1 steht für B(OH)2, Mg-Cl, Mg-Br, Mg-J, Zn-Cl, Zn-Br, Zn-J, Lithium, Kupfer oder Zinntri (Ci -C4 -alkyl) , vorzugsweise für B(OH)2, Mg-Cl, Mg-Br, Mg-J, Zn-Cl, Zn-Br oder Zn-J.
Alternativ können statt der Boronsäuren III {M1 = B(OH)2} auch die Boroxine IV eingesetzt werden.
(Cι-C6-Alkoxy)
Figure imgf000038_0002
(Cι-C6-Alkoxy)
Als Katalysatoren kommen insbesondere Palladiumkatalysatoren wie Tetrakis- ( triphenylphosphin) -palladium (0) , Bis- ( triphenyl- phosphin) -palladium (II) -chlorid, 1, 4 -Bis- (diphenylphosphino) - butan-palladium(II) -chlorid, 1,2 -Bis- (diphenylphosphino) -ethan- palladium(II) -chlorid, Palladiu (II) -acetat + Triphenylphosphin, Palladium (II) -acetat + Tri - (o- tolyl) -phosphin oder Palladium auf Aktivkohle, und Nickelkatalysatoren wie Bis- (triphenylphosphin) -nickel (II) -chlorid, 1, 3 -Bis- (diphenylphosphino) -propan- nickel (II) -chlorid oder Nickel (II) -acetylacetonat in Betracht.
Zur Herstellung von II sei auf die Ausführungen bei Verfahren Gj (xxxiva → XXXlVb → → II) verwiesen.
Ausgehend von V sind die substituierten 2 -Arylpyridine der Forme] I (X = 0) dann gemäß Syntheseschema (1) erhältlich:
Figure imgf000039_0001
R steht für e ne der Bedeutungen von R4 mit I {n = 0; R H; X = 0; Ausnahme von Wasserstoff. Y = C(R5,R6)} Umsetzungen dieser Art sind an sich bekannt, beispielsweise aus der folgenden Literatur:
Etherspaltung von Phenolalkylethern: 1. WO 95/02590, Seite 35, Beispiel 1, Syntheseschritt 2 ;
2. A.V. Blokhin et al . , Khim. Geterotsikl. Soedin , 1226-1229
(1990) ;
3. B. Singh et al., J. Heterocycl. Chem. 28.(4), 933-937 (1991);
4. CA. Howard et al . , Angew. Chem. Int. Ed. 11(8), 1028-1030 (1992);
5. T. Katsunori et al.. Bull. Chem. Soc. Jpn. 1, 3132-3140 (1990) ;
6. M. Hamana et al . , Chem. And. Pharm. Bull. 21(6), 1256-1264
(1977) ;
Nitrierung von Phenolen:
1. WO 95/02590, Seite 35, Beispiel 1, Syntheseschritt 3;
2. P. Keller, Bull. Soc. Chim. Fr. 111(1), 27-29 (1994);
Reduktion von Nitrophenolen:
1. WO 95/02590, Seite 35, Beispiel 1, Syntheseschritt 4 ;
2. U.S. 4,959,492;
3. K.J. Stutts et al., J. Org. Chem. IA, 3740 (1989);
4. P.K. Arora et al., Ind. J. Chem. B ü, 199-200 (1979);
Umsetzung von Aminophenolen mit Phosgenderivaten:
1. R.J. Nachman, J. Heterocyclic Chem. H, 1545 (1982);
Alkylierung von Benzoxazolonen: 1. J.J. D'Amico et al., J. Heterocyclic Chem. 21, 1487 (1988);
2. W.J. Close et al., J. Am. Chem. Soc. 7_1, 1265 (1949);
3. M. Yamato et al . , Chem. And. Pharm. Bull. H, 1733 (1983);
4. U.S. 4,640,707;
5. BG 40 729; 6. U.S. 4,790,868;
7. P. Depreux et al . , Heterocycles 16., 1051 (1993);
8. G. Pilli et al . , Arzneim. -Forschung 11, 1351 (1993);
9. A. Benarab et al . , Tetrahedron Lett. 14, 7567 (1993);
Umsetzung von Aminophenolen mit α-Halogencarbonsäure (derivate)n:
1. X. Huang et al., Synthesis 1984, 851;
2. D.R. Shridhar et al . , Org. Prep. Proced. Int. H, 195 (1982);
3. U.S. 4,307,091;
4. DB 3 901 461; 5. D. Kikel et al., J. Heterocyclic Chem. Q., 597 (1993);
6. H. Tawada et al . , Chem. Pharm. Bull. 11, 1238 (1990);
7. T. Kawakita et al . , Chem. Pharm. Bull. A0_, 624 (1992); 8. WO 95/02590, Seite 35, Beispiel 1, Syntheseschri te 5 und 6;
Alkylierung von Benzoxazinonen:
1. K.U.P. Rao et al., Ind. J. Chem. B 2i, 1120 (1985);
2. JP-A 61/140 572;
3. U.S. 4,640,707;
4. JP-A 63/107 970;
5. U.S. 4,792,605;
6. WO 95/02590, Seite 35, Beispiel 1, Syntheseschritt 6
Das Aminophenol VIII kann auch mit Oxalsäure (derivaten) XI wie Oxalsäurechlorid und (gewünschtenfalls substituiertem) Maleinsäureanhydrid umgesetzt werden:
Figure imgf000041_0001
I {n = 0;R4 = H: I {n = 0; R4 = H; X = O; Y = CO} X = 0;Y = C(R5,R6)}
Syntheseschema 2
Auch derartige Umsetzungen sind an sich bekannt, beispielsweise aus der folgenden Literatur: 1. U.S. 4,826,833;
2 N. Kawahara et al., Heterocycles 21, 2803 (1986); 3 D.R. Shridhar et al . , Ind. J. Chem. B 21, 992 (1985);
4 CO. Okafor et al . , J. Chem. Soc, Perkin Trans. 1, 1993,
159.
Verfahren D) Die substituierten 2 -Arylpyridine I, bei denen X Sauerstoff,
Schwefel, -NH- oder -N(CH3)- bedeutet, lassen sich gemäß Syntheseschema (3) herstellen:
Figure imgf000042_0001
X ' steht für Sauerstoff, Schwefel, -NH- oder -N(CH3)-;
R4' steht für eine der Bedeutungen von R4 mit Ausnahme von Wasserstoff. Die p-Fluorphenylpyridine der Formel XII sind beispielsweise analog Verfahren C) durch Übergangsmetall -katalysierte Kreuz - kupplungsreaktion von II mit XVII
R3
Figure imgf000043_0001
herstellbar.
Umsetzungen dieser Art sind an sich bekannt, beispielsweise aus der folgenden Literatur:
Nitrierung von Fluoraromaten:
1. WO 95/02590, Seite 39, Beispiel 3, Syntheseschritt 2; 2. E.A. Bliss et al., J. Chem. Soc. Perkin Trans. 1, 2217,
(1987) ; 3. J.S. Amato et al., J. Heterocyclic Chem. H, 1153 (1979);
Umsetzung von o-Fluornitrobenzolen mit Aminen: 1. WO 95/02590, Seite 39, Beispiel 3, Syntheseschritt 3; Seite 43, Beispiel 9, Syntheseschritt 1; Seite 44, Beispiel 11, Syntheseschritt 1;
2. T. Wagner -Jauregg et al., Chem. Ber. £9_, 253 (1956);
3. A.L. Levy et al., J. Am. Chem. Soc. 22, 2899 (1955); 4. G. Lang et al . , U.S. 4,910,341;
Umsetzung von o-Fluornitrobenzolen mit Mercaptanen:
1. J. Slade et al . , J. Med. Chem. 21, 1517 (1985);
2. M.E. Leblanc et al., J. Fluor. Chem. 12- 233-248 (1981);
Umsetzung von o-Fluornitrobenzolen mit Alkoholen:
1. M. Enomoto et al., U.S. 4,970,322 & U.S. 4,877,444;
2. E. Akimoto et al., JP-A 61/180 746;
Reduktion von Nitroaromaten mit anschließender Cyclokondensation:
1. G. Theodoridis et al . , J. Heterocyclic Chem. 1, 849 (1991);
2. N. Kawahara et al., Heterocycles 11, 729 (1981);
3. V. Evdokimoff, Gazz. Chim. Ital. H, H33 (1960);
4. R.L. Wear et al., J. Am. Chem. Soc. 22, 2893 (1950); 5. U.S. 4,734,124;
6. Enomoto et al., U.S. 4,970,322 & U.S. 4,877,444;
7. V.N. Lisitsyn et al . , Zh. Organ. XIMII 21, 1095 (1990);
8. M. Makosza et al . , Tetrahedron H, 7263 (1995).
Zur Umsetzung von XlVb mit Phosgen (derivaten) und Alkylierung von Verbindung I mit R4 - H siehe die hierzu bei Verfahren C> zitierte Literatur. verfahren E>
Die substituierten 2 -Arylpyridine der Formel I, bei denen X Methylen und Y eine chemische Bindung bedeuten, lassen sich gemäß Syntheseschema (4) herstellen:
0- Alkyl*»
o-Aikyi"
Figure imgf000044_0001
Figure imgf000044_0002
I {n = 0; R4 = H; X = CH2; Y = Bindung}
Figure imgf000044_0004
Syntheseschema 4
Figure imgf000044_0003
I {n = 0; R H; X = CH2; Y = Bindung} *' bevorzugt Cι-C6
R4' steht für eine der Bedeutungen von R4 mit Ausnahme von Wasserstoff.
Aus XIII {Herstellung s. Syntheseschema (3)} erhält man durch nukleophile aromatische Substitution des Fluors durch einen Malonsäureester-Rest und anschließende saure Hydrolyse mit Decarboxylierung das Phenylessigsäure -Derivat XX. Bei dessen Reduktion tritt {wie im Falle von XVI; vgl. Syntheseschema (3)} spontane Cyclokendensation zu I {n = 0; R4 = H; X = CH2; Y = Bindung} ein. Auch derartige Umsetzungen sind an sich bekannt, beispielsweis aus der folgenden Literatur:
Umsetzung von Fluornitroaromaten mit Malonestern: G.J. Quallich et al., Synthesis, 51-53 (1993);
2. J.A. Walker, U.S. 4,398,035;
3. H. Burghard et al . , J. Pharm. Sei. £1, 933 (1980);
4. F.J. Goetz et al., J. Org. Chem. M, 2468 (1983);
5. N. Ogawa et al., J. Pharm. Soc. Jap. 107, 111 (1987) Hydrolyse und Decarboxylierung von Phenylmalonestern:
1. J.G. Atkinson et al., Tetrahedron Lett., 2857 (1979);
2. M.M. Elshafie Sayed, Chimia M, 343 (1982);
3. M.A.E. Bowman et al . , Org. Prep. Proced. Int. 22, 636 (1990); 4. D. Barrett et al., J. Org. Chem. 10., 3928 (1995);
Reduktion der Nitrogruppe und Cyclokondensation:
1. G. Gallagher Jr. et al . , J. Med. Chem 21, 1533 (1985);
2. A.L. Davis et al., J. Med. Chem 16., 1043 (1973); 3. J.W. Cook et al . , J. Chem. Soc, 3904 (1952);
4. E. Giovannini et al . , Helv. Chim. Acta 21, 1392 (1948);
5. P. Lewer, J. Chem. Soc, Perkin Trans. 1, 4., 753 (1987);
N-Alkylierung von Indolonen: 1. T.A. Blizzard et al . , J. Org. Chem. i, 2657 (1989);
2. T.C Crawford, U.S. 4,652,658;
3. K. isshiki et al., J. Antibiot. ü, 1202 (1987);
4. D.W. Robertson et al., J. Med. Chem. 2ιl, 1476 (1989);
5. G.M. Karp et al . , J. Org. Chem. 12, 4765 (1992).
Verfahren F)
Die substituierten 2 -Arylpyridine der Formel I, bei denen X und Y
CH2 bedeuten, lassen sich gemäß Syntheseschema (5) herstellen:
Figure imgf000045_0001
CHO {M3 = B(OH)2,Sn(Alkyl)3}
Figure imgf000046_0001
I {n = 0; R4 = H; X = Y = CH2} l ln = 0; R4 ≠ H; X = Y = CH?}
Alkyl steht vorzugsweise
Syntheseschema 5 für Cι-C4-Alkyl.
R4 ' steht für eine der Bedeutungen von R4 mit Ausnahme von Wasserstoff.
Übergangsmetallkatalysierte Kreuzkupplungsreaktion des Halogen - pyridins II mit einer Boronsäure oder Trialkylzinnverbindung der Formel XXIII führt zu dem Aldehyd XXIV. XXIV erhält man aber auch durch Umsetzung von II mit dem Metallorganyl XXI und Hydrolyse des Reaktionsproduktes XXII.
XXIV selbst wird dann in einer Wittig-Horner-Emmons-Reaktion mit den Phosphonestern XXV zum Zimtester XXVI umgesetzt, dessen Hydrierung, Nitrierung und Hydrolyse zu den Carbonsäure fester) n XXVIII führt. Die Reduktion der Nitrogruppe, z.B. mit Wasserstoff, führt dann unter intramolekularer Kondensation zu I.
Zu den aufgezeigten Umsetzungen sei beispielhaft auf die folgende Literatur verwiesen: Übergangsmetall -katlysierte Kreuzkupplungsreaktionen:
1. WO 95/02580 und die dort auf den Seiten 21 und 22 zitierte Literatur;
2. A. Kasahara et al . , Bull. Chem. Soc. Jap. 11, 2434 (1982); 3. H. Jendralla et al . , Liebigs Ann. Chem., 1253-1257 (1995);
Acetalhydrolyse :
1. S. Linke in Houben-Weyl, Methoden der Organischen Chemie, Bd E3, Stuttgart-New York 1983, Seiten 362 ff. und die dort zitierte Literatur;
Wittig -Hörner-Emmons -Reaktion:
1. M.E. Niyazybetov et al., Tetrahedron Lett. 21, 3007 (1988);
2. M.W. Rathke et al . , J. Org. Chem. 11, 2624 (1985); 3. G. Cainelli et al., J. Chem. Soc, Perkin Trans. 1, 2516 (1980) ;
4. A. Fuentes et al., Tetrahedron Lett. 21, 2951 (1987);
5. W.C. Still et al., Tetrahedron Lett. 21, 4405 (1983);
Reduktion von Zimtestern zu Dihydrozimtestern:
1. J.K. Youn et al., Tetrahedron Lett. 22, 2409 (1986);
2. A. Nose et al . , Chem. Pharm. Bull. H, 2097 (1990);
3. H.J. Liu et al., Synthetic Commun. H, 695 (1985);
4. J.W. Tillev et al . , J. Med. Chem. Ii, 1125 (1991); 5. S. Ram et al., Synth. Commun. 22, 2683 (1992);
Nitrierung von Dihydrozimtsäureestern:
1. C Theodoridis et al . , J. Heterocyclic Chem. 21, 849 (1991);
2. M. Tominaga et al . , Chem. Pharm. Bull. 3_i, 682 (1986);
Reduktion und Cyclokondensation:
1. G. Theodoridis et al . , J. Heterocyclic Chem. 21, 849 (1991);
2. N. Kawahara et al., Heterocycles 1£, 729 (1981);
3. R.C. Fuson et al . , J. Am. Chem. Soc. 21, 1169 (1954); 4. S. Niwas et al., Synthesis 12, 1027 (1983);
5. J.C Pelletier et al., J. Org. Chem. 12, 616 (1987);
6. T. Kolasa et al., J. Org. Chem. H, 4246 (1990);
7. M. Makosza et al . , Tetrahedron H, 7263 (1995);
Alkylierung von Chinolinonen:
1. H. Suginome et al., J. Org. Chem. H, 4933 (1990);
2. D.M. Fink et al . , Tetrahedron Lett. H, 2103 (1992);
3. W.K. Anderson et al . , J. Med. Chem. H, 2097 (1988);
4. M. Tominaga et al . , Chem. And Pharm. Bull. 21, 2166 (1981); 5. J.L. Mokrosz et al., Arch. Pharm. 122, 529 (1994). Auf die in Syntheseschema (5) aufgezeigte Weise lassen sich auch die Verbindungen I, bei denen Y Carbonyl oder C(R5,R6) (R5 und R6 ≠ H) bedeutet, herstellen. Entweder wird dann anstelle von XXV eine höher funktionalisierte Verbindung eingesetzt oder man alkyliert auf einer späteren Verfahrensstufe in α-Stellung zur Carbonylgruppe bzw. oxidiert erst dann.
Verfahren G)
Figure imgf000048_0002
Figure imgf000048_0001
Figure imgf000049_0001
I {n = 0; R' = Cι-C6-Alkylthio; X = 0; Y = C(R5,R6)}
Die Reduktion der Nitrogruppe am Pyridin kann sowohl vor als auch nach der Alkylierung des Benzoxazinons XXXIIa vorgenommen werden. Ausgehend von XXIX erhält man zunächst in Abhängigkeit von Reduktionsmittel, dessen Menge und den Reduktionsbedingungen XXXa oder XXXb.
Alle Einzelschritte sind bekannt, beispielsweise aus den folgenden Veröffentlichungen:
- Reduktion von Nitropyridinen mit Wasserstoff: F. Janssens et al . , J. Med. Chem. 21(12), S. 1943 (1985);
- Reduktion von Nitropyridinen mit Eisen:
B.A. Fox et al., Org. Synth. 4_i, S. 34 (1964);
- Reduktion von Nitropyridinen mit Zinn (II) chlorid:
L.A. Perez-Medina et al . , J. Am. Chem. Soc. H, S. 2574 (1947); - Reduktion von Nitropyridinen mit Hydrazin:
G. J. Clark et al . , Aust. J. Chem. 11, S. 927 (1981);
- Reduktion von Nitropyridinen mit Zinn:
K. Wojciechowski et al . , Synthesis 1, 651-653 (1986);
- Reduktion von Nitropyridinen mit niedervalenten Titanverbin- düngen: M. Malinowski, B. Soc. Chim. Belg. £2(1), 51-53 (1988);
- Reduktion von Nitropyridinen mit Bäckerhefe:
M. Takeshita et al., Heterocycles 11(12) , 2201-2204 (1990);
- Reduktion von Nitropyridinen mit Zink:
K. Goerlitzer et al., Arch. Pharm. 324 (10) , 785-796 (1991); - Reduktion von Nitropyridinen mit Natriumdithionit: F.G. Fischer et al., Ann. Chem. Hl, S. 49 (1962);
- Diazotierung von Aminopyridinen mit Isoamylnitrit und Umsetzung der Diazoniumsalze mit Dimethyldisulfid oder Diphenyldisulfid: CS. Giam et al . , J. Chem. Soc, Chem. Commun. H, s. 756 (1980);
T. Yasumitsu et al., J. Org. Chem. ü, 3564-3567 (1981). Die Ausgangsverbindungen XXIX sind auf die in Syntheseschema (1! aufgezeigte Weise aus Verbindungen XXXIII
XXXIII
Figure imgf000050_0001
O-Alkyl (vorzugsweise Ci-Cg)
durch Etherspaltung und Nitrierung der hierbei erhaltenen Phenole erhältlich.
Die Verbindungen XXXIII wiederum sind analog Verfahren C> durch Übergangsmetall -katalysierte Kreuzkupplungsreaktion von 2 -Halogen- 5 -nitropyridinen der Formel XXXIVa (Hai = Chlor oder Brom)
XXXIVa
Figure imgf000050_0002
mit metallorganischen Verbindungen der Formel III oder Boroxinen IV zugänglich.
Reduktion der Verbindungen XXXIVa {vgl. z.B. J. Med. Chem. H, 319-327 (1973)} führt andererseits zu den entsprechenden 5-Amino-2 -halogenpyridinen XXXIVb
XXXIVb,
Figure imgf000050_0003
aus denen durch Diazotierung - vorzugsweise mit einem Salpetrig - säureester wie tert. -Butylnitrit und Isopentylnitrit - und anschließender Umsetzung des Diazoniumsalzes mit einem symmetrischen aliphatischen Disulfid (Cχ-C6 -Alkyl) -S- S- (Ci -C6-Alkyl) die 2-Halogenpyridine II (R1 = Cι-C6 -Alkylthio) erhältlich sind (vgl. auch oben die Überführung von XXXIId in I {n = 0; R1 = Ci-Ce-Alkylthio; X = 0; Y = C(R5,R6)}).
Die 2 -Halogenpyridine II mit R1 = Cι-C6-Alkylthio können anschließend zu den entsprechenden Verbindungen mit R1 = Cι-C6-Alkylsulfinyl oder Ci-Cβ -Alkylsulfonyl oxidiert werden, wie es unter Verfahren B) für die Verbindungen I mit R1 = Ci -C6 -Alkylthio beschrieben wurde. Verf ahren H
kyl
Figure imgf000051_0002
Figure imgf000051_0001
(CrC6-Alkyl)-S
Syntheseschema 7
I {n = 0; R1 = C]-C6-Alkylthio; R4 ≠ H; X = X'; Y = C(RS,R6)}
X' steht für Sauerstoff, Schwefel, -NH-, -N(CH3)-;
R4 steht für eine der Bedeutungen von R4 mit Ausnahme von Wasserstoff. Zu den einzelnen Umsetzungen siehe die bei den Verfahren D) und G> zitierte Literatur.
Die 2 - ( -Fluor-3-nitrophenyl) - 5-nitropyridine XXXV sind durch Nitrierung der entsprechenden 2 - (4 -Fluorphenyl) - 5-nitropyridine erhältlich {vgl. hierzu die bei Verfahren D( aufgeführte Literatur}. Die 2 - (4 -Fluorphenyl) - 5 -nitropyridine wiederum sind z.B. analog Verfahren C> durch Kreuzkupplungsreaktion der 2 -Halogen- 5-nitropyridine XXXIV mit XVII zugänglich.
Normalerweise sind die substituierten 2-Arylpyridine I nach einem der vorstehend genannten Syntheseverfahren herstellbar. Aus wirtschaftlichen oder verfahrenstechnischen Gründen kann es jedoch zweckmäßiger sein, einige Verbindungen I aus ähnlichen 2-Aryl- pyridinen, die sich jedoch in der Bedeutung eines Restes unterscheiden, herzustellen.
Sofern nicht anders angegeben, sind die für die einzelnen Verfahren angegebenen Ausgangsverbindungen entweder bekannt oder auf an sich bekannte Weise oder in Analogie zu einem der beschriebenen Verfahren erhältlich.
Die Aufarbeitung der Reaktionsgemische erfolgt in der Regel nach an sich bekannten Methoden, beispielsweise durch Verdünnen der Reaktionslόsung mit Wasser und anschließender
Isolierung des Produktes mittels Filtration, Kristallisation oder
Losungsmittelextraktion, oder durch Entfernen des Lösungsmittels, Verteilen des Rückstandes in einem Gemisch aus Wasser und einem geeigneten organischen Lösungsmittel und Aufarbeiten der organischen Phase auf das
Produkt hin.
Die substituierten 2-Arylpyridine I können bei der Herstellung als Isomerengemische anfallen, die jedoch gewünschtenfalls nach den hierfür üblichen Methoden wie Kristallisation oder Chromatographie, auch an einem optisch aktiven Adsorbat, in die weit¬ gehend reinen Isomeren getrennt werden können. Reine optisch aktive Isomere lassen sich vorteilhaft aus entsprechenden optisch aktiven Ausgangsprodukten herstellen.
Landwirtschaftlich brauchbare Salze der Verbindungen I können durch Reaktion mit einer Base des entsprechenden Kations, vorzugsweise einem Alkalimetallhydroxid oder -hydrid, gebildet werden. Salze von I, deren Metallion kein Alkalimetallion ist, können auch durch Umsalzen des entsprechenden Alkalimetallsalzes in üblicher Weise hergestellt werden, ebenso Ammonium-, Phosphonium-, Sulfonium- und Sulfoxoniumsalze mittels Ammoniak, Phosphonium-, Sulfonium- oder Sulfoxoniumhydroxiden.
Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltenden herbiziden Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:
Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var . napus, Brassica napus var . napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica) , Cucu is sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine ax, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium) , Helianthus annuus, Hevea brasiliensis, Hordeum vulgäre, Hu ulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimu , Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacu (N.rustica), Olea europaea, Oryza sativa , Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus co unis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgäre), Theobroma cacao, Trifolium pratense, Triticu aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays .
Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden. Des weiteren eignen sich die substituierten 2-Arylpyridine I auch zur Desikkation und/oder Defoliation von Pflanzen.
Als Desi antien eignen sie sich insbesondere zur Austrocknung der oberirdischen Teile von Kul urpflanzen wie Kartoffel, Raps, Sonnenblume und Sojabohne. Damit wird ein vollständig mechanisches Beernten dieser wichtigen Kulturpflanzen ermöglicht.
Von wirtschaftlichem Interesse ist ferner die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haf festigkeit am Baum bei Zitrusfruchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- oder Blatt- und Sproßteil der Pflanzen ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen, insbesondere Baumwolle, wesentlich.
Außerdem führt die Verkürzung des Zeitintervalls, in dem die einzelnen Baumwollpflanzen reif werden, zu einer erhöhten Faser - qualität nach der Ernte.
Die Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Losungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen,
Oldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
Als inerte Hilfsstoffe kommen im Wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis hohem Siedepunkt wie Kerosin und Dieselöl, ferner Kohlenteerole sowie Ole pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffine, Tetrahydronaphthalin, alkylierte Naphthaline und deren Derivate, alkylierte Benzole und deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol und Cyclohexanol, Ketone wie Cyclohexanon, stark polare Losungs - mittel, z.B. Amine wie N-Methylpyrrolidon und Wasser.
Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergier- baren Granulaten durch Zusatz von Wasser bereitet werden. Zur
Herstellung von Emulsionen, Pasten oder Oldispersionen können die Substrate als solche oder in einem 01 oder Losungsmittel gelost, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether , Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxy- ethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenyl-, Tributylphenylpolyglykolether , Alkyl - arylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylen- oxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylen- oder Polyoxypropylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht .
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe her- gestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Im allgemeinen enthalten die Formulierungen etwa von 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) ein- gesetzt. Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:
I. 20 Gewichtsteile der Verbindung Nr. Ic.4 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem
Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
II. 20 Gewichtsteile der Verbindung Nr. Ic.15 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctyl- phenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
III. 20 Gewichtsteile des Wirkstoffs Nr. Ic.24 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungs- produktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
IV. 20 Gewichtsteile des Wirkstoffs Nr. Ic.39 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutyl- naphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulf it-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält. V. 3 Gewichtsteile des Wirkstoffs Nr. Ic.119 werden mit
97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.
VI. 20 Gewichtsteile des Wirkstoffs Nr. Ic.328 werden mit
2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd- Kondensates und 68 Gewichtsteilen eines paraffinischen
Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
VII. 1 Gewichtsteil des Wirkstoffs Nr. Ic.4 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhalt ein stabiles Emulsionskonzentrat.
VIII. 1 Gewichtsteil des Wirkstoffs Nr. Ic.15 wird in einer
Mischung gelost, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol® EM 31 (= nichtionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl; BASF AG) besteht. Man erhält ein stabiles Emulsionskonzentrat.
Die Applikation der Wirkstoffe I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglicn, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Die Aufwandmengen an Wirkstoff I betragen je nach Bekämpfungs- ziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1,0 kg/ha aktive Substanz (a.S.).
Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die substituierten 2-Arylpyridine I mit zahlreichen Vertretern anderer herbizider oder Wachstums - regulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thιa- diazole, 1, 3 , 4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, Aryloxy-/Heteroaryloxyalkan- sauren und deren Derivate, Benzoesäure und deren Derivate, Benzo- thiadiazinone, 2 - (Hetaroyl/Aroyl) - 1, 3 -cyclohexandione, Hetero- aryl-Aryl-Ketone, Benzylisoxazolidinone, meta-CF3-Phenylderivate, Carbamate, Chinolincarbonsäure und deren Derivate, Chloracet- anilide, Cyclohexan-1, 3-dionderivate, Diazine, Dichlorpropion- säure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether , Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyl- uracile, Imidazole, Imidazolinone, N-Phenyl-3, 4 , 5, 6-tetrahydro- phthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- und Hetero- aryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, 2-Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Pyri idylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazolcarboxamide und Uracile in Betracht.
Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, bei - spielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.
HerStellungsbeispiele
Beispiel 1
6- (3 -Chlor-5-methylsulfonylpyridin-2-yl) -7-fluor-4- (2-propin- 1-yl) -2H-l,4-benzoxazin-3-on (Tabelle 1, Nr. Ia.119)
Zu einer Suspension von 0,06 g Natriumhydrid (80 %ige Suspension in Mineralöl) in 20 ml wasserfreiem Dimethylformamid wurde eine Lösung von 0,7 g 6 - (3 -Chlor- 5 -methylsulfonylpyridin- 2 -yl) - 7 - fluor-2H- 1, 4 -benzoxazin-3 -on in 20 ml Dimethylformamid langsam zugetropft. Nach beendeter Zugabe rührte man noch 10 Minuten, bevor eine Lösung von 0,26 g Propargylbromid in 10 ml Dimethylformamid zugetropft wurde. Die erhaltene Mischung wurde 20 Stunden bei Raumtemperatur gerührt und dann in 200 ml Eiswasser gegossen. Anschließend extrahierte man dreimal mit je 50 ml tert. -Butyl - methylether. Die vereinigten organischen Phasen wurden zweimal mit wenig Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des erhaltenen Rohprodukts erfolgte mittels Chromatographie an Kieselgel (Laufmittel: Dichlormethan/tert. -Butyl -methylether = 1:1). Ausbeute: 0,2 g weißer Kristalle; Smp.: 223°C. XH-NMR (250 MHz, in CDCl3) : δ [ppm] = 2.27 (s,lH) , 3.18 (s,3H) , 4.72 (s,2H) , 4.73 (d,2H) , 6.90 (d,lH) , 7.30 <d,lH) , 8.34 (s,lH) , 9.09 (s,lH) .
Vorstufe 1.1
3-Chlor-2- (2 -fluor -4 -methoxyphenyl) - 5-methylsulfonylpyridin
5,1 g 2 , 3 -Dichlor- 5-methylsulfonylpyridin, 5,6 g 2-Fluor-4- methoxybenzolboronsäure, 5,6 g Natriumhydrogencarbonat und 0,5 g Tetrakistriphenylphosphinpalladium(O) wurden in einer Mischung aus 80 ml Tetrahydrofuran und 80 ml Wasser 24 Stunden auf Rückflußtemperatur erhitzt. Nach dem Abkühlen extrahierte man dreimal mit je 100 ml tert . -Butyl -methylether. Die vereinigten organischen Phasen wurden noch über Natriumsulfat getrocknet und dann eingeengt. Die Reinigung des Rohprodukts erfolgte mittels Chromatographie (Laufmittel: Cyclohexan/tert . - Butyl -methylether = 3:1, danach reiner tert . -Butyl -methylether) . Ausbeute: 3,75 g eines farblosen Öls. 1H-NMR (270 MHz, in CDC13): δ [ppm] = 3.18 (s,3H), 3.85 (s,3H), 6.74 (dd,lH), 6.85 (dd,lH), 7.42 (t,lH), 8.30 (s,lH), 9.07 (S,1H) .
Vorstufe 1.2
3-Chlor-2- (2 -fluor -4 -hydroxyphenyl) -5-methylsulfonylpyridin
3,75 g 3-Chlor-2- (2-f luor -4 -methoxyphenyl) - 5-methylsulfonyl - pyridin wurden in 50 ml 47 %iger wäßriger HBr-Lösung vier Stunden auf Rückflußte peratur erhitzt. Die erkaltete Reaktionsmischung verdünnte man mit 150 ml Wasser. Anschließend wurde dreimal mit je 50 ml Essigsäureethylester extrahiert. Die vereinigten organischen Phasen trocknete man noch über Natriumsulfat und engte danach ein. Ausbeute: 4,0 g eines farblosen Öls. !H-NMR (250 MHz, in d6 -Di ethylsulfoxid) : δ [ppm] = 3.44 (s,3H), 6.70-6.84 (m,2H), 7.36 (t,lH), 7.5-8.5 (br.,lH), 8.55 (s,lH), 9.08 (S,1H) .
Vorstufe 1.3
3-Chlor-2- (2 -fluor-4 -hydroxy-5-nitrophenyl) - 5-methylsulfonylpyridin
4, 0 g 3 -Chlor -2 - (2 -fluor- 4 -hydroxyphenyl) -5 -methylsulfonylpyridin und 1,4 g Kaliumnitrat in 100 ml Eisessig wurden 1,5 Stunden bei 50°C gerührt, wonach man die Mischung kalt stellte. Das auskristallisierte Produkt wurde abfiltriert, mit Wasser gewaschen, getrocknet und aus Toluol umkristallisiert. Ausbeute: 1,3 g weißer Kristalle. ^-NMR (270 MHz, in d6 -Dimethylsulfoxid) : δ [ppm] = 3.47 (s,3H), 7 . 11 ( d , lH ) , 8 . 22 ( d , lH) , 8 . 63 ( s , lH ) , 9 . 12 ( s , l H) , 12 . 1 (br . , 1H) .
Vorstufe 1.4 5 2 - (5-Amino-2 -fluor - -hydroxyphenyl) -3 -chlor- 5-methylsulfonylpyridin
0,63 g Eisenpulver in 20 ml Eisessig wurden bei Rückflußtemperatur portionsweise mit 1,3 g 3 -Chlor-2 - (2 - fluor-4 -hydroxy-
10 5 -nitrophenyl) -5-methylsulfonylpyridin versetzt. Nach beendeter Zugabe erhitzte man noch zwei Stunden auf Rückflußtemperatur. Nach dem Abkühlen auf Raumtemperatur wurde die Reaktionsmischung mit 200 ml Wasser verdünnt. Anschließend extrahierte man dreimal mit jeweils 70 ml Essigsäureethylester . Die vereinigten organi -
15 sehen Phasen wurden mit wenig Wasser gewaschen und dann über Natriumsulfat getrocknet.
Ausbeute: 1,1 g eines Öls, das ohne Reinigung weiter umgesetzt wurde.
20 Vorstufe 1.5
6- (3-Chlor-5-methylsulfonylpyridin-2-yl) -7 -fluor -2H- 1, 4 -benz- oxazin-3 -on
1,1 g 2 - (5-Amino- 2 - fluor-4 -hydroxyphenyl) -3 -Chlor- 5 -methyl- 25 sulfonylpyridin, 1,0 g Kaliumcarbonat und 0,5 g Chloracetyl- chlorid wurden in 50 ml wasserfreiem Dimethylformamid zunächst zwei Stunden bei Raumtemperatur und dann vier Stunden bei 90°C gerührt. Nach dem Abkühlen goß man die Reaktionsmischung in 200 ml Eiswasser. Anschließend extrahierte man dreimal mit je 30 50 ml Essigsäureethylester. Die vereinigten organischen Phasen wurden zweimal mit wenig Wasser gewaschen, dann über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des erhaltenen Rohprodukts erfolgte mittels Chromatographie an Kieselgel (Laufmittel: zunächst tert. -Butyl -methylether, dann 35 Essigsäureethylester). Ausbeute: 0,7 g eines farblosen Öls. ϊ-H-NMR (270 MHz, in d6 -Dimethylsulfoxid) : δ [ppm] = 3.43 (s,3H), 4.69 (d,2H), 7.00 (d,lH), 7.10 (d,lH), 8.57 (S,1H), 9.07 (s,lH), 11.0 (br. ,1H) .
40 Zu einer Suspension von 0,06 g Natriumhydrid (80 %ige Suspension in Mineralöl) in 20 ml wasserfreiem Dimethylformamid wurde eine Lösung von 0,7 g 6 - (3 -Chlor- 5-methylsulfonylpyridin-2 -yl) - 7 - fluor-2H- 1, 4 -benzoxazin-3 -on in 20 ml Dimethylformamid langsam zugetropft. Nach beendeter Zugabe rührte man noch 10 Minuten, be-
45 vor eine Lösung von 0,26 g Propargylbromid in 10 ml Dimethylformamid zugetropft wurde. Die erhaltene Mischung wurde 20 Stunden bei Raumtemperatur gerührt und dann in 200 ml Eiswasser gegossen. Anschließend extrahierte man dreimal mit je 50 ml tert. -Butyl - methylether. Die vereinigten organischen Phasen wurden zweimal mit wenig Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des erhaltenen Rohprodukts erfolgte mittels Chromatographie an Kieselgel (Laufmittel: Dichlor ethan/tert . -Butyl -methylether = 1:1). Ausbeute: 0,2 g weißer Kristalle; Smp . : 223°C.
*H-NMR (250 MHz, in CDC13): δ [ppm] = 2.27 (S,1H), 3.18 (s,3H), 4.72 (s,2H), 4.73 (d,2H), 6.90 (d,lH), 7.30 (d,lH), 8.34 (s,lH), 9.09 (s,lH) .
Beispiel 2
5- (3 -Chlor -5 -methylsulfonylpyridin-2 -yl) -1 - (2 -propenyl) -benz- oxazol-2-on (Tabelle 1, Verbindung Nr. Ic.328)
Die Herstellung erfolgte nach folgendem Reaktionsschema
Figure imgf000061_0001
N02
Figure imgf000061_0002
Figure imgf000062_0001
1. Reaktionsschritt:
3-Chlor-2- (4 -methoxyphenyl) - 5 -methylthiopyridin
30,5 g 2, 3 -Dichlor- 5 -methylthiopyridin, 23,9 g 4 -Methoxybenzol - boronsäure, 3,6 g Tetrakistriphenylphosphinpalladium(O) und 39,6 g Natriu hydrogencarbonat wurden in einer Mischung aus
300 ml Tetrahydrofuran und 300 ml Wasser 72 Stunden auf Rückfluß - temperatur erhitzt. Nach dem Abkühlen trennte man die wäßrige Phase ab. Anschließend wurde zweimal mit je 150 ml Methyl -tert - butylether extrahiert. Die vereinigten organischen Phasen trock- nete man noch über Natriumsulfat, bevor eingeengt wurde. Durch Rühren mit wenig Methanol brachte man das Rohprodukt zur Kristallisation. Die abfiltrierten Kristalle wurden schließlich noch mit wenig Methanol gewaschen und bei reduziertem Druck getrocknet. Ausbeute: 30,2 g farbloser Kristalle; Smp.: 90°C. iH-NMR (250 MHz, in CDC13): δ [ppm] = 2.54 (s,3H), 3.87 (s,3H), 6.99 (d,2H), 7.62 (s,lH), 7.72 (d,2H), 8.44 (s,lH).
2. Reaktionsschritt:
3-Chlor-2- (4 -methoxyphenyl ) - 5-methylsulfonylpyridin
Zu einer Lösung von 24,3 g 3 -Chlor -2 - (4 -methoxyphenyl) - 5 -methyl - thiopyridin (aus Stufe 1) in 150 ml Trichlormethan wurde bei 15 bis 20°C portionsweise eine Suspension von 55,4 g 3-Chlorper- benzoesäure (von Aldrich; Gehalt 56 bis 87 gew.-%ig) in 250 ml Trichlormethan gegeben. Nach beendeter Zugabe rührte man zunächst noch 45 Minuten. Dann wurde die entstandene 3 -Chlorbenzoesäure abfiltriert und mit Trichlormethan gewaschen. Die vereinigten Trichlormethan-Phasen wurden nacheinander mit zweimal 100 ml einer 40 %igen NaHS03 -Lösung und zweimal 100 ml einer 10 %igen Natriumhydrogencarbonat -Lösung gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Ausbeute: 25,7 g eines farblosen Öls.
XH-NMR (250 MHz, in CDC13): δ [ppm] = 3.18 (s,3H), 3,89 (s,3H), 7.02 (d,2H), 7.82 (d,2H), 8.29 (s,lH), 9.05 (s,lH). 3. Reaktionsschritt:
3-Chlor-2- (4 -hydroxyphenyl ) - 5-methylsulfonylpyridin
25,7 g 3 -Chlor-2 - ( -methoxyphenyl) -5 -methylsulfonylpyridin (aus Stufe 2) wurden in 350 ml 47 %iger wäßriger HBr-Lösung 4 Stunden auf Rückflußtemperatur erhitzt. Nach dem Abkühlen goß man die Mischung auf 1 Liter Eiswasser. Das entstandene feste Wertprodukt wurde abgetrennt, mit Wasser gewaschen und bei reduziertem Druck getrocknet. Ausbeute: 21,2 g weißer Kristalle; Smp.: 226°C. iH-NMR (250 MHz, in d6 -Dimethylsulfoxid) : δ [ppm] = 3.42 (s,3H), 6.92 (d,2H), 7.70 (d,2H), 8.50 (s,lH), 9.04 (s,lH), 10.0 (s,br., IH) .
4. Reaktionsschritt: 3-Chlor-2- (4 -hydroxy- 3 -nitrophenyl) - 5-methylsulfonylpyridin
Zu einer Lösung von 3,0 g 3 -Chlor-2 - (4 -hydroxyphenyl) - 5 -methyl - sulfonylpyridin (aus Stufe 3) in 20 ml 96 %iger Schwefelsäure und 20 ml Eisessig wurden bei 0 bis 5°C 0,67 g 100 %ige Salpetersäure getropft. Nach beendeter Zugabe rührte man noch eine Stunde bei 0 bis 5°C . Anschließend goß man die Reaktionsmischung in 200 ml Eiswasser. Das entstandene feste Wertprodukt wurde abfiltriert, mit Wasser gewaschen und bei reduziertem Druck getrocknet. Ausbeute: 3,1 g weißer Kristalle; Smp.: 182°C. XH-NMR (250 MHz, in d6 -Dimethylsulfoxid) : δ [ppm] = 3.43 (s,3H), 7.30 (d,lH), 8.02 (dd,lH), 8.35 (d,lH), 8.58 (s,lH), 9.09 (s,lH), 11.65 (s, br.,lH) .
5. Reaktionsschritt: 2- (3 -Amino-4 -hydroxyphenyl) -3 -chlor- 5-methylsulfonylpyridin
Zu einer gut gerührten Suspension von 8,2 g Eisenpulver in einer siedenden Mischung aus 180 ml Eisessig und 45 ml Methanol wurden portionsweise 16,1 g 3-Chlor- 2- (4 -hydroxy-3 -nitrophenyl) - 5- methylsulfonylpyridin (aus Stufe 4) gegeben. Nach beendeter
Zugabe rührte man noch zwei Stunden bei Rückflußtemperatur. Die abgekühlte Reaktionsmischung wurde filtriert. Das Filtrat verdünnte man mit 1 Liter Wasser. Dabei bildeten sich dunkel gefärbte Kristalle, die abfiltriert, mit Wasser gewaschen und bei reduziertem Druck getrocknet wurden. Das erhaltene Rohprodukt (15,0 g) war ohne Reinigung für die weitere Umsetzung geeignet. 6. Reaktionsschritt:
5- (3 -Chlor-5 -methylsulfonylpyridin-2 -yl) -benzoxazol-2 -on
Eine Lösung von 4,0 g 2 - (3 -Amino-4 -hydroxyphenyl) - 3 -chlor- 5- methylsulfonylpyridin und 3,3 g Carbonyldiimidazol in einer Mischung aus 100 ml wasserfreiem Tetrahydrofuran und 80 ml Dimethylformamid wurde vier Stunden bei 80 bis 90°C gerührt. Danach destillierte man das Tetrahydrofuran ab. Der Rückstand wurde in 400 ml Wasser eingerührt, wobei sich dunkel gefärbte Kristalle (0,4 g) ausbildeten. Die abfiltrierten Kristalle waren ohne Reinigung für die weitere Umsetzung geeignet.
7. Reaktionsschritt:
5- (3 -chlor-5 -methylsulfonylpyridin-2 -yl) -1- (2-propenyl) -benz- oxazol-2-on
0,4 g einer 80 %igen Suspension von Natriumhydrid in Mineralöl wurden in 10 ml wasserfreiem Dimethylformamid suspendiert und unter Rühren tropfenweise mit einer Lösung von 4,0 g 5-(3-Chlor- 5-methylsulfonylpyridin-2-yl) -benzoxazol -2 -on (aus Stufe sechs) in 120 ml wasserfreiem Dimethylformamid versetzt. Nach beendeter Zugabe rührte man noch 30 Minuten. Dann wurden 1,64 g Allylbromid zugetropft. Anschließend rührte man noch 16 Stunden bei 23°C. Zur Aufarbeitung wurde die Reaktionsmischung in 400 ml Eiswasser gegossen. Danach extrahierte man mit dreimal 100 ml Essigsäureethylester. Die vereinigten organischen Phasen wurden noch mit 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Chromatographie an Kieselgel, wobei nacheinander die folgenden Elutionsmittel verwendet wurden: Cyclohexan/Methyl - tert . -butylether (4:1), Methyl - tert . -butylether und Essigsäureethylester. Ausbeute: 2,57 g weißer Kristalle; Smp.: 175°C. l-H-NMR (250 MHz, in CDC13): δ [ppm] = 3.19 (S,3H), 4.51 (d,2H), 5.30 (S,1H), 5.38 (d,lH), 5.83-6.03 (m, IH) , 7.33 (d, IH) , 7.41 (d,lH), 7.61 (dd,lH), 8.35 (s,lH), 9.04 (S,1H).
In der folgenden Tabelle 2 sind neben den vorstehend beschriebenen substituierten 2 -Arylpyridinen I noch weitere erfindungsgemäße Verbindungen aufgeführt, die nach einem der beschriebenen Verfahren hergestellt wurden oder herstellbar sind: Tabelle 2
H3C
Figure imgf000065_0001
Figure imgf000065_0002
Anwendungsbeispiele (herbizide Wirksamkeit)
Die herbizide Wirkung der substituierten 2 -Arylpyridine I ließ sich durch die folgenden Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.
Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Test- pflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.
Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 15,6 oder 7,8 g/ha a.S. (aktive Substanz).
Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 bis 25°C bzw. 20 bis 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.
Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Figure imgf000066_0001
Bei Aufwandmengen von 15,6 und 7,8 g/ha zeigte die Verbindung Nr. Ic.4 im Nachauflaufverfahren eine sehr gute herbizide Wirkung gegen die obengenannten unerwünschten Pflanzen.
Anwendungsbeispiele (desikkative/defoliante Wirksamkeit)
Als Testpflanzen dienten junge, 4blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wurden (rel. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C) .
Die jungen Baumwollpflanzen wurden tropfnaß mit wäßrigen Aufbereitungen der Wirkstoffe (unter Zusatz von 0,15 Gew. -% des Fettalkoholalkoxylats Plurafac® LF 700 1) , bezogen auf die
Spritzbrühe) blattbehandelt. Die ausgebrachte Wassermenge betrug umgerechnet 1000 1/ha. Nach 13 Tagen wurde die Anzahl der abgeworfenen Blätter und der Grad der Entblätterung in % bestimmt.
Bei den unbehandelten Kontrollpflanzen trat kein Blattfall auf.
1 J ein schaumarmes, nichtionisches Tensid der BASF AG

Claims

Patentansprüche
1. Substituierte 2 -Arylpyridine der allgemeinen Formel I
Figure imgf000067_0001
in der die Variablen folgende Bedeutungen haben:
n Null oder 1;
R1 Mercapto, Hydroxysulfonyl, Chlorsulfonyl, Amino- sulfonyl, Ci-Cö-Alkylthio, Cι-C6 -Alkylsulfinyl, Cι-C6 -Alkylsulfonyl, Cι-C6 -Alkyla inosulfonyl oder Di- (Cι-C6 -alkyl) a inosulfonyl;
R2,R3 unabhängig voneinander Wasserstoff oder Halogen;
R4 Wasserstoff, Cι-C6 -Alkyl, Cχ-C6 -Halogenalkyl , Cyano- Cι-C6-alkyl, Cι-C6-Alkoxy, Cι-C6 -Alkoxy-Cι-C6-alkyl, Ci - C4 -Halogenalkoxy-Cι-C - alkyl, Cι-C6 -Alkylthio - Ci -C6 - alkyl , Ci - C6 -Alkylsulf inyl -Ci - C6 -alkyl , Ci-Cβ -Alkylsulfonyl- Cι-C6- alkyl, Cχ-C4 -Alkoxy-Cι-C4 - alkoxy-Cι-C4-alkyl, (Cι-C6 -Alkoxy) carbonyl -Cx -C6-alkyl ,
C1-C3 -Alkoxy- (Cχ-C3 -alkoxy) carbonyl -Cι-C6 -alkyl, C -C -Alkenyloxy- Cχ-C4-alkyl, C3 -C -Alkinyloxy-Ci -C4 - alkyl, C3-C7 -Cycloalkyl, C3 -C -Cycloalkyl -Cι-C6 -alkyl, C3 -C7 -Cycloalkyloxy-Ci - C6 -alkyl , C3 - C7 -Cycloalkyl - thio-Cι-C6-alkyl, C3-C8-Alkenyl, C3 -C8 -Alkinyl,
C3 - C8 -Halogenalkenyl , C3 -C8 -Halogenalkinyl , Ci -CÖ -Alkoxy-C3 - C8 - alkenyl , Ci -C6 -Alkoxy-C3 -C8 - alkinyl , (Cι-C6 -Alkoxy) carbonyl, Cι-C6 -Alkylsulfonyl, C3-C6-Alkenyloxy, C3-C6"Alkinyloxy oder Benzyl, das unsubstituiert sein oder am Phenylring ein bis drei
Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Nitro, Halogen, Cι-C6 -Alkyl, CI-CÖ -Alkoxy und (Ci -C6 -Alkoxy) carbonyl ;
X Sauerstoff, Schwefel, -NH-, -N(CH3)- oder Methylen; Y eine chemische Bindung, Carbonyl oder C(R5,R6), wobei
R5,R6 unabhängig voneinander für Wasserstoff, Nitro,
Cyano, Methoxy, Methylthio, Halogen, C1-C4 -Alkyl, Cι-C4-Halogenalkyl, (Ci -C4-Alkoxy) carbonyl,
C2-C6-Alkenyl, C3-C6 -Alkinyl oder (C1-C4 -Alkoxy) carbonyl -Cι-C4 -alkyl stehen,
sowie die landwirtschaftlich brauchbaren Salze der Ver- bindungen I mit R1 = Hydroxysulfonyl .
2. Substituierte 2 -Arylpyridine der Formel I nach Anspruch 1, wobei die Variablen die folgenden Bedeutungen haben:
n Null;
Rl Mercapto, Hydroxysulfonyl , Chlorsulfonyl, Amino- sulfonyl, Ci-Cβ -Alkylthio, Ci-Cß -Alkylsulfinyl oder Ci -C6-Alkylsulfonyl;
R2,R3 unabhängig voneinander Halogen;
R4 Wasserstoff, Cχ-C6-Alkyl, Cyano-Cι-C6 -alkyl ,
Ci-Ce-Alkoxy, Cι-C6-Alkoxy-Cι-C6 -alkyl, Cι-C6-Alkyl- thio-Cι-C6-alkyl, (Ci -C6 -Alkoxy) carbonyl -C^CÖ -alkyl,
C3-C8-Alkenyl, C3-C8-Alkinyl, C3-C6-Alkenyloxy oder C3-Ce-Alkinyloxy;
Sauerstoff;
eine chemische Bindung oder C(R5,R5), wobei
R5,R6 unabhängig voneinander für Wasserstoff,
Cι-C -Alkyl oder (Ci -C4 -Alkoxy) carbonyl stehen.
3. Substituierte 2 -Arylpyridine der Formel I nach Anspruch 1, wobei n für Null, R1 für Cι-C6 -Alkylsulfonyl, R2 für Chlor, R3 für Fluor oder Chlor, X für Sauerstoff, Y für eine chemische Bindung oder für Methylen und R4 für Wasserstoff, Cχ-C6-Alkyl, Cyano -Cι-C6-alkyl, (Cι-C6 -Alkoxy) carbonyl - Ci-Cδ-alkyl, C3 -C8-Alkenyl oder C3-C8 -Alkinyl stehen.
4. Verwendung der substituierten 2-Arylpyridine der Formel I und der landwirtschaftlich brauchbaren Salze von I, gemäß Anspruch 1, als Herbizide oder zur Desikkation und/oder Defoliation von Pflanzen.
5. Herbizides Mittel, enthaltend eine herbizid wirksame Menge mindestens eines substituierten 2-Arylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder
5 festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
6. Mittel zur Desikkation und/oder Defoliation von Pflanzen, enthaltend eine desikkant und/oder defoliant wirksame Menge
10 mindestens eines substituierten 2-Arylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
15
7. Verfahren zur Herstellung von herbizid wirksamen Mitteln, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten 2-Arylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß
20 Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
8. Verfahren zur Herstellung von desikkant und/oder defoliant 25 wirksamen Mitteln, dadurch gekennzeichnet, daß man eine desikkant und/oder defoliant wirksame Menge mindestens eines substituierten 2-Arylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen 30 Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
9. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge
35 mindestens eines substituierten 2-Arylpyridins der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.
40 10. Verfahren zur Desikkation und/oder Defoliation von Pflanzen, dadurch gekennzeichnet, daß man eine desikkant und/oder defoliant wirksame Menge mindestens eines substituierten 2-Arylpyridins der Formel I oder eines landwirtschaf lich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen
45 einwirken läßt.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß man Baumwolle behandelt.
12. Verfahren zur Herstellung von substituierten 2-Arylpyridinen der Formel I gemäß Anspruch 1, bei denen n für 1 und R1 für
Cι-C6-Alkylsulfonyl stehen und die Variablen R4, X und Y keinen oxidierbaren Schwefel enthalten, dadurch gekennzeichnet, daß man entsprechend substituierte 2-Arylpyridine, bei denen aber n Null bedeutet, in einem inerten Losungs-/ Verdünnungsmittel oxidiert.
13. Verfahren zur Herstellung von substituierten 2-Arylpyridinen der Formel I gemäß Anspruch 1, bei denen R1 für Cι-C6-Alkyl- sulfinyl oder Ci-Cβ-Alkylsulfonyl steht und die Variablen R4, X und Y keinen oxidierbaren Schwefel enthalten, dadurch gekennzeichnet, daß man entsprechend substituierte 2-Aryl- pyridine, bei denen aber R1 Cx-Ce-Al ylthio oder Cι-C6-Alkyl - sulfinyl bedeutet, in einem inerten Losungs-/ Verdünnungsmittel oxidiert.
14. Verfahren zur Herstellung von substituierten 2-Arylpyridinen der Formel I gemäß Anspruch 1, bei denen R1 für C;L-C6-Alkyl- thio und X für Sauerstoff, Schwefel, -NH- oder -N (anstehen, dadurch gekennzeichnet, daß man entsprechend substi- tuierte 5-Amino-2-arylpyridine XXXVIIa
XXXVIIa,
Figure imgf000070_0001
wobei R2, R3, R5 und R6 die in Anspruch 1 angegebenen Bedeu- tungen haben und X' für Sauerstoff, Schwefel, -NH- oder
-N(CH3)- steht, in Gegenwart einer Base mit R4'-Cl, R '-Br oder R4'-J, wobei R4' für eine der in Anspruch 1 bezüglich R4 angegebenen Bedeutungen mit Ausnahme von Wasserstoff steht, umsetzt, das Verfahrensprodukt XXXVIIb XXXVI Ib
Figure imgf000071_0001
in einem inerten Losungs- /Verdünnungsmittel diazotiert und das so hergestellte Diazoniu salz mit einem aliphatischen Disulfid (Cι-C6-Alkyl)-S-S- (Cι-C4-Alkyl) umsetzt.
15. 2- (p-Hydroxyphenyl)pyridine der Formeln X, XXXIa und XXXIb
Figure imgf000071_0002
wobei die Substituenten R1, R2, R3 , R5 und R6 die in Anspruch 1 angegebenen Bedeutungen haben.
16. 2-Aryl-5-nitropyridine der Formeln XXXIIa und XXXIIc
Figure imgf000071_0003
wobei die Substituenten R2, R3 , R5 und R6 die in Anspruch 1 angegebenen Bedeutungen haben und R4' für eine der in Anspruch 1 bezüglich R4 angegebenen Bedeutungen mit Ausnahme von Wasserstoff steht.
17 . 5-Amino- 2 -arylpyridine der Formel XXXVI I
XXXVI I ,
Figure imgf000072_0001
wobei die Substituenten R2 bis R6 die in Anspruch 1 angegebenen Bedeutungen haben und X' für Sauerstoff, Schwefel, -NH- oder -N(CH3)- steht.
18. 2- (m-Nitrophenyl)pyridine der Formeln XVI, XXXVIa und XXXVIb
Figure imgf000072_0002
lkoxy
Figure imgf000072_0003
xy wobei die Substituenten R1, R2, R3, R5 und R6 die in Anspruch 1 angegebenen Bedeutungen haben und X' für Sauerstoff, Schwefel, -NH- oder -N(CH3)- steht.
PCT/EP1997/004421 1996-08-22 1997-08-13 Substituierte 2-arylpyridine als herbizide WO1998007720A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU42049/97A AU4204997A (en) 1996-08-22 1997-08-13 Substituted 2-arylpyridine as herbicide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996133751 DE19633751A1 (de) 1996-08-22 1996-08-22 Substituierte 2-Arylpyridine
DE19633751.8 1996-08-22

Publications (1)

Publication Number Publication Date
WO1998007720A1 true WO1998007720A1 (de) 1998-02-26

Family

ID=7803266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/004421 WO1998007720A1 (de) 1996-08-22 1997-08-13 Substituierte 2-arylpyridine als herbizide

Country Status (3)

Country Link
AU (1) AU4204997A (de)
DE (1) DE19633751A1 (de)
WO (1) WO1998007720A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225313B1 (en) 1997-09-17 2001-05-01 Basf Aktiengesellschaft Substituted 2-phenyl-3(2H)-pyridazinones
WO2012041789A1 (en) 2010-10-01 2012-04-05 Basf Se Herbicidal benzoxazinones
CN105837564A (zh) * 2016-03-30 2016-08-10 贵州大学 一种含吡啶苯并硫氮杂卓衍生物、其制备方法及用途
WO2019101551A1 (en) 2017-11-23 2019-05-31 Basf Se Herbicidal phenylethers
WO2019101513A1 (en) 2017-11-23 2019-05-31 Basf Se Herbicidal pyridylethers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006394A1 (de) * 1997-07-14 1999-02-11 Basf Aktiengesellschaft Substituierte 2-(benzaryl)pyridine
TW200848021A (en) 2007-03-06 2008-12-16 Wyeth Corp Sulfonylated heterocycles useful for modulation of the progesterone receptor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263958A1 (de) * 1986-09-16 1988-04-20 Sumitomo Chemical Company, Limited 4-Substituierte 2,6-Diphenylpyridin-Derivate, Verfahren zu ihrer Herstellung, chemische Zwischenprodukte und ihre Verwendung als Herbizide
EP0451585A2 (de) * 1990-04-07 1991-10-16 Bayer Ag 2-Aryl-6-hetarylpyridin-Derivate
WO1995002590A2 (en) * 1993-07-16 1995-01-26 Basf Aktiengesellschaft Substituted 2-fused phenylpyridines with herbicidal activities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263958A1 (de) * 1986-09-16 1988-04-20 Sumitomo Chemical Company, Limited 4-Substituierte 2,6-Diphenylpyridin-Derivate, Verfahren zu ihrer Herstellung, chemische Zwischenprodukte und ihre Verwendung als Herbizide
EP0451585A2 (de) * 1990-04-07 1991-10-16 Bayer Ag 2-Aryl-6-hetarylpyridin-Derivate
WO1995002590A2 (en) * 1993-07-16 1995-01-26 Basf Aktiengesellschaft Substituted 2-fused phenylpyridines with herbicidal activities

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ARCH. PHARM. (WEINHEIM, GER.), vol. 325, no. 6, 1992, pages 357 - 359 *
CHEMICAL ABSTRACTS, vol. 117, no. 11, 14 September 1992, Columbus, Ohio, US; abstract no. 111445c, K. GOERLITZER, W. DUEWEL: "Pyridine compounds from etacrynic acid. II" page 848; XP002048736 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225313B1 (en) 1997-09-17 2001-05-01 Basf Aktiengesellschaft Substituted 2-phenyl-3(2H)-pyridazinones
WO2012041789A1 (en) 2010-10-01 2012-04-05 Basf Se Herbicidal benzoxazinones
CN105837564A (zh) * 2016-03-30 2016-08-10 贵州大学 一种含吡啶苯并硫氮杂卓衍生物、其制备方法及用途
CN105837564B (zh) * 2016-03-30 2019-02-05 贵州大学 一种含吡啶苯并硫氮杂卓衍生物、其制备方法及用途
WO2019101551A1 (en) 2017-11-23 2019-05-31 Basf Se Herbicidal phenylethers
WO2019101513A1 (en) 2017-11-23 2019-05-31 Basf Se Herbicidal pyridylethers

Also Published As

Publication number Publication date
AU4204997A (en) 1998-03-06
DE19633751A1 (de) 1998-02-26

Similar Documents

Publication Publication Date Title
EP0968188A1 (de) Substituierte 2-benz(o)ylpyridin derivate, deren herstellung und deren verwendung als herbizide
WO1998007720A1 (de) Substituierte 2-arylpyridine als herbizide
EP0891336B1 (de) Substituierte 1-methyl-3-benzyluracile
EP0920415A1 (de) Substituierte 2-phenylpyridine als herbizide
EP0851858B1 (de) Substituierte 2-phenylpyridine als herbizide
EP0835248B1 (de) 1-amino-3-benzyluracile
EP0808310A1 (de) Neue 3-(4-cyanophenyl)uracile
EP1034166B1 (de) Substituierte 2-phenyl-3(2h)-pyridazinone
EP0788479B1 (de) Substituierte phthalimido-zimtsäurederivate mit herbizider wirkung
EP1140847B1 (de) Substituierte 2-phenylpyridine als herbizide
EP0777658B1 (de) Substituierte triazolinone als pflanzenschutzmittel
EP1095045B1 (de) Verfahren zur herstellung von anellierten triazolen und neue anellierte triazole und deren verwendung
EP0998472A1 (de) Substituierte 2-(benzaryl)pyridine
EP1127053A1 (de) Neue 1-aryl-4-thiouracile
WO1999059983A1 (de) Substituierte 6-aryl-3-thioxo-5-(thi)oxo-2,3,4,5-tetrahydro-1,2,4-triazine
EP0637298A1 (de) Substituierte cyclohexen-1,2-dicarbonsäurederivate und zwischenprodukte zu deren herstellung
WO1999018082A1 (de) Neue substituierte pyridazinone
DE19613548A1 (de) 3-Chlortetrahydroindazolyl-phenylpropionsäure-Derivate als Pflanzenschutzmittel
DE4430287A1 (de) N-Phenyltetrahydroindazole, Verfahren zur ihrer Herstellung und ihre Verwendung als Pflanzenschutzmittel
DE19610701A1 (de) Tetrahydrophthalimido-Zimtsäurederivate als Pflanzenschutzmittel
EP1237879A1 (de) Phenoxy-und thiophenoxyacrylsäureverbindungen als herbizide
WO2004007467A1 (de) Neue 3-(3-[aminosulfonylamino]-4-cyano-phenyl)-6-trifluormethyluracile
WO2001019820A1 (de) Substituierte pyrazol-3-ylbenzoxazinone
EP0971904A1 (de) Neue 1-amino-3-benzyluracile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU IL JP KE KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载