+

WO1996026004A1 - Kolloidale metallzubereitung und verfahren zu ihrer herstellung - Google Patents

Kolloidale metallzubereitung und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO1996026004A1
WO1996026004A1 PCT/EP1996/000721 EP9600721W WO9626004A1 WO 1996026004 A1 WO1996026004 A1 WO 1996026004A1 EP 9600721 W EP9600721 W EP 9600721W WO 9626004 A1 WO9626004 A1 WO 9626004A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
colloidal
salt
block
block copolymer
Prior art date
Application number
PCT/EP1996/000721
Other languages
English (en)
French (fr)
Inventor
Markus Antonietti
Stephan FÖRSTER
Eckhard Wenz
Lyudmila Bronstein
Original Assignee
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin filed Critical Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin
Publication of WO1996026004A1 publication Critical patent/WO1996026004A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0026Preparation of sols containing a liquid organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/41Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds using a solution of normally solid organic compounds, e.g. dissolved polymers, sugars, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a liquid preparation containing colloidal metal in metallic form or in the semiconducting form of a metal oxide or sulfide in a liquid solvent.
  • polymeric stabilizers eg N. Tashima, T. Yonezawa, K. Kushihashi, J. Chem. Soc. Faraday Trans., 89th, 2537 (1993)
  • inverse micelles eg C. Petit, P. Lixon, MP Pileni, J. Phys. Chem. 9, 12974 (1993)
  • microemulsion e.g. R. Touroude, P. Girard, G. Maire, J. Kizling, M. Boutonnet-Kizling, P. Stenius, Coll. Surf. 6J7, 9 (1992)
  • a liquid preparation with a content of colloidal metal in metallic, oxidic or sulfidic semiconducting form in a liquid organic or inorganic solvent which is characterized by a content of micelles which consist of a block copolymer, which has at least one polymer block which solvates in the solvent and a polymer block which is capable of binding to the colloidal metal and which contain the colloidal metal enclosed.
  • the invention makes it possible to provide metal colloids, in particular noble metal colloids and metal compounds having semiconductor properties, in the colloidal size range between 2 nm ⁇ d ⁇ 20 nm, which have a substantially superior stability against aggregation, make such colloids accessible at comparatively high concentrations and the size to control the colloids by appropriate selection of the block polymer and the relative ratio of block polymer to metal. This improves their application for catalysis and optical and magnetic purposes.
  • An essential feature of the invention is the selection of the suitable block copolymer.
  • this contains at least one polymer block which mediates solvation in the selected solvent and at least one polymer block which is capable of binding to the colloidal metal.
  • the block copolymer forms micelles in the solvent in which the block of the block copolymer which mediates the solvation is on the outside, ie facing the solvent, and on the inside is the polymer which mediates the bond with the metal.
  • the solvating block therefore contains or consists of monomer units with affinity for the solvent.
  • the block causing the metal bond contains monomer units which can interact with the respective metal, for example basic or acidic groups such as amines, amides, basic heterocycles (for example pyridine) or carboxyl groups and hydroxyl groups.
  • monomer units which can interact with the respective metal for example basic or acidic groups such as amines, amides, basic heterocycles (for example pyridine) or carboxyl groups and hydroxyl groups.
  • Block copolymers which are composed of the combination of the polymer blocks listed below are preferably used for this purpose:
  • Polyalkylstyrenes polar modified polydienes e.g. Polybutadiene
  • the block copolymers resulting from the blocks listed above by combination are particularly suitable for organic solvents, such as toluene, cyclohexane or tetrahydrofuran. If inorganic solvents are used, such as H 2 O, liquid NH 3 or liquid S0 2 , the block which mediates the solvation consists of a polymer soluble therein.
  • organic solvents such as toluene, cyclohexane or tetrahydrofuran.
  • inorganic solvents such as H 2 O, liquid NH 3 or liquid S0 2
  • the block which mediates the solvation consists of a polymer soluble therein.
  • the block copolymer can also contain more than two polymer blocks, it being possible for the third or further block with one of the first two blocks to have the same or different composition (block terpolymer, etc.)
  • the colloidal metal is located in the micelles consisting of the block copolymer. It can be in metallic form or in the form of its semiconductor properties, in particular the corresponding oxides or sulfides.
  • the size of the colloid particles is generally between 2 nm and 20 nm. A certain regulation of the size of the colloid particles can be achieved by regulating the size of the micelles, which in turn can be achieved by The length and type of the outer polymer block can be varied in relation to the given solvent.
  • the size of the colloids is limited to the size of the core of the block copolymer micelle as well as to the number of metal ions per micelle.
  • the colloidal preparation according to the invention is preferably prepared by preparing a solution of the block copolymer in a suitable solvent, adding a salt of the selected metal to be converted into the colloidal form, micelles containing metal salt forming and then a) the Salt is reduced to form the colloid and, if appropriate, the colloidal metal thus obtained is converted into the semiconductor form, preferably using sulfide or hydroxide donors to form the sulfidic or oxidic semiconductor form of the metal, or b) the salt directly with a sulfide or hydroxide donor converted into its colloidal sulfidic or oxidic semiconductor form.
  • the formation of the micelles of the block copolymer in the respective solvent normally does not require any special measures. It is sufficient to dissolve the copolymer in the respective solvent, if necessary with stirring.
  • the solvent is chosen so that it can dissolve the solvating block (in the micelle the outer block).
  • aromatic, cyclic and / or chlorinated hydrocarbons and ethers are particularly suitable for polystyrene as the solvating block, and aromatic, aliphatic or / and chlorinated hydrocarbons and ethers are suitable for polycarbonates as the solvating block.
  • metals having other catalytic properties and metals suitable for semiconductor formation are preferably used as metals.
  • this includes gold, silver, copper, cadmium, zinc, titanium, iron, cobalt and nickel. Since the person skilled in the art is well aware of the metals with the properties indicated above, they are not listed here any further.
  • Particularly preferred metal salts are the chlorides and chlorates or the perchloric complexes of the metal ions intended for the reaction, such as HAuCl 4 , Na 2 PdCl 6 , CuCl, CdCl0 4 , AgN0 3 .
  • the acetates, nitrites, nitrates, the other halides and halogen oxides are also preferred.
  • the metal salts are advantageously added to the solution of the block copolymer in solid form, but a corresponding solution can also be added. It has been found that the salt used does not necessarily have to be soluble in the solvent in the amount to be used. Even if the solubility of the salt is insufficient, there is nevertheless a slow uptake of the salt into the micelles mediated by the block copolymer.
  • the corresponding metal colloid is produced by reduction.
  • suitable reducing agents are hydrazine, NaBH 4 , butyllithium, superhydride and the like.
  • Suitable reagents are, for example, H 2 S, NaHS or Na 2 S, and oxide donors H 2 0, NaOH (in H 2 0 / tetrahydrofuran systems) or quaternary organic ammonium (NR 4 OH).
  • R here denotes a straight-chain or branched, saturated or unsaturated alkyl group having 1 to 12 C atoms.
  • the liquid preparation according to the invention containing colloidal metal is particularly suitable for catalysis or for optical and magnetic applications.
  • Many specialist applications for this are already known to the person skilled in the art for corresponding colloidal metal systems with different stabilization.
  • the following may be mentioned as further applications: selective hydrogenations, i.e. Serve in addition to enen, triple in addition to double bonds, double bonds in addition to carbonyls or carbonyls in addition to double bonds; Carbonylation such as homologations, nitrates ⁇ isocyanates; Hydroformulations; Isomerizations of C – C frameworks; Cyclooligomerizations; Photooxidation or photo reduction.
  • a particular advantage of the colloids according to the invention is that they have only a very small size distribution.
  • Figure 1 shows the analytical result of a block copolymer cell with gold core according to the invention, i.e. the entire composite of polymer and metal colloid is described;
  • FIG. 2 shows a UV spectrogram of the red color of gold colloids according to the invention
  • FIG. 3 shows a graphic representation of the small-angle X-ray scattering for a gold colloid according to the invention and for a Bonnemann et al. manufactured known gold colloid.
  • a block copolymer of styrene and 4-vinylpyridine is produced by means of anionic polymerization in accordance with ref. (6) (not according to the invention).
  • a corresponding amount of HAuCl 4 is added to a solution of 1 g of this block copolymer in 50 ml of toluene, for example in a molar ratio of 1: 3 (Au 3 * to pyridine units).
  • the gold acid crystals, insoluble in toluene, are dissolved micellarly in the block copolymer.
  • the addition of hydrazine as a reducing agent results in a spontaneous red coloring of colloidal gold.
  • the block copolymer micelles of the system obtained according to Example 1 are measured with a Nicomp C370 particle size analyzer.
  • the result is a micelle diameter of 138.9 nm with a width of the distribution of 10.4%, as can be seen in the enclosed analysis result (FIG. 1).
  • This micelle size changes only insignificantly when loaded with salt (HAuCl 4 ) and during the subsequent reduction.
  • the block copolymer thus partially hydrophilized is dissolved in toluene and mixed with crystalline silver nitrate.
  • a homogeneous micellar solution is obtained after stirring.
  • the subsequent reduction with hydrazine gives a yellow solution which consists of narrowly distributed micelles containing silver colloids with a very sharp plasmon band which is customary for silver colloids.
  • the polymer is dissolved in cyclohexane and filled with Na 2 PdCl 4 (molar ratio Pd 2+ to methacrylic acid 1: 8).
  • the subsequent reduction with H 2 N 2 results in a stable, deep black Pd colloid which is stabilized by block copolymers.
  • the polystyrene (b) -poly (4) vinylpyridine block copolymer described in Example 1 is quaternized with methyl bromide.
  • a solution of this block copolymer in THF is filled with copper (I) chloride (molar ratio Cu (I) to vinylpyridine units 1: 4) and reduced with butyllithium to a stable, rust-brown copper colloid.
  • Example 6 The quaternized block copolymer described in Example 6 is in a toluene / THF mixture (97: 3 wt .-%) with cadmium perm chlorate added (molar ratio Cd: vinyl pyridine 1: 6). After the salt has completely dissolved, H 2 S is fumigated. A yellow colloidal CdS solution results, from the UV spectrum of which one can deduce narrowly distributed, approximately 8 nm large CdS semiconductor particles.
  • a Pd colloid stabilized with polystyrene (b) poly (4) vinylpyridine is used to hydrogenate cyclohexadiene at room temperature and under 1 atm hydrogen pressure in toluene solution. The reaction is stopped after the calculated amount of hydrogen has been taken up . This results in a reactivity comparable to other Pd colloids (2) with a full selectivity for the reduction of cyclohexadiene to cyclohexene (> 98%) within the measurement accuracy.
  • a conventionally produced gold colloid (stabilized with NR 4 , analogous to Bonnemann loc. Cit.) And a colloid stabilized with polystyrene (b) - poly (4) vinylpyridine are characterized by small-angle X-ray scattering (FIG. 3).
  • the conventionally produced colloid particle shows an unstructured diffractogram ( ⁇ ), which in this case can be inferred from particle aggregates, while the block-copolymerized product can be described with a spherical geometry with a radius of 5.2 nm and a very small distribution width.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

Eine flüssige Zubereitung enthält Mizellen, die aus einem Blockcopolymerisat bestehen, welches mindestens einen im Lösungsmittel solvatisierenden Polymerblock und einen für das kolloidale Metall bindefähigen Polymerblock aufweist und die kolloidales Metall in metallischer, oxidischer oder sulfidischer halbleitender Form eingeschlossen enthalten in einem flüssigen organischen oder anorganischen Lösungsmittel. Zu ihrer Herstellung setzt man einer Lösung des Blockcopolymerisats in einem geeigneten Lösungsmittel ein Salz eines in kolloidale Form überführbaren Metalls zu, unter Bildung von Metallsalz-haltigen Mizellen aus dem Blockcopolymerisat, dann reduziert man das Salz unter Bildung des Kolloids und überführt gegebenenfalls das so erhaltene kolloidale Metall mit einem Sulfid oder Hydroxyd-Donator in seine sulfidische oder oxidische Halbleiterform oder man überführt das Salz mit einem Sulfid oder Hydroxyd-Donator direkt in seine kolloidale sulfidische oder oxidische Halbleiterform.

Description

Kolloidale Metallzubereitung und Verfahren zu ihrer Herstellung
Beschreibung
Die Erfindung betrifft eine flüssige Zubereitung mit einem Gehalt an kolloidalem Metall in metallischer Form oder in der halbleitenden Form eines Metalloxids oder Sulfids in einem flüssigen Lösungsmittel.
Die Verwendung anorganischer Kolloide und Cluster für den Zweck der Katalyse, der energetischen Konversion von Sonnenlicht und in nichtlinear optischen Geräten ist bekannt, z.B. aus J.N. Lewis, Chem.Rev. 9J3., 2693 (1993) . Vorteile der bekannten Sy¬ steme sind sehr hohe Reaktivitäten und Selektivitäten. Nach¬ teile ergeben sich aus der oft aufwendigen Synthese und vor allem dem starken Aktivitätsabfall unter harten Reaktionsbedin¬ gungen. Eine typische Beschreibung einer konventionellen Syn¬ these sowie katalytische Aktivitätsbestimmungen finden sich z.B. in H. Bonnemann, R. Brinkmann, P. Neiteler, Appl . Organo- et. Chem. 8 , 361 (1994) .
Zur Erhöhung der Stabilität dieser Kolloide wurden in der Vergangenheit polymere Stabilisatoren (z.B. N. Tashima, T. Yonezawa, K. Kushihashi, J. Chem. Soc. Faraday Trans. .89., 2537 (1993) ) inverse Mizellen (z.B. C. Petit, P. Lixon, M.P. Pileni, J. Phys . Chem. 9 , 12974 (1993)) oder Mikroemulsion (z.B. R. Touroude, P. Girard, G. Maire, J. Kizling, M. Boutonnet- Kizling, P. Stenius, Coll. Surf. 6J7, 9 (1992) ) eingesetzt. Diese Verfahren, die bereits nano-strukturierte Reaktionsmedien benutzen, sind in der akademischen Forschung sehr erfolgreich und haben den Zugang zu den beschriebenen Kolloiden deutlich vereinfacht. Trotzdem besteht der Bedarf nach leichterer Zu¬ gänglichkeit und besserer Stabilität ohne Beeinträchtigung der Aktivität weiter. Der Erfindung liegt daher die Aufgabe zugrunde, die Stabilität dieser Metallkolloide zu erhöhen, ihre Herstellung zu Verein¬ fachen und damit ihre industrielle Verwendbarkeit wesentlich zu verbessern.
Gelöst wird diese Aufgabe durch eine flüssige Zubereitung mit einem Gehalt an kolloidem Metall in metallischer, oxidischer oder sulfidischer halbleitender Form in einem flüssigen organi¬ schen oder anorganischen Lösungsmittel, die gekennzeichnet ist durch einen Gehalt an Mizellen, die aus einem Blockcopolymeri- sat bestehen, welches mindestens einen im Lösungsmittel solva¬ tisierenden Polyτnerblock und einen für das kolloidale Metall bindefähigen Polymerblock aufweist und die das kolloidale Metall eingeschlossen enthalten.
Durch die Erfindung wird es möglich Metallkolloide, insbeson¬ dere Edelmetallkolloide und Halbleitereigenschaften aufweisende Metallverbindungen, im kolloidalen Größenbereich zwischen 2 nm < d < 20 nm bereitzustellen, die eine wesentlich überlegene Stabilität gegen Aggregation aufweisen, solche Kolloide mit vergleichsweise hohen Konzentrationen zugänglich machen und die Größe der Kolloide durch geeignete Auswahl des Blockpolymeren und das relative Verhältnis von Blockpolymer zu Metall zu steuern. Damit wird ihre Anwendung für die Katalyse und op¬ tische und magnetische Zwecke verbessert.
Ein wesentliches Merkmal der Erfindung ist die Auswahl des geeigneten Blockcopolymerisats. Dieses enthält wie oben erwähnt mindestens einen Polymerblock, der die Solvatisierung im ge¬ wählten Lösungsmittel vermittelt und mindestens einen für das kolloidale Metall bindefähigen Polymerblock. Das Blockcopolymer bildet im Lösungsmittel Mizellen, bei denen der die Solvatisie¬ rung vermittelnde Block des Blockcopolymerisats außen, d.h. gegen das Lösungsmittel zugewendet liegt und der die Bindung mit dem Metall vermittelnde Polymer innen liegt. Der solvatisierende Block enthält daher Monomereinheiten mit Affinität zum Lösungsmittel oder besteht aus solchen. Der die Metallbindung bewirkende Block enthält dagegen Monomereinheiten die mit dem jeweiligen Metall in Wechselwirkung treten können, z.B. basisch oder sauer wirkende Gruppen wie Amine, Amide, basische Heterocyclen (z.B. Pyridin) oder Carboxylgruppen sowie Hydroxilgruppen. Bevorzugt werden für diesen Zweck Blockcopoly- mere verwendet, die aus der Kombination der nachstehend aufge¬ führten Polymerblöcke zusammengesetzt sind:
solvatisierender Block bindender Block
Polystyrol Poly(4)vinylpyridin
Polyisopren Poly(2)vinylpyridin
Polypropylenglykol Polyethylenglykol
Polyalkylstyrole polar modifizierte Poly- diene, z.B. Polybutadien
Polybutadien Polyacrylsäure/Polymeth- acrylsäure
Die sich aus den oben aufgeführten Blöcken durch Kombination ergebenden Blockcopolymerisate eignen sich vor allem für orga¬ nische Lösungsmittel, wie beispielsweise Toluol, Cyclohexan oder Tetrahydrofuran. Werden anorganische Lösungsmittel ver¬ wendet, wie z.B. H20, flüssiges NH3 oder flüssiges S02, so besteht der die Solvatisierung vermitteltende Block aus einem darin löslichen Polymer. Das Blockcopolymerisat kann auch mehr als zwei Polymerblöcke enthalten, wobei der dritte oder weitere Block mit einem der beiden ersten Blöcke in der Zusammensetzung gleich oder verschieden sein kann (Blockterpolymer usw.)
In den aus dem Blockcopolymerisat bestehenden Mizellen befindet sich das kolloidale Metall . Es kann in metallischer Form oder in Form seiner Halbleitereigenschaften aufweisenden Verbindun¬ gen, insbesondere der entsprechende Oxide oder Sulfide, vor¬ liegen. Wie oben schon erwähnt, liegt die Größe der Kolloid¬ partikel im allgemeinen zwischen 2 nm und 20 nm. Eine gewisse Regelung der Größe der Kolloidpartikel läßt sich durch die Regelung der Größe der Mizellen erreichen, die wiederum durch Länge und Art des äußeren Polymerblocks in Beziehung zum vor¬ gegebenen Lösungsmittel variierbar ist. Die Größe der Kolloide ist dabei maximal auf die Größe des Kerns der Blockcopolymeri- satmizelle, sowie auf die Anzahl der Metallionen pro Mizelle beschränkt .
Die Herstellung der erfindungsgemäßen kolloidalen Zubereitung erfolgt vorzugsweise so, daß man eine Lösung des Blockcopolyme¬ risats in einem geeigneten Lösungsmittel herstellt, dieser ein Salz des gewählten, in die kolloidale Form zu überführenden Metalls zusetzt, wobei sich Metallsalz enthaltende Mizellen bilden und danach a) das Salz unter Bildung des Kolloids redu¬ ziert und gegebenenfalls das so erhaltene kolloidale Metall in die Halbleiterform überführt, vorzugsweise unter Verwendung von Sulfid- oder Hydroxid-Donatoren unter Bildung der sulfidischen bzw. oxidischen Halbleiterform des Metalls, oder b) das Salz direkt mit einem Sulfid oder Hydroxyd-Donator in seine kolloi¬ dale sulfidische oder oxidische Halbleiterform überführt.
Die Bildung der Mizellen des Blockcopolymerisats im jeweiligen Lösungsmittel benötigt normalerweise keine besonderen Maßnah¬ men. Es genügt, das Copolymer im jeweiligen Lösungsmittel aufzulösen, gegebenenfalls unter Rühren. Das Lösungsmittel wird so gewählt, daß es den solvatisierenden Block (in der Mizelle der äußere Block) lösen kann. Zum Beispiel eignen sich für Polystyrol als solvatisierenden Block besonders aromatische, cyclische oder/und chlorierte Kohlenwasserstoffe und Ether, für Polykohlenwasserstoffe als solvatisierenden Block aromatische, aliphatische oder/und chlorierte Kohlenwasserstoffe und Ether.
Als Metalle werden bevorzugt die Edelmetalle, sonstige kataly- tische Eigenschaf en aufweisende Metalle und zur Halbleiterbil¬ dung geeignete Metalle verwendet. Hierzu gehören neben den Metallen der Platingruppe, Gold, Silber, Kupfer, Cadmium, Zink, Titan, Eisen, Kobalt und Nickel. Da dem Fachmann die Metalle mit den oben angegebenen Eigenschaften wohlbekannt sind, werden sie hier nicht weiter aufgeführt. Besonders bevorzugte Metall- salze sind die Chloride und Chlorate bzw. die Perchlorkomplexe der jeweils zur Umsetzung vorgesehenen Metallionen wie z.B. HAuCl4, Na2PdCl6, CuCl, CdCl04, AgN03. Bevorzugt sind auch die Acetate, Nitrite, Nitrate, die anderen Halogenide und Halogen¬ oxide. Die Metallsalze werden der Lösung des Blockcopolymeri¬ sats zweckmäßig in fester Form zugegeben, jedoch kann auch eine entsprechende Lösung zugesetzt werden. Dabei hat sich herausge¬ stellt, daß das verwendete Salz in der anzuwendenden Menge im Lösungsmittel nicht unbedingt löslich sein muß. Auch bei unzu¬ reichender Löslichkeit des Salzes kommt es trotzdem zu einer langsamen, durch das Blockcopolymer vermittelten Aufnahme des Salzes in die Mizellen.
Nach Bildung der Metallsalz-haltigen Mizellen wird durch Reduk¬ tion das entsprechende Metallkolloid hergestellt. Die für die Reduktion geeigneten Mittel sind dem Fachmann geläufig. Ty¬ pische Beispiele für geeignete Reduktionsmittel sind Hydrazin, NaBH4, Butyllithium, Superhydrid u.dgl.
Falls das Metallsalz in Halbleiterform überführt werden soll, gibt man entsprechende Reagenzien, insbesondere Sulfid- bzw. Hydroxid-Donatoren, die zur Bildung der entsprechenden sulfidi¬ schen und oxidischen Halbleiterform führen, entweder nach Zugabe des Metallsalzes oder nach dessen vorhergehender Reduk¬ tion zum Metallkolloid, zu. Als Sulfiddonator eignet sich z.B. H2S, NaHS oder Na2S, als Oxiddonator H20, NaOH (in H20/Tetrahy- drofuran-Systemen) oder quartäres organisches Ammonium (NR4OH) . Jedes R bedeutet hierin eine geradkettige oder verzweigte, gesättigte oder ungesättigte Alkylgruppe mit 1 bis 12 C-Atomen.
Bei der Herstellung der Kolloide wird vorzugsweise ein molares Verhältnis zwischen Metall und den bindenden Gruppen im binden¬ den Blockcopolymerisat von 1:10 bis 1:1, besonders bevorzugt von 1:6 bis 1:2 eingehalten. So haben sich besonders molare Verhältnisse zwischen Methacrylsäureeinheiten im bindenden Blockpolymer zu Pd2+ von 1:8, von Vinylpyridineinheiten zu Cu (I) von 1:4, von Cd zu Vinylpyridin von 1:6, von Au3* zu Pyridin von 1 : 3 bewährt .
Bei den erfindungsgemäß hergestellten kolloidalen Zubereitungen wurde keine Partikelaggregation und kein Kristallwachstum über die Blockcopolymermizelle hinaus beobachtet. Die chemische Umsetzung führt jedoch nicht notwendigerweise zu einem einzigen Kolloidteilchen pro Mizellkern. Bei geeigneter Auswahl der Reaktionsbedingungen können auch mehrere Teilchen pro Mizelle erzeugt werden.
Die erfindungsgemäße flüssige Zubereitung mit einem Gehalt an kolloidalem Metall eignet sich im besonderen Maße zur Katalyse bzw. für optische und magnetische Applikationen. Viele spe¬ zielle Anwendungsmöglichkeiten hierzu sind dem Fachmann bereits bekannt für entsprechende kolloidale Metallsysteme mit anderer Stabilisierung. So seien als weitere Anwendungen genannt: selektive Hydrierungen, d.h. Diene neben Enen, Dreifach- neben Doppelbindungen, Doppelbindungen neben Carbonylen oder Carbo- nyle neben Doppelbindungen; Carbonylierung wie Homologisierun- gen, Nitrate → Isocyanaten; Hydroformulierungen; Isomerisierun- gen von C-C-Gerüsten; Cyclooligomerisierungen; Photooxidierung bzw. Photoreduktion. Ein besonderer Vorteil der erfindungs- gemäßen Kolloide besteht auch darin, daß sie nur eine sehr geringe Größenverteilung aufweisen.
Die folgenden Beispiele erläutern die Erfindung weiter in Verbindung mit der beigefügten Zeichnung. In dieser stellen dar:
Figur 1 zeigt das Analysenergebnis einer erfindungsgemäßen Blockcopoly erisatzelle mit Goldkern, d.h. der gesamte Verbund aus Polymer und Metallkolloid wird beschrieben;
Figur 2 ein UV-Spektrogramm der roten Farbe von erfin¬ dungsgemäßen Goldkolloiden; Figur 3 eine graphische Darstellung der Kleinwinkelrön - genstreuung für ein erfindungsgemäßes Goldkolloid und ein nach der oben erwähnten Literaturstelle Bonnemann et al . hergestell¬ tes bekanntes Goldkolloid.
Beispiele
Beispiel 1
Ein Blockcopolymer aus Styrol und 4-Vinylpyridin wird mittels anionischer Polymerisation entsprechend Ref. (6) hergestellt (nicht erfindungsgemäß) . Das Gesamtmolekulargewicht beträgt Mw = 135.000, der molare 4-Vinylpyridingehalt 21,5 %. Zu einer Lösung von 1 g dieses Blockcopolymeren in 50 ml Toluol wird eine entsprechende Menge HAuCl4 gegeben, z.B. in einem molaren Verhältnis von 1:3 (Au3* zu Pyridin-Einheiten) . Die Goldsäure¬ kristalle, in Toluol unlöslich, werden mizellar im Blockcopoly¬ mer gelöst. Die Zugabe von Hydrazin als Reduktionsmittel ergibt eine spontane Rotfärbung von kolloidalem Gold.
Beispiel 2
Die Blockcopolymermizellen des nach Beispiel 1 erhaltenen Systems werden mit einem Partikelgrößenanalysator Nicomp C370 vermessen. Es ergibt sich ein Mizelldurchmesser von 138,9 nm bei einer Breite der Verteilung von 10,4 %, wie im beigelegten Analysenergebnis ersichtlich (Figur 1) . Diese Mizellgröße ändert sich bei Beladen mit Salz (HAuCl4) als auch bei der nachfolgenden Reduktion nur unwesentlich.
Beispiel 3
Mit UV-Spektrometrie wird die für Goldkolloide übliche Plasmo- nenbande (rote Farbe) detektiert . Es ergibt sich ein Spektrum, welches typisch für ein feinteiliges, eng verteiltes Goldkol¬ loid ist (Figur 2) . Be i spie l 4
Ein Blockcopolymer aus Styrol und Butadien (Mw = 60000) mit 25 Mol-% Butadiengehalt wird epoxidiert und das entstehende Epoxid mit Diethylamin oder Methylethanolamin unter Lewis-Säure-Kata- lyse bei Raumtemperatur in bekannter Weise geöffnet. Das so teilhydrophilierte Blockcopolymer wird in Toluol gelöst und mit kristallinem Silbernitrat versetzt. Wie in Beispiel 1 stellt sich nach Rühren eine homogene mizellare Lösung ein. Die nach¬ folgende Reduktion mit Hydrazin ergibt eine gelbe Lösung, die aus engverteilten silberkolloidhaltigen Mizellen mit einer sehr scharfen, für Silberkolloide üblichen Plasmonenbande besteht.
Beispiel 5
Ein Blockcopolymer aus Isopren und +-Butylmethacrylat (Mw = 50000, Anteil an +-BMA 18 %) wird mittels anionischer Polymeri¬ sation hergestellt und sauer zu Polyisopren- (b) -polymethacryl- säure hydrolysiert . Das Polymer wird in Cyclohexan gelöst und mit Na2PdCl4 (molares Verhältnis Pd2+ zu Methacrylsäure 1:8) gefüllt. Die anschließende Reduktion mit H2N2 ergibt ein stabi¬ les, tiefschwarzes Pd-Kolloid, welches durch Blockcopolymere stabilisiert ist.
Beispiel 6
Das in Beispiel 1 beschriebene Polystyrol- (b) -Poly(4)vinylpyri- din-Blockcopolymer wird mit Methylbromid quarterniert . Eine Lösung dieses Blockcopolymers in THF wird mit Kupfer (I) Chlorid gefüllt (molares Verhältnis Cu(I) zur Vinylpyridin-Einheiten 1:4) und mit Butyllithium zu einem stabilen, rostbraunen Kup¬ ferkolloid reduziert.
Beispiel 7
Das in Beispiel 6 beschriebene quarternierte Blockcopolymer wird in einer Toluol/THF-Mischung (97:3 Gew.-%) mit Cadmiumper- chlorat versetzt (molares Verhältnis Cd:Vinylpyridin 1:6) . Nach dem vollständigen Auflösen des Salzes wird mit H2S begast . Es entsteht eine gelbe kolloidale CdS-Lösung, aus dessen UV-Spek¬ trum man auf eng verteilte, ca. 8 nm große CdS-Halbleiterteil- chen schließen kann.
Beispiel 8
Ein mit Polystyrol- (b) -Poly (4)vinylpyridin stabilisiertes Pd- Kolloid wird dazu benutzt, um bei Raumtemperatur und unter 1 Atm Wasserstoffdruck in Toluol-Lösung Cyclohexadien zu hydrie¬ ren. Die Reaktion wird nach der Aufnahme der berechneten Menge Wasserstoff gestoppt. Es ergibt sich eine mit anderen Pd-Kol- loiden vergleichbare Reaktivität (2) bei einer im Rahmen der Meßgenauigkeit vollständigen Selektivität für die Reduktion von Cyclohexadien zum Cyclohexen (> 98 %) .
Beispiel 9
Ein konventionell hergestelltes Goldkolloid (mit NR4 stabili¬ siert, analog Bonnemann loc. cit . und ein mit Polystyrol- (b) - Poly(4)vinylpyridin stabilisiertes Kolloid werden mit der Kleinwinkel-Röntgenstreuung charakterisiert (Figur 3) . Das konventionell hergestellte Kolloidteilchen zeigt ein unstruktu¬ riertes Diffraktogramm (Δ) , welches in diesem Fall auf Teil¬ chenaggregate schließen läßt, während sich das blockcopolymeri- sierte Produkt mit einer kugelförmigen Geometrie mit einem Radius von 5, 2 nm und sehr geringer Verteilungsbreite beschrei¬ ben läßt.

Claims

Patentansprüche
1. Flüssige Zubereitung mit einem Gehalt an kolloidalem Me¬ tall in metallischer, oxidischer oder sulfidischer halb¬ leitender Form in einem flüssigen organischen oder anorga¬ nischen Lösungsmittel, g e k e n n z e i c h n e t d u r c h einen Gehalt an Mizellen, die aus einem Blockcopolymerisat bestehen, welches mindestens einen im Lösungsmittel solva¬ tisierenden Polymerblock und einen für das kolloidale Metall bindefähigen Polymerblock aufweist und die das kolloidale Metall eingeschlossen enthalten.
2. Zubereitung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der bindefähige Polymerblock basische oder saure Grup¬ pen enthält .
3. Zubereitung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß der bindefähige Polymerblock Amingruppen, Amidgruppen oder basische heterocyclische Einheiten enthält .
4. Zubereitung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , daß der bindefähige Polymerblock Carboxylgruppen oder/und
Hydroxylgruppen enthält .
5. Zubereitung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das Blockcopolymerisat mindestens einen solvatisieren¬ den Polymerblock, ausgewählt unter Polystyrol, Polyiso- pren, Polypropylenglykol, Polyalkylstyrol und Polybutadien und mindestens einen bindenden Block, ausgewählt unter Poly (4) vinylpyridin, Poly (2)vinylpyridin, Polyethylengly- kol, polar modifizierte Polydiene und Polyacrylsäure/Poly- methacrylsäure enthält.
6. Zubereitung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß das kolloide Metall ein Edelmetall oder ein halblei¬ tende Oxide oder Sulfide bildendes Metall ist.
7. Zubereitung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Größe der Kolloidpartikel zwischen 2 nm und 20 nm liegt .
8. Verfahren zur Herstellung der flüssigen Kolloidzubereitung nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß man einer Lösung des Blockcopolymerisats in einem ge¬ eigneten Lösungsmittel ein Salz eines in kolloidale Form überführbaren Metalls zusetzt, unter Bildung von Metall¬ salz-haltigen Mizellen aus dem Blockcopolymerisat, dann a) das Salz unter Bildung des Kolloids reduziert und gegebenenfalls das so erhaltene kolloidale Metall mit einem Sulfid oder Hydroxyd-Donator in seine sulfi¬ dische oder oxidische Halbleiterform überführt, oder b) das Salz mit einem Sulfid oder Hydroxyd-Donator direkt in seine kolloidale sulfidische oder oxidische Halbleiterform überführt .
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß man ein Salz eines Metalls aus der Gruppe Platingrup¬ penmetalle, Gold, Silber, Kupfer, Cadmium, Zink, Titan, Eisen, Nickel und Kobalt verwendet, insbesondere als Chlorid oder Perchlorat .
10. Verfahren nach Anspruch 8 oder 9, d a d u r c h g e k e n n z e i c h n e t , daß man als Reduktionsmittel Hydrazin, NaBH4, Butyllithium- hydrid oder Superhydrid verwendet .
11. Verfahren nach einem der Ansprüche 8 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß man als Sulfid-Donator H2S, NaHS oder Na2S verwendet.
12. Verfahren nach einem der Ansprüche 8 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß man als Oxid-Donator H20, NaOH (in H20/THF-Systemen) oder NR4OH, worin jedes R eine geradkettige, verzweigte, gestättigte oder ungesättigte Alkylgruppe mit 1 bis 12 C- Atomen bedeutet, verwendet.
13. Verfahren nach einem der Ansprüche 8 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß man das Metallsalz in solcher Menge zugibt, daß sich ein molares Verhältnis zwischen Metall und den bindenden Gruppen im bindenden Block des Copolymerisats von 1:10 bis 1 : 1 ergib .
14. Verfahren nach einem der Ansprüche 8 bis 13 , d a d u r c h g e k e n n z e i c h n e t , daß man das Metallsalz der Lösung des Blockcopolymerisats in fester Form zugibt .
15. Verwendung einer flüssigen Zubereitung nach einem der Ansprüche 1 bis 7 als Katalysator.
16. Verwendung einer Zubereitung nach einem der Ansprüche 1 bis 7 für optische Applikationen.
17. Verwendung einer Zubereitung nach einem der Ansprüche 1 bis 7 für magnetische Applikationen.
PCT/EP1996/000721 1995-02-22 1996-02-21 Kolloidale metallzubereitung und verfahren zu ihrer herstellung WO1996026004A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19506113.6 1995-02-22
DE19506113A DE19506113A1 (de) 1995-02-22 1995-02-22 Kolloidale Metallzubereitung und Verfahren zu ihrer Herstellung

Publications (1)

Publication Number Publication Date
WO1996026004A1 true WO1996026004A1 (de) 1996-08-29

Family

ID=7754726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000721 WO1996026004A1 (de) 1995-02-22 1996-02-21 Kolloidale metallzubereitung und verfahren zu ihrer herstellung

Country Status (2)

Country Link
DE (1) DE19506113A1 (de)
WO (1) WO1996026004A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059713A1 (de) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Verfahren zur modifizierung der dispergiereigenschaften von metallorganisch-prästabilisierten bzw. -vorbehandelten nanometallkolloiden
US6197720B1 (en) 1997-12-02 2001-03-06 Basf Aktiengesellschaft Palladium clusters and their use as catalysts
US6500871B1 (en) * 2000-06-08 2002-12-31 Rhodia Chimie Process for preparing colloids of particles coming from the hydrolysis of a salt of a metal cation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504374A (ja) * 1995-12-28 2000-04-11 アール. ヒース,ジェイムズ 有機的に官能価された金属の単分散微小結晶
DE10125613A1 (de) 2001-05-25 2002-11-28 Basf Ag Kolloidkatalysierte Wasserstoffübertragung in überkritischer Phase
DE10151060B4 (de) * 2001-09-28 2011-07-21 Spiess-Urania Chemicals GmbH, 20097 Kontrollierte Morphoginese von Kupfersalzen
EP1298092A1 (de) * 2001-09-28 2003-04-02 Spiess -Urania Chemicals GmbH Kontrollierte Morphogenese von Kupfersalzen
DE102013108664A1 (de) 2013-08-09 2015-02-12 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Oberflächenmodifizierte Metallkolloide und ihre Herstellung
ES2819077T3 (es) 2013-08-09 2021-04-14 Leibniz Institut Fuer Neue Mat Gemeinnuetzige Gmbh Formación de coloides metálicos modificados en superficie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328497A1 (de) * 1988-02-08 1989-08-16 SKF Nova AB Superparamagnetische Flüssigkeit
EP0518489A1 (de) * 1991-05-16 1992-12-16 Xerox Corporation Tinte für den Tintenstrahldruck
EP0556649A1 (de) * 1992-02-20 1993-08-25 E.I. Du Pont De Nemours & Company Incorporated Dreiblock-Polymer Dispersionsmittel enthaltende Wasserdispersionen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182835A (ja) * 1984-09-29 1986-04-26 Ricoh Co Ltd 微粒子体を含有するミクロゲル分散液
US5145602A (en) * 1989-02-01 1992-09-08 Union Oil Company Of California Sol/gels containing nonionic surfactants and preparation methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328497A1 (de) * 1988-02-08 1989-08-16 SKF Nova AB Superparamagnetische Flüssigkeit
EP0518489A1 (de) * 1991-05-16 1992-12-16 Xerox Corporation Tinte für den Tintenstrahldruck
EP0556649A1 (de) * 1992-02-20 1993-08-25 E.I. Du Pont De Nemours & Company Incorporated Dreiblock-Polymer Dispersionsmittel enthaltende Wasserdispersionen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKI TOSHIMA ET AL: "POLYMER-PROTECTED PALLADIUM-PLATINUM BIMETALLIC CLUSTERS: PREPARATION, CATALYTIC PROPERTIES AND STRUCTURAL CONSIDERATIONS", JOURNAL OF THE CHEMICAL SOCIETY. FARADAY TRANSACTIONS, vol. 89, no. 14, 21 July 1993 (1993-07-21), pages 2537 - 2543, XP000381461 *
PETIT ET AL.: "In Situ Synthesis of Silver Nanoclusters in AOT Reverse Micelles", J. PHYS. CHEM:, vol. 97, 1993, pages 12974 - 12983, XP002005340 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197720B1 (en) 1997-12-02 2001-03-06 Basf Aktiengesellschaft Palladium clusters and their use as catalysts
WO1999059713A1 (de) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Verfahren zur modifizierung der dispergiereigenschaften von metallorganisch-prästabilisierten bzw. -vorbehandelten nanometallkolloiden
DE19821968A1 (de) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Verfahren zur Modifizierung der Dispergiereigenschaften von metallorganisch-prästabilisierten bzw. -vorbehandelten Nanometallkolloiden
US6500871B1 (en) * 2000-06-08 2002-12-31 Rhodia Chimie Process for preparing colloids of particles coming from the hydrolysis of a salt of a metal cation

Also Published As

Publication number Publication date
DE19506113A1 (de) 1996-08-29

Similar Documents

Publication Publication Date Title
DE4244354C2 (de) Verfahren zur Herstellung einer nicht-wäßrigen Dispersion von Teilchen eines Metalls und/oder einer Metallverbindung
DE69532541T2 (de) Hochfester hochverschleissfester gesinteter Diamantkörper
EP0490156B1 (de) Verfahren zur Herstellung aktiver, reversibel H2 aufnehmender Magnesiumhydrid-Magnesium-Wasserstoff-Speichersysteme
DE2941447C2 (de) Verfahren zum Herstellen von mehrlagig beschichtetem Verbundpulver
DE112006001900B4 (de) Herstellung von Platin-Titan-Legierungen mit Nanogröße
DE2929630C2 (de) Verfahren zur Herstellung von Silberpulver
DE69303500T2 (de) Verfahren zur partiellen Hydrierung von einem monocyklischen aromatischen Kohlenwasserstoff
EP0915997B1 (de) Verfahren zur herstellung von solvens-stabilisierten metallkolloiden und trägerfixierten metallclustern
WO1996026004A1 (de) Kolloidale metallzubereitung und verfahren zu ihrer herstellung
EP0776697A2 (de) Katalysatoren auf Kupferbasis, Verfahren zu ihrer Herstellung sowie ihre Verwendung und ein Verfahren zur Herstellung von Alkylhalogensilanen
WO2010085945A1 (de) Verfahren zur herstellung von mit polymeren umhüllten metallhaltigen nanopartikeln und daraus erhältliche partikel
DE2631906C2 (de) Metallpulvermischung zur Herstellung von Zahnamalgam durch Verreiben mit Quecksilber
DE69806751T2 (de) In situ verfahren zur herstellung von bimodalem hips mit gleichzeitig hohem glanz und hoher schlagzähigkeit
DE2457462A1 (de) Katalysator und dessen verwendung
DE2217897A1 (de) Vorlegierungen für Aluminiumlegierungen und Verfahren zu deren Herstellung
DE1458459C2 (de) Verfahren zur Herstellung von pulverförmigen Pail adium-Silber-Legierungen
DE1442733B2 (de) Katalysator auf basis von ruthenium und platin
EP3224244B1 (de) Verfahren zur herstellung von pulverförmigem lauroylperoxid
EP3077073B1 (de) Abtrennung von ionischen flüssigkeiten in koalesziervorrichtungen
DE2547288A1 (de) Verfahren zur herstellung von silberpulvern
DE2508450A1 (de) Verfahren zur herstellung von magnesiumverbindungen und zur erzeugung von wasserstoff aus diesen verbindungen
DE69807648T2 (de) Pulverförmige Zinklegierung als Anodenmaterial in alkalischen Manganzellen und Verfahren zu ihrer Herstellung
DE694150C (de) Verfahren zum Herstellen fein verteilter Metalle
AT231740B (de) Sinterkörper und Verfahren zu seiner Herstellung
DE202022103413U1 (de) Ein System zur Herstellung von elektrochemischen und photokatalytischen Silbernanopartikeln

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载