+

WO1996026004A1 - Preparation metallique colloidale et son procede de production - Google Patents

Preparation metallique colloidale et son procede de production Download PDF

Info

Publication number
WO1996026004A1
WO1996026004A1 PCT/EP1996/000721 EP9600721W WO9626004A1 WO 1996026004 A1 WO1996026004 A1 WO 1996026004A1 EP 9600721 W EP9600721 W EP 9600721W WO 9626004 A1 WO9626004 A1 WO 9626004A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
colloidal
salt
block
block copolymer
Prior art date
Application number
PCT/EP1996/000721
Other languages
German (de)
English (en)
Inventor
Markus Antonietti
Stephan FÖRSTER
Eckhard Wenz
Lyudmila Bronstein
Original Assignee
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin filed Critical Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., Berlin
Publication of WO1996026004A1 publication Critical patent/WO1996026004A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0026Preparation of sols containing a liquid organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/41Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds using a solution of normally solid organic compounds, e.g. dissolved polymers, sugars, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a liquid preparation containing colloidal metal in metallic form or in the semiconducting form of a metal oxide or sulfide in a liquid solvent.
  • polymeric stabilizers eg N. Tashima, T. Yonezawa, K. Kushihashi, J. Chem. Soc. Faraday Trans., 89th, 2537 (1993)
  • inverse micelles eg C. Petit, P. Lixon, MP Pileni, J. Phys. Chem. 9, 12974 (1993)
  • microemulsion e.g. R. Touroude, P. Girard, G. Maire, J. Kizling, M. Boutonnet-Kizling, P. Stenius, Coll. Surf. 6J7, 9 (1992)
  • a liquid preparation with a content of colloidal metal in metallic, oxidic or sulfidic semiconducting form in a liquid organic or inorganic solvent which is characterized by a content of micelles which consist of a block copolymer, which has at least one polymer block which solvates in the solvent and a polymer block which is capable of binding to the colloidal metal and which contain the colloidal metal enclosed.
  • the invention makes it possible to provide metal colloids, in particular noble metal colloids and metal compounds having semiconductor properties, in the colloidal size range between 2 nm ⁇ d ⁇ 20 nm, which have a substantially superior stability against aggregation, make such colloids accessible at comparatively high concentrations and the size to control the colloids by appropriate selection of the block polymer and the relative ratio of block polymer to metal. This improves their application for catalysis and optical and magnetic purposes.
  • An essential feature of the invention is the selection of the suitable block copolymer.
  • this contains at least one polymer block which mediates solvation in the selected solvent and at least one polymer block which is capable of binding to the colloidal metal.
  • the block copolymer forms micelles in the solvent in which the block of the block copolymer which mediates the solvation is on the outside, ie facing the solvent, and on the inside is the polymer which mediates the bond with the metal.
  • the solvating block therefore contains or consists of monomer units with affinity for the solvent.
  • the block causing the metal bond contains monomer units which can interact with the respective metal, for example basic or acidic groups such as amines, amides, basic heterocycles (for example pyridine) or carboxyl groups and hydroxyl groups.
  • monomer units which can interact with the respective metal for example basic or acidic groups such as amines, amides, basic heterocycles (for example pyridine) or carboxyl groups and hydroxyl groups.
  • Block copolymers which are composed of the combination of the polymer blocks listed below are preferably used for this purpose:
  • Polyalkylstyrenes polar modified polydienes e.g. Polybutadiene
  • the block copolymers resulting from the blocks listed above by combination are particularly suitable for organic solvents, such as toluene, cyclohexane or tetrahydrofuran. If inorganic solvents are used, such as H 2 O, liquid NH 3 or liquid S0 2 , the block which mediates the solvation consists of a polymer soluble therein.
  • organic solvents such as toluene, cyclohexane or tetrahydrofuran.
  • inorganic solvents such as H 2 O, liquid NH 3 or liquid S0 2
  • the block which mediates the solvation consists of a polymer soluble therein.
  • the block copolymer can also contain more than two polymer blocks, it being possible for the third or further block with one of the first two blocks to have the same or different composition (block terpolymer, etc.)
  • the colloidal metal is located in the micelles consisting of the block copolymer. It can be in metallic form or in the form of its semiconductor properties, in particular the corresponding oxides or sulfides.
  • the size of the colloid particles is generally between 2 nm and 20 nm. A certain regulation of the size of the colloid particles can be achieved by regulating the size of the micelles, which in turn can be achieved by The length and type of the outer polymer block can be varied in relation to the given solvent.
  • the size of the colloids is limited to the size of the core of the block copolymer micelle as well as to the number of metal ions per micelle.
  • the colloidal preparation according to the invention is preferably prepared by preparing a solution of the block copolymer in a suitable solvent, adding a salt of the selected metal to be converted into the colloidal form, micelles containing metal salt forming and then a) the Salt is reduced to form the colloid and, if appropriate, the colloidal metal thus obtained is converted into the semiconductor form, preferably using sulfide or hydroxide donors to form the sulfidic or oxidic semiconductor form of the metal, or b) the salt directly with a sulfide or hydroxide donor converted into its colloidal sulfidic or oxidic semiconductor form.
  • the formation of the micelles of the block copolymer in the respective solvent normally does not require any special measures. It is sufficient to dissolve the copolymer in the respective solvent, if necessary with stirring.
  • the solvent is chosen so that it can dissolve the solvating block (in the micelle the outer block).
  • aromatic, cyclic and / or chlorinated hydrocarbons and ethers are particularly suitable for polystyrene as the solvating block, and aromatic, aliphatic or / and chlorinated hydrocarbons and ethers are suitable for polycarbonates as the solvating block.
  • metals having other catalytic properties and metals suitable for semiconductor formation are preferably used as metals.
  • this includes gold, silver, copper, cadmium, zinc, titanium, iron, cobalt and nickel. Since the person skilled in the art is well aware of the metals with the properties indicated above, they are not listed here any further.
  • Particularly preferred metal salts are the chlorides and chlorates or the perchloric complexes of the metal ions intended for the reaction, such as HAuCl 4 , Na 2 PdCl 6 , CuCl, CdCl0 4 , AgN0 3 .
  • the acetates, nitrites, nitrates, the other halides and halogen oxides are also preferred.
  • the metal salts are advantageously added to the solution of the block copolymer in solid form, but a corresponding solution can also be added. It has been found that the salt used does not necessarily have to be soluble in the solvent in the amount to be used. Even if the solubility of the salt is insufficient, there is nevertheless a slow uptake of the salt into the micelles mediated by the block copolymer.
  • the corresponding metal colloid is produced by reduction.
  • suitable reducing agents are hydrazine, NaBH 4 , butyllithium, superhydride and the like.
  • Suitable reagents are, for example, H 2 S, NaHS or Na 2 S, and oxide donors H 2 0, NaOH (in H 2 0 / tetrahydrofuran systems) or quaternary organic ammonium (NR 4 OH).
  • R here denotes a straight-chain or branched, saturated or unsaturated alkyl group having 1 to 12 C atoms.
  • the liquid preparation according to the invention containing colloidal metal is particularly suitable for catalysis or for optical and magnetic applications.
  • Many specialist applications for this are already known to the person skilled in the art for corresponding colloidal metal systems with different stabilization.
  • the following may be mentioned as further applications: selective hydrogenations, i.e. Serve in addition to enen, triple in addition to double bonds, double bonds in addition to carbonyls or carbonyls in addition to double bonds; Carbonylation such as homologations, nitrates ⁇ isocyanates; Hydroformulations; Isomerizations of C – C frameworks; Cyclooligomerizations; Photooxidation or photo reduction.
  • a particular advantage of the colloids according to the invention is that they have only a very small size distribution.
  • Figure 1 shows the analytical result of a block copolymer cell with gold core according to the invention, i.e. the entire composite of polymer and metal colloid is described;
  • FIG. 2 shows a UV spectrogram of the red color of gold colloids according to the invention
  • FIG. 3 shows a graphic representation of the small-angle X-ray scattering for a gold colloid according to the invention and for a Bonnemann et al. manufactured known gold colloid.
  • a block copolymer of styrene and 4-vinylpyridine is produced by means of anionic polymerization in accordance with ref. (6) (not according to the invention).
  • a corresponding amount of HAuCl 4 is added to a solution of 1 g of this block copolymer in 50 ml of toluene, for example in a molar ratio of 1: 3 (Au 3 * to pyridine units).
  • the gold acid crystals, insoluble in toluene, are dissolved micellarly in the block copolymer.
  • the addition of hydrazine as a reducing agent results in a spontaneous red coloring of colloidal gold.
  • the block copolymer micelles of the system obtained according to Example 1 are measured with a Nicomp C370 particle size analyzer.
  • the result is a micelle diameter of 138.9 nm with a width of the distribution of 10.4%, as can be seen in the enclosed analysis result (FIG. 1).
  • This micelle size changes only insignificantly when loaded with salt (HAuCl 4 ) and during the subsequent reduction.
  • the block copolymer thus partially hydrophilized is dissolved in toluene and mixed with crystalline silver nitrate.
  • a homogeneous micellar solution is obtained after stirring.
  • the subsequent reduction with hydrazine gives a yellow solution which consists of narrowly distributed micelles containing silver colloids with a very sharp plasmon band which is customary for silver colloids.
  • the polymer is dissolved in cyclohexane and filled with Na 2 PdCl 4 (molar ratio Pd 2+ to methacrylic acid 1: 8).
  • the subsequent reduction with H 2 N 2 results in a stable, deep black Pd colloid which is stabilized by block copolymers.
  • the polystyrene (b) -poly (4) vinylpyridine block copolymer described in Example 1 is quaternized with methyl bromide.
  • a solution of this block copolymer in THF is filled with copper (I) chloride (molar ratio Cu (I) to vinylpyridine units 1: 4) and reduced with butyllithium to a stable, rust-brown copper colloid.
  • Example 6 The quaternized block copolymer described in Example 6 is in a toluene / THF mixture (97: 3 wt .-%) with cadmium perm chlorate added (molar ratio Cd: vinyl pyridine 1: 6). After the salt has completely dissolved, H 2 S is fumigated. A yellow colloidal CdS solution results, from the UV spectrum of which one can deduce narrowly distributed, approximately 8 nm large CdS semiconductor particles.
  • a Pd colloid stabilized with polystyrene (b) poly (4) vinylpyridine is used to hydrogenate cyclohexadiene at room temperature and under 1 atm hydrogen pressure in toluene solution. The reaction is stopped after the calculated amount of hydrogen has been taken up . This results in a reactivity comparable to other Pd colloids (2) with a full selectivity for the reduction of cyclohexadiene to cyclohexene (> 98%) within the measurement accuracy.
  • a conventionally produced gold colloid (stabilized with NR 4 , analogous to Bonnemann loc. Cit.) And a colloid stabilized with polystyrene (b) - poly (4) vinylpyridine are characterized by small-angle X-ray scattering (FIG. 3).
  • the conventionally produced colloid particle shows an unstructured diffractogram ( ⁇ ), which in this case can be inferred from particle aggregates, while the block-copolymerized product can be described with a spherical geometry with a radius of 5.2 nm and a very small distribution width.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

L'invention concerne une préparation liquide contenant des micelles constituées d'un copolymère séquencé possédant au moins une séquence polymère solvatant dans le solvant et une séquence polymère à pouvoir liant pour le métal colloïdal. Ces micelles renferment du métal colloïdal inclus sous forme de semi-conducteur métallique, oxydé ou sulfuré dans un solvant liquide organique ou inorganique. Pour produire cette préparation, un sel d'un métal convertible en une forme colloïdale est ajouté à une solution du copolymère séquencé dans un solvant approprié, entraînant ainsi la formation de micelles contenant un sel métallique issu du copolymère séquencé; le sel est ensuite réduit pour former un colloïde et le métal colloïdal obtenu est éventuellement transformé avec un sulfure ou un donneur d'hydroxyde en sa forme de semi-conducteur sulfuré ou oxydé, ou bien le sel est transformé directement en sa forme de semi-conducteur colloïdal sulfuré ou oxydé avec un sulfure ou un donneur d'hydroxyde.
PCT/EP1996/000721 1995-02-22 1996-02-21 Preparation metallique colloidale et son procede de production WO1996026004A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19506113.6 1995-02-22
DE19506113A DE19506113A1 (de) 1995-02-22 1995-02-22 Kolloidale Metallzubereitung und Verfahren zu ihrer Herstellung

Publications (1)

Publication Number Publication Date
WO1996026004A1 true WO1996026004A1 (fr) 1996-08-29

Family

ID=7754726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000721 WO1996026004A1 (fr) 1995-02-22 1996-02-21 Preparation metallique colloidale et son procede de production

Country Status (2)

Country Link
DE (1) DE19506113A1 (fr)
WO (1) WO1996026004A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059713A1 (fr) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Procede pour modifier les proprietes de dispersion de colloides de nanoparticules metalliques prestabilises ou pretraites par voie organo-metallique
US6197720B1 (en) 1997-12-02 2001-03-06 Basf Aktiengesellschaft Palladium clusters and their use as catalysts
US6500871B1 (en) * 2000-06-08 2002-12-31 Rhodia Chimie Process for preparing colloids of particles coming from the hydrolysis of a salt of a metal cation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504374A (ja) * 1995-12-28 2000-04-11 アール. ヒース,ジェイムズ 有機的に官能価された金属の単分散微小結晶
DE10125613A1 (de) 2001-05-25 2002-11-28 Basf Ag Kolloidkatalysierte Wasserstoffübertragung in überkritischer Phase
DE10151060B4 (de) * 2001-09-28 2011-07-21 Spiess-Urania Chemicals GmbH, 20097 Kontrollierte Morphoginese von Kupfersalzen
EP1298092A1 (fr) * 2001-09-28 2003-04-02 Spiess -Urania Chemicals GmbH Morphogénèse controllée de sels de cuivre
DE102013108664A1 (de) 2013-08-09 2015-02-12 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Oberflächenmodifizierte Metallkolloide und ihre Herstellung
ES2819077T3 (es) 2013-08-09 2021-04-14 Leibniz Institut Fuer Neue Mat Gemeinnuetzige Gmbh Formación de coloides metálicos modificados en superficie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328497A1 (fr) * 1988-02-08 1989-08-16 SKF Nova AB Fluides superparamagnétique
EP0518489A1 (fr) * 1991-05-16 1992-12-16 Xerox Corporation Encre pour l'impression par jet d'encre
EP0556649A1 (fr) * 1992-02-20 1993-08-25 E.I. Du Pont De Nemours & Company Incorporated Dispersions aqueouses contenant des polymèrs ABC à trois blocs comme dispersants

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182835A (ja) * 1984-09-29 1986-04-26 Ricoh Co Ltd 微粒子体を含有するミクロゲル分散液
US5145602A (en) * 1989-02-01 1992-09-08 Union Oil Company Of California Sol/gels containing nonionic surfactants and preparation methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328497A1 (fr) * 1988-02-08 1989-08-16 SKF Nova AB Fluides superparamagnétique
EP0518489A1 (fr) * 1991-05-16 1992-12-16 Xerox Corporation Encre pour l'impression par jet d'encre
EP0556649A1 (fr) * 1992-02-20 1993-08-25 E.I. Du Pont De Nemours & Company Incorporated Dispersions aqueouses contenant des polymèrs ABC à trois blocs comme dispersants

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKI TOSHIMA ET AL: "POLYMER-PROTECTED PALLADIUM-PLATINUM BIMETALLIC CLUSTERS: PREPARATION, CATALYTIC PROPERTIES AND STRUCTURAL CONSIDERATIONS", JOURNAL OF THE CHEMICAL SOCIETY. FARADAY TRANSACTIONS, vol. 89, no. 14, 21 July 1993 (1993-07-21), pages 2537 - 2543, XP000381461 *
PETIT ET AL.: "In Situ Synthesis of Silver Nanoclusters in AOT Reverse Micelles", J. PHYS. CHEM:, vol. 97, 1993, pages 12974 - 12983, XP002005340 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197720B1 (en) 1997-12-02 2001-03-06 Basf Aktiengesellschaft Palladium clusters and their use as catalysts
WO1999059713A1 (fr) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Procede pour modifier les proprietes de dispersion de colloides de nanoparticules metalliques prestabilises ou pretraites par voie organo-metallique
DE19821968A1 (de) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Verfahren zur Modifizierung der Dispergiereigenschaften von metallorganisch-prästabilisierten bzw. -vorbehandelten Nanometallkolloiden
US6500871B1 (en) * 2000-06-08 2002-12-31 Rhodia Chimie Process for preparing colloids of particles coming from the hydrolysis of a salt of a metal cation

Also Published As

Publication number Publication date
DE19506113A1 (de) 1996-08-29

Similar Documents

Publication Publication Date Title
DE4244354C2 (de) Verfahren zur Herstellung einer nicht-wäßrigen Dispersion von Teilchen eines Metalls und/oder einer Metallverbindung
DE69532541T2 (de) Hochfester hochverschleissfester gesinteter Diamantkörper
EP0490156B1 (fr) Procédé de préparation d'un système de stockage hydrure de magnésium-magnésium-hydrogène, accepteur d'hydrogène, actif et réversible
DE2941447C2 (de) Verfahren zum Herstellen von mehrlagig beschichtetem Verbundpulver
DE112006001900B4 (de) Herstellung von Platin-Titan-Legierungen mit Nanogröße
DE2929630C2 (de) Verfahren zur Herstellung von Silberpulver
DE69303500T2 (de) Verfahren zur partiellen Hydrierung von einem monocyklischen aromatischen Kohlenwasserstoff
EP0915997B1 (fr) Procedes de preparation de colloides metalliques stabilises par des solvants et de clathrates metalliques fixes sur des substrats
WO1996026004A1 (fr) Preparation metallique colloidale et son procede de production
EP0776697A2 (fr) Catalyseurs à base de cuivre, procédé pour leur fabrication ainsi que leur emploi et procédé pour la fabrication de alkylhalogénosilanes
WO2010085945A1 (fr) Procédé de production de nanoparticules contenant du métal, enrobées de polymères et articles pouvant être obtenus à partir desdites nanoparticules
DE2631906C2 (de) Metallpulvermischung zur Herstellung von Zahnamalgam durch Verreiben mit Quecksilber
DE69806751T2 (de) In situ verfahren zur herstellung von bimodalem hips mit gleichzeitig hohem glanz und hoher schlagzähigkeit
DE2457462A1 (de) Katalysator und dessen verwendung
DE2217897A1 (de) Vorlegierungen für Aluminiumlegierungen und Verfahren zu deren Herstellung
DE1458459C2 (de) Verfahren zur Herstellung von pulverförmigen Pail adium-Silber-Legierungen
DE1442733B2 (de) Katalysator auf basis von ruthenium und platin
EP3224244B1 (fr) Procédé de production de peroxyde de lauryle en poudre
EP3077073B1 (fr) Séparation de liquides ioniques dans des dispositifs de coalescence
DE2547288A1 (de) Verfahren zur herstellung von silberpulvern
DE2508450A1 (de) Verfahren zur herstellung von magnesiumverbindungen und zur erzeugung von wasserstoff aus diesen verbindungen
DE69807648T2 (de) Pulverförmige Zinklegierung als Anodenmaterial in alkalischen Manganzellen und Verfahren zu ihrer Herstellung
DE694150C (de) Verfahren zum Herstellen fein verteilter Metalle
AT231740B (de) Sinterkörper und Verfahren zu seiner Herstellung
DE202022103413U1 (de) Ein System zur Herstellung von elektrochemischen und photokatalytischen Silbernanopartikeln

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载