+

WO1990016070A2 - Fusion nucleaire catalysee d'isotopes lourds d'hydrogene - Google Patents

Fusion nucleaire catalysee d'isotopes lourds d'hydrogene Download PDF

Info

Publication number
WO1990016070A2
WO1990016070A2 PCT/US1990/003445 US9003445W WO9016070A2 WO 1990016070 A2 WO1990016070 A2 WO 1990016070A2 US 9003445 W US9003445 W US 9003445W WO 9016070 A2 WO9016070 A2 WO 9016070A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
electrode
enhancement
isotopes
nuclear
Prior art date
Application number
PCT/US1990/003445
Other languages
English (en)
Other versions
WO1990016070A3 (fr
Inventor
George C. Brumlik
George C. Cvijanovich
Keith Johnson
Original Assignee
Condensed Matter Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Condensed Matter Technology, Inc. filed Critical Condensed Matter Technology, Inc.
Publication of WO1990016070A2 publication Critical patent/WO1990016070A2/fr
Publication of WO1990016070A3 publication Critical patent/WO1990016070A3/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the aforereferenced patent there is described an apparatus for the production of beams of ions of isotopes of hydrogen (protons, deuterons and tritons) capable of carrying large currents.
  • the aforereferenced article contains a report of nuclear reactions involving heavy water electrolysis on solid palladium electrode. These nuclear processes occur only in minute quantities and are not practical for the production of net energy or the production of useful amounts of new isotopes such as tritium or helium-3.
  • the inventive method utilizes a heated noble metal in contact with a gas containing heavy hydrogen isotopes. The heavy hydrogen isotopes dissolve in the heated noble metal which transfers some of the valence electrons of hydrogen into its valence band.
  • the resulting negative heated metal lattice reduces the coulombic barrier between the colliding heavy hydrogen atomic nuclei, thereby facilitating their nuclear fusion reaction.
  • the noble metal alone or in combination is heated, preferably to incandescence, or is melted in a furnace and is contacted with a fluid, a gas, or a vapour containing deuterium or tritium.
  • incandescence is meant the temperature range from the temperature where the heated condensed phases start to emit radiation in the visible spectrum and heat up to the temperature where the liquid starts to boil. Typically, the temperature range starts at about 800 degrees Centigrade and ends at about 8000 degrees Centigrade.
  • the hydrogen diffuses into the metal by means of pressure exerted on the contacting gas.
  • the hydrogen is bubbled through the liquid metal.
  • the melting and containment of noble metals and the use thereof is well known in the art and therefore is not described here in detail. However, a specified type of apparatus for the improvement of the nuclear fusion reaction rates utilizing electrical energy is further described and illustrated.
  • Noble metals are here defined as gold, platinum, silver, iridium, osmium, palladium, rhodium, ruthenium and rhenium.
  • Another inventive method is an improvement in the production of higher nuclear reaction rates by utilizing an electrical discharge in an atmosphere containing, at least in part, deuterium or tritium.
  • the discharge 3 contacts a reacting transition metal or an alloy comprising a transition metal.
  • the possible nuclear reactions are:
  • the preferred transition metals are palladium, platinum, gold and silver.
  • the gas mixture could be pure deuterium (D 2 ) , deuterium combined with hydrogen (D-H) , deuterium combined with tritium (D-T) , pure tritium (T 2 ) or tritium combined with hydrogen (T-H) or any combinations thereof.
  • the hydrogen isotopes i.e., the proton P, the deuteron D and the triton T
  • the hydrogen isotopes (H, D, T) could also be present in condensed phase compound such as potassium deuteroxide K D.
  • condensed phase compound such as potassium deuteroxide K D.
  • ⁇ Compounds of light hydrogen ⁇ fH>- H 2 , CH 4 , H 2 0 or LiH or inert gases such as Helium (He) , Neon (Ne) , Krypton (Kr) and Xenon (Xe) are used as diluents for the heavy hydrogen reacting materials.
  • FIGURE 1 is a schematic cross-sectional representation of preferred apparatus for the present invention.
  • FIGURE 2 represents a schematic cross-sectional representation of an apparatus for the synthesis, evaluation and measurement of nuclear processes occurring in high temperature condensed phases.
  • the apparatus shown in FIGURE 1 comprises an isolated chamber 2 containing at least two electrodes, the first being a cooled electrode 4 and the second being a reacting electrode 6.
  • the isolated chamber 2 or a part thereof could be a furnace for melting of the contained electrode 6.
  • the metal electrode 6 is melted by the electrical discharge.
  • the valve 13 controls the pressure in the chamber 2.
  • the cooled electrode 4 is preferentially a plasma torch fed with a gas containing at least in part hydrogen isotopes in the form of ions which can be positive (D+, H+, T+) or negative (D-, H-, T-) .
  • the electrode 4 could also be a heavy hydrogen ion beam source described in the aforereferenced patent.
  • the electrode 4 is preferably cooled with water or a fast moving cold fluid gas or vapor (not shown) .
  • the electrode 6 is also cooled in a similar fashion.
  • the electrode 6 consists at least in part of a noble or transition metal.
  • a bias of opposite electrical polarity is established between the electrode 4 and the electrode 6 by an electrical power supply 12.
  • the electric field between the electrodes 4 and 6 carries the charged hydrogen ions into the metal of electrode 6 which may be contained in a cooled crucible 10.
  • the electrode 6 can be in the liquid or in the solid state.
  • a body 14 of the transition metal of the electrode 6 which is agitated by an electric pulse superimposed on the hydrogen ion carrying current by the power supply 12.
  • An optional layer 18 of a source of hydrogen isotopes such as lithium deuteride or lithium tritide or, for example, lithium deuteroxide LiOD or LiOT or D 2 0 may be placed above the transition metal electrode 6.
  • the layer 18 may be a condensed state inert liquid or solid material such as molten glass or salt forming a flux minimizing the sputtering of the molten metal.
  • the apparatus shown schematically in FIGURE 2 may be used for the synthesis, evaluation and measurement of nuclear processes occurring in high temperature condensed phases. These condensed phases are solids or liquids heated to incandescence.
  • isotopes of hydrogen are introduced into a looped path circuit at the inlet 21 through the valve 22.
  • the compressed isotopes of hydrogen containing deuterium, tritium or mixtures thereof, or in combination with light hydrogen are compressed by the pump 23.
  • the gases flow, driven by the pressure gradient between the chamber 24 and the chamber 25, through the chamber 24 and dissolve then in the incandescent condensed phase 26 comprising a transition metal or a noble metal, such as palladium, positioned in the container 27 and heated by the heat source 28.
  • the gases undergo nuclear reactions in the high temperature phase 26 and diffuse out into the chamber 25 controlled by the valve 29.
  • the chamber 25 is at a lower pressure than the chamber 24.
  • the reaction gases are extracted through the duct 30 to be analyzed in a mass spectroscope.
  • the preferred metals for the electrode 6 are gold, platinum, palladium and silver but any other transition metals with partially or fully filled atomic d orbitals or inner transition elements having partially or fully filled atomic f orbitals may be at least in part employed.
  • these metals are: iron, cobalt, nickel, copper, zinc, scandium, titanium, yttrium, zirconium, hafnium, niobium, tantalum, vanadium, chromium, molybdenum, tungsten, technetium, ruthenium, osmium, iridium and mercury.
  • metal or alloys may be in chemical combination with halogens, chalcogens, pnictides or with combinations of the elements of the carbon family of elements.
  • Germaniun, indium, gallium, thalium, copper, zinc, cadmium, lead, tin or bismuth may be added to the above described alloys or melts.
  • preferred alloys are alloys containing platinum alloyed with silver, gold or palladium, silver alloys, gold-silver alloys or alloys of the above mentioned preferred metals with niobium, tantalum, vanadium, technetium, ruthenium, uranium, rhenium, osmium and iridium.
  • the preferred condensed state of the above mentioned metals is the liquid state but solid metals may also be utilized. Finely divided metals may be deposited on the following substrates: alumina, silica, metal halides and oxyhalides, boron oxides and oxides of phosphorous can also be employed. Also, actinides, uranium and thorium may be employed. Further, boron and lithium in elemental form or in compounds may also be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

On a mis au point un dispositif et un procédé de fusion nucléaire permettant d'augmenter les vitesses de fusion de noyaux des isotopes d'hydrogène ayant une phase solide/liquide de métaux nobles, en contact avec une autre phase contenant des deutérons ou des tritons, consistant à déplacer les noyaux d'isotopes lourds d'hydrogène jusque dans le réseau du métal noble liquide, au moyen de forces mécaniques de diffusion, ou à l'aide de moyens électriques ou magnétiques, afin qu'ils subissent une fusion nucléaire aidée par la température et le réseau.
PCT/US1990/003445 1989-06-14 1990-06-14 Fusion nucleaire catalysee d'isotopes lourds d'hydrogene WO1990016070A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36589389A 1989-06-14 1989-06-14
US365,893 1989-06-14

Publications (2)

Publication Number Publication Date
WO1990016070A2 true WO1990016070A2 (fr) 1990-12-27
WO1990016070A3 WO1990016070A3 (fr) 1991-03-07

Family

ID=23440827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/003445 WO1990016070A2 (fr) 1989-06-14 1990-06-14 Fusion nucleaire catalysee d'isotopes lourds d'hydrogene

Country Status (5)

Country Link
EP (1) EP0477294A1 (fr)
JP (1) JPH04505507A (fr)
AU (1) AU6170290A (fr)
CA (1) CA2059269A1 (fr)
WO (1) WO1990016070A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017437A1 (fr) * 1992-02-24 1993-09-02 Bush Robert T Procede et appareil de generation de puissance par fusion d'alcali et d'hydrogene
WO1997046736A3 (fr) * 1996-05-24 1998-02-19 James A Patterson Systeme, cellule electrolytique et procede servant a produire de la chaleur et a desactiver de l'uranium et du thorium par electrolyse
NL2018127B1 (nl) * 2017-01-04 2018-07-25 Ebel Van Der Schoot Jelle Werkwijze en een inrichting voor kernfusie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912332B2 (ja) * 1976-03-15 1984-03-22 株式会社東芝 水素の排気方法およびその排気装置
US4568509A (en) * 1980-10-10 1986-02-04 Cvijanovich George B Ion beam device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017437A1 (fr) * 1992-02-24 1993-09-02 Bush Robert T Procede et appareil de generation de puissance par fusion d'alcali et d'hydrogene
WO1997046736A3 (fr) * 1996-05-24 1998-02-19 James A Patterson Systeme, cellule electrolytique et procede servant a produire de la chaleur et a desactiver de l'uranium et du thorium par electrolyse
NL2018127B1 (nl) * 2017-01-04 2018-07-25 Ebel Van Der Schoot Jelle Werkwijze en een inrichting voor kernfusie

Also Published As

Publication number Publication date
AU6170290A (en) 1991-01-08
CA2059269A1 (fr) 1990-12-15
JPH04505507A (ja) 1992-09-24
EP0477294A1 (fr) 1992-04-01
WO1990016070A3 (fr) 1991-03-07

Similar Documents

Publication Publication Date Title
Storms Review of experimental observations about the cold fusion effect
TW202507200A (zh) 磁流體動力氫電力發電機
VDKuznetsov et al. Low energy transmutation of atomic nuclei of chemical elements
Savvatimova Transmutation of elements in low-energy glow discharge and the associated processes
Iwamura et al. Detection of anomalous elements, x-ray, and excess heat in a D2-Pd system and its interpretation by the electron-induced nuclear reaction model
EP0473681B1 (fr) Generation d'energie par fusion
EP0394204B1 (fr) Dispositif de production de neutrons et de chaleur par fusion nucléaire dans un gaz absorbé par un métal
WO1992022909A1 (fr) Dispositif de fusion a micro-plasma de surface a l'etat solide
WO1990016070A2 (fr) Fusion nucleaire catalysee d'isotopes lourds d'hydrogene
Storms How to produce the Pons-Fleischmann effect
EP0395066A2 (fr) Dispositif pour fusion nucléaire froide
Qaim et al. Radiochemical methods in the determination of nuclear data for fusion reactor technology
Cao et al. Liquid antimony anode fluidization within a tubular direct carbon fuel cell
WO1995012883A1 (fr) Appareil a decharge luminescente et procede permettant d'etablir des prealables et des conditions d'essais de reactions nucleaires
Jain et al. Synthesis of Metallic Materials by Arc Melting Technique
WO1995021447A1 (fr) Procede et appareil de production d'energie continue a long terme
JP2002512377A (ja) 金属的性質を有する水素化物からエネルギーを発生させる方法および装置
WO1992002020A1 (fr) Systeme de production de chaleur excedentaire favorisee par procede electrochimique
WO1996006434A1 (fr) Procede de condensation d'un hydrure
Storms A student’s guide to cold fusion
WO1990013897A1 (fr) Cellule de conversion d'energie au deuterium-lithium
JPH03107791A (ja) 低温核融合装置
Sandquist et al. Enhancement of cold fusion reaction rates
Kirkinskii et al. Excess heat release during deuterium sorption-desorption by finely powdered palladium deuteride
US20090096380A1 (en) System and method for producing energetic particles by gas discharge in deuterium containing gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR CA JP NO

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR CA JP NO

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990910837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2059269

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1990910837

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990910837

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载