Abstract
We briefly review scenarios with feebly interacting massive particles (FIMPs) as dark matter candidates. The discussion covers issues with dark matter production in the early universe as well as signatures of FIMPs at the high energy and high intensity frontier as well as in astroparticle and cosmology.
Similar content being viewed by others
Data availability
No data associated in the manuscript.
References
P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589 [astro-ph.CO]
L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, Freeze-In Production of FIMP Dark Matter. JHEP 03, 080 (2010). https://doi.org/10.1007/JHEP03(2010)080. arXiv:0911.1120 [hep-ph]
J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 88, 091304 (2002). https://doi.org/10.1103/PhysRevLett.88.091304. arXiv:hep-ph/0106249
F. Elahi, C. Kolda, J. Unwin, UltraViolet freeze-in. JHEP 03, 048 (2015). https://doi.org/10.1007/JHEP03(2015)048. arXiv:1410.6157 [hep-ph]
N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: a review of models and constraints. Int. J. Mod. Phys. A 32(27), 1730023 (2017). https://doi.org/10.1142/S0217751X1730023X. arXiv:1706.07442 [hep-ph]
J.L. Feng, A. Rajaraman, F. Takayama, Superweakly interacting massive particles. Phys. Rev. Lett. 91, 011302 (2003). https://doi.org/10.1103/PhysRevLett.91.011302. arXiv:hep-ph/0302215
G. Bélanger, S. Choubey, R.M. Godbole, S. Khan, M. Mitra, A. Roy, WIMP and FIMP dark matter in singlet-triplet fermionic model. JHEP 11, 133 (2022). https://doi.org/10.1007/JHEP11(2022)133. arXiv:2208.00849 [hep-ph]
G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, B. Zaldivar, micrOMEGAs5.0: freeze-in. Comput. Phys. Commun. 231, 173–186 (2018). https://doi.org/10.1016/j.cpc.2018.04.027. arXiv:1801.03509 [hep-ph]
N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye, B. Zaldivar, Production regimes for self-interacting dark matter. JCAP 03, 018 (2016). https://doi.org/10.1088/1475-7516/2016/03/018. arXiv:1510.08063 [hep-ph]
M. Duch, B. Grzadkowski, D. Huang, Strongly self-interacting vector dark matter via freeze-in. JHEP 01, 020 (2018). https://doi.org/10.1007/JHEP01(2018)020. arXiv:1710.00320 [hep-ph]
P. Ghosh, P. Konar, A.K. Saha, S. Show, Self-interacting freeze-in dark matter in a singlet doublet scenario. JCAP 10, 017 (2022). https://doi.org/10.1088/1475-7516/2022/10/017. arXiv:2112.09057 [hep-ph]
T. Bringmann, S. Heeba, F. Kahlhoefer, K. Vangsnes, Freezing-in a hot bath: resonances, medium effects and phase transitions. JHEP 02, 110 (2022). https://doi.org/10.1007/JHEP02(2022)110. arXiv:2111.14871 [hep-ph]
H.A. Weldon, Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982). https://doi.org/10.1103/PhysRevD.26.1394
H.A. Weldon, dynamical holes in the quark—gluon plasma. Phys. Rev. D 40, 2410 (1989). https://doi.org/10.1103/PhysRevD.40.2410
E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys. B 337, 569–634 (1990). https://doi.org/10.1016/0550-3213(90)90508-B
C. Dvorkin, T. Lin, K. Schutz, Making dark matter out of light: freeze-in from plasma effects. Phys. Rev. D 99(11), 115009 (2019). https://doi.org/10.1103/PhysRevD.99.115009. arXiv:1902.08623 [hep-ph] [Erratum: Phys.Rev.D 105, 119901 (2022)]
G. Bélanger, C. Delaunay, A. Pukhov, B. Zaldivar, Dark matter abundance from the sequential freeze-in mechanism. Phys. Rev. D 102(3), 035017 (2020). https://doi.org/10.1103/PhysRevD.102.035017. arXiv:2005.06294 [hep-ph]
S. Biondini, J. Ghiglieri, Freeze-in produced dark matter in the ultra-relativistic regime. JCAP 03, 075 (2021). https://doi.org/10.1088/1475-7516/2021/03/075. arXiv:2012.09083 [hep-ph]
S. Bhattacharya, S. Chakraborti, D. Pradhan, Electroweak symmetry breaking and WIMP-FIMP dark matter. JHEP 07, 091 (2022). https://doi.org/10.1007/JHEP07(2022)091. arXiv:2110.06985 [hep-ph]
S. Heeba, F. Kahlhoefer, P. Stöcker, Freeze-in production of decaying dark matter in five steps. JCAP 11, 048 (2018). https://doi.org/10.1088/1475-7516/2018/11/048. arXiv:1809.04849 [hep-ph]
T. Hambye, M.H.G. Tytgat, J. Vandecasteele, L. Vanderheyden, Dark matter from dark photons: a taxonomy of dark matter production. Phys. Rev. D 100(9), 095018 (2019). https://doi.org/10.1103/PhysRevD.100.095018. arXiv:1908.09864 [hep-ph]
A. Aboubrahim, M. Klasen, L.P. Wiggering, Forbidden dark matter annihilation into leptons with full collision terms (2023) arXiv:2306.07753 [hep-ph]
J.M. No, P. Tunney, B. Zaldivar, Probing dark matter freeze-in with long-lived particle signatures: MATHUSLA, HL-LHC and FCC-hh. JHEP 03, 022 (2020). https://doi.org/10.1007/JHEP03(2020)022. arXiv:1908.11387 [hep-ph]
R.T. Co, F. D’Eramo, L.J. Hall, D. Pappadopulo, Freeze-in dark matter with displaced signatures at colliders. JCAP 12, 024 (2015). https://doi.org/10.1088/1475-7516/2015/12/024. arXiv:1506.07532 [hep-ph]
J.A. Evans, J. Shelton, Long-lived staus and displaced leptons at the LHC. JHEP 04, 056 (2016). https://doi.org/10.1007/JHEP04(2016)056. arXiv:1601.01326 [hep-ph]
A.G. Hessler, A. Ibarra, E. Molinaro, S. Vogl, Probing the scotogenic FIMP at the LHC. JHEP 01, 100 (2017). https://doi.org/10.1007/JHEP01(2017)100. arXiv:1611.09540 [hep-ph]
G. Bélanger et al., LHC-friendly minimal freeze-in models. JHEP 02, 186 (2019). https://doi.org/10.1007/JHEP02(2019)186. arXiv:1811.05478 [hep-ph]
C. Antel, et al., Feebly interacting particles: FIPs 2022 workshop report. In: Workshop on Feebly-Interacting Particles (2023)
B. Barman, P.S. Bhupal Dev, A. Ghoshal, Probing freeze-in dark matter via heavy neutrino portal. Phys. Rev. D 108(3), 035037 (2023). https://doi.org/10.1103/PhysRevD.108.035037. arXiv:2210.07739 [hep-ph]
G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). https://doi.org/10.1016/j.cpc.2008.11.019. arXiv:0803.2360 [hep-ph]
G. Belanger, A. Mjallal, A. Pukhov, Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios. Eur. Phys. J. C 81(3), 239 (2021). https://doi.org/10.1140/epjc/s10052-021-09012-z. arXiv:2003.08621 [hep-ph]
T. Hambye, M.H.G. Tytgat, J. Vandecasteele, L. Vanderheyden, Dark matter direct detection is testing freeze-in. Phys. Rev. D 98(7), 075017 (2018). https://doi.org/10.1103/PhysRevD.98.075017. arXiv:1807.05022 [hep-ph]
R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, T.-T. Yu, Direct detection of sub-GeV dark matter with semiconductor targets. JHEP 05, 046 (2016). https://doi.org/10.1007/JHEP05(2016)046. arXiv:1509.01598 [hep-ph]
C. Cosme, F. Costa, O. Lebedev, Freeze-in at stronger coupling (2023) arXiv:2306.13061 [hep-ph]
R. Essig, T. Volansky, T.-T. Yu, New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon. Phys. Rev. D 96(4), 043017 (2017). https://doi.org/10.1103/PhysRevD.96.043017. arXiv:1703.00910 [hep-ph]
E. Aprile et al., Emission of single and few electrons in XENON1T and limits on light dark matter. Phys. Rev. D 106(2), 022001 (2022). https://doi.org/10.1103/PhysRevD.106.022001. arXiv:2112.12116 [hep-ex]
T. Emken, R. Essig, C. Kouvaris, M. Sholapurkar, Direct detection of strongly interacting sub-GeV dark matter via electron recoils. JCAP 09, 070 (2019). https://doi.org/10.1088/1475-7516/2019/09/070. arXiv:1905.06348 [hep-ph]
C. Cosme, M. Dutra, T. Ma, Y. Wu, L. Yang, Neutrino portal to FIMP dark matter with an early matter era. JHEP 03, 026 (2021). https://doi.org/10.1007/JHEP03(2021)026. arXiv:2003.01723 [hep-ph]
M. Heikinheimo, T. Tenkanen, K. Tuominen, Prospects for indirect detection of frozen-in dark matter. Phys. Rev. D 97(6), 063002 (2018). https://doi.org/10.1103/PhysRevD.97.063002. arXiv:1801.03089 [hep-ph]
A. Hryczuk, M. Laletin, Dark matter freeze-in from semi-production. JHEP 06, 026 (2021). https://doi.org/10.1007/JHEP06(2021)026. arXiv:2104.05684 [hep-ph]
Y. Du, F. Huang, H.-L. Li, J.-H. Yu, Freeze-in dark matter from secret neutrino interactions. JHEP 12, 207 (2020). https://doi.org/10.1007/JHEP12(2020)207. arXiv:2005.01717 [hep-ph]
M. Kawasaki, K. Kohri, T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 71, 083502 (2005). https://doi.org/10.1103/PhysRevD.71.083502. arXiv:astro-ph/0408426
M. Kawasaki, K. Kohri, T. Moroi, Y. Takaesu, Revisiting Big-Bang nucleosynthesis constraints on dark-matter annihilation. Phys. Lett. B 751, 246–250 (2015). https://doi.org/10.1016/j.physletb.2015.10.048. arXiv:1509.03665 [hep-ph]
G. Belanger, A. Mjallal, A. Pukhov, Two dark matter candidates: the case of inert doublet and singlet scalars. Phys. Rev. D 105(3), 035018 (2022). https://doi.org/10.1103/PhysRevD.105.035018. arXiv:2108.08061 [hep-ph]
V. Poulin, J. Lesgourgues, P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy. JCAP 03, 043 (2017). https://doi.org/10.1088/1475-7516/2017/03/043. arXiv:1610.10051 [astro-ph.CO]
D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576 (1996). https://doi.org/10.1086/178173. arXiv:astro-ph/9605054
J.H. Chang, R. Essig, A. Reinert, Light(ly)-coupled dark matter in the keV range: freeze-in and constraints. J. High Energy Phys. (2021). https://doi.org/10.1007/jhep03(2021)141
Acknowledgements
This work was funded in part by the Indo-French Centre for the Promotion of Advanced Research (Project title: Beyond Standard Model Physics with Neutrino and Dark Matter at Energy, Intensity and Cosmic Frontiers, Grant no: 6304-2). SC is supported by the UKRI Future Leaders Fellowship DARKMAP. The work of AP was carried out within the scientific program “Particle Physics and Cosmology” of the Russian National Center for Physics and Mathematics.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bélanger, G., Chakraborti, S. & Pukhov, A. Feebly interacting dark matter. Eur. Phys. J. Spec. Top. 233, 2135–2141 (2024). https://doi.org/10.1140/epjs/s11734-024-01134-1
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1140/epjs/s11734-024-01134-1