+
Skip to main content
Log in

Feebly interacting dark matter

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We briefly review scenarios with feebly interacting massive particles (FIMPs) as dark matter candidates. The discussion covers issues with dark matter production in the early universe as well as signatures of FIMPs at the high energy and high intensity frontier as well as in astroparticle and cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2016). https://doi.org/10.1051/0004-6361/201525830. arXiv:1502.01589 [astro-ph.CO]

    Article  Google Scholar 

  2. L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, Freeze-In Production of FIMP Dark Matter. JHEP 03, 080 (2010). https://doi.org/10.1007/JHEP03(2010)080. arXiv:0911.1120 [hep-ph]

    Article  ADS  Google Scholar 

  3. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 88, 091304 (2002). https://doi.org/10.1103/PhysRevLett.88.091304. arXiv:hep-ph/0106249

    Article  ADS  Google Scholar 

  4. F. Elahi, C. Kolda, J. Unwin, UltraViolet freeze-in. JHEP 03, 048 (2015). https://doi.org/10.1007/JHEP03(2015)048. arXiv:1410.6157 [hep-ph]

    Article  ADS  Google Scholar 

  5. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: a review of models and constraints. Int. J. Mod. Phys. A 32(27), 1730023 (2017). https://doi.org/10.1142/S0217751X1730023X. arXiv:1706.07442 [hep-ph]

    Article  ADS  Google Scholar 

  6. J.L. Feng, A. Rajaraman, F. Takayama, Superweakly interacting massive particles. Phys. Rev. Lett. 91, 011302 (2003). https://doi.org/10.1103/PhysRevLett.91.011302. arXiv:hep-ph/0302215

    Article  ADS  Google Scholar 

  7. G. Bélanger, S. Choubey, R.M. Godbole, S. Khan, M. Mitra, A. Roy, WIMP and FIMP dark matter in singlet-triplet fermionic model. JHEP 11, 133 (2022). https://doi.org/10.1007/JHEP11(2022)133. arXiv:2208.00849 [hep-ph]

    Article  ADS  Google Scholar 

  8. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, B. Zaldivar, micrOMEGAs5.0: freeze-in. Comput. Phys. Commun. 231, 173–186 (2018). https://doi.org/10.1016/j.cpc.2018.04.027. arXiv:1801.03509 [hep-ph]

    Article  ADS  Google Scholar 

  9. N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye, B. Zaldivar, Production regimes for self-interacting dark matter. JCAP 03, 018 (2016). https://doi.org/10.1088/1475-7516/2016/03/018. arXiv:1510.08063 [hep-ph]

    Article  ADS  Google Scholar 

  10. M. Duch, B. Grzadkowski, D. Huang, Strongly self-interacting vector dark matter via freeze-in. JHEP 01, 020 (2018). https://doi.org/10.1007/JHEP01(2018)020. arXiv:1710.00320 [hep-ph]

    Article  ADS  Google Scholar 

  11. P. Ghosh, P. Konar, A.K. Saha, S. Show, Self-interacting freeze-in dark matter in a singlet doublet scenario. JCAP 10, 017 (2022). https://doi.org/10.1088/1475-7516/2022/10/017. arXiv:2112.09057 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Bringmann, S. Heeba, F. Kahlhoefer, K. Vangsnes, Freezing-in a hot bath: resonances, medium effects and phase transitions. JHEP 02, 110 (2022). https://doi.org/10.1007/JHEP02(2022)110. arXiv:2111.14871 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  13. H.A. Weldon, Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982). https://doi.org/10.1103/PhysRevD.26.1394

    Article  ADS  Google Scholar 

  14. H.A. Weldon, dynamical holes in the quark—gluon plasma. Phys. Rev. D 40, 2410 (1989). https://doi.org/10.1103/PhysRevD.40.2410

    Article  ADS  Google Scholar 

  15. E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys. B 337, 569–634 (1990). https://doi.org/10.1016/0550-3213(90)90508-B

    Article  ADS  Google Scholar 

  16. C. Dvorkin, T. Lin, K. Schutz, Making dark matter out of light: freeze-in from plasma effects. Phys. Rev. D 99(11), 115009 (2019). https://doi.org/10.1103/PhysRevD.99.115009. arXiv:1902.08623 [hep-ph] [Erratum: Phys.Rev.D 105, 119901 (2022)]

    Article  ADS  Google Scholar 

  17. G. Bélanger, C. Delaunay, A. Pukhov, B. Zaldivar, Dark matter abundance from the sequential freeze-in mechanism. Phys. Rev. D 102(3), 035017 (2020). https://doi.org/10.1103/PhysRevD.102.035017. arXiv:2005.06294 [hep-ph]

    Article  ADS  Google Scholar 

  18. S. Biondini, J. Ghiglieri, Freeze-in produced dark matter in the ultra-relativistic regime. JCAP 03, 075 (2021). https://doi.org/10.1088/1475-7516/2021/03/075. arXiv:2012.09083 [hep-ph]

    Article  MathSciNet  Google Scholar 

  19. S. Bhattacharya, S. Chakraborti, D. Pradhan, Electroweak symmetry breaking and WIMP-FIMP dark matter. JHEP 07, 091 (2022). https://doi.org/10.1007/JHEP07(2022)091. arXiv:2110.06985 [hep-ph]

    Article  ADS  Google Scholar 

  20. S. Heeba, F. Kahlhoefer, P. Stöcker, Freeze-in production of decaying dark matter in five steps. JCAP 11, 048 (2018). https://doi.org/10.1088/1475-7516/2018/11/048. arXiv:1809.04849 [hep-ph]

    Article  ADS  Google Scholar 

  21. T. Hambye, M.H.G. Tytgat, J. Vandecasteele, L. Vanderheyden, Dark matter from dark photons: a taxonomy of dark matter production. Phys. Rev. D 100(9), 095018 (2019). https://doi.org/10.1103/PhysRevD.100.095018. arXiv:1908.09864 [hep-ph]

    Article  ADS  Google Scholar 

  22. A. Aboubrahim, M. Klasen, L.P. Wiggering, Forbidden dark matter annihilation into leptons with full collision terms (2023) arXiv:2306.07753 [hep-ph]

  23. J.M. No, P. Tunney, B. Zaldivar, Probing dark matter freeze-in with long-lived particle signatures: MATHUSLA, HL-LHC and FCC-hh. JHEP 03, 022 (2020). https://doi.org/10.1007/JHEP03(2020)022. arXiv:1908.11387 [hep-ph]

    Article  ADS  Google Scholar 

  24. R.T. Co, F. D’Eramo, L.J. Hall, D. Pappadopulo, Freeze-in dark matter with displaced signatures at colliders. JCAP 12, 024 (2015). https://doi.org/10.1088/1475-7516/2015/12/024. arXiv:1506.07532 [hep-ph]

    Article  ADS  Google Scholar 

  25. J.A. Evans, J. Shelton, Long-lived staus and displaced leptons at the LHC. JHEP 04, 056 (2016). https://doi.org/10.1007/JHEP04(2016)056. arXiv:1601.01326 [hep-ph]

    Article  ADS  Google Scholar 

  26. A.G. Hessler, A. Ibarra, E. Molinaro, S. Vogl, Probing the scotogenic FIMP at the LHC. JHEP 01, 100 (2017). https://doi.org/10.1007/JHEP01(2017)100. arXiv:1611.09540 [hep-ph]

    Article  ADS  Google Scholar 

  27. G. Bélanger et al., LHC-friendly minimal freeze-in models. JHEP 02, 186 (2019). https://doi.org/10.1007/JHEP02(2019)186. arXiv:1811.05478 [hep-ph]

    Article  ADS  Google Scholar 

  28. C. Antel, et al., Feebly interacting particles: FIPs 2022 workshop report. In: Workshop on Feebly-Interacting Particles (2023)

  29. B. Barman, P.S. Bhupal Dev, A. Ghoshal, Probing freeze-in dark matter via heavy neutrino portal. Phys. Rev. D 108(3), 035037 (2023). https://doi.org/10.1103/PhysRevD.108.035037. arXiv:2210.07739 [hep-ph]

    Article  ADS  Google Scholar 

  30. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 180, 747–767 (2009). https://doi.org/10.1016/j.cpc.2008.11.019. arXiv:0803.2360 [hep-ph]

    Article  ADS  Google Scholar 

  31. G. Belanger, A. Mjallal, A. Pukhov, Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios. Eur. Phys. J. C 81(3), 239 (2021). https://doi.org/10.1140/epjc/s10052-021-09012-z. arXiv:2003.08621 [hep-ph]

    Article  ADS  Google Scholar 

  32. T. Hambye, M.H.G. Tytgat, J. Vandecasteele, L. Vanderheyden, Dark matter direct detection is testing freeze-in. Phys. Rev. D 98(7), 075017 (2018). https://doi.org/10.1103/PhysRevD.98.075017. arXiv:1807.05022 [hep-ph]

    Article  ADS  Google Scholar 

  33. R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, T.-T. Yu, Direct detection of sub-GeV dark matter with semiconductor targets. JHEP 05, 046 (2016). https://doi.org/10.1007/JHEP05(2016)046. arXiv:1509.01598 [hep-ph]

    Article  ADS  Google Scholar 

  34. C. Cosme, F. Costa, O. Lebedev, Freeze-in at stronger coupling (2023) arXiv:2306.13061 [hep-ph]

  35. R. Essig, T. Volansky, T.-T. Yu, New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon. Phys. Rev. D 96(4), 043017 (2017). https://doi.org/10.1103/PhysRevD.96.043017. arXiv:1703.00910 [hep-ph]

    Article  ADS  Google Scholar 

  36. E. Aprile et al., Emission of single and few electrons in XENON1T and limits on light dark matter. Phys. Rev. D 106(2), 022001 (2022). https://doi.org/10.1103/PhysRevD.106.022001. arXiv:2112.12116 [hep-ex]

    Article  ADS  Google Scholar 

  37. T. Emken, R. Essig, C. Kouvaris, M. Sholapurkar, Direct detection of strongly interacting sub-GeV dark matter via electron recoils. JCAP 09, 070 (2019). https://doi.org/10.1088/1475-7516/2019/09/070. arXiv:1905.06348 [hep-ph]

    Article  ADS  Google Scholar 

  38. C. Cosme, M. Dutra, T. Ma, Y. Wu, L. Yang, Neutrino portal to FIMP dark matter with an early matter era. JHEP 03, 026 (2021). https://doi.org/10.1007/JHEP03(2021)026. arXiv:2003.01723 [hep-ph]

    Article  ADS  Google Scholar 

  39. M. Heikinheimo, T. Tenkanen, K. Tuominen, Prospects for indirect detection of frozen-in dark matter. Phys. Rev. D 97(6), 063002 (2018). https://doi.org/10.1103/PhysRevD.97.063002. arXiv:1801.03089 [hep-ph]

    Article  ADS  Google Scholar 

  40. A. Hryczuk, M. Laletin, Dark matter freeze-in from semi-production. JHEP 06, 026 (2021). https://doi.org/10.1007/JHEP06(2021)026. arXiv:2104.05684 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  41. Y. Du, F. Huang, H.-L. Li, J.-H. Yu, Freeze-in dark matter from secret neutrino interactions. JHEP 12, 207 (2020). https://doi.org/10.1007/JHEP12(2020)207. arXiv:2005.01717 [hep-ph]

    Article  ADS  Google Scholar 

  42. M. Kawasaki, K. Kohri, T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 71, 083502 (2005). https://doi.org/10.1103/PhysRevD.71.083502. arXiv:astro-ph/0408426

    Article  ADS  Google Scholar 

  43. M. Kawasaki, K. Kohri, T. Moroi, Y. Takaesu, Revisiting Big-Bang nucleosynthesis constraints on dark-matter annihilation. Phys. Lett. B 751, 246–250 (2015). https://doi.org/10.1016/j.physletb.2015.10.048. arXiv:1509.03665 [hep-ph]

    Article  ADS  Google Scholar 

  44. G. Belanger, A. Mjallal, A. Pukhov, Two dark matter candidates: the case of inert doublet and singlet scalars. Phys. Rev. D 105(3), 035018 (2022). https://doi.org/10.1103/PhysRevD.105.035018. arXiv:2108.08061 [hep-ph]

    Article  ADS  Google Scholar 

  45. V. Poulin, J. Lesgourgues, P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy. JCAP 03, 043 (2017). https://doi.org/10.1088/1475-7516/2017/03/043. arXiv:1610.10051 [astro-ph.CO]

    Article  ADS  Google Scholar 

  46. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576 (1996). https://doi.org/10.1086/178173. arXiv:astro-ph/9605054

    Article  ADS  Google Scholar 

  47. J.H. Chang, R. Essig, A. Reinert, Light(ly)-coupled dark matter in the keV range: freeze-in and constraints. J. High Energy Phys. (2021). https://doi.org/10.1007/jhep03(2021)141

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Indo-French Centre for the Promotion of Advanced Research (Project title: Beyond Standard Model Physics with Neutrino and Dark Matter at Energy, Intensity and Cosmic Frontiers, Grant no: 6304-2). SC is supported by the UKRI Future Leaders Fellowship DARKMAP. The work of AP was carried out within the scientific program “Particle Physics and Cosmology” of the Russian National Center for Physics and Mathematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bélanger.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bélanger, G., Chakraborti, S. & Pukhov, A. Feebly interacting dark matter. Eur. Phys. J. Spec. Top. 233, 2135–2141 (2024). https://doi.org/10.1140/epjs/s11734-024-01134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01134-1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载