+
X
Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Direct detection of sub-GeV dark matter with semiconductor targets

  • Regular Article - Experimental Physics
  • Open access
  • Published: 09 May 2016
  • Volume 2016, article number 46, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Direct detection of sub-GeV dark matter with semiconductor targets
Download PDF
  • Rouven Essig1,
  • Marivi Fernández-Serra2,3,
  • Jeremy Mardon4,
  • Adrián Soto2,3,
  • Tomer Volansky5 &
  • …
  • Tien-Tien Yu1 
  • 2708 Accesses

  • 369 Citations

  • 35 Altmetric

  • 7 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their \( \mathcal{O} \)(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcoming several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. The searches we propose will probe vast new regions of unexplored dark matter model and parameter space.

Article PDF

Download to read the full article text

Similar content being viewed by others

Prospective study of light dark matter search with a newly proposed DarkSHINE experiment

Article 29 November 2022

Direct detection and complementary constraints for sub-GeV dark matter

Article Open access 20 March 2020

Optimizing energetic light dark matter searches in dark matter and neutrino experiments

Article Open access 08 July 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Nanophysics
  • Nanoscale Devices
  • Particle Physics
  • Semiconductor Lasers
  • Semiconductors
  • Silicon Photonics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].

    ADS  Google Scholar 

  2. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

  3. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  4. SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].

  5. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

    Article  ADS  Google Scholar 

  7. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

    Article  ADS  Google Scholar 

  8. E.W. Kolb, D.J.H. Chung and A. Riotto, WIMPzillas!, hep-ph/9810361 [INSPIRE].

  9. R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Google Scholar 

  10. C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].

  11. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].

  12. D. Hooper and K.M. Zurek, A Natural Supersymmetric Model with MeV Dark Matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].

    ADS  Google Scholar 

  13. I. Cholis, L. Goodenough and N. Weiner, High Energy Positrons and the WMAP Haze from Exciting Dark Matter, Phys. Rev. D 79 (2009) 123505 [arXiv:0802.2922] [INSPIRE].

    ADS  Google Scholar 

  14. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

    ADS  Google Scholar 

  15. M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species, arXiv:1004.0691 [INSPIRE].

  17. D.E. Morrissey, D. Poland and K.M. Zurek, Abelian Hidden Sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].

    ADS  Google Scholar 

  20. T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].

    ADS  Google Scholar 

  21. A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential, Phys. Rev. Lett. 106 (2011) 171302 [arXiv:1011.6374] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].

    ADS  Google Scholar 

  23. J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  24. X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].

    Article  Google Scholar 

  26. M. Kaplinghat, S. Tulin and H.-B. Yu, Direct Detection Portals for Self-interacting Dark Matter, Phys. Rev. D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].

    ADS  Google Scholar 

  27. K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-Interacting Dark Matter from a Non-Abelian Hidden Sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].

    ADS  Google Scholar 

  28. K.K. Boddy, J.L. Feng, M. Kaplinghat, Y. Shadmi and T.M.P. Tait, Strongly interacting dark matter: Self-interactions and keV lines, Phys. Rev. D 90 (2014) 095016 [arXiv:1408.6532] [INSPIRE].

    ADS  Google Scholar 

  29. Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

    Article  ADS  Google Scholar 

  30. Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].

    Article  ADS  Google Scholar 

  31. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in B → S transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195] [INSPIRE].

  33. B. McElrath, Invisible quarkonium decays as a sensitive probe of dark matter, Phys. Rev. D 72 (2005) 103508 [hep-ph/0506151] [INSPIRE].

  34. P. Fayet, Constraints on Light Dark Matter and U bosons, from ψ, ϒ, K + , π°, η and η ′ decays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [INSPIRE].

  35. C. Bird, R.V. Kowalewski and M. Pospelov, Dark matter pair-production in B → S transitions, Mod. Phys. Lett. A 21 (2006) 457 [hep-ph/0601090] [INSPIRE].

  36. CLEO collaboration, P. Rubin et al., Search for Invisible Decays of the ϒ(1S) Resonance, Phys. Rev. D 75 (2007) 031104 [hep-ex/0612051] [INSPIRE].

  37. Belle collaboration, O. Tajima et al., Search for invisible decay of the ϒ(1S), Phys. Rev. Lett. 98 (2007) 132001 [hep-ex/0611041] [INSPIRE].

  38. Y. Kahn, M. Schmitt and T.M.P. Tait, Enhanced rare pion decays from a model of MeV dark matter, Phys. Rev. D 78 (2008) 115002 [arXiv:0712.0007] [INSPIRE].

    ADS  Google Scholar 

  39. P. Fayet, U-boson production in e + e − annihilations, ψ and ϒ decays and Light Dark Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].

  40. P. Fayet, Invisible ϒ decays into Light Dark Matter, Phys. Rev. D 81 (2010) 054025 [arXiv:0910.2587] [INSPIRE].

    ADS  Google Scholar 

  41. G.K. Yeghiyan, ϒ Decays into Light Scalar Dark Matter, Phys. Rev. D 80 (2009) 115019 [arXiv:0909.4919] [INSPIRE].

    ADS  Google Scholar 

  42. BaBar collaboration, P. del Amo Sanchez et al., Search for Production of Invisible Final States in Single-Photon Decays of ϒ(1S), Phys. Rev. Lett. 107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].

  43. A. Badin and A.A. Petrov, Searching for light Dark Matter in heavy meson decays, Phys. Rev. D 82 (2010) 034005 [arXiv:1005.1277] [INSPIRE].

    ADS  Google Scholar 

  44. B. Echenard, Search for Low-Mass Dark Matter at BABAR, Mod. Phys. Lett. A 27 (2012) 1230016 [arXiv:1205.3505] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e+e− colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].

  46. R. Essig, P. Schuster and N. Toro, Probing Dark Forces and Light Hidden Sectors at Low-Energy e + e − Colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].

    ADS  Google Scholar 

  47. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  48. H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber and G. Weiglein, Mass Bounds on a Very Light Neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].

    Article  ADS  Google Scholar 

  49. BaBar collaboration, B. Aubert et al., Search for Invisible Decays of a Light Scalar in Radiative Transitions ϒ 3S → ΓA0, arXiv:0808.0017 [INSPIRE].

  50. R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, arXiv:1311.0029 [INSPIRE].

  51. R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e + e − Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].

    ADS  Google Scholar 

  53. C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K.M. Nollett and G. Steigman, BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs, Phys. Rev. D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].

    ADS  Google Scholar 

  55. BDX collaboration, M. Battaglieri et al., Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab, arXiv:1406.3028 [INSPIRE].

  56. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Testing GeV-Scale Dark Matter with Fixed-Target Missing Momentum Experiments, Phys. Rev. D 91 (2015) 094026 [arXiv:1411.1404] [INSPIRE].

    ADS  Google Scholar 

  57. B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Va’vra, Molecular excitations: a new way to detect Dark matter, Phys. Lett. B 736 (2014) 169 [arXiv:1402.0466] [INSPIRE].

    Article  ADS  Google Scholar 

  59. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the Discovery Potential for Light Dark Matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].

    Article  ADS  Google Scholar 

  60. Y. Kahn, G. Krnjaic, J. Thaler and M. Toups, DAEδALUS and dark matter detection, Phys. Rev. D 91 (2015) 055006 [arXiv:1411.1055] [INSPIRE].

    ADS  Google Scholar 

  61. Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J.A. Formaggio, E. Figueroa-Feliciano and A.J. Anderson, Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers, Phys. Rev. D 85 (2012) 013009 [arXiv:1107.3512] [INSPIRE].

    ADS  Google Scholar 

  63. P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection, arXiv:1310.8327 [INSPIRE].

  64. XENON collaboration, E. Aprile et al., Design and Performance of the XENON10 Dark Matter Experiment, Astropart. Phys. 34 (2011) 679 [arXiv:1001.2834] [INSPIRE].

  65. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].

  66. E. Figueroa-Feliciano and M. Pyle, private communication.

  67. J. Estrada and J. Tiffenberg, private communication.

  68. S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].

    ADS  Google Scholar 

  69. P. Giannozzi et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502 [arXiv:0906.2569].

    Article  Google Scholar 

  70. K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. D 73 (2006) 089903] [astro-ph/0406355] [INSPIRE].

  71. R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, A field guide to models for electron-recoil experiments, to appear.

  72. M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].

    ADS  Google Scholar 

  73. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  74. R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].

    Article  ADS  Google Scholar 

  75. SuperCDMS collaboration, R. Agnese et al., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].

  76. CRESST collaboration, G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515] [INSPIRE].

  77. M.F. Altmann et al., Results and plans of the CRESST dark matter search, astro-ph/0106314 [INSPIRE].

  78. DAMIC collaboration, J. Barreto et al., Direct Search for Low Mass Dark Matter Particles with CCDs, Phys. Lett. B 711 (2012) 264 [arXiv:1105.5191] [INSPIRE].

  79. CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146] [INSPIRE].

  80. D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].

    ADS  Google Scholar 

  83. H. Davoudiasl and W.J. Marciano, Running of the U(1) coupling in the dark sector, Phys. Rev. D 92 (2015) 035008 [arXiv:1502.07383] [INSPIRE].

    ADS  Google Scholar 

  84. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  85. J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].

    ADS  Google Scholar 

  86. P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

  87. B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

    ADS  Google Scholar 

  88. S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].

    Article  ADS  Google Scholar 

  89. D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].

    Article  ADS  Google Scholar 

  90. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  91. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  92. SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].

  93. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.

    Article  ADS  MathSciNet  Google Scholar 

  94. W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133.

    Article  ADS  MathSciNet  Google Scholar 

  95. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

    Article  ADS  Google Scholar 

  96. P. Lautenschlager, P.B. Allen and M. Cardona, Temperature dependence of band gaps in Si and Ge, Phys. Rev. B 31 (1985) 2163.

    Article  ADS  Google Scholar 

  97. Z. Levine and D. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63 (1989) 1719.

    Article  ADS  Google Scholar 

  98. Z. Levine and D. Allan, Quasiparticle calculation of the dielectric response of silicon and germanium, Phys. Rev. B 43 (1991) 4187.

    Article  ADS  Google Scholar 

  99. B.G. Streetman and S.K. Banerjee, Solid state electronic devices, Prentice Hall (2005).

  100. C.A. Klein, Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors, J. Appl. Phys. 39 (1968) 2029.

    Article  ADS  Google Scholar 

  101. B.G. Lowe, Measurements of Fano factors in silicon and germanium in the low-energy X-ray region, Nucl. Instrum. Meth. A 399 (1997) 354.

    Article  ADS  Google Scholar 

  102. M. Lépy, J. Campbell, J. Laborie, J. Plagnard, P. Stemmler and W. Teesdale, Experimental study of the response of semiconductor detectors to low-energy photons, Nucl. Instrum. Meth. A 439 (2000) 239.

    Article  ADS  Google Scholar 

  103. R.C. Alig, S. Bloom and C.W. Struck, Scattering by ionization and phonon emission in semiconductors, Phys. Rev. B 22 (1980) 5565.

    Article  ADS  Google Scholar 

  104. R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP 08 (2010) 004 [arXiv:0907.0018] [INSPIRE].

    Article  ADS  Google Scholar 

  105. P. Salucci, F. Nesti, G. Gentile and C.F. Martins, The dark matter density at the Sun’s location, Astron. Astrophys. 523 (2010) A83 [arXiv:1003.3101] [INSPIRE].

    Article  ADS  Google Scholar 

  106. E. Figueroa-Feliciano, private communication.

  107. A.K. Drukier, K. Freese and D.N. Spergel, Detecting Cold Dark Matter Candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].

    ADS  Google Scholar 

  108. S.K. Lee, M. Lisanti, A.H.G. Peter and B.R. Safdi, Effect of Gravitational Focusing on Annual Modulation in Dark-Matter Direct-Detection Experiments, Phys. Rev. Lett. 112 (2014) 011301 [arXiv:1308.1953] [INSPIRE].

    Article  ADS  Google Scholar 

  109. J. Estrada, Dark Matter in CCD’s (DAMIC), https://indico.fnal.gov/getFile.py/access?contribId=153&sessionId=39&resId=0&materialId=slides&confId=6199.

  110. A.E. Chavarria et al., DAMIC at SNOLAB, Phys. Procedia 61 (2015) 21 [arXiv:1407.0347] [INSPIRE].

    Article  ADS  Google Scholar 

  111. J. Tiffenberg, private communication.

  112. P.N. Luke, J. Beeman, F.S. Goulding, S.E. Labov and E.H. Silver, Calorimetric ionization detector, Nucl. Instrum. Meth. A 289 (1990) 406 [INSPIRE].

    Article  ADS  Google Scholar 

  113. B. Neganov and V. Trofimov, Otkrytiya, Izobret 146 (1985) 215.

    Google Scholar 

  114. G. Wang, Phonon emission in germanium and silicon by electrons and holes in applied electric field at low temperature, J. Appl. Phys. 107 (2010) 094504.

    Article  ADS  Google Scholar 

  115. M. Pyle, private communication.

  116. L. Sham and M. Schlüter, Density-functional theory of the energy gap, Phys. Rev. Lett. 51 (1983) 1888.

    Article  ADS  Google Scholar 

  117. J. Perdew and M. Levy, Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities, Phys. Rev. Lett. 51 (1983) 1884.

    Article  ADS  Google Scholar 

  118. L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem, Phys. Rev. 139 (1965) A796.

    Article  ADS  Google Scholar 

  119. P.A.M. Dirac, Note on exchange phenomena in the Thomas atom, Math. Proc. Camb. Phil. Soc. 26 (1930) 376.

    Article  ADS  MATH  Google Scholar 

  120. D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45 (1980) 566 [INSPIRE].

    Article  ADS  Google Scholar 

  121. M. Ernzerhof and G.E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J. Chem. Phys. 110 (1999) 5029.

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, 11794-3800, U.S.A.

    Rouven Essig & Tien-Tien Yu

  2. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794-3800, U.S.A.

    Marivi Fernández-Serra & Adrián Soto

  3. Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, 11794-3800, U.S.A.

    Marivi Fernández-Serra & Adrián Soto

  4. Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA, 94305, U.S.A.

    Jeremy Mardon

  5. Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, 69978, Israel

    Tomer Volansky

Authors
  1. Rouven Essig
    View author publications

    Search author on:PubMed Google Scholar

  2. Marivi Fernández-Serra
    View author publications

    Search author on:PubMed Google Scholar

  3. Jeremy Mardon
    View author publications

    Search author on:PubMed Google Scholar

  4. Adrián Soto
    View author publications

    Search author on:PubMed Google Scholar

  5. Tomer Volansky
    View author publications

    Search author on:PubMed Google Scholar

  6. Tien-Tien Yu
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Tien-Tien Yu.

Additional information

ArXiv ePrint: 1509.01598

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essig, R., Fernández-Serra, M., Mardon, J. et al. Direct detection of sub-GeV dark matter with semiconductor targets. J. High Energ. Phys. 2016, 46 (2016). https://doi.org/10.1007/JHEP05(2016)046

Download citation

  • Received: 24 September 2015

  • Revised: 28 February 2016

  • Accepted: 07 April 2016

  • Published: 09 May 2016

  • DOI: https://doi.org/10.1007/JHEP05(2016)046

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dark Matter and Double Beta Decay (experiments)
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载