+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

WIMP and FIMP dark matter in singlet-triplet fermionic model

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 November 2022
  • Volume 2022, article number 133, (2022)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
WIMP and FIMP dark matter in singlet-triplet fermionic model
Download PDF
  • Geneviève Bélanger1,
  • Sandhya Choubey2,
  • Rohini M. Godbole3,
  • Sarif Khan  ORCID: orcid.org/0000-0002-2498-08464,
  • Manimala Mitra5,6 &
  • …
  • Abhishek Roy  ORCID: orcid.org/0000-0002-0787-02075,6 
  • 524 Accesses

  • 8 Citations

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present an extension of the SM involving three triplet fermions, one triplet scalar and one singlet fermion, which can explain both neutrino masses and dark matter. One triplet of fermions and the singlet are odd under a Z2 symmetry, thus the model features two possible dark matter candidates. The two remaining Z2-even triplet fermions can reproduce the neutrino masses and oscillation parameters consistent with observations. We consider the case where the singlet has feeble couplings while the triplet is weakly interacting and investigate the different possibilities for reproducing the observed dark matter relic density. This includes production of the triplet WIMP from freeze-out and from decay of the singlet as well as freeze-in production of the singlet from decay of particles that belong to the thermal bath or are thermally decoupled. While freeze-in production is usually dominated by decay processes, we also show cases where the annihilation of bath particles give substantial contribution to the final relic density. This occurs when the new scalars are below the TeV scale, thus in the reach of the LHC. The next-to-lightest odd particle can be long-lived and can alter the successful BBN predictions for the abundance of light elements, these constraints are relevant in both the scenarios where the singlet or the triplet are the long-lived particle. In the case where the triplet is the DM, the model is subject to constraints from ongoing direct, indirect and collider experiments. When the singlet is the DM, the triplet which is the next-to-lightest odd particle can be long-lived and can be probed at the proposed MATHUSLA detector. Finally we also address the detection prospects of triplet fermions and scalars at the LHC.

Article PDF

Download to read the full article text

Similar content being viewed by others

WIMP and FIMP Dark Matter in Singlet-Triplet Fermionic Model

Chapter © 2024

Split fermionic WIMPs evade direct detection

Article Open access 13 November 2018

Singlet-triplet fermionic dark matter and LHC phenomenology

Article Open access 17 April 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Dark Energy and Dark Matter
  • Elementary Particles, Quantum Field Theory
  • Particle Physics
  • Particle Astrophysics
  • Theoretical Particle Physics
  • Warm and dense matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  2. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].

  4. R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Article  Google Scholar 

  5. S. Choubey, S. Khan, M. Mitra and S. Mondal, Singlet-Triplet Fermionic Dark Matter and LHC Phenomenology, Eur. Phys. J. C 78 (2018) 302 [arXiv:1711.08888] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P. Chardonnet, P. Salati and P. Fayet, Heavy triplet neutrinos as a new dark matter option, Nucl. Phys. B 394 (1993) 35 [INSPIRE].

  7. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  8. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  9. J. Erler and P. Langacker, Electroweak model and constraints on new physics, hep-ph/0407097 [INSPIRE].

  10. J. Erler and P. Langacker, Electroweak Physics, Acta Phys. Polon. B 39 (2008) 2595 [arXiv:0807.3023] [INSPIRE].

    ADS  Google Scholar 

  11. CDF collaboration, High-precision measurement of the W boson mass with the CDF II detector, Science 376 (2022) 170 [INSPIRE].

  12. M.-C. Chen, S. Dawson and C.B. Jackson, Higgs Triplets, Decoupling, and Precision Measurements, Phys. Rev. D 78 (2008) 093001 [arXiv:0809.4185] [INSPIRE].

  13. ATLAS collaboration, Search for type-III seesaw heavy leptons in leptonic final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 82 (2022) 988 [arXiv:2202.02039] [INSPIRE].

  14. ATLAS collaboration, A combination of measurements of Higgs boson production and decay using up to 139 fb−1 of proton–proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Tech. Rep., CERN, Geneva, Switzerland (2020).

  15. ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb−1 of pp collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].

  16. ATLAS collaboration, Search for heavy resonances decaying into a pair of Z bosons in the ℓ+ℓ−ℓ′+ℓ′− and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using 139 fb−1 of proton–proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 332 [arXiv:2009.14791] [INSPIRE].

  17. ATLAS collaboration, Search for heavy diboson resonances in semileptonic final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 1165 [arXiv:2004.14636] [INSPIRE].

  18. ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 06 (2018) 022 [arXiv:1712.02118] [INSPIRE].

  19. ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature using 136 fb−1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 82 (2022) 606 [arXiv:2201.02472] [INSPIRE].

  20. CMS collaboration, Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 016 [arXiv:1804.07321] [INSPIRE].

  21. A. Dainese, M. Mangano, A.B. Meyer, A. Nisati, G. Salam and M.A. Vesterinen eds., Report on the Physics at the HL-LHC,and Perspectives for the HE-LHC, CERN Yellow Reports: Monographs 7, CERN, Geneva, Switzerland (2019).

  22. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  23. PandaX collaboration, The first results of PandaX-4T, Int. J. Mod. Phys. D 31 (2022) 2230007 [INSPIRE].

  24. LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, arXiv:2207.03764 [INSPIRE].

  25. MAGIC, Fermi-LAT collaborations, Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].

  26. A. Reinert and M.W. Winkler, A Precision Search for WIMPs with Charged Cosmic Rays, JCAP 01 (2018) 055 [arXiv:1712.00002] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Hambye, M.H.G. Tytgat, J. Vandecasteele and L. Vanderheyden, Dark matter direct detection is testing freeze-in, Phys. Rev. D 98 (2018) 075017 [arXiv:1807.05022] [INSPIRE].

  28. G. Bélanger, C. Delaunay, A. Pukhov and B. Zaldivar, Dark matter abundance from the sequential freeze-in mechanism, Phys. Rev. D 102 (2020) 035017 [arXiv:2005.06294] [INSPIRE].

  29. J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct Detection of Electroweak-Interacting Dark Matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

  31. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

  32. M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].

  33. E. Ma and D. Suematsu, Fermion Triplet Dark Matter and Radiative Neutrino Mass, Mod. Phys. Lett. A 24 (2009) 583 [arXiv:0809.0942] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 806 (2020) 135502 [arXiv:2004.05153] [INSPIRE].

  35. J. König, A. Merle and M. Totzauer, keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: The Most General Case, JCAP 11 (2016) 038 [arXiv:1609.01289] [INSPIRE].

    Article  ADS  Google Scholar 

  36. E.W. Kolb and M.S. Turner, The Early Universe, vol. 69 (1990), https://doi.org/10.1201/9780429492860 [INSPIRE].

  37. P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

  39. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

  40. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  42. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  43. G. Bélanger, A. Mjallal and A. Pukhov, WIMP and FIMP dark matter in the inert doublet plus singlet model, arXiv:2205.04101 [INSPIRE].

  44. D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, Rept. Prog. Phys. 82 (2019) 116201 [arXiv:1806.07396] [INSPIRE].

  45. J.A.R. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE].

  46. I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg and L.-T. Wang, Luminosity goals for a 100-TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1544002 [arXiv:1504.06108] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Robson and P. Roloff, Updated CLIC luminosity staging baseline and Higgs coupling prospects, arXiv:1812.01644 [INSPIRE].

  48. T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, arXiv:1606.00947 [INSPIRE].

  49. ILC collaboration, The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv:1306.6352 [INSPIRE].

  50. CLIC Detector, Physics Study collaborations, Physics at the CLIC e+e− Linear Collider – Input to the Snowmass process 2013, in Community Summer Study 2013: Snowmass on the Mississippi, (2013) [arXiv:1307.5288] [INSPIRE].

  51. ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at \( \sqrt{s} \) =13 TeV with the ATLAS detector, Phys. Lett. B 800 (2020) 135103 [arXiv:1906.02025] [INSPIRE].

  52. L. Wang and X.-F. Han, LHC diphoton and Z+photon Higgs signals in the Higgs triplet model with Y = 0, JHEP 03 (2014) 010 [arXiv:1303.4490] [INSPIRE].

    Article  ADS  Google Scholar 

  53. CMS collaboration, Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at \( \sqrt{s} \) = 13 TeV, JHEP 07 (2021) 027 [arXiv:2103.06956] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Universite Grenoble Alpes, USMB, CNRS, LAPTh, F-74000, Annecy, France

    Geneviève Bélanger

  2. Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden

    Sandhya Choubey

  3. Centre for High Energy Physics, Indian Institute of Science, Bengaluru, 560012, India

    Rohini M. Godbole

  4. Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Sarif Khan

  5. Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha, 751005, India

    Manimala Mitra & Abhishek Roy

  6. Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai, 400094, India

    Manimala Mitra & Abhishek Roy

Authors
  1. Geneviève Bélanger
    View author publications

    Search author on:PubMed Google Scholar

  2. Sandhya Choubey
    View author publications

    Search author on:PubMed Google Scholar

  3. Rohini M. Godbole
    View author publications

    Search author on:PubMed Google Scholar

  4. Sarif Khan
    View author publications

    Search author on:PubMed Google Scholar

  5. Manimala Mitra
    View author publications

    Search author on:PubMed Google Scholar

  6. Abhishek Roy
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Abhishek Roy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2208.00849

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bélanger, G., Choubey, S., Godbole, R.M. et al. WIMP and FIMP dark matter in singlet-triplet fermionic model. J. High Energ. Phys. 2022, 133 (2022). https://doi.org/10.1007/JHEP11(2022)133

Download citation

  • Received: 08 August 2022

  • Revised: 10 October 2022

  • Accepted: 09 November 2022

  • Published: 23 November 2022

  • Version of record: 23 November 2022

  • DOI: https://doi.org/10.1007/JHEP11(2022)133

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Models for Dark Matter
  • Particle Nature of Dark Matter

Profiles

  1. Sarif Khan View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载