+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Dark matter abundance from the sequential freeze-in mechanism

Geneviève Bélanger1, Cédric Delaunay1, Alexander Pukhov2, and Bryan Zaldivar3

  • 1Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTh, CNRS-USMB, BP 110 Annecy-le-Vieux, F-74941 Annecy, France
  • 2Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992, Russia
  • 3Departamento de Fisica Teorica and Instituto de Fisica Teorica, IFT-UAM/CSIC, Cantoblanco, 28049, Madrid, Spain

Phys. Rev. D 102, 035017 – Published 14 August, 2020

DOI: https://doi.org/10.1103/PhysRevD.102.035017

Abstract

We present a thorough analysis of the sequential freeze-in mechanism for dark matter production in the early Universe. In this mechanism the dark matter relic density results from pair annihilation of mediator particles which are themselves produced by thermal collisions of standard model particles. Below some critical value of the mediator coupling to standard model fields, this sequential channel dominates over the usual freeze-in where dark matter is directly produced from thermal collisions, even when the mediator is not in thermal equilibrium. The latter case requires computing the full nonthermal distribution of the mediators, for which finite temperature corrections are particularly important.

Physics Subject Headings (PhySH)

Article Text

References (82)

  1. M. W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31, 3059 (1985); 31, 325 (1984).
  2. J. Alexander et al., Dark Sectors 2016 Workshop: Community Report (2016), arXiv:1608.08632, http://lss.fnal.gov/archive/2016/conf/fermilab-conf-16-421.pdf.
  3. Y. Hochberg, T. Lin, and K. M. Zurek, Detecting ultralight bosonic dark matter via absorption in superconductors, Phys. Rev. D 94, 015019 (2016).
  4. Y. Hochberg, T. Lin, and K. M. Zurek, Absorption of light dark matter in semiconductors, Phys. Rev. D 95, 023013 (2017).
  5. M. Battaglieri et al., in U.S. Cosmic Visions: New Ideas in Dark Matter (Fermilab, Batavia, 2017), Vol. 7.
  6. J. A. Dror, G. Elor, and R. Mcgehee, Directly Detecting Signals from Absorption of Fermionic Dark Matter, Phys. Rev. Lett. 124, 181301 (2020).
  7. J. A. Dror, G. Elor, and R. Mcgehee, Absorption of fermionic dark matter by nuclear targets, J. High Energy Phys. 02 (2020) 134.
  8. D. N. Spergel and P. J. Steinhardt, Observational Evidence for Selfinteracting Cold Dark Matter, Phys. Rev. Lett. 84, 3760 (2000).
  9. M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. R. Astron. Soc. 415, L40 (2011).
  10. K. A. Oman et al., The unexpected diversity of dwarf galaxy rotation curves, Mon. Not. R. Astron. Soc. 452, 3650 (2015).
  11. J. McDonald, Thermally Generated Gauge Singlet Scalars as Selfinteracting Dark Matter, Phys. Rev. Lett. 88, 091304 (2002).
  12. L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, Freeze-in production of FIMP dark matter, J. High Energy Phys. 03 (2010) 080.
  13. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, and V. Vaskonen, The dawn of FIMP dark matter: A review of models and constraints, Int. J. Mod. Phys. A 32, 1730023 (2017).
  14. T. Hambye, M. H. G. Tytgat, J. Vandecasteele, and L. Vanderheyden, Dark matter direct detection is testing freeze-in, Phys. Rev. D 98, 075017 (2018).
  15. R. Essig, T. Volansky, and T.-T. Yu, New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon, Phys. Rev. D 96, 043017 (2017).
  16. G. Arcadi and L. Covi, Minimal decaying dark matter and the LHC, J. Cosmol. Astropart. Phys. 08 (2013) 005.
  17. S. B. Roland, B. Shakya, and J. D. Wells, PeV neutrinos and a 3.5 keV x-ray line from a PeV-scale supersymmetric neutrino sector, Phys. Rev. D 92, 095018 (2015).
  18. A. Fradette, M. Pospelov, J. Pradler, and A. Ritz, Cosmological constraints on very dark photons, Phys. Rev. D 90, 035022 (2014).
  19. N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye, and B. Zaldivar, Production regimes for self-interacting dark matter, J. Cosmol. Astropart. Phys. 03 (2016) 018.
  20. J. Berger, K. Jedamzik, and D. G. E. Walker, Cosmological constraints on decoupled dark photons and dark Higgs, J. Cosmol. Astropart. Phys. 11 (2016) 032.
  21. R. T. Co, F. D’Eramo, L. J. Hall, and D. Pappadopulo, Freeze-in dark matter with displaced signatures at colliders, J. Cosmol. Astropart. Phys. 12 (2015) 024.
  22. J. A. Evans and J. Shelton, Long-lived status and displaced leptons at the LHC, J. High Energy Phys. 04 (2016) 056.
  23. A. G. Hessler, A. Ibarra, E. Molinaro, and S. Vogl, Probing the scotogenic FIMP at the LHC, J. High Energy Phys. 01 (2017) 100.
  24. A. Ghosh, T. Mondal, and B. Mukhopadhyaya, Heavy stable charged tracks as signatures of non-thermal dark matter at the LHC: A study in some non-supersymmetric scenarios, J. High Energy Phys. 12 (2017) 136.
  25. L. Calibbi, L. Lopez-Honorez, S. Lowette, and A. Mariotti, Singlet-doublet dark matter freeze-in: LHC displaced signatures versus cosmology, J. High Energy Phys. 09 (2018) 037.
  26. G. Bélanger et al., LHC-friendly minimal freeze-in models, J. High Energy Phys. 02 (2019) 186.
  27. J. Alimena et al., Searching for long-lived particles beyond the Standard Model at the large hadron collider, arXiv:1903.04497.
  28. D. Curtin et al., Long-lived particles at the energy frontier: The MATHUSLA physics case, Rep. Prog. Phys. 82, 116201 (2019).
  29. A. Ariga et al. (FASER Collaboration), FASER?s physics reach for long-lived particles, Phys. Rev. D 99, 095011 (2019).
  30. J. M. No, P. Tunney, and B. Zaldivar, Probing Dark Matter freeze-in with long-lived particle signatures: MATHUSLA, HL-LHC and FCC-hh, J. High Energy Phys. 03 (2020) 022.
  31. S. Heeba and F. Kahlhoefer, Probing the freeze-in mechanism in dark matter models with U(1) gauge extensions, Phys. Rev. D 101, 035043 (2020).
  32. C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B683, 219 (2004).
  33. S. Knapen, T. Lin, and K. M. Zurek, Light dark matter: Models and constraints, Phys. Rev. D 96, 115021 (2017).
  34. M. R. Buckley and P. J. Fox, Dark matter self-interactions and light force carriers, Phys. Rev. D 81, 083522 (2010).
  35. M. Kaplinghat, S. Tulin, and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116, 041302 (2016).
  36. Y. G. Kim, K. Y. Lee, and S. Shin, Singlet fermionic dark matter, J. High Energy Phys. 05 (2008) 100.
  37. L. Lopez-Honorez, T. Schwetz, and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716, 179 (2012).
  38. G. Krnjaic, Probing light thermal dark-matter with a Higgs portal mediator, Phys. Rev. D 94, 073009 (2016).
  39. T. Hambye, M. H. G. Tytgat, J. Vandecasteele, and L. Vanderheyden, Dark matter from dark photons: A taxonomy of dark matter production, Phys. Rev. D 100, 095018 (2019).
  40. N. Bernal, A. Donini, M. G. Folgado, and N. Rius, Kaluza-Klein FIMP dark matter in warped extra-dimensions, arXiv:2004.14403.
  41. C. Dvorkin, T. Lin, and K. Schutz, Making dark matter out of light: Freeze-in from plasma effects, Phys. Rev. D 99, 115009 (2019).
  42. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, micrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231, 173 (2018).
  43. B. Batell, A. Freitas, A. Ismail, and D. Mckeen, Probing light dark matter with a hadrophilic scalar mediator, Phys. Rev. D 100, 095020 (2019).
  44. B. Batell, A. Freitas, A. Ismail, and D. Mckeen, Flavor-specific scalar mediators, Phys. Rev. D 98, 055026 (2018).
  45. D. Egana-Ugrinovic, S. Homiller, and P. Meade, Aligned and Spontaneous Flavor Violation, Phys. Rev. Lett. 123, 031802 (2019).
  46. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B234, 189 (1984).
  47. X. Chu, T. Hambye, and M. H. Tytgat, The four basic ways of creating dark matter through a portal, J. Cosmol. Astropart. Phys. 05 (2012) 034.
  48. M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. 78B, 443 (1978).
  49. T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W. Lin, and B. Yoon, Axial, scalar and tensor charges of the nucleon from 2+1+1-flavor lattice QCD, Phys. Rev. D 94, 054508 (2016).
  50. J. F. Donoghue, J. Gasser, and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B343, 341 (1990).
  51. J. Bijnens, G. Colangelo, and P. Talavera, The vector and scalar form-factors of the pion to two loops, J. High Energy Phys. 05 (1998) 014.
  52. M. Hufnagel, K. Schmidt-Hoberg, and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, J. Cosmol. Astropart. Phys. 11 (2018) 032.
  53. M. L. Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2010), https://doi.org/10.1017/CBO9780511721700.
  54. J. I. Kapusta, Finite Temperature Field Theory, Vol. 360 of Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 1989).
  55. N. Su, A gauge-invariant reorganization of thermal gauge theory, other thesis, 2011.
  56. E. Braaten and R. D. Pisarski, Soft amplitudes in hot gauge theories: A general analysis, Nucl. Phys. B337, 569 (1990).
  57. V. Tsytovich, Spatial dispersion in a relativistic plasma, Sov. Phys. JETP 13, 1249 (1961).
  58. H. A. Weldon, Covariant calculations at finite temperature: The relativistic plasma, Phys. Rev. D 26, 1394 (1982).
  59. H. Weldon, Dynamical holes in the quark-gluon plasma, Phys. Rev. D 40, 2410 (1989).
  60. G. F. Giudice, A. Notari, M. Raidal, A. Riotto, and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B685, 89 (2004).
  61. H. A. Weldon, Effective fermion masses of order gT in high temperature gauge theories with exact chiral invariance, Phys. Rev. D 26, 2789 (1982).
  62. N. Aghanim et al. (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209.
  63. E. Aprile et al. (XENON Collaboration), Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121, 111302 (2018).
  64. J. D. Lewin and P. F. Smith, Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, Technical Report No. RAL-TR-95-024, RAL, Chilton, 1996, http://cds.cern.ch/record/298578.
  65. G. Belanger, A. Mjallal, and A. Pukhov, Recasting direct detection limits within micrOMEGAs and implication for non-standard dark matter scenarios, arXiv:2003.08621.
  66. P. Agnes et al. (DarkSide Collaboration), Low-Mass Dark Matter Search with the DarkSide-50 Experiment, Phys. Rev. Lett. 121, 081307 (2018).
  67. E. Aprile et al. (XENON Collaboration), Light Dark Matter Search with Ionization Signals in XENON1T, Phys. Rev. Lett. 123, 251801 (2019).
  68. E. Aprile et al. (XENON Collaboration), Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T, Phys. Rev. Lett. 123, 241803 (2019).
  69. R. Agnese et al. (SuperCDMS Collaboration), Projected sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev. D 95, 082002 (2017).
  70. C. Frugiuele, E. Fuchs, G. Perez, and M. Schlaffer, Constraining new physics models with isotope shift spectroscopy, Phys. Rev. D 96, 015011 (2017).
  71. H. Leeb and J. Schmiedmayer, Constraint on Hypothetical Light Interacting Bosons from Low-Energy Neutron Experiments, Phys. Rev. Lett. 68, 1472 (1992).
  72. R. S. Willey and H. L. Yu, Neutral Higgs boson from decays of heavy flavored mesons, Phys. Rev. D 26, 3086 (1982).
  73. J. P. Lees et al. (BABAR Collaboration), Search for BK(*)νν¯ and invisible quarkonium decays, Phys. Rev. D 87, 112005 (2013).
  74. A. V. Artamonov et al. (E949 Collaboration), New Measurement of the K+π+νν¯ Branching Ratio, Phys. Rev. Lett. 101, 191802 (2008).
  75. S. Martellotti (NA62 Collaboration), K+π+νν¯ decay and NP searches at NA62, Nuovo Cimento C 41, 146 (2019).
  76. F. Bergsma et al. (CHARM Collaboration), Search for axion like particle production in 400-GeV proton—copper interactions, Phys. Lett. 157B, 458 (1985).
  77. G. G. Raffelt, Stars as laboratories for fundamental physics, 1996, https://wwwth.mpp.mpg.de/members/raffelt/mypapers/199613.pdf.
  78. A. Burrows, M. T. Ressell, and M. S. Turner, Axions and sn 1987a: Axion trapping, Phys. Rev. D 42, 3297 (1990).
  79. P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo, and A. Mirizzi, Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung, J. Cosmol. Astropart. Phys. 10 (2019) 016.
  80. N. Ishizuka and M. Yoshimura, Axion and dilaton emissivity from nascent neutron stars, Prog. Theor. Phys. 84, 233 (1990).
  81. A. Arbey, J. Auffinger, K. Hickerson, and E. Jenssen, AlterBBN v2: A public code for calculating big-bang nucleosynthesis constraints in alternative cosmologies, Comput. Phys. Commun. 248, 106982 (2020).
  82. G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180, 747 (2009).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载