Computer Science > Machine Learning
[Submitted on 2 Feb 2024 (v1), last revised 16 Dec 2024 (this version, v3)]
Title:Two-Timescale Critic-Actor for Average Reward MDPs with Function Approximation
View PDFAbstract:Several recent works have focused on carrying out non-asymptotic convergence analyses for AC algorithms. Recently, a two-timescale critic-actor algorithm has been presented for the discounted cost setting in the look-up table case where the timescales of the actor and the critic are reversed and only asymptotic convergence shown. In our work, we present the first two-timescale critic-actor algorithm with function approximation in the long-run average reward setting and present the first finite-time non-asymptotic as well as asymptotic convergence analysis for such a scheme. We obtain optimal learning rates and prove that our algorithm achieves a sample complexity of {$\mathcal{\tilde{O}}(\epsilon^{-(2+\delta)})$ with $\delta >0$ arbitrarily close to zero,} for the mean squared error of the critic to be upper bounded by $\epsilon$ which is better than the one obtained for two-timescale AC in a similar setting. A notable feature of our analysis is that we present the asymptotic convergence analysis of our scheme in addition to the finite-time bounds that we obtain and show the almost sure asymptotic convergence of the (slower) critic recursion to the attractor of an associated differential inclusion with actor parameters corresponding to local maxima of a perturbed average reward objective. We also show the results of numerical experiments on three benchmark settings and observe that our critic-actor algorithm performs the best amongst all algorithms.
Submission history
From: Prashansa Panda [view email][v1] Fri, 2 Feb 2024 12:48:49 UTC (233 KB)
[v2] Fri, 24 May 2024 06:57:17 UTC (413 KB)
[v3] Mon, 16 Dec 2024 16:17:46 UTC (2,987 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.