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Abstract
Several recent works have focused on carrying out non-
asymptotic convergence analyses for AC algorithms. Recently,
a two-timescale critic-actor algorithm has been presented for
the discounted cost setting in the look-up table case where
the timescales of the actor and the critic are reversed and only
asymptotic convergence shown. In our work, we present the
first two-timescale critic-actor algorithm with function approx-
imation in the long-run average reward setting and present the
first finite-time non-asymptotic as well as asymptotic conver-
gence analysis for such a scheme. We obtain optimal learning
rates and prove that our algorithm achieves a sample complex-
ity of Õ(ϵ−(2+δ)) with δ > 0 arbitrarily close to zero, for
the mean squared error of the critic to be upper bounded by ϵ
which is better than the one obtained for two-timescale AC in
a similar setting. A notable feature of our analysis is that we
present the asymptotic convergence analysis of our scheme
in addition to the finite-time bounds that we obtain and show
the almost sure asymptotic convergence of the (slower) critic
recursion to the attractor of an associated differential inclu-
sion with actor parameters corresponding to local maxima
of a perturbed average reward objective. We also show the
results of numerical experiments on three benchmark settings
and observe that our critic-actor algorithm performs the best
amongst all algorithms.

1 Introduction
Actor-Critic (AC) methods have proved to be efficient in
solving many reinforcement learning (RL) tasks. Actor-only
methods such as REINFORCE suffer from high variance dur-
ing the estimation of the policy gradient whereas critic-only
methods like Q-learning are efficient in the tabular setting
but can diverge when function approximation is used. AC
methods try to circumvent these problems by combining both
policy- and value-based methods to solve RL problems. In
these approaches, the goal of the actor is to learn the optimal
policy using the value updates provided by the critic, while
the goal of the critic is to learn the value function for a policy
prescribed by the actor. One obtains stable behavior of such
algorithms through a difference in timescales that we explain
in more detail below.

The AC framework is designed to mimic the policy itera-
tion (PI) procedure for Markov decision processes (Puterman

Accepted in the 39th Annual AAAI Conference on Artificial Intelli-
gence, 2025.

2014). The AC algorithms incorporate two-timescale cou-
pled stochastic recursions with the learning rate of the actor
typically converging to zero at a rate faster than that of the
critic. The timescale separation in two-timescale stochastic
approximation algorithms such as AC is critical in ensuring
stability of the recursions and their almost sure convergence.
This is because from the viewpoint of the faster timescale,
the slower recursion appears to be quasi-static while from
the viewpoint of the slower timescale, the faster recursion
appears to have converged. This helps the AC scheme to
emulate policy iteration and thereby converge to the optimal
policy. Asymptotic convergence analyses of two-timescale
AC schemes are largely available via the ordinary differential
equation (ODE) based approach. In (Bhatnagar, Borkar, and
Guin 2023), the critic-actor (CA) algorithm was proposed, in
the lookup table setting for the infinite-horizon discounted
cost criterion, where the roles of the actor and the critic were
reversed by swapping their timescales. The resulting proce-
dure is seen to track value iteration instead of policy iteration.

In this paper, we carry this idea forward and present, for
the first time, a critic-actor algorithm with function approx-
imation and for the long-run average (and not discounted)
reward setting. We then carry out detailed asymptotic and non-
asymptotic convergence analyses of the same. Our algorithm
runs temporal difference learning on the slower timescale to
estimate the critic updates and stochastic policy gradient on
the faster timescale for the actor. We prove that this algorithm
emulates an approximate value iteration scheme. Our paper
plugs in an important gap that existed previously by studying
a new class of algorithms obtained by merely reversing the
timescales of the actor and the critic. Our finite-time analysis
shows that the two-timescale CA algorithm has a better sam-
ple complexity when compared with the two-timescale AC
algorithm.

In our algorithm, even though there are three recursions,
the average reward and actor recursions together proceed
on the same timescale that is faster than the timescale of
the critic update. Notice the difference of our scheme with
AC algorithms for average-reward MDPs such as those in
(Wu et al. 2022; Bhatnagar et al. 2009), where the average-
reward recursion proceeds on the same (faster) timescale
as the critic while the actor recursion proceeds slower. We
use linear function approximation for the critic recursion
and a policy gradient actor. We perform the non-asymptotic
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analysis of this algorithm and obtain its sample complexity.
In addition, we prove that the scheme remains asymptotically
stable and is almost surely convergent to the attractors of
an underlying differential inclusion. Our analysis helps us
in getting the optimised learning rates for the actor and the
critic recursions.

Finally, we show numerical performance comparisons of
our algorithm with the AC and a few other algorithms over
three different OpenAI Gym environments and observe that
the CA algorithm shows the best performance amongst all
algorithms considered, though by small margins. In terms
of the training time performance, CA is better than all algo-
rithms except DQN on all three environments, and in fact, it
takes about half the training time on two of the environments.

Main Contributions:
(a) We present the first critic-actor (CA) algorithm with lin-
ear function approximation for the long-run average-reward
criterion where the critic runs on a slower timescale than the
actor.
(b) We carry out the first finite-time analysis of the two-
timescale CA algorithm wherein we present finite-time
bounds for the critic error, actor error and the average re-
ward estimation error, respectively. In particular, we obtain
a sample complexity of Õ(ϵ−(2+δ)) with δ > 0 arbitrarily
close to zero, for the mean squared error of the critic to be
upper bounded by ϵ. This is better than the sample complexity
of Õ(ϵ−2.5) obtained by the two-timescale AC algorithm of
(Wu et al. 2022) and can be brought as close as possible to the
sample complexity of the recently studied single-timescale
AC schemes (Olshevsky and Gharesifard 2023; Chen and
Zhao 2023) where the same is Õ(ϵ−2). Note that for the
latter schemes, there are no formal proofs available for the
asymptotic stability and almost sure convergence (see Sec-
tion 4 and Appendix for details).
(c) We perform a novel asymptotic analysis of convergence
of this scheme by showing that the slower timescale critic
recursion remains stable and tracks a limiting differential
inclusion that depends on the set of local maxima of the actor
recursion corresponding to any critic update. Such an analy-
sis under Markov noise has not been previously carried out
in the context of any AC algorithm and is a generalization of
the ODE based analysis of such algorithms in the presence
of multiple attractors of the actor (Aubin and Frankowska
2009; Benaïm, Hofbauer, and Sorin 2005). We mention here
that unlike us, most papers on finite-time analysis of RL algo-
rithms do not prove stability and almost sure convergence of
such algorithms, see Table 1. As a result, we provide stronger
guarantees than such algorithms. See Appendix A for details
of this analysis.
(d) We show the results of experiments comparing our CA
algorithm with some other well-studied algorithms, on three
different OpenAI Gym environments and observe that CA
performs better than the other algorithms in average reward
performance. In terms of training time, the CA algorithm
performs uniformly better than AC requiring half the train-
ing time on two of the environments (see Section 6 and

Appendix A).

Notation: For two sequences {cn} and {dn}, we write cn =

O(dn) if there exists a constant P > 0 such that
|cn|
|dn|

≤ P .

To further hide logarithmic factors, we use the notation Õ(·).
Without any other specification, ∥ · ∥ denotes the ℓ2-norm
of Euclidean vectors. dTV (M,N) is the total variation norm
distance between two probability measures M and N , and is
defined as dTV (M,N) = 1

2

∫
X |M(dx)−N(dx)|.

2 Related Work
We briefly review here some of the related work. In (Konda
and Borkar 1999), AC algorithms were presented for the
look-up table representations and the first asymptotic analy-
sis of these algorithms was carried out. Subsequently, (Konda
and Tsitsiklis 2003) presented AC algorithms with function
approximation using the Q-value function and an asymptotic
analysis of convergence was presented. In (Kakade 2001),
a natural gradient based algorithm was presented. Subse-
quently, works such as (Castro and Meir 2009) and (Zhang
et al. 2020) have also carried out the asymptotic analysis
of AC algorithms. In (Bhatnagar et al. 2009), natural AC
algorithms were presented that perform bootstrapping in both
the actor and the critic recursions, and an asymptotic analy-
sis of convergence including stability was provided. A new
method for solving two-timescale optimization that achieves
faster convergence was recently proposed in (Zeng and Doan
2024).

The CA algorithm was introduced in (Bhatnagar, Borkar,
and Guin 2023) for the look-up table case. In this, the ac-
tor recursion is on the faster timescale compared to critic
and the infinite horizon discounted cost criterion is consid-
ered. Asymptotic stability and almost sure convergence of
the algorithm is shown. In our work, we present the first CA
algorithm for the case of (a) function approximation and (b)
the long-run average reward setting. Further, we present both
– asymptotic as well as non-asymptotic convergence analyses
of the proposed scheme where we observe that our algorithm
gives a better upper bound on the sample complexity as op-
posed to AC. We also observe that our algorithm performs on
par and is in fact slightly better than the two-timescale AC
algorithm.

During the past few years there has been significant re-
search activity on finite-time analysis of various algorithms
in RL. A finite-time analysis of a two-timescale AC algorithm
under Markovian sampling has been conducted in (Wu et al.
2022) and a sample complexity of Õ(ϵ−2.5) for convergence
to an ϵ-approximate stationary point of the performance func-
tion has been obtained.

Finite-time analyses of a single-timescale AC algorithm
have been presented in (Olshevsky and Gharesifard 2023;
Chen and Zhao 2023). In these algorithms, the actor and the
critic recursions proceed on the same timescale but there are
no proofs of stability and almost sure convergence of the
recursions. A prime reason here is that AC algorithms are
based on the policy iteration procedure whereby one ideally
requires convergence of the critic in between two updates of



Table 1: Comparison with related works: (Olshevsky and Gharesifard 2023) uses Discounted Reward Setting while Others are
for Average Reward.

Reference Algorithm Sampling Asymptotic Analysis Sample Com-
plexity

Critic

(Wu et al. 2022) Two-timescale AC Markovian Shown in (Bhatnagar et al. 2009) Õ(ϵ−2.5) TD(0)
(Olshevsky and
Gharesifard
2023)

Single-timescale AC i.i.d Not shown Õ(ϵ−2) TD(0)

(Chen and Zhao
2023)

Single-timescale AC Markovian Not shown Õ(ϵ−2) TD(0)

(Suttle et al.
2023)

Two-timescale MLAC Markovian Not Shown Õ(τ2
mixϵ

−2) MLMC

Our work Two-timescale CA Markovian Shown Õ(ϵ−(2+δ)) TD(0)

the actor. Such guarantees can usually be obtained when there
is a timescale difference between the two updates. A sample
complexity of Õ(ϵ−2) is obtained in (Olshevsky and Ghare-
sifard 2023; Chen and Zhao 2023) for single-timescale AC.
While (Olshevsky and Gharesifard 2023) considers i.i.d sam-
pling from the stationary distribution of the Markov chain in a
discounted reward setting, (Chen and Zhao 2023) makes use
of Markovian sampling and works with the average reward
formulation. On the other hand, we obtain a sample com-
plexity of O(ϵ−(2+δ)) with Markovian sampling and in the
average reward setting, where δ > 0 can be made arbitrarily
small. In the limit when δ = 0, one obtains a single-timescale
AC algorithm for which asymptotic guarantees are not avail-
able. Thus, a major contribution of our work is to provide
a sample complexity of our two-timescale CA scheme that
is arbitrarily close to that of single-timescale AC but while
providing theoretical assurances of asymptotic stability and
almost sure convergence that single-timescale AC does not
provide.

Non-asymptotic convergence properties of two-timescale
natural AC algorithm have been studied in (Khodadadian
et al. 2023) in the look-up table case where a sample com-
plexity of Õ(ϵ−6) has been obtained. Finite-time analysis is
helpful in finding out the optimal learning rates for different
updates used in the various algorithms. Amongst other recent
works, (Han, Li, and Zhang 2024), (Shen and Chen 2022)
and (Zhang, Zhang, and Maguluri 2021) have also provided
finite-time analyses.

Table 1 shows the comparison of our work with some
of these related works. In (Suttle et al. 2023), a multi-level
Monte-Carlo AC algorithm is analyzed with sample complex-
ity of Õ(τ2mixϵ

−2). However, unlike us, asymptotic stability
and almost sure convergence is not shown. It is also impor-
tant to note that unlike many other variants (including the
single-timescale AC algorithms), the two-timescale AC al-
gorithm, as with our two-timescale CA algorithm, possesses
asymptotic stability and almost sure convergence guarantees.
For our algorithm, the latter properties are shown using a
differential inclusions based analysis, see Appendix A for
details.

3 The Framework and Algorithm
In this section, we first discuss the Markov decision process
(MDP) framework. We then present our two-timescale CA
algorithm where we use linear function approximation for
the value function estimates.

Markov Decision Process
We consider an MDP with finite state and action spaces that is
characterised by the tuple (S,A, P, r), where S denotes the
state space,A is the action space, P (s

′ |s, a) is the probability
of transition from state s to s

′
under action a. Further, r de-

notes the single-stage reward that depends on the state s and
action a at a given instant. Moreover, we let |r(s, a)| ≤ Ur,
∀s ∈ S, ∀a ∈ A where Ur > 0 is a constant. We consider
stationary randomized policies πθ(a|s), a ∈ A, s ∈ S param-
eterised by θ. Our aim is to maximise the long-run average
reward (with µθ being the stationary distribution):

L(θ) : = lim
T→∞

1

T

T−1∑
t=0

r(st, at) = Es∼µθ,a∼πθ
[r(s, a)].

The differential value function V θ(s), s ∈ S is defined as
(with s0 being the starting state, at ∼ πθ(·|st) and st+1 ∼

P (·|st, at)): V θ(s) = E

[ ∞∑
t=0

(r(st, at)− L(θ))|s0 = s

]
.

The differential action-value (Q-value) function is defined as

Qθ(s, a) = Eθ[

∞∑
t=0

(r(st, at)− L(θ))|s0 = s, a0 = a]

(i)
= r(s, a)− L(θ) + E[V θ(s′)],

where the expectation in (i) is taken over s′ ∼ P (·|s, a).
The policy gradient theorem (Sutton et al. 1999; Sutton

and Barto 2018) gives the following expression for ∇θL(θ):

∇θL(θ) = Es∼µθ,a∼πθ
[Aθ(s, a)∇θ log πθ(a|s)],

where Aθ(s, a) = Qθ(s, a)− V θ(s) denotes the advantage
function.



Algorithm 1: Two Timescale Critic-Actor Algorithm

Input: initial average reward parameter L0, initial actor
parameter θ0, initial critic parameter v0, step-size αt for
actor, βt for critic and γt for the average reward estimator.
Draw s0 from some initial distribution.
for t = 0, 1, 2, . . . do

Take the action at ∼ πθt(·|st)
Observe next state st+1 ∼ P (·|st, at) and the reward
rt = r(st, at)
Lt+1 = Lt + γt(rt − Lt)
δt = rt − Lt + ϕ(st+1)

⊤vt − ϕ(st)
⊤vt

vt+1 = Γ(vt + βtδtϕ(st))
θt+1 = θt + αtδt∇θ log πθt(at|st)

end for

Function Approximation
In order to save on the computational effort needed to find
exact solutions, one often uses value function approximation
techniques based on linear or nonlinear function approxima-
tion architectures. We use linear function approximators here
for our theoretical results. Such approximators have been
found to be viable for asymptotic analyses. For instance, see
(Tsitsiklis and Van Roy 1999) for an asymptotic analysis
of temporal difference learning algorithms and (Bhatnagar
et al. 2009) for an analysis of AC algorithms when linear
function approximators are used in the average cost setting.
We approximate the state-value function here using a lin-
ear approximation architecture as V̂ θ(s; v) = ϕ(s)⊤v, where
ϕ : S → Rd1 is a known feature mapping and θ is the policy
parameter for the considered policy.

Two-Timescale Critic-Actor Algorithm
Algorithm 1 presents the two-timescale CA algorithm in-

volving linear function approximation for the critic recursion.
All step-sizes satisfy the standard Robbins-Monro conditions.
In addition, βt = o(αt) for t ≥ 0 and γt = Kαt for some
K > 0, t ≥ 0. As a result of this, the average reward and
actor updates are performed on the faster timescale compared
to the critic updates. The projection operator Γ(·) has been
used for the estimates of the critic. Here, for any x ∈ Rd1 ,
Γ(x) denotes the projection of x to a compact and convex set
C ⊂ Rd1 . For any vector y ∈ C, we have ∥y∥ ≤ Uv, where
Uv > 0 is a constant. As mentioned earlier, the single-stage
reward is a function of the current state and action taken.

4 Finite-Time Analysis
We provide, in this section, the assumptions required and the
main theoretical results for carrying out a non-asymptotic
convergence analysis. We also state below the main results
providing the optimal learning rate and sample complexity
for the two-timescale CA algorithm. The detailed proofs are
given in the appendix. Specifically, the details of the non-
asymptotic analysis are provided in Appendix A. We further
show the asymptotic convergence analysis in Appendix A.

Assumption 4.1. The norm of each state feature is bounded
by 1, i.e., ∥ϕ(i)∥ ≤ 1.

The above is not a restrictive assumption since the number
of states |S| is finite. Thus, the requirement on features can
be accomplished by replacing any features ϕ(i) ∈ Rd1 , i ∈ S

by
ϕ(i)

maxj∈S ϕ(j)
. This assumption is helpful in carrying out

the finite time analysis of the actor and critic recursions as it
helps provide suitable upper bounds for some of the terms.
Assumption 4.2. For all potential policy parameters
θ, the matrix A defined as under is negative definite:
A := Es,a,s′

[
ϕ(s)

(
ϕ(s

′
)− ϕ(s)

)⊤]
, where s ∼ µθ(·) (the

stationary distribution under policy parameter θ) and a ∼
πθ(·|s), s

′ ∼ P (·|s, a). Further, let λθ denote the largest

eigenvalue of A. Then −λ △
= supθ λθ < 0.

Under a given policy π, Assumption 4.2 has been shown
to hold in (Tsitsiklis and Van Roy 1999) in the setting of
temporal difference learning under the requirements that (a)
the feature vectors are linearly independent and (b) Φr ̸= e,
where e is the vector of all 1’s. This assumption helps give
the existence and uniqueness of v∗(θ) because the following
equations hold: For s ∼ µθ(·), a ∼ πθ(·|s),

Av∗(θ) + b = 0, (1)
b := Es,a,s′ [(r(s, a)− L(θ))ϕ(s)].

Assumption 4.2 helps in carrying out a finite time analysis of
the critic error.
Assumption 4.3 (Uniform ergodicity). Consider a Markov
chain generated as per the following: at ∼ πθ(·|st), st+1 ∼
P (·|st, at). Then there exist b > 0 and k ∈ (0, 1) such that:

dTV

(
P (sτ ∈ ·|s0 = s), µθ(·)

)
≤ bkτ ,∀τ ≥ 0,∀s ∈ S.

Assumption 4.3 states that the τ -step state distribution of
the Markov chain under policy πθ converges at a geometric
rate to the stationary distribution µθ.
Assumption 4.4. There exist L,B,K > 0 such that for all
s, s

′ ∈ S and a, a
′ ∈ A,

(a)
∥∥∇ log πθ(a|s)

∥∥ ≤ B, ∀θ ∈ Rd,
(b)

∥∥∇ log πθ1(a|s) − ∇ log πθ2(a
′ |s′)

∥∥ ≤ K∥θ1 − θ2∥,
∀θ1, θ2 ∈ Rd,

(c)
∣∣πθ1(a|s)− πθ2(a|s)

∣∣ ≤ L∥θ1 − θ2∥, ∀θ1, θ2 ∈ Rd.
Assumptions 4.4(a) and (c) are standard in the literature on

policy gradient methods, see (Wu et al. 2022). Assumption
4.4(b) implies that the randomized policy is also K-smooth
in the parameter θ, in addition to being Lipschitz continuous
(see Assumption 4.4 (c)).
Assumption 4.5. ∀θ1, θ2 ∈ Rd, ∀s ∈ S, ∃Lµ > 0 such that
∥∇µθ1(s)−∇µθ2(s)∥ ≤ Lµ∥θ1 − θ2∥.

Assumption 4.5 implies that the stationary distribution µθ

is Lµ-smooth as a function of θ. This assumption is required
for proving smoothness of v∗(θ) and has been adopted in
(Chen and Zhao 2023). We provide sufficient conditions in
Theorem A.1 for the verification of Assumption 4.5.
Assumption 4.6. ∃Lv > 0 such that for any s ∈ S,

∥V θ1(s)− V θ2(s)∥ ≤ Lv∥θ1 − θ2∥,∀θ1, θ2 ∈ Rd.



Assumption 4.6 is needed for deriving finite time bounds
while proving convergence of actor.

Let τt denote the mixing time of an ergodic Markov chain.
So,

τt := min
{
m ≥ 0 | bkm−1 ≤ min{αt, βt, γt}

}
, (2)

where b, k are defined as in Assumption 4.3.

Sample Complexity Results
We provide here the sample complexity bounds that we ob-
tain. The proofs of these results require several detailed steps
that cannot be accommodated in the limited space. Hence, we
provide the complete detailed analysis in Appendix A while
brief proof sketches of the main results are given here.

We consider the following step-sizes: αt = cα/(1 + t)ν ,
βt = cβ/(1 + t)σ, γt = cγ/(1 + t)ν with 0 < ν < σ < 1,
2σ < 3ν, 2σ − ν < 1 and cα, cβ , cγ > 0. Thus, the actor
and the average reward recursions proceed here on the same
timescale but which is faster than the critic recursion. Let

cα
cγ

<
1

2B(G+ Uw) + UwB
,

where, G = 2(Ur + Uv)B, Uw = 2B(Uv + Ūv) and
|V θ(s)| ≤ Ūv,∀θ ∈ Rd,∀s ∈ S, respectively.
Theorem 4.7 (Convergence of Average reward estimate).
Under assumptions 4.1, 4.3, 4.4, 4.6,

t∑
k=τt

E[(Lk − L(θk))
2] ≤ O(log2 t · t1−ν) +O(tν)

+ 2
(G+ Uw)

2

(1− cα
cγ
UwB)2

c2α
c2γ

t∑
k=τt

E∥M(θk, vk)∥2,

where, L(θk) = Es∼µθk
,a∼πθk

,s′∼P (.|s,a)[r(s, a)] and
M(θt, vt) = Est∼µθt ,at∼πθt ,st+1∼P (.|st,at)[(r(st, at) −
L(θt) + ϕ(st+1)

⊤vt − ϕ(st)
⊤vt)∇ log πθt(at|st)].

Proof. See Appendix A.

Theorem 4.8 (Convergence of actor). Under assumptions
4.1, 4.3, 4.4, 4.6,

1

(1 + t− τt)

t∑
k=τt

E∥M(θk, vk)∥2 = O(tν−1) +O(log2 t · t−ν).

Proof. See Appendix A.

From Lemma 4 of (Bhatnagar et al. 2009), M(θk, vk)
equals the sum of the gradient of average reward and an
error term that depends on the function approximator of the
critic. From Theorem 4.8, convergence is to the stationary
points of a function whose gradient is this sum.
Theorem 4.9 (Convergence of critic). Under assumptions
4.1, 4.2, 4.3, 4.4, 4.5, 4.6,

1

1 + t− τt

t∑
k=τt

E∥vk − v∗(θk)∥2

= O(log2 t · tσ−2ν) +O(t2σ−ν−1) +O(log2 t · t−3ν+2σ),

where v∗(θk) is as defined in Equation (1).

Figure 1: Dependency of errors among the actor, critic and
average reward estimate.

Proof sketch.
We denote zt := vt − v∗(θt). After expanding ∥zt∥2 and

using Assumption 4.2, we get an upper bound for ∥zt∥2 as:

∥zt+1∥2

≤ ∥zt∥2 + 2βt⟨zt, δtϕ(st)− Eθt [δtϕ(st)]⟩ − 2βtλ∥zt∥2

+ 2⟨zt, v∗(θt)− v∗(θt+1)⟩
+ 2β2

t δ
2
t ∥ϕ(st)∥2 + 2∥v∗(θt)− v∗(θt+1)∥2.

We then rearrange the terms and take expectation of the
summation from τt to t, to get

λ

t∑
k=τt

E∥zk∥2 ≤
t∑

k=τt

1

2βk
E[∥zk∥2 − ∥zk+1∥2]︸ ︷︷ ︸

I1

+

t∑
k=τt

E[⟨zk, δtϕ(sk)− Eθk [δkϕ(sk)]⟩]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

βk
E⟨zk, v∗(θk)− v∗(θk+1) + (∇v∗k)T (θk+1 − θk)⟩︸ ︷︷ ︸

I3

+

t∑
k=τt

1

βk
E⟨zk, (∇v∗k)T (θk − θk+1)⟩︸ ︷︷ ︸

I4

+

t∑
k=τt

βkE[δ2k∥ϕ(sk)∥2]︸ ︷︷ ︸
I5

+

t∑
k=τt

1

βk
E∥v∗(θk)− v∗(θk+1)∥2︸ ︷︷ ︸

I6

,

where −λ = supθ λθ, see Assumption 4.2. After analysing
the terms I1, . . . , I6, we get the desired result. Please refer to
Appendix A for the details.

From Theorems 4.7, 4.8 and 4.9, it is clear that (as also
shown in Figure 1), the critic error depends on actor error and
the average reward estimate error. Moreover, actor error and
average reward estimate error are dependent. Hence, Theo-
rem 4.9 relies on the results of Theorems 4.8 and 4.7. From
Theorem 4.8, we can observe that E∥M(θk, vk)∥2 → 0
as k → ∞. Now as actor recursions proceed on the faster
timescale as compared to the critic, the latter appears to
be quasi-static to the actor, cf. Chapter 6 of (Borkar 2023).
Hence, we can say that from the timescale of the actor recur-
sion, vt = v,∀t ≥ 0.Therefore the point of convergence of



the actor θt will be θ(v) such that

Eθ(v)[(r(s, a)− L(θ(v)) + ϕ(s
′
)⊤v

− ϕ(s)⊤v)∇ log πθ(v)(a|s)] = 0.

Now since the critic is on the slower timescale compared to
the actor, θt tracks θ(vt) at time instant t when viewed from
the timescale of the critic. Moreover from Theorem 4.9, we
have ∥vk−v∗(θk)∥ → 0 as k → ∞. Hence, we can conclude
that vk converges to a point ω such that ω − v∗(θ(ω)) = 0.

Optimizing over the values of ν and σ in theorem 4.9, we
have ν = 0.5 and σ = 0.5 + β, where β > 0 can be made
arbitrarily close to zero. Hence we have the following:

1

1 + t− τt

t∑
k=τt

E∥zk∥2 = O(log2 t · t(2β−0.5))

Therefore in order for the mean squared error of the critic to
be upper bounded by ϵ, namely,

1

1 + t− τt

t∑
k=τt

E∥zk∥2 = O(log2 T · T (2β−0.5)) ≤ ϵ,

we need to set T = Õ(ϵ−(2+δ)) where δ > 0 can be made
arbitrarily close to zero. For instance, ν = 0.5 and σ = 0.51
gives a sample complexity Õ(ϵ−2.08). We refer the reader to
Appendix A for the detailed analysis.
Remark 4.10. The analysis of single time-scale AC cannot
be easily applied here. While carrying out the finite time
analysis, we are focusing on finding the upper bound on
various terms that should approach zero as time tends to
infinity. If we apply the analysis of single time-scale AC to
that of CA, some terms will not have such upper bounds due
to the difference in timescales.

5 Asymptotic Convergence Analysis
We first note that some assumptions needed for the finite-
time analysis are not required for the asymptotic convergence
analysis. In particular, we do not need Assumption 4.3 on
the exponential mixing of Markov noise. Our differential
inclusions based asymptotic analysis that we present, unlike
many other references that assume i.i.d sampling from the
stationary distribution, is powerful enough to carry through
under Assumptions 4.2, 4.4 as well as Assumptions 5.1 and
5.2 below. Let θ take values in a compact set D ⊂ Rd2 .
Assumption 5.1. The Markov chain {st} under any policy
πθ is ergodic for any fixed θ ∈ D.

This assumption is routinely made for analysis of RL al-
gorithms with Markov noise (Tsitsiklis and Van Roy 1999;
Konda and Tsitsiklis 2003; Bhatnagar et al. 2009) and guar-
antees existence of a unique stationary distribution µθ for any
fixed θ ∈ D. We shall replace here the stronger requirement
in Assumption 4.3 by Assumption 5.1.
Assumption 5.2. The step-size sequences {αt}, {βt} and
{γt} satisfy the following conditions:
(i) αt, βt, γt > 0 for all t with γt = Kαt for some K > 0.

(ii)
∑
t

αt =
∑
t

βt = ∞.

(iii)
∑
t

(α2
t + β2

t ) <∞.

For asymptotic convergence, we first analyse in the ap-
pendix, CA for the average reward objective, with function
approximation, by incorporating a projection on the actor
in addition to the critic update. Subsequently, we remove
the projection on the critic update and prove the asymptotic
stability and convergence of the algorithm. This algorithm
is then similar to the standard AC algorithms that have been
well-studied in the literature, where also one projects the
actor but not the critic, cf. (Bhatnagar et al. 2009), except that
now the time scales of the two recursions are reversed. We
refer the reader to Appendix A for the detailed analysis.

We prove the stability and convergence of our two-
timescale CA algorithm by proving that the critic recursion
asymptotically tracks a compact connected internally chain
transitive invariant set of an associated differential inclusion
(DI) (Aubin and Frankowska 2009; Benaïm, Hofbauer, and
Sorin 2005). A DI-based analysis is a generalization of the
ODE approach to stochastic approximation and is necessi-
tated because we allow for multiple local maxima for the
actor-recursion for any given critic update. In the context of
AC or CA algorithms, ours is the first analysis that incorpo-
rates this level of sophistication and generality.

The critic update then takes the following form (see Ap-
pendix A for details of the derivation):

vt+1 = vt + βt(yt + Yt + κt), (3)

where yt =
∑
s

µθt(s)
∑
a

πθt(s, a)(R(s, a)− Lθt − vTt ϕ(s)

+vTt
∑
s′

p(s, a, s′)ϕ(s′))ϕ(s),

Yt = −E[δtϕ(st)|F2(t)] + δtϕ(st),

κt = E[(R(st, at)− Lθt + vTt
∑
st+1

p(st, at, st+1)ϕ(st+1)

−vTt ϕ(st))ϕ(st)|F2(t)]− yt.
Theorem 5.3 (Stability of the Critic Recursion). Under As-
sumptions 4.2, 4.4, 5.1 and 5.2, the recursion (3) remains
uniformly bounded almost surely, i.e., supn→∞ ∥vn∥ < ∞,
w.p.1

Proof. See Appendix A.

Consider the following ODE associated with the slower
recursion:

θ̇ = Γ̂2

(
∇Lθ + eπ

θ
)
, (4)

where Γ̂2(v(y)) = lim
0<η→∞

(
Γ2(y + ηv(y))− y

η

)
and eπ

θ

is an error term, see the appendix. Consider also the DI
associated with the faster recursion:

v̇ ∈ h(v), (5)

where h(v) denotes the following set-valued function of v:

h(v) = {
∑
s

µθ(s)
∑
a

πθ(s, a)(R(s, a)− Lθ



Figure 2: Comparison of Critic-Actor with few other algorithms

Table 2: Comparison of Critic-Actor with different algorithms in terms of average reward

Environment Critic-Actor Actor-Critic DQN PPO AC PPO CA Single
Timescale
AC

Frozen Lake 0.00633 ±
0.0034

0.0036 ±
0.0027

0.0028 ±
0.0023

0.00207 ±
0.0009

0.00194 ±
0.0005

0.0035 ±
0.0028

Pendulum −6.30± 0.41 −6.45±0.324 −6.45±0.316 −6.39± 0.38 −6.44± 0.51 −6.53± 0.42
Mountain Car
Continuous

−0.0084 ±
0.0001

−0.009 ±
0.0002

−0.036 ±
0.014

−0.029 ±
0.0084

−0.0337 ±
0.0018

−0.009 ±
0.0002

+vT
∑
s′

p(s, a, s′)ϕ(s′)− vTϕ(s))ϕ(s)|θ ∈ θ̄∗(v)}.

Theorem 5.4. Suppose the ODE (4) has isolated local max-
ima θ∗. Correspondingly suppose v∗ ∈ Rd1 is a limit point
of the solution to the DI (5). Then under Assumptions 4.2,
4.4, 5.1 and 5.2, supt ∥vt∥ < ∞ and supt ∥θt∥ < ∞ w.p.1
respectively. In addition, (vt, θt) → (v∗, θ∗) almost surely,
where θ∗ is a local maximum of (4) and v∗ is the unique
solution to the projected Bellman equation corresponding to
the policy πθ∗

, i.e., the two together satisfy

ΦTDθ∗
Φv∗ = ΦTDθ∗

Tθ∗(Φv∗). (6)

Remark 5.5. We assume isolated local maxima for (4) in The-
orem 5.4 as it helps uniquely identify the converged policy.
In the absence of this assumption, one will again obtain a DI
(instead of the ODE), whose limit points the algorithm will
asymptotically converge to almost surely.

6 Experimental Results1

We present here the results of experiments on three different
(open source) OpenAI Gym environments namely Frozen
Lake, Pendulum and Mountain Car Continuous, respectively,
over which we compare the performance of CA with AC
as well as the Deep Q-Network (DQN) (Mnih et al. 2015)
in the average reward setting, and PPO (Schulman et al.
2017). While (Bhatnagar, Borkar, and Guin 2023) analyzes
the asymptotic convergence of the full-state CA (FS-CA) in
the discounted cost setting, for experiments, they also incor-
porate a setting with function approximation. For the CA and
AC implementations, we have thus used their code2 but made

1The entire code used for the experiments has been uploaded as
supplementary material.

2https://github.com/gsoumyajit/Actor-Critic-Critic-Actor

changes to incorporate the average reward setting. For DQN,
we have used the original code from the paper and made
changes to incorporate the average reward setting. For PPO,
we implement two variants, namely, PPO-AC and PPO-CA,
wherein both algorithms, clipping has been used in the actor
updates and the advantage function is estimated using the
critic parameter and we have used two separate losses (the
actor-loss and the critic-loss), to train the actor and the critic
networks respectively. We have used the average reward set-
ting for implementing PPO (actor and critic) unlike the base
implementation that considers discounted reward.

The plots of our experiments are averaged over 10 dif-
ferent initial seeds after training the agent for 10,000 steps.
Table 2 presents the average reward along with standard error
(obtained upon convergence) for all the five algorithms in the
three environments while Table 9 in the Appendix presents
their training time (in seconds). It can be seen from Table 2
that CA shows the best results in all environments, though
by small margins. In terms of training time performance (Ta-
ble 9), CA is better than AC and single-timescale AC on all
three environments and in fact, it takes about half the run-
time on two of the environments and is also better than the
other algorithms as well except DQN. The latter has the best
training time performance though it loses out on accuracy.

7 Future Work
We used a projected critic like (Wu et al. 2022; Olshevsky
and Gharesifard 2023; Chen and Zhao 2023), for our non-
asymptotic analysis. It would thus be of theoretical interest
to derive similar bounds on the critic as we did but when
projection is not used. It would also be of interest to de-
velop potentially more efficient algorithms of the CA type,
such as Natural CA, Soft CA etc., and study their theoretical
convergence properties as well as empirical performance.
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A Appendix
The appendix comprises of three parts. First, we present the complete finite-time (non-asymptotic) analysis of the CA algorithm
where we show that it achieves a sample complexity of Õ(ϵ−(2+δ)) for the mean-squared error of the critic to be upper bounded
by ϵ.

Subsequently, we present the complete analysis of asymptotic convergence of the two-timescale CA algorithm. In particular,
we show that the iterates of the algorithm remain uniformly bounded almost surely, i.e., the iterates are stable, and in addition the
algorithm is almost surely convergent. It is important to note that asymptotic convergence guarantees for many algorithms in
the literature such as the single-timescale AC algorithms of (Olshevsky and Gharesifard 2023; Chen and Zhao 2023) are not
available. In fact, it may not be possible to show such guarantees in the case of single-timescale AC algorithms because of the
potential violation of the inherent nested loop structure required in policy iteration algorithms that gets mimicked via a difference
in timescales.

Finally, we provide details of the hyper-parameter settings used for the various algorithms as well as the performance
comparisons of all the algorithms in terms of the training time required in seconds.

Finite-Time Analysis
We present here the details of the finite time analysis of our two-timescale CA algorithm. Recall that our algorithm comprises
of three recursions, viz., the average reward recursion, the actor update and the critic update, respectively. The actor update
in our algorithm proceeds faster than the critic update. Further, the average reward estimate is used in the temporal difference
term δt, that in turn is used in both the actor and the critic updates. Moreover, there is only a one-way coupling between the
average reward estimate and the actor/critic estimates in the sense that the actor and critic estimates depend on the average reward
but not vice versa. Hence, we use the actor’s timescale to update the average reward recursion as well. Thus, in our algorithm,
even though there are three recursions, the average reward and actor recursions together proceed on the same timescale that is
faster than the timescale of the critic update (which is slower). In Sections A–A below, we present the analysis for these three
recursions and obtain the sample complexity estimate for the algorithm. Notice the difference of our scheme with standard
AC algorithms for average reward MDPs such as those in (Wu et al. 2022; Bhatnagar et al. 2009), where the average reward
recursion proceeds on the same (faster) timescale as the critic recursion while the actor recursion proceeds slower.

We start off with a basic result that provides some sufficient conditions that imply Assumption 4.5.
Theorem A.1. Under Assumptions 4.4 and 5.1, the stationary distribution µθ of the Markov chain {st} is continuously
differentiable in θ ∈ Rd, where θ is the policy parameter. Further, if ∇2µθ(s) exists for each θ ∈ Rd and s ∈ S, and further,
supθ,s ∥∇2µθ(s)∥ ≤ Lµ for some Lµ > 0, then µθ is Lµ-smooth.

Proof. Let P (θ) denote the transition probability matrix with policy parameter θ. Also, let
Z(θ) = [I − P (θ) + P∞(θ)]−1,

where P∞(θ) =
1

m

m∑
k=1

P k(θ) is the time averaged transition probability matrix, where P k(θ) is the k-step transition probability

matrix. Since the state-valued process is ergodic Markov for any θ, it follows that P∞
ij (θ) = µj(θ), ∀i, j = 1, . . . , n. From

Assumption 4.4, ∇πθ exists and is in fact uniformly bounded over all θ ∈ Rd. Thus, ∇P (θ) exists as well (and is also uniformly
bounded). It now follows from Theorem 2 of (Schweitzer 1968), that µθ is continuously differentiable and in fact,

∇µθ = µθ∇P (θ)Z(θ).
Now observe that from the mean-value theorem, for any s ∈ S,

∥∇µθ1(s)−∇µθ2(s)∥ ≤ ∥∇2µξ(s)∥∥θ1 − θ2∥,
where ξ = αθ1 + (1− α)θ2 for some α ∈ [0, 1]. The claim now follows from the fact that supξ,s ∥∇2µξ(s)∥ ≤ Lµ.

Convergence of the Average Reward Estimate Notations:-
Ot : = (st, at, st+1)

yt : = (Lt − L(θt))

M(θt, vt) : = Est∼µθt ,at∼πθt ,st+1∼p[(r(st, at)− L(θt) + ϕ(st+1)
⊤vt

− ϕ(st)
⊤vt)∇ log πθt(at|st)]

W (v, θ) : = Es∼µθ,a∼πθ,s
′∼P [(V

θ(s
′
)− vTϕ(s

′
)− V θ(s) + vTϕ(s))∇ log πθ(a|s)]

N(Ot, θt, vt, Lt) : = (r(st, at)− Lt + ϕ(st+1)
⊤vt − ϕ(st)

⊤vt)∇ log πθt(at|st)
Ω(Ot, θt, vt, Lt) : = yt⟨W (vt, θt),−N(Ot, θt, vt, Lt) + Eθt [N(Ot, θt, vt, Lt)]⟩

Uw : = 2B(Uv + Ūv)

G : = 2B(Ur + Uv)

(7)



We have , |V θ(s)| ≤ Ūv,∀θ ∈ Rd,∀s ∈ S.
The following lemmas will be useful in proving the convergence of the average reward estimate.

Lemma 1. For the performance function L(θ), there exists a constant LJ′ > 0 such that for all θ1, θ2 ∈ Rd, it holds that
∥∇L(θ1)−∇L(θ2)∥ ≤ LJ′∥θ1 − θ2∥, (8)

which further implies

L(θ2) ≥ L(θ1) + ⟨∇L(θ1), θ2 − θ1⟩ −
LJ′

2
∥θ1 − θ2∥2, (9)

L(θ2) ≤ L(θ1) + ⟨∇L(θ1), θ2 − θ1⟩+
LJ′

2
∥θ1 − θ2∥2. (10)

Proof. Please refer proof of Lemma C.1 in (Wu et al. 2022).

Lemma 2. Under assumptions 4.1, 4.3, 4.4, 4.6, for any t ≥ τ > 0 , we have
E[Ω(Ot, θt, vt, Lt)] ≤ (2UwG+ 4UrUwB)|Lt − Lt−τ |+ 8BUr(G+ Uw)∥vt − vt−τ∥

+M1∥θt − θt−τ∥+M2

t∑
i=t−τ

E∥θi − θt−τ∥+M3bk
τ−1,

for some M1 > 0, M2 > 0 and M3 > 0.

Proof. We can write E[Ω(Ot, θt, vt, Lt)] as
E[Ω(Ot, θt, vt, Lt)]

=E[Ω(Ot, θt, vt, Lt)]− E[Ω(Ot, θt, vt, Lt−τ )] + E[Ω(Ot, θt, vt, Lt−τ )]

− E[Ω(Ot, θt, vt−τ , Lt−τ )] + E[Ω(Ot, θt, vt−τ , Lt−τ )]− E[Ω(Ot, θt−τ , vt−τ , Lt−τ )]

+ E[Ω(Ot, θt−τ , vt−τ , Lt−τ )]− E[Ω(Õt, θt−τ , vt−τ , Lt−τ )] + E[Ω(Õt, θt−τ , vt−τ , Lt−τ )]

− E[Ω(O
′

t, θt−τ , vt−τ , Lt−τ )] + E[Ω(O
′

t, θt−τ , vt−τ , Lt−τ )]

In the above equality, Õt represents the tuple (s̃t, ãt, s̃t+1), which is generated in the following manner :

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1. (11)
Thus, the policy parameter θt−τ is held fixed for τ instants starting from the state st−τ in the original process. Here, for any time
instant k > t− τ , ãk denotes the action taken under θt−τ . Similarly, for any time instant l > t− τ + 1, s̃l denotes the state with
actions chosen under the policy parameter θt−τ held fixed. In this auxiliary chain, policy πθt−τ is repeatedly applied starting
from state st−τ .

Note that the original Markov chain has the following transitions:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ at−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2 · · ·

P−→ st
θt−→ at

P−→ st+1. (12)

Moreover, O
′

t = (s
′

t, a
′

t, s
′

t+1), where s
′

t ∼ µθt−τ , a
′

t ∼ πθt−τ and s
′

t+1 ∼ P (·|s′t, a
′

t). The remainder of the proof of Lemma
2 is based on the results of the auxiliary lemmas 2.1- 2.5 below (that we now show).

We let t ≥ τ > 0 in the following auxiliary lemmas.

lemma 2.1.
E[Ω(Ot, θt, vt, Lt)]− E[Ω(Ot, θt, vt, Lt−τ )] ≤ (2UwG+ 4UrUwB)|Lt − Lt−τ |

Proof.
E[Ω(Ot, θt, vt, Lt)]− E[Ω(Ot, θt, vt, Lt−τ )]

= E[yt⟨W (vt, θt),−N(Ot, θt, vt, Lt) + Eθt [N(Ot, θt, vt, Lt)]⟩
− (Lt−τ − L(θt))⟨W (vt, θt),−N(Ot, θt, vt, Lt−τ ) + Eθt [N(Ot, θt, vt, Lt−τ )]⟩]

= E[yt⟨W (vt, θt),−N(Ot, θt, vt, Lt) + Eθt [N(Ot, θt, vt, Lt)]⟩
− (Lt−τ − L(θt))⟨W (vt, θt),−N(Ot, θt, vt, Lt) + Eθt [N(Ot, θt, vt, Lt)]⟩]
+ (Lt−τ − L(θt))⟨W (vt, θt),−N(Ot, θt, vt, Lt) + Eθt [N(Ot, θt, vt, Lt)]⟩]
− (Lt−τ − L(θt))⟨W (vt, θt),−N(Ot, θt, vt, Lt−τ ) + Eθt [N(Ot, θt, vt, Lt−τ )]⟩]

= E[(Lt − Lt−τ )⟨W (vt, θt),−N(Ot, θt, vt, Lt) + Eθt [N(Ot, θt, vt, Lt)]⟩]
+ E[(Lt−τ − L(θt))⟨W (vt, θt), N(Ot, θt, vt, Lt−τ )−N(Ot, θt, vt, Lt)

+ Eθt [N(Ot, θt, vt, Lt)−N(Ot, θt, vt, Lt−τ )]⟩]
≤ 2UwG|Lt − Lt−τ |+ 4UrUwB|Lt − Lt−τ |
= 2Uw(G+ 2UrB)|Lt − Lt−τ |.



The claim follows.

lemma 2.2.

E[Ω(Ot, θt, vt, Lt−τ )]− E[Ω(Ot, θt, vt−τ , Lt−τ )] ≤ 8BUr(G+ Uw)∥vt − vt−τ∥.
Proof.

E[Ω(Ot, θt, vt, Lt−τ )]− E[Ω(Ot, θt, vt−τ , Lt−τ )]

= E[(Lt−τ − L(θt))⟨W (vt, θt),−N(Ot, θt, vt, Lt−τ ) + Eθt [N(Ot, θt, vt, Lt−τ )]⟩]
− E[(Lt−τ − L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ )

+ Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
= E[(Lt−τ − L(θt))⟨W (vt, θt),−N(Ot, θt, vt, Lt−τ ) + Eθt [N(Ot, θt, vt, Lt−τ )]⟩]

− E[(Lt−τ − L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt, Lt−τ )

+ Eθt [N(Ot, θt, vt, Lt−τ )]⟩]
+ E[(Lt−τ − L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt, Lt−τ ) + Eθt [N(Ot, θt, vt, Lt−τ )]⟩]
− E[(Lt−τ − L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]

= E[(Lt−τ − L(θt))⟨W (vt, θt)−W (vt−τ , θt),−N(Ot, θt, vt, Lt−τ )

+ Eθt [N(Ot, θt, vt, Lt−τ )]⟩] + E[(Lt−τ − L(θt))⟨W (vt−τ , θt), N(Ot, θt, vt−τ , Lt−τ )

−N(Ot, θt, vt, Lt−τ ) + Eθt [N(Ot, θt, vt, Lt−τ )−N(Ot, θt, vt−τ , Lt−τ )]⟩]
≤ 4UrG∥W (vt, θt)−W (vt−τ , θt)∥+ 4UrUw∥N(Ot, θt, vt, Lt−τ )−N(Ot, θt, vt−τ , Lt−τ )∥
≤ 8BUrG∥vt − vt−τ∥+ 8UrUwB∥vt − vt−τ∥.

lemma 2.3.

E[Ω(Ot, θt, vt−τ , Lt−τ )]− E[Ω(Ot, θt−τ , vt−τ , Lt−τ )] ≤M1∥θt − θt−τ∥.
for some M1 > 0.

Proof.

E[Ω(Ot, θt, vt−τ , Lt−τ )]− E[Ω(Ot, θt−τ , vt−τ , Lt−τ )]

= E[(Lt−τ − L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
− E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt−τ ),−N(Ot, θt−τ , vt−τ , Lt−τ )

+ Eθt−τ
[N(Ot, θt−τ , vt−τ , Lt−τ )]⟩]

= E[(Lt−τ − L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
− E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
+ E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
− E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt−τ ),−N(Ot, θt−τ , vt−τ , Lt−τ )

+ Eθt−τ
[N(Ot, θt−τ , vt−τ , Lt−τ )]⟩]

= E[(L(θt−τ )− L(θt))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
+ E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt),−N(Ot, θt, vt−τ , Lt−τ ) + Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
− E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt−τ ),−N(Ot, θt, vt−τ , Lt−τ )

+ Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
+ E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt−τ ),−N(Ot, θt, vt−τ , Lt−τ )

+ Eθt [N(Ot, θt, vt−τ , Lt−τ )]⟩]
− E[(Lt−τ − L(θt−τ ))⟨W (vt−τ , θt−τ ),−N(Ot, θt−τ , vt−τ , Lt−τ )

+ Eθt−τ
[N(Ot, θt−τ , vt−τ , Lt−τ )]⟩]

≤ 2GUw∥Lt−τ − L(θt−τ )∥+ 4UrUG∥W (vt−τ , θt)−W (vt−τ , θt−τ )∥
+ 4UrUw∥N(Ot, θt, vt−τ , Lt−τ )−N(Ot, θt−τ , vt−τ , Lt−τ )∥

= O(∥θt − θt−τ∥).
The claim follows.



lemma 2.4.

E[Ω(Ot, θt−τ , vt−τ , Lt−τ )]− E[Ω(Õt, θt−τ , vt−τ , Lt−τ )] ≤M2

t∑
i=t−τ

E∥θi − θt−τ∥

for some M2 > 0.

Proof. The proof is similar to that of Lemma D.10 in (Wu et al. 2022), hence we omit the same here.

lemma 2.5.

E[Ω(Õt, θt−τ , vt−τ , Lt−τ )]− E[Ω(O
′

t, θt−τ , vt−τ , Lt−τ )] ≤M3bk
τ−1,

for some M3 > 0.

Proof. The proof is similar to that of Lemma D.11 in (Wu et al. 2022), hence we omit the same here.

It is clear from the definition in Section A that E[Ω(O
′

t, θt−τ , vt−τ , Lt−τ )] = 0. Now collecting the results from lemmas 2.1 -
2.5, we have,

E[Ω(Ot, θt, vt, Lt)] ≤ (2UwG+ 4UrUwB)|Lt − Lt−τ |+ 8BUr(G+ Uw)∥vt − vt−τ∥

+M1∥θt − θt−τ∥+M2

t∑
i=t−τ

E∥θi − θt−τ∥+M3bk
τ−1.

The claim in Lemma 2 now follows.

Proof of convergence of the average reward estimate. From the update rule of the reward estimation recursion in Algorithm
1, we have

Lt+1 − L(θt+1) = Lt − L(θt) + L(θt)− L(θt+1) + γt(rt − Lt).

We then have

y2t+1 = (yt + L(θt)− L(θt+1) + γt(rt − Lt))
2

≤ y2t + 2yt(L(θt)− L(θt+1)) + 2γtyt(rt − Lt) + 2(L(θt)− L(θt+1))
2 + 2γ2t (rt − Lt)

2

= (1− 2γt)y
2
t + 2γtyt(rt − L(θt)) + 2yt(L(θt)− L(θt+1)) + 2(L(θt)− L(θt+1))

2

+ 2γ2t (rt − Lt)
2.

Taking expectations, rearranging and summing from τt to t we obtain,

t∑
k=τt

E[y2k] ≤
t∑

t=τt

1

2γk
E(y2k − y2k+1)︸ ︷︷ ︸
I1

+

t∑
k=τt

E[yk(rk − L(θk))]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

γk
E[yk(L(θk)− L(θk+1)]︸ ︷︷ ︸

I3

+

t∑
k=τt

1

γk
E[(L(θk)− L(θk+1))

2]︸ ︷︷ ︸
I4

+

t∑
k=τt

γkE[(rk − Lk)
2]︸ ︷︷ ︸

I5

.

For term I1, from Abel summation by parts, we have

I1 =

t∑
k=τt

1

2γk
(y2k − y2k+1)

=

t∑
k=τt+1

y2k(
1

2γk
− 1

2γk−1
) +

1

2γτt
y2τt −

1

γt
y2t+1

≤ 2U2
r

γt

= 2cγU
2
r (1 + t)ν .



For term I2, we have

t∑
k=τt

E[yk(rk − L(θk))] = O(log2 t · t1−ν).

The analysis of part I2 will be similar to the one of part I2 in section C.2 of (Wu et al. 2022).

For I3, if yt > 0, from (9), we have

yt(L(θt)− L(θt+1))

≤ yt(
LJ′

2
∥θt − θt+1∥2 + ⟨∇L(θt), θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + yt⟨M(θt, vt), θt − θt+1⟩
+ yt⟨Eθt [(V

θt(st+1)− v(t)Tϕ(st+1)− V θt(st) + v(t)Tϕ(st))∇ log πθt(at|st)]
, θt − θt+1⟩

If yt ≤ 0, from (10), we have

yt(L(θt)− L(θt+1))

≤ yt(−
LJ′

2
∥θt − θt+1∥2 + ⟨∇L(θt), θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + yt⟨M(θt, vt), θt − θt+1⟩
+ yt⟨Eθt [(V

θt(st+1)− v(t)Tϕ(st+1)− V θt(st) + v(t)Tϕ(st))∇ log πθt(at|st)], θt − θt+1⟩.



Overall, we get

I3 =

t∑
k=τt

1

γk
E[yk(L(θk)− L(θk+1))]

≤
t∑

k=τt

1

γk
E[LJ′Ur∥θk − θk+1∥2 + |yk|∥θk − θk+1∥∥M(θk, vk)∥]

+

t∑
k=τt

1

γk
E[yk⟨Eθk [(V

θk(sk+1)− v(k)Tϕ(sk+1)− V θk(sk)

+ v(k)Tϕ(sk))∇ log πθk(ak|sk)], θk − θk+1⟩]

≤
t∑

k=τt

E[LJ′UrG
2α

2
k

γk
+G

cα
cγ

|yk|∥M(θk, vk)∥]

+

t∑
k=τt

1

γk
E[yk⟨Eθk [(V

θk(sk+1)− v(k)Tϕ(sk+1)− V θk(sk)

+ v(k)Tϕ(sk))∇ log πθk(ak|sk)], θk − θk+1⟩]

≤ 2LJ′UrG
2c2α

cγ
(1 + t− τt)

1−ν +G
cα
cγ

(

t∑
k=τt

Ey2t )
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2

+

t∑
k=τt

1

γk
E[yk⟨Eθk [(V

θk(sk+1)− v(k)Tϕ(sk+1)− V θk(sk)

+ v(k)Tϕ(sk))∇ log πθk(ak|sk)], θk − θk+1⟩]

=
2LJ′UrG

2c2α
cγ

(1 + t− τt)
1−ν +G

cα
cγ

(

t∑
k=τt

Ey2t )
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2

+

t∑
k=τt

cα
cγ
E[yk⟨W (vk, θk),−δk∇θ log πθk(sk|ak) + Eθk [δk∇θ log πθk(sk|ak)]⟩]︸ ︷︷ ︸

Ia

+

t∑
k=τt

cα
cγ
E[yk⟨W (vk, θk),−Eθk [δk∇θ log πθk(sk|ak)]⟩]︸ ︷︷ ︸

Ib

For term Ia, we have,

cα
cγ

t∑
k=τt

E[yk⟨W (vk, θk),−N(Ok, θk, vk, Lk) + Eθk [N(Ok, θk, vk, Lk)]⟩]

=
cα
cγ

t∑
k=τt

(
(2UwG+ 4UrUwB)|Lk − Lk−τ |+ 8BUr(G+ Uw)∥vk − vk−τ∥

+M1∥θk − θk−τ∥+M2

k∑
i=k−τ

E∥θi − θk−τ∥+M3bk
m−1

)
.

Taking τ := τt, we have,

Ia = O(τ2t · t1−ν).

For term Ib, we have,



t∑
k=τt

cα
cγ
E[yk⟨W (vk, θk),−Eθk [δk∇θ log πθk(sk|ak)]⟩]

=
cα
cγ

t∑
k=τt

E[yk⟨W (vk, θk),−M(θk, vk)⟩] +
cα
cγ

t∑
k=τt

E[yk⟨W (vk, θk), ykEθk [∇θ log πθk(sk|ak)]⟩]

≤ Uw
cα
cγ

(

t∑
k=τt

Ey2t )
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2 +

cα
cγ

t∑
k=τt

E[y2k⟨W (vk, θk), Eθk [∇θ log πθk(sk|ak)]⟩]

≤ Uw
cα
cγ

(

t∑
k=τt

Ey2t )
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2 +

cα
cγ
UwB

t∑
k=τt

E[y2k].

Hence collecting all the terms, we have,

I3 =
2LJ′UrG

2c2α
cγ

(1 + t− τt)
1−ν +G

cα
cγ

(

t∑
k=τt

Ey2t )
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2 +O(log2 t · t1−ν)

+ Uw
cα
cγ

(

t∑
k=τt

Ey2t )
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2 +

cα
cγ
UwB

t∑
k=τt

E[y2k]

where G = 2B(Ur + Uv).
For term I4, we have

I4 =

t∑
k=τt

1

αk
E[(L(θk)− L(θk+1))

2]

≤
t∑

k=τt

1

αk
L2
JE∥θk − θk+1∥2

≤
t∑

k=τt

1

αk
L2
JG

2α2
k

= L2
JG

2
t∑

k=τt

αk

≤ L2
JG

2(1 + t)1−ν .

For term I5, we have

I5 =

t∑
k=τt

αkE[(rk − L(θk))
2]

≤
t∑

k=τt

4U2
rαk

≤ 4U2
r (1 + t)1−ν .

After combining all of the terms, we have,

t∑
k=τt

E[y2k] ≤ O(log2 t · t1−ν) +O(tν) + (G+ Uw)
cα
cγ

(

t∑
k=τt

E[y2k])
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2

+
cα
cγ
UwB

t∑
k=τt

E[y2k].



After rearranging terms above, we obtain,

(
1− cα

cγ
UwB

) t∑
k=τt

E[y2k] ≤ O(log2 t · t1−ν) +O(tν)

+ (G+ Uw)
cα
cγ

(

t∑
k=τt

E[y2k])
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2 .

Now we require the condition
(
1− cα

cγ
UwB

)
> 0 to be satisfied for the left hand side term to be positive. Hence, we need to

choose the values of cα and cγ such that
(
1− cα

cγ
UwB

)
> 0. We thus have,

t∑
k=τt

E[y2k] ≤ O(log2 t · t1−ν) +O(tν) +
(G+ Uw)(
1− cα

cγ
UwB

) cα
cγ

(

t∑
k=τt

E[y2k])
1
2 (

t∑
k=τt

E∥M(θk, vk)∥2)
1
2 .

After applying the squaring technique (see page 23 of (Wu et al. 2022)), we have,

t∑
k=τt

E[y2k] ≤ O(log2 t · t1−ν) +O(tν) + 2
(G+ Uw)

2

(1− cα
cγ
UwB)2

c2α
c2γ

t∑
k=τt

E∥M(θk, vk)∥2. (13)

Convergence of the actor Notations used here:

Ot : = (st, at, st+1)

h(Ot, θt, Lt, vt) : = (r(st, at)− Lt + ϕ(st+1)
⊤vt − ϕ(st)

⊤vt)∇ log πθt(at|st)
I(Ot, Lt, θt, vt) : = ⟨∇L(θt), h(Ot, θt, Lt, vt)− Est∼µθt ,at∼πθt ,st+1∼p[h(Ot, θt, Lt, vt)]⟩

h̄(Ot, θt, vt) : = (r(st, at)− L(θt) + ϕ(st+1)
⊤vt − ϕ(st)

⊤vt)∇ log πθt(at|st)
M(θt, vt) : = Est∼µθt ,at∼πθt ,st+1∼p[h̄(Ot, θt, vt)]

W̄ (Ot, θt, vt) : = (V θt(st+1)− ϕ(st+1)
T vt − V θt(st) + ϕ(st)

T vt)∇ log πθt(at|st)
Ξ(Ot, θt, vt) : = ⟨Eθt [W̄ (Ot, θt, vt)], Eθt [h̄(Ot, θt, vt)]⟩ − ⟨W̄ (Ot, θt, vt), Eθt [h̄(Ot, θt, vt)]⟩.

(14)

The following supporting lemmas will help in the proof.
Lemma 3. Under assumptions 4.1, 4.3, 4.4, 4.6,for any t ≥ τ > 0 , we have

E[I(Ot, Lt, θt, vt)] ≥ −(D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 +D3E∥vt − vt−τ∥

+D4E|Lt − Lt−τ |),
for some D1 > 0, D2 > 0, D3 > 0 and D4 > 0.

Proof. We can decompose E[I(Ot, Lt, θt, vt)] as:

E[I(Ot, Lt, θt, vt)]

= E[I(Ot, Lt, θt, vt)− I(Ot, Lt, θt, vt−τ )] + E[I(Ot, Lt, θt, vt−τ )− I(Ot, Lt, θt−τ , vt−τ )]

+ E[I(Ot, Lt, θt−τ , vt−τ )− I(Ot, Lt−τ , θt−τ , vt−τ )]

+ E[I(Ot, Lt−τ , θt−τ , vt−τ )− I(Õt, Lt−τ , θt−τ , vt−τ )]

+ E[I(Õt, Lt−τ , θt−τ , vt−τ )− I(O
′

t, Lt−τ , θt−τ , vt−τ )]

+ E[I(O
′

t, Lt−τ , θt−τ , vt−τ )].

In the above equality, Õt = (s̃t, ãt, s̃t+1) is from the auxiliary Markov chain defined in Equation (11) and O
′

t = (s
′

t, a
′

t, s
′

t+1)

where s
′

t ∼ µθt−τ
, a

′

t ∼ πθt−τ
and s

′

t+1 ∼ P (.|s′t, a
′

t). The proof of Lemma 3 is based on the results of lemmas 3.1 - 3.5 below
that we now state and prove. In the auxiliary lemmas below, we let t ≥ τ > 0.



lemma 3.1.
|E[I(Ot, Lt, θt, vt)− I(Ot, Lt, θt, vt−τ )]| ≤ 4BG∥vt − vt−τ∥.

Proof.
|E[I(Ot, Lt, θt, vt)− I(Ot, Lt, θt, vt−τ )]|

=|E[⟨∇L(θt), h(Ot, θt, Lt, vt)− h(Ot, θt, Lt, vt−τ )

− Est∼µθt ,at∼πθt ,st+1∼p[h(Ot, θt, Lt, vt)− h(Ot, θt, Lt, vt−τ )]⟩]|.

Further,
∥h(Ot, θt, Lt, vt)− h(Ot, θt, Lt, vt−τ )∥ = ∥((ϕ(st+1)

⊤ − ϕ(st)
⊤)(vt − vt−τ ))∇ log πθt(at|st)∥

≤ 2B∥vt − vt−τ∥.
Hence,

|E[I(Ot, Lt, θt, vt)− I(Ot, Lt, θt, vt−τ )]| ≤ 4BG∥vt − vt−τ∥.
The claim follows.

lemma 3.2.
|E[I(Ot, Lt, θt, vt−τ )− I(Ot, Lt, θt−τ , vt−τ )]| ≤ C∥θt − θt−τ∥

for some C > 0.

Proof.
|E[I(Ot, Lt, θt, vt−τ )− I(Ot, Lt, θt−τ , vt−τ )]|

=|E[⟨∇L(θt), h(Ot, θt, Lt, vt−τ )− Eθt [h(Ot, θt, Lt, vt−τ )]⟩
− ⟨∇L(θt−τ ), h(Ot, θt−τ , Lt, vt−τ )− Eθt−τ [h(Ot, θt−τ , Lt, vt−τ )]⟩]|

≤|E[⟨∇L(θt), h(Ot, θt, Lt, vt−τ )− Eθt [h(Ot, θt, Lt, vt−τ )]⟩
− ⟨∇L(θt−τ ), h(Ot, θt, Lt, vt−τ )− Eθt [h(Ot, θt, Lt, vt−τ )]⟩]|

+ |E[⟨∇L(θt−τ ), h(Ot, θt, Lt, vt−τ )− Eθt [h(Ot, θt, Lt, vt−τ )]⟩
− ⟨∇L(θt−τ ), h(Ot, θt−τ , Lt, vt−τ )− Eθt−τ

[h(Ot, θt−τ , Lt, vt−τ )]⟩]|
=|E[⟨∇L(θt)−∇L(θt−τ ), h(Ot, θt, Lt, vt−τ )− Eθt [h(Ot, θt, Lt, vt−τ )]⟩]|

+ |E[⟨∇L(θt−τ ), h(Ot, θt, Lt, vt−τ )− h(Ot, θt−τ , Lt, vt−τ )

− Eθt [h(Ot, θt, Lt, vt−τ )] + Eθt−τ [h(Ot, θt−τ , Lt, vt−τ )]⟩]|
≤2LJG∥θt − θt−τ∥
+ |E[∥∇L(θt−τ )∥(∥h(Ot, θt, Lt, vt−τ )− h(Ot, θt−τ , Lt, vt−τ )∥︸ ︷︷ ︸

Ia

+ ∥Eθt [h(Ot, θt, Lt, vt−τ )]− Eθt−τ
[h(Ot, θt−τ , Lt, vt−τ )]∥︸ ︷︷ ︸

Ib

)]|,

where Eθt [.] denotes the expectation with respect to st ∼ µθt , at ∼ πθt , st+1 ∼ p.
Now, for the term Ia, note that

∥h(Ot, θt, Lt, vt−τ )− h(Ot, θt−τ , Lt, vt−τ )∥
= ∥(r(st, at)− Lt + ϕ(st+1)

⊤vt−τ − ϕ(st)
⊤vt−τ )(∇ log πθt(at|st)−∇ log πθt−τ

(at|st))∥
≤ GK∥θt − θt−τ∥.

For the term Ib, we have ,
∥Eθt [h(Ot, θt, Lt, vt−τ )]− Eθt−τ

[h(Ot, θt−τ , Lt, vt−τ )]∥
≤ ∥Eθt [h(Ot, θt, Lt, vt−τ )]− Eθt−τ

[h(Ot, θt, Lt, vt−τ )]∥
+ ∥Eθt−τ

[h(Ot, θt, Lt, vt−τ )]− Eθt−τ
[h(Ot, θt−τ , Lt, vt−τ )]∥

≤ 2GdTV (µθt ⊗ πθt , µθt−τ
⊗ πθt−τ

) +GK∥θt − θt−τ∥

≤ 2G|A|L
(
1 + ⌈logk b−1⌉+ 1/(1− k)

)
∥θt − θt−τ∥+GK∥θt − θt−τ∥ (15)

= C1∥θt − θt−τ∥



where C1 = 2G|A|L
(
1 + ⌈logk b−1⌉+ 1/(1− k)

)
+GK. The inequality in Equation (15) follows from Lemma B.1 of (Wu

et al. 2022). Hence, after putting the results back, we obtain,

|E[I(Ot, Lt, θt, vt−τ )− I(Ot, Lt, θt−τ , vt−τ )]| ≤ C∥θt − θt−τ∥

for some C > 0. The claim follows.

lemma 3.3.

|E[I(Ot, Lt, θt−τ , vt−τ )− I(Ot, Lt−τ , θt−τ , vt−τ )]| ≤ 2BG|Lt − Lt−τ |.

Proof.

|E[I(Ot, Lt, θt−τ , vt−τ )− I(Ot, Lt−τ , θt−τ , vt−τ )]|
= |E[⟨∇L(θt−τ ), h(Ot, θt−τ , Lt, vt−τ )− h(Ot, θt−τ , Lt−τ , vt−τ )

− Eθt−τ [h(Ot, θt−τ , Lt, vt−τ )]⟩] + Eθt−τ [h(Ot, θt−τ , Lt−τ , vt−τ )]⟩]|
≤ 2BG|Lt − Lt−τ |.

lemma 3.4.

|E[I(Ot, Lt−τ , θt−τ , vt−τ )− I(Õt, Lt−τ , θt−τ , vt−τ )]| ≤ Ǩ

t∑
i=t−τ

E∥θi − θt−τ∥.

for some Ǩ > 0.

Proof. The proof is as in lemma D.2 in (Wu et al. 2022).

lemma 3.5.

|E[I(Õt, Lt−τ , θt−τ , vt−τ )− I(O
′

t, Lt−τ , θt−τ , vt−τ )]| ≤ Kbkτ−1.

for some K > 0.

Proof. The proof is as in lemma D.3 in (Wu et al. 2022).

Now collecting the results of lemmas 3.1 - 3.5, we have,

E[I(Ot, Lt, θt, vt)]

≥ −4BG∥vt − vt−τ∥ − C∥θt − θt−τ∥ − 2BG|Lt − Lt−τ | − Ǩ

t∑
i=t−τ

E∥θi − θt−τ∥ −Kbkτ−1

≥ −4BG∥vt − vt−τ∥ − C∥θt − θt−τ∥ − 2BG|Lt − Lt−τ | − Ǩ(τ + 1)E∥θt − θt−τ∥ −Kbkτ−1

≥ −4BG∥vt − vt−τ∥ − C∥θt − θt−τ∥ − 2BG|Lt − Lt−τ |

− Ǩ(τ + 1)

t∑
t−τ+1

E∥θk − θk−τ∥ −Kbkτ−1.

The claim of Lemma 3 now follows.

Lemma 4. Under assumptions 4.1, 4.3, 4.4, 4.6, for any t ≥ τ > 0 , we have

E[Ξ(Ot, θt, vt)] ≥ −4B(G+B(Ūv + Uv))∥vt − vt−τ∥ −D∥θt − θt−τ∥

−B1

t∑
i=t−τ

E∥θi − θt−τ∥ −B2bk
τ−1,

where D > 0, B1 > 0 and B2 > 0 are constants.



Proof. We can decompose E[Ξ(Ot, θt, vt)] as :

E[Ξ(Ot, θt, vt)] = E[Ξ(Ot, θt, vt)− Ξ(Ot, θt, vt−τ )]︸ ︷︷ ︸
Ia

+E[Ξ(Ot, θt, vt−τ )− Ξ(Ot, θt−τ , vt−τ )]︸ ︷︷ ︸
Ib

+ E[Ξ(Ot, θt−τ , vt−τ )− Ξ(Õt, θt−τ , vt−τ )]︸ ︷︷ ︸
Ic

+E[Ξ(Õt, θt−τ , vt−τ )]︸ ︷︷ ︸
Id

.

In the above equality, Õt = (s̃t, ãt, s̃t+1) is from the auxiliary Markov chain defined in Equation (11) and O
′

t = (s
′

t, a
′

t, s
′

t+1),
where s

′

t ∼ µθt−τ
, a

′

t ∼ πθt−τ
and s

′

t+1 ∼ P (.|s′t, a
′

t).

For the term Ia above, we have,

|Ξ(Ot, θt, vt)− Ξ(Ot, θt, vt−τ )|
= |⟨Eθt [W̄ (Ot, θt, vt)], Eθt [h̄(Ot, θt, vt)]⟩ − ⟨W̄ (Ot, θt, vt), Eθt [h̄(Ot, θt, vt)]⟩

− ⟨Eθt [W̄ (Ot, θt, vt−τ )], Eθt [h̄(Ot, θt, vt−τ )]⟩+ ⟨W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]⟩|
= |⟨Eθt [W̄ (Ot, θt, vt)]− W̄ (Ot, θt, vt), Eθt [h̄(Ot, θt, vt)]⟩

− ⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]⟩|
≤ |⟨Eθt [W̄ (Ot, θt, vt)]− W̄ (Ot, θt, vt), Eθt [h̄(Ot, θt, vt)]⟩

− ⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt)]⟩|
+ |⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt)]⟩
− ⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]⟩|

= |⟨Eθt [W̄ (Ot, θt, vt)]− Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt)

+ W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt)]⟩|
+ |⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt)]− Eθt [h̄(Ot, θt, vt−τ )]⟩|

≤ 4BG∥vt − vt−τ∥+ 4B2(Ūv + Uv)∥vt − vt−τ∥
= 4B(G+B(Ūv + Uv))∥vt − vt−τ∥.

For term Ib, we have,

|Ξ(Ot, θt, vt−τ )− Ξ(Ot, θt−τ , vt−τ )|
= |⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]⟩

− ⟨Eθt−τ
[W̄ (Ot, θt−τ , vt−τ )]− W̄ (Ot, θt−τ , vt−τ ), Eθt−τ

[h̄(Ot, θt−τ , vt−τ )]⟩|
= |⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]⟩

− ⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt−τ
[h̄(Ot, θt−τ , vt−τ )]⟩

+ ⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt−τ [h̄(Ot, θt−τ , vt−τ )]⟩
− ⟨Eθt−τ

[W̄ (Ot, θt−τ , vt−τ )]− W̄ (Ot, θt−τ , vt−τ ), Eθt−τ
[h̄(Ot, θt−τ , vt−τ )]⟩|

≤ |⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]− Eθt−τ [h̄(Ot, θt−τ , vt−τ )]⟩|︸ ︷︷ ︸
Ib1

+ |⟨Eθt [W̄ (Ot, θt, vt−τ )]− Eθt−τ
[W̄ (Ot, θt−τ , vt−τ )]︸ ︷︷ ︸

Ib2

−W̄ (Ot, θt, vt−τ ) + W̄ (Ot, θt−τ , vt−τ ), Eθt−τ
[h̄(Ot, θt−τ , vt−τ )]⟩|︸ ︷︷ ︸

Ib3

.



For term Ib1, we have ,

|⟨Eθt [W̄ (Ot, θt, vt−τ )]− W̄ (Ot, θt, vt−τ ), Eθt [h̄(Ot, θt, vt−τ )]− Eθt−τ
[h̄(Ot, θt−τ , vt−τ )]⟩|

≤ 4B(Uv + Uv)∥Eθt [h̄(Ot, θt, vt−τ )]− Eθt−τ [h̄(Ot, θt−τ , vt−τ )]∥
≤ 4B(Uv + Uv)∥Eθt [h̄(Ot, θt, vt−τ )]− Eθt−τ [h̄(Ot, θt, vt−τ )]∥

+ 4B(Uv + Uv)∥Eθt−τ [h̄(Ot, θt, vt−τ )]− Eθt−τ [h̄(Ot, θt−τ , vt−τ )]∥
≤ 8GB(Uv + Uv)dTV (µθt ⊗ πθt , µθt−τ

⊗ πθt−τ
)

+ 4B(Uv + Uv)Eθt−τ
[∥h̄(Ot, θt, vt−τ )]− Eθt−τ

[h̄(Ot, θt−τ , vt−τ )∥]

≤ 8GB(Uv + Uv)|A|L
(
1 + ⌈logk b−1⌉+ 1

1− k

)
∥θt − θt−τ∥

+ 8B(Uv + Uv)(Ur + Uv)K∥θt − θt−τ∥
= D1∥θt − θt−τ∥,

where D1 = 8B(Uv + Uv)

(
G|A|L

(
1 + ⌈logk b−1⌉+ 1

1−k

)
+ (Ur + Uv)K

)
.

The last inequality above follows from Lemma B.1 in (Wu et al. 2022).
Next, for term Ib2 + term Ib3, we have,

|⟨Eθt [W̄ (Ot, θt, vt−τ )]− Eθt−τ
[W̄ (Ot, θt−τ , vt−τ )]− W̄ (Ot, θt, vt−τ )

+ W̄ (Ot, θt−τ , vt−τ ), Eθt−τ
[h̄(Ot, θt−τ , vt−τ )]⟩|

≤ G(∥Eθt [W̄ (Ot, θt, vt−τ )]− Eθt−τ [W̄ (Ot, θt−τ , vt−τ )]∥+ ∥W̄ (Ot, θt, vt−τ )

− W̄ (Ot, θt−τ , vt−τ )∥)
≤ G(∥Eθt [W̄ (Ot, θt, vt−τ )]− Eθt−τ [W̄ (Ot, θt−τ , vt−τ )]∥+ 2(Uv + Uv)K∥θt − θt−τ∥)
≤ G(∥Eθt [W̄ (Ot, θt, vt−τ )]− Eθt−τ

[W̄ (Ot, θt, vt−τ )]∥+ ∥Eθt−τ
[W̄ (Ot, θt, vt−τ )]

− Eθt−τ
[W̄ (Ot, θt−τ , vt−τ )]∥) + 2G(Uv + Uv)K∥θt − θt−τ∥

≤ D1∥θt − θt−τ∥,

where D1 > 0.
The last inequality above again follows from Lemma B.1 in (Wu et al. 2022).

Hence after collecting the results of terms Ib1 and Ib2 we have,

Ib ≥ −D∥θt − θt−τ∥,

for some D > 0.
Now, for the term Ic, we have,

|E[Ξ(Ot, θt−τ , vt−τ )− Ξ(Õt, θt−τ , vt−τ )]| ≤ B1

t∑
i=t−τ

E∥θi − θt−τ∥,

for some B1 > 0.
For term Id, we have,

|E[Ξ(Õt, θt−τ , vt−τ )]| ≤ B2bk
τ−1.

for some B2 > 0.

For analysis of terms Ic and Id, please see lemmas D.10 and D.11 in (Wu et al. 2022).
Thus, after collecting all the terms, we have,

E[Ξ(Ot, θt, vt)] ≥ −4B(G+B(Ūv + Uv))∥vt − vt−τ∥ −D∥θt − θt−τ∥

−B1

t∑
i=t−τ

E∥θi − θt−τ∥ −B2bk
τ−1,

where D > 0, B1 > 0 and B2 > 0.



Proof of convergence of the actor. After applying Lemma 1 to the update rule of the actor, we have,

L(θt+1) ≥ L(θt) + αt⟨∇L(θt), δt∇ log πθt(at|st)⟩ −MLα
2
t ∥δt∇ log πθt(at|st)∥2.

For the term ⟨∇L(θt), δt∇ log πθt(at|st)⟩, we have,

⟨∇L(θt), δt∇ log πθt(at|st)⟩
= ⟨∇L(θt), (r(st, at)− Lt + ϕ(st+1)

⊤vt − ϕ(st)
⊤vt)∇ log πθt(at|st)⟩

= I(Ot, θt, Lt, vt) + ⟨∇L(θt), Est∼µθt ,at∼πθt ,st+1∼p[h(Ot, θt, Lt, vt)]⟩.
Hence,

L(θt+1) (16)
≥ L(θt) + αtI(Ot, θt, Lt, vt) + αt⟨∇L(θt),M(θt, vt)⟩

+ αt⟨∇L(θt), Eθt [(L(θt)− Lt)∇ log πθt(at|st)]⟩ −MLα
2
t ∥δt∇ log πθt(at|st)∥2

= L(θt) + αtI(Ot, θt, Lt, vt) + αt∥M(θt, vt)∥2

+ αt⟨Eθt [(V
θt(st+1)− ϕ(st+1)

T vt − V θt(st) + ϕ(st)
T vt)∇ log πθt(at|st)], (17)

Eθt [h̄(Ot, θt, vt)]⟩
− αt⟨(V θt(st+1)− ϕ(st+1)

T vt − V θt(st) + ϕ(st)
T vt)∇ log πθt(at|st), Eθt [h̄(Ot, θt, vt)]⟩

+ αt⟨(V θt(st+1)− ϕ(st+1)
T vt − V θt(st) + ϕ(st)

T vt)∇ log πθt(at|st), Eθt [h̄(Ot, θt, vt)]⟩︸ ︷︷ ︸
I1

+ αt⟨∇L(θt), Eθt [(L(θt)− Lt)∇ log πθt(at|st)]⟩ −MLα
2
t ∥δt∇ log πθt(at|st)∥2. (18)

Now,

αt⟨(V θt(st+1)− ϕ(st+1)
T vt)∇ log πθt(at|st),M(θt, vt)⟩

= αt⟨(V θt(st+1)− V θt+1(st+1) + V θt+1(st+1)− ϕ(st+1)
T vt)∇ log πθt(at|st),M(θt, vt)⟩

= αt⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩
+ αt⟨(V θt+1(st+1)− ϕ(st+1)

T vt)∇ log πθt(at|st),M(θt, vt)⟩
= αt⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩

+ αt⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1 + ϕ(st+1)

T vt+1 − ϕ(st+1)
T vt)∇ log πθt(at|st)

,M(θt, vt)⟩
= αt⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩

+ αt⟨(ϕ(st+1)
T vt+1 − ϕ(st+1)

T vt)∇ log πθt(at|st),M(θt, vt)⟩
+ αt⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt(at|st),M(θt, vt)⟩
= αt⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩

+ αt⟨(ϕ(st+1)
T vt+1 − ϕ(st+1)

T vt)∇ log πθt(at|st),M(θt, vt)⟩
+ αt+1⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt+1
(at+1|st+1),M(θt+1, vt+1)⟩

+ αt⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1)∇ log πθt(at|st),M(θt, vt)⟩

− αt+1⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1)∇ log πθt+1

(at+1|st+1),M(θt+1, vt+1)⟩.
Hence for the term I1, we have,

I1 = αt⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩
+ αt⟨(ϕ(st+1)

T vt+1 − ϕ(st+1)
T vt)∇ log πθt(at|st),M(θt, vt)⟩

+ αt+1⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1)∇ log πθt+1(at+1|st+1),M(θt+1, vt+1)⟩

+ αt⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1)∇ log πθt(at|st),M(θt, vt)⟩

− αt+1⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1)∇ log πθt+1

(at+1|st+1),M(θt+1, vt+1)⟩
+ αt⟨(−V θt(st) + ϕ(st)

T vt)∇ log πθt(at|st),M(θt, vt)⟩.



Putting this back in Equation (16), we obtain,

L(θt+1) ≥ L(θt) + αtI(Ot, θt, Lt, vt) + αt∥M(θt, vt)∥2 + αtΞ(Ot, θt, vt)

+ αt⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩
+ αt⟨(ϕ(st+1)

T vt+1 − ϕ(st+1)
T vt)∇ log πθt(at|st),M(θt, vt)⟩

+ αt+1⟨(V θt+1(st+1)− ϕ(st+1)
T vt+1)∇ log πθt+1

(at+1|st+1),M(θt+1, vt+1)⟩
+ αt⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt(at|st),M(θt, vt)⟩
− αt+1⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt+1(at+1|st+1),M(θt+1, vt+1)⟩
+ αt⟨(−V θt(st) + ϕ(st)

T vt)∇ log πθt(at|st),M(θt, vt)⟩
+ αt⟨∇L(θt), Eθt [(L(θt)− Lt)∇ log πθt(at|st)]⟩ −MLα

2
t ∥δt∇ log πθt(at|st)∥2.

⇒ ∥M(θt, vt)∥2

≤ L(θt+1)− L(θt)

αt
− I(Ot, θt, Lt, vt)− Ξ(Ot, θt, vt)

− ⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩
− ⟨(ϕ(st+1)

T vt+1 − ϕ(st+1)
T vt)∇ log πθt(at|st),M(θt, vt)⟩

− 1

αt
αt+1⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt+1(at+1|st+1),M(θt+1, vt+1)⟩

− 1

αt
(αt⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt(at|st),M(θt, vt)⟩)

+
1

αt
αt+1⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt+1(at+1|st+1),M(θt+1, vt+1)⟩

− 1

αt
(αt⟨(−V θt(st) + ϕ(st)

T vt)∇ log πθt(at|st),M(θt, vt)⟩)

− ⟨∇L(θt), (L(θt)− Lt)∇ log πθt(at|st)⟩+MLαt∥δt∇ log πθt(at|st)∥2

≤ (L(θt+1)− L(θt) +Qt −Qt+1)/αt − I(Ot, θt, Lt, vt)− Ξ(Ot, θt, vt)

− ⟨(V θt(st+1)− V θt+1(st+1))∇ log πθt(at|st),M(θt, vt)⟩
− ⟨(ϕ(st+1)

T vt+1 − ϕ(st+1)
T vt)∇ log πθt(at|st),M(θt, vt)⟩

− 1

αt
αt⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt(at|st),M(θt, vt)⟩

+
1

αt
αt+1⟨(V θt+1(st+1)− ϕ(st+1)

T vt+1)∇ log πθt+1
(at+1|st+1),M(θt+1, vt+1)⟩

− ⟨∇L(θt), (L(θt)− Lt)∇ log πθt(at|st)⟩+MLαt∥δt∇ log πθt(at|st)∥2,

where, in the above,Qt = αt⟨(V θt(st)−ϕ(st)T vt)∇ log πθt(at|st),M(θt, vt)⟩. Taking expectations on both sides and summing



from τt to t, we obtain,

t∑
k=τt

E∥M(θk, vk)∥2

≤
t∑

k=τt

E[(L(θk+1)− L(θk) +Qk −Qk+1)/αk]︸ ︷︷ ︸
I1

−
t∑

k=τt

E[I(Ok, θk, Lk, vk)]︸ ︷︷ ︸
I2

−
t∑

k=τt

E[Ξ(Ok, θk, vk)]︸ ︷︷ ︸
I3

−
t∑

k=τt

E[⟨(V θk(sk+1)− V θk+1(sk+1))∇ log πθk(ak|sk),M(θk, vk)⟩]︸ ︷︷ ︸
I4

−
t∑

k=τt

E[⟨(ϕ(sk+1)
T vk+1 − ϕ(sk+1)

T vk)∇ log πθk(ak|sk),M(θk, vk)⟩]︸ ︷︷ ︸
I5

−
t∑

k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk(ak|sk),M(θk, vk)⟩]︸ ︷︷ ︸
I6

+

t∑
k=τt

1

αk
E[αk+1⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk+1
(ak+1|sk+1),M(θk+1, vk+1)⟩]︸ ︷︷ ︸

I7

−
t∑

k=τt

E[⟨∇L(θk), (L(θk)− Lk)∇ log πθk(ak|sk)]⟩]︸ ︷︷ ︸
I8

+

t∑
k=τt

MLαkE[∥δk∇ log πθk(ak|sk)∥2]︸ ︷︷ ︸
I9

.

Now, for term I1 we have,

t∑
k=τt

E[(L(θk+1)− L(θk) +Qk −Qk+1)/αk]

=

t∑
k=τt

E[(Ak+1 −Ak)/αk]

= O(tν),

where Ak = L(θk)−Qk.
The analysis of term I1 is similar to that of term I1 in Section A.
For term I2, we have,

−E[I(Ot, θt, Lt, vt)] ≤ D1(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+D2bk
τ−1 +D3E∥vt − vt−τ∥

+D4E|Lt − Lt−τ |.

This inequality comes from lemma 3.
After summing both sides from τt to t and taking τ = τt, we will get,

I2 = O(log2 t · t1−ν).



For term I3, we have,

−E[Ξ(Ot, θt, vt)] ≤ 4B(G+B(Ūv + Uv))∥vt − vt−τ∥+D∥θt − θt−τ∥

+B1

t∑
i=t−τ

E∥θi − θt−τ∥+B2bk
τ−1.

This inequality is a result of lemma 4.

After taking τ = τt and summing the expectation on both the sides from τt to t, we get,

I3 = O(log2 t · t1−ν),

where the log2 t term arises here because of the definition of τt (see Equation (2)).

For term I4, we have,

−
t∑

k=τt

E[Eθk [⟨(V θk(sk+1)− V θk+1(sk+1))∇ log πθk(ak|sk),M(θk, vk)⟩]]

≤
t∑

k=τt

E[Eθk [∥(V θk(sk+1)− V θk+1(sk+1))∇ log πθk(ak|sk)∥∥M(θk, vk)∥]]

≤ 4B3(Ur + Uv)
2Lv

t∑
k=τt

αk.

The last inequality follows from Assumption 4.6.

Next, for the term I5, we have,

−
t∑

k=τt

E[Eθk [⟨(ϕ(sk+1)
T vk+1 − ϕ(sk+1)

T vk)∇ log πθk(ak|sk),M(θk, vk)⟩]]

≤
t∑

k=τt

E[Eθk [∥(ϕ(sk+1)
T vk+1 − ϕ(sk+1)

T vk)∇ log πθk(ak|sk)∥∥M(θk, vk)∥]]

≤ 4B2(Ur + Uv)
2

t∑
k=τt

βk.



For terms I6 and I7 summed together, we have,

I6 + I7

=

t∑
k=τt

1

αk
E[αk+1⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk+1
(ak+1|sk+1),M(θk+1, vk+1)⟩]

−
t∑

k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk(ak|sk),M(θk, vk)⟩]

=

t∑
k=τt

1

αk
E[αk+1⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk+1
(ak+1|sk+1),M(θk+1, vk+1)⟩]

−
t∑

k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk+1
(ak+1|sk+1),M(θk+1, vk+1)⟩]

+

t∑
k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk+1
(ak+1|sk+1),M(θk+1, vk+1)⟩]

−
t∑

k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk(ak|sk),M(θk+1, vk+1)⟩]

+

t∑
k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk(ak|sk),M(θk+1, vk+1)⟩]

−
t∑

k=τt

1

αk
E[αk⟨(V θk+1(sk+1)− ϕ(sk+1)

T vk+1)∇ log πθk(ak|sk),M(θk, vk)⟩]

≤ GB(Uv + Ūv)

t∑
k=τt

αk+1 − αk

αk
+O

( t∑
k=τt

∥θk − θk+1∥
)

+O
( t∑

k=τt

∥M(θk+1, vk+1)−M(θk, vk)∥
)

= O(t1−ν).

For term I8, we have,

−
t∑

k=τt

E[⟨∇L(θk), (L(θk)− Lk)∇ log πθk(ak|sk)]⟩]

=

t∑
k=τt

E[⟨Eθk [(r(s, a)− L(θk) + V θk(s
′
)− V θk(s))∇ log πθk(a|s)] (19)

, (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

=

t∑
k=τt

E[⟨Eθk [(r(s, a)− L(θk) + (ϕ(s
′
)− ϕ(s))T v(k))∇ log πθk(a|s)] (20)

, (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

+

t∑
k=τt

E[⟨Eθk [(V
θk(s

′
)− ϕ(s

′
)T vk + ϕ(s)T vk − V θk(s))∇ log πθk(a|s)] (21)

, (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

≤ B

√√√√ t∑
k=τt

E∥M(θk, vk)∥2

√√√√ t∑
k=τt

E|Lk − L(θk)|2 + I8a. (22)



where

I8a =

t∑
k=τt

E[⟨Eθk [(V
θk(s

′
)− ϕ(s

′
)T vk + ϕ(s)T vk − V θk(s))∇ log πθk(a|s)]

, (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

Now, for the term I8a, we have,

I8a = I8a1 + I8a2.

where,

I8a1 =

t∑
k=τt

E[⟨Eθk [W̄ (Ok, θk, vk)]− W̄ (Ok, θk, vk)], (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

and,

I8a2 =

t∑
k=τt

E[⟨(V θk(sk+1)− ϕ(sk+1)
T vk + ϕ(sk)

T vk − V θk(sk))∇ log πθk(ak|sk)

, (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

After analysing the term I8a1, similar to lemma 4, we get,

I8a1 = O(log2 t · t1−ν).

For the term I8a2, we have,



t∑
k=τt

E[⟨(V θk(sk+1)− ϕ(sk+1)
T vk + ϕ(sk)

T vk − V θk(sk))∇ log πθk(ak|sk)

, (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

=

t∑
k=τt

E[⟨(V θk(sk+1)− ϕ(sk+1)
T vk)∇ log πθk(ak|sk), (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

−
t∑

k=τt

E[⟨(V θk(sk)− ϕ(sk)
T vk)∇ log πθk(ak|sk), (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

=

t∑
k=τt

E[⟨(V θk(sk+1)− ϕ(sk+1)
T vk)∇ log πθk(ak|sk), (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

−
t∑

k=τt

E[⟨(V θk+1(sk+1)− ϕ(sk+1)
T vk+1)∇ log πθk+1

(ak+1|sk+1),

(Lk+1 − L(θk+1))∇ log πθk+1
(ak+1|sk+1)]⟩]

+

t∑
k=τt

E[⟨(V θk+1(sk+1)− ϕ(sk+1)
T vk+1)∇ log πθk+1

(ak+1|sk+1),

(Lk+1 − L(θk+1))∇ log πθk+1
(ak+1|sk+1)]⟩]

−
t∑

k=τt

E[⟨(V θk(sk)− ϕ(sk)
T vk)∇ log πθk(ak|sk), (Lk − L(θk))∇ log πθk(ak|sk)]⟩]

= O(

t∑
k=τt

∥θk+1 − θk∥) +O(

t∑
k=τt

∥vk+1 − vk∥) + E

t∑
k=τt

(Pk+1 − Pk)

= O(

t∑
k=τt

αk) +O(

t∑
k=τt

βk) + E

t∑
k=τt

(αkPk+1 − αkPk)/αk

= O(t1−ν) + E

t∑
k=τt

(αk+1Pk+1 − αkPk)/αk + E

t∑
k=τt

(αk − αk+1)Pk+1/αk

= O(t1−ν) +O(tν).

Hence, putting all these results back in Equation (22), we obtain,

I8 ≤ B

√√√√ t∑
k=τt

E∥M(θk, vk)∥2

√√√√ t∑
k=τt

E|Lk − L(θk)|2 +O(log2 t · t1−ν) +O(tν).

For term I9, we have,

t∑
k=τt

MLαkE[∥δk∇ log πθk(ak|sk)∥2] = O(

t∑
k=τt

αk)

= O(t1−ν).

Hence after collecting all the terms, we obtain,



t∑
k=τt

E∥M(θk, vk)∥2 = O(tν) +O(log2 t · t1−ν)

+B

√√√√ t∑
k=τt

E∥M(θk, vk)∥2

√√√√ t∑
k=τt

E|Lk − L(θk)|2.

After applying the squaring technique, we obtain,

t∑
k=τt

E∥M(θk, vk)∥2 = O(tν) +O(log2 t · t1−ν) + 2B2
t∑

k=τt

E|Lk − L(θk)|2

≤ O(tν) +O(log2 t · t1−ν) + 4B2 (G+ Uw)
2

(1− cα
cγ
UwB)2

c2α
c2γ

t∑
k=τt

E∥M(θk, vk)∥2.

The last inequality follows from Equation (13).

Now if we select the values for cα and cγ such that
4B2(G+ Uw)

2

(1− cα
cγ
UwB)2

c2α
c2γ

< 1, we shall obtain,

t∑
k=τt

E∥M(θk, vk)∥2 = O(tν) +O(log2 t · t1−ν).

Dividing by (1 + t− τt) and assuming t ≥ 2τt + 1, we have,

1

(1 + t− τt)

t∑
k=τt

E∥M(θk, vk)∥2 = O(tν−1) +O(log2 t · t−ν). (23)

As seen earlier, the inequalities that need to be satisfied for the inequalities (13) and (23) to hold are the following:

cα
cγ

<
1

UwB
, (24)

2B(G+ Uw)

(1− cα
cγ
UwB)

cα
cγ

< 1. (25)

Rearranging inequality (25), we get

2B(G+ Uw)
cα
cγ

< 1− cα
cγ
UwB

⇒(2B(G+ Uw) + UwB)
cα
cγ

< 1

⇒cα
cγ

<
1

2B(G+ Uw) + UwB
. (26)

Now, from (24) and (26), we have,

cα
cγ

< min

(
1

2B(G+ Uw) + UwB
,

1

UwB

)
.

Since
1

2B(G+ Uw) + UwB
<

1

UwB
, we need to choose cα and cγ such that

cα
cγ

<
1

2B(G+ Uw) + UwB
.

Now getting back to inequality (23), we can observe that E∥M(θk, vk)∥2 → 0 as k → ∞. Finally, as the actor is on the
faster timescale compared to the critic, the critic appears to be quasi-static from the viewpoint of the actor. Hence, we may let
vt ≡ v,∀t ≥ 0 (i.e., v independent of t). Therefore, the point of convergence of the actor parameter sequence θt will be θ(v)
such that :

Eθ(v)[(r(s, a)− L(θ(v)) + ϕ(s
′
)⊤v − ϕ(s)⊤v)∇ log πθ(v)(a|s)] = 0.



Convergence of the Critic Recall that we have the following update rule for the critic:
vt+1 = vt + βtδtϕ(st).

Notations:
Ot : = (st, at, st+1)

zt := vt − v∗(θt)

g(Ot, vt, θt) := (rt − L(θt) + ϕ(st+1)
⊤vt − ϕ(st)

⊤vt)ϕ(st)

ḡ(vt, θt) := Es∼µθt ,a∼πθt ,s
′∼p(.|s,a)[(r(s, a)− L(θt) + ϕ(s

′
)⊤vt − ϕ(s)⊤vt)ϕ(s)]

Q̄(Ot, vt, θt) := ⟨zt, g(Ot, vt, θt)− ḡ(vt, θt)⟩
Ū(Ot, vt, θt) := (∇v∗t )T (r(st, at)− L(θt) + ϕ(st+1)

⊤vt − ϕ(st)
⊤vt)∇θ log πθt(at|st)

Ψ(Ot, vt, θt) := ⟨zt, Eθt [Ū(Ot, vt, θt)]− Ū(Ot, vt, θt)⟩.

(27)

The proof of convergence of the critic is established through the following lemmas:
Lemma 5 ((Wu et al. 2022), Proposition 4.4). There exists a constant L∗ > 0 such that

∥v∗(θ1)− v∗(θ2)∥ ≤ L∗∥θ1 − θ2∥,∀θ1, θ2 ∈ Rd.

Lemma 6 ((Chen and Zhao 2023) , Lemma B.4). For any θ1, θ2 ∈ Rd , we have
∥∇v∗(θ1)−∇v∗(θ2)∥ ≤ Lm∥θ1 − θ2∥,

where Lm is a positive constant.
Lemma 7. Under assumptions 4.1, 4.3, 4.4, 4.6, for any t ≥ τ > 0 , we have

|E[Ψ(Ot, vt, θt)]| ≤ G1∥θt − θt−τ∥+G2∥vt − vt−τ∥+G3

t∑
i=t−τ

E∥θi − θt−τ∥+G4bk
τ−1,

where G1 > 0, G2 > 0, G3 > 0 and G4 > 0 are constants.

Proof. We can write |EΨ(Ot, vt, θt)| as follows:
|E[Ψ(Ot, vt, θt)]|
= |E[Ψ(Ot, vt, θt)]− E[Ψ(Ot, vt, θt−τ )] + E[Ψ(Ot, vt, θt−τ )]− E[Ψ(Ot, vt−τ , θt−τ )]

+ E[Ψ(Ot, vt−τ , θt−τ )]− E[Ψ(Õt, vt−τ , θt−τ )] + E[Ψ(Õt, vt−τ , θt−τ )]|
≤ |E[Ψ(Ot, vt, θt)]− E[Ψ(Ot, vt, θt−τ )]|︸ ︷︷ ︸

Ia

+ |E[Ψ(Ot, vt, θt−τ )]− E[Ψ(Ot, vt−τ , θt−τ )]|︸ ︷︷ ︸
Ib

+ |E[Ψ(Ot, vt−τ , θt−τ )]− E[Ψ(Õt, vt−τ , θt−τ )]|︸ ︷︷ ︸
Ic

+ |E[Ψ(Õt, vt−τ , θt−τ )]|︸ ︷︷ ︸
Id

In the above inequality, Õt = (s̃t, ãt, s̃t+1) is from the auxiliary Markov chain defined in Equation (11) andO
′

t = (s
′

t, a
′

t, s
′

t+1),
where s

′

t ∼ µθt−τ
, a

′

t ∼ πθt−τ
and s

′

t+1 ∼ P (.|s′t, a
′

t).
For term Ia, we have,

|E[Ψ(Ot, vt, θt)]− E[Ψ(Ot, vt, θt−τ )]|
= |E[⟨zt, Eθt [Ū(Ot, vt, θt)]− Ū(Ot, vt, θt)⟩]− E[⟨vt − v∗(θt−τ )), Eθt−τ

[Ū(Ot, vt, θt−τ ))] (28)

− Ū(Ot, vt, θt−τ ))⟩]|
≤ |E[⟨zt, Eθt [Ū(Ot, vt, θt)]− Ū(Ot, vt, θt)⟩]− E[⟨vt − v∗(θt−τ ), Eθt [Ū(Ot, vt, θt)] (29)

− Ū(Ot, vt, θt)⟩]|
+ |E[⟨vt − v∗(θt−τ ), Eθt [Ū(Ot, vt, θt)]− Ū(Ot, vt, θt)⟩] (30)

− E[⟨vt − v∗(θt−τ )), Eθt−τ
[Ū(Ot, vt, θt−τ ))]− Ū(Ot, vt, θt−τ ))⟩]|

≤ |E[⟨v∗(θt−τ )− v∗(θt), Eθt [Ū(Ot, vt, θt)]− Ū(Ot, vt, θt)⟩]|
+ |E[⟨vt − v∗(θt−τ ), Eθt [Ū(Ot, vt, θt)]− Eθt−τ

[Ū(Ot, vt, θt−τ ))]− Ū(Ot, vt, θt) (31)

+ Ū(Ot, vt, θt−τ )⟩]|
≤ |E[⟨v∗(θt−τ )− v∗(θt), Eθt [Ū(Ot, vt, θt)]− Ū(Ot, vt, θt)⟩]|

+ 2Uv|E[∥Eθt [Ū(Ot, vt, θt)]− Eθt−τ [Ū(Ot, vt, θt−τ ))]∥ (32)

+ ∥Ū(Ot, vt, θt)− Ū(Ot, vt, θt−τ )∥]|. (33)



Now,

∥Ū(Ot, vt, θt)− Ū(Ot, vt, θt−τ )∥ ≤ A1∥θt − θt−τ∥,

where A1 > 0 is some constant. This inequality follows from Lemma 6 as well as Lemma B.1 of (Wu et al. 2022). Also,

∥Eθt [Ū(Ot, vt, θt)]− Eθt−τ
[Ū(Ot, vt, θt−τ ))]∥ ≤ A2∥θt − θt−τ∥,

for some A2 > 0. Lemma B.1 of (Wu et al. 2022) is used in obtaining the above inequality.
Hence putting these results back in inequality (33), we have,

Ia ≤ 2LG∥v∗(θt−τ )− v∗(θt)∥+ 2Uv(A1 +A2)∥θt − θt−τ∥
≤ (2LGL∗ + 2Uv(A1 +A2))∥θt − θt−τ∥.

The last inequality is because of Lemma 5.
For term Ib, we have,

|E[Ψ(Ot, vt, θt−τ )]− E[Ψ(Ot, vt−τ , θt−τ )]|
= |E[⟨vt − v∗(θt−τ ), Eθt−τ [Ū(Ot, vt, θt−τ )]− Ū(Ot, vt, θt−τ )⟩]

− E[⟨vt−τ − v∗(θt−τ ), Eθt−τ
[Ū(Ot, vt−τ , θt−τ )]− Ū(Ot, vt−τ , θt−τ )⟩]|

= |E[⟨vt − v∗(θt−τ ), Eθt−τ
[Ū(Ot, vt, θt−τ )]− Ū(Ot, vt, θt−τ )⟩]

− E[⟨vt−τ − v∗(θt−τ ), Eθt−τ
[Ū(Ot, vt, θt−τ )]− Ū(Ot, vt, θt−τ )⟩]

+ E[⟨vt−τ − v∗(θt−τ ), Eθt−τ [Ū(Ot, vt, θt−τ )]− Ū(Ot, vt, θt−τ )⟩]
− E[⟨vt−τ − v∗(θt−τ ), Eθt−τ [Ū(Ot, vt−τ , θt−τ )]− Ū(Ot, vt−τ , θt−τ )⟩]|

≤ |E[⟨vt − vt−τ , Eθt−τ [Ū(Ot, vt, θt−τ )]− Ū(Ot, vt, θt−τ )⟩]|
+ |E[⟨vt−τ − v∗(θt−τ ), Eθt−τ

[Ū(Ot, vt, θt−τ )]− Eθt−τ
[Ū(Ot, vt−τ , θt−τ )]

− Ū(Ot, vt, θt−τ ) + Ū(Ot, vt−τ , θt−τ )⟩]|
≤ 2L∗G∥vt − vt−τ∥+ 8BL∗Uv∥vt − vt−τ∥.

For term Ic, we have,

|E[Ψ(Ot, vt−τ , θt−τ )]− E[Ψ(Õt, vt−τ , θt−τ )]| ≤M1

t∑
i=t−τ

E∥θi − θt−τ∥,

for some M1 > 0.

For term Id, we have,

|E[Ψ(Õt, vt−τ , θt−τ )]| ≤M2bk
τ−1,

for some M2 > 0.
For an analysis of terms Ic and Id, see Lemmas D.10 and D.11 in (Wu et al. 2022). Hence, after collecting all the terms, we

have,

|E[Ψ(Ot, vt, θt)]| ≤ G1∥θt − θt−τ∥+G2∥vt − vt−τ∥+G3

t∑
i=t−τ

E∥θi − θt−τ∥+G4bk
τ−1,

where G1 > 0, G2 > 0, G3 > 0 and G4 > 0 are constants.



Proof of convergence of critic From the critic update rule, we have,

∥zt+1∥2 = ∥vt+1 − v∗(θt+1)∥2

= ∥Γ(vt + βtδtϕ(st))− v∗(θt+1)∥2

≤ ∥vt + βtδtϕ(st)− v∗(θt+1)∥2

= ∥zt + βtδtϕ(st) + v∗(θt)− v∗(θt+1)∥2

≤ ∥zt∥2 + 2βt⟨zt, δtϕ(st)⟩+ 2⟨zt, v∗(θt)− v∗(θt+1)⟩+ 2β2
t δ

2
t ∥ϕ(st)∥2

+ 2∥v∗(θt)− v∗(θt+1)∥2

= ∥zt∥2 + 2βt⟨zt, δtϕ(st)− Eθt [δtϕ(st)]⟩+ 2βt⟨zt, Eθt [δtϕ(st)]⟩
+ 2⟨zt, v∗(θt)− v∗(θt+1)⟩+ 2β2

t δ
2
t ∥ϕ(st)∥2 + 2∥v∗(θt)− v∗(θt+1)∥2

≤ ∥zt∥2 + 2βt⟨zt, δtϕ(st)− Eθt [δtϕ(st)]⟩ − 2βtλ∥zt∥2 + 2⟨zt, v∗(θt)− v∗(θt+1)⟩
+ 2β2

t δ
2
t ∥ϕ(st)∥2 + 2∥v∗(θt)− v∗(θt+1)∥2.

We assume here that the projection set C is large enough so that v∗(θt+1) lies within the set. Also, C being both compact and
convex guarantees that the point within C where the update with an increment is projected is not only the closest but also unique.
The last inequality follows from Assumption 4.2. Here, −λ = sup

θ
λθ, where λθ is an upper bound on the largest eigenvalue of

A defined in 1. After rearranging the terms we obtain,

λ∥zt∥2 ≤ 1

2βt
(∥zt∥2 − ∥zt+1∥2) + ⟨zt, δtϕ(st)− Eθt [δtϕ(st)]⟩+

1

βt
⟨zt, v∗(θt)− v∗(θt+1)

+ (∇v∗t )T (θt+1 − θt)⟩+
1

βt
⟨zt, (∇v∗t )T (θt − θt+1)⟩+ βtδ

2
t ∥ϕ(st)∥2

+
1

βt
∥v∗(θt)− v∗(θt+1)∥2.

Taking summation of terms from indices τt to t we have,

λ

t∑
k=τt

E∥zk∥2 ≤
t∑

k=τt

1

2βk
E[∥zk∥2 − ∥zk+1∥2]︸ ︷︷ ︸

I1

+

t∑
k=τt

E[⟨zk, δtϕ(sk)− Eθk [δkϕ(sk)]⟩]︸ ︷︷ ︸
I2

+

t∑
k=τt

1

βk
E⟨zk, v∗(θk)− v∗(θk+1) + (∇v∗k)T (θk+1 − θk)⟩︸ ︷︷ ︸

I3

+

t∑
k=τt

1

βk
E⟨zk, (∇v∗k)T (θk − θk+1)⟩︸ ︷︷ ︸

I4

+

t∑
k=τt

βkE[δ2k∥ϕ(sk)∥2]︸ ︷︷ ︸
I5

+

t∑
k=τt

1

βk
E∥v∗(θk)− v∗(θk+1)∥2︸ ︷︷ ︸

I6

For term I1, we have,

t∑
k=τt

1

2βk
E[∥zk∥2 − ∥zk+1∥2] = O(tσ)



The analysis of I1 is similar to that of the term I1 in Section A. For term I2 here, we have,

t∑
k=τt

E[⟨zk, δtϕ(sk)− Eθk [δkϕ(sk)]⟩] = O(log2 t · t1−ν).

For a detailed analysis of the term I2, see the analysis of term I2 in (Chen and Zhao 2023).

For term I3 above, we have,

t∑
k=τt

1

βk
E⟨zk, v∗(θk)− v∗(θk+1) + (∇v∗k)T (θk+1 − θk)⟩ ≤

Lm

2

t∑
k=τt

1

βk
E∥zk∥∥θk+1 − θk∥2

= O(

t∑
k=τt

α2
k

βk
)

= O(tσ−2ν+1).



The above inequality follows from the Lm-smoothness of v∗ in Lemma 6. For term I4, we have,

t∑
k=τt

1

βk
E⟨zk, (∇v∗k)T (θk − θk+1)⟩

= −
t∑

k=τt

1

βk
E⟨zk, (∇v∗k)Tαkδk∇θ log πθk(ak|sk)⟩

= −
t∑

k=τt

1

βk
E⟨zk, (∇v∗k)Tαk(r(sk, ak)− Lk + ϕ(sk+1)

⊤vk − ϕ(sk)
⊤vk)∇θ log πθk(ak|sk)⟩

= −
t∑

k=τt

1

βk
E⟨zk, (∇v∗k)Tαk(r(sk, ak)− L(θk) + ϕ(sk+1)

⊤vk − ϕ(sk)
⊤vk)∇θ log πθk(ak|sk)⟩

−
t∑

k=τt

1

βk
E⟨zk, (∇v∗k)Tαk(L(θk)− Lk)∇θ log πθk(ak|sk)⟩

= −
t∑

k=τt

αk

βk
E⟨zk, (∇v∗k)T (r(sk, ak)− L(θk) + ϕ(sk+1)

⊤vk − ϕ(sk)
⊤vk)∇θ log πθk(ak|sk)⟩

+

t∑
k=τt

αk

βk
E⟨zk, (∇v∗k)TEθk [(r(sk, ak)− L(θk) + ϕ(sk+1)

⊤vk − ϕ(sk)
⊤vk)∇θ log πθk(ak|sk)]⟩

−
t∑

k=τt

αk

βk
E⟨zk, (∇v∗k)TEθk [(r(sk, ak)− L(θk) + ϕ(sk+1)

⊤vk − ϕ(sk)
⊤vk)∇θ log πθk(ak|sk)]⟩

−
t∑

k=τt

αk

βk
E⟨zk, (∇v∗k)T (L(θk)− Lk)∇θ log πθk(ak|sk)⟩

=

t∑
k=τt

E[
αk

βk
Ψ(Ok, vk, θk)]

−
t∑

k=τt

αk

βk
E⟨zk, (∇v∗k)TEθk [(r(sk, ak)− L(θk) + ϕ(sk+1)

⊤vk − ϕ(sk)
⊤vk)∇θ log πθk(ak|sk)]⟩

−
t∑

k=τt

αk

βk
E⟨zk, (∇v∗k)T (L(θk)− Lk)∇θ log πθk(ak|sk)⟩

≤ cα
cβ

t∑
k=τt

E[(1 + k)σ−νΨ(Ok, vk, θk)] + L∗

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

∥M(θk, vk)∥2]

+ L∗B

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

(L(θk)− Lk)2]

≤ cα
cβ

(1 + t)σ−ν
t∑

k=τt

|E[Ψ(Ok, vk, θk)]|+ L∗

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

∥M(θk, vk)∥2]

+ L∗B

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

(L(θk)− Lk)2]

≤ O(log2 t · tσ−2ν+1) + L∗

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

∥M(θk, vk)∥2]



+L∗B

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

(L(θk)− Lk)2].

The last inequality follows from Lemma 7.
For the term I5, we have,

t∑
k=τt

βkE[δ2k∥ϕ(sk)∥2] = O(t1−σ).

Next, for the term I6, we have,

t∑
k=τt

1

βk
E∥v∗(θk)− v∗(θk+1)∥2 = O(t1−2ν+σ).

For detailed analysis of terms I5 and I6, see section C.2 of (Chen and Zhao 2023). Thus, after collecting all the terms we have,

λ

t∑
k=τt

E∥zk∥2 ≤ O(tσ) +O(log2 t · t1−ν) +O(log2 t · tσ−2ν+1)

+ L∗

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

M(θk, vk)2]

+ L∗B

√√√√ t∑
k=τt

E∥zk∥2

√√√√ t∑
k=τt

E[
α2
k

β2
k

(L(θk)− Lk)2]

+O(t1−σ).

After applying the squaring technique, we have,

t∑
k=τt

E∥zk∥2 = O(tσ) +O(log2 t · t1−ν) +O(log2 t · t1+σ−2ν)

+O(

t∑
k=τt

E[
α2
k

β2
k

M(θk, vk)
2]) +O(

t∑
k=τt

E[
α2
k

β2
k

(L(θk)− Lk)
2])

= O(tσ) +O(log2 t · t1−ν) +O(log2 t · t1+σ−2ν) +O(t2σ−ν)

+O(log2 t · t1−3ν+2σ)

= O(log2 t · t1+σ−2ν) +O(t2σ−ν) +O(log2 t · t1−3ν+2σ).

The second equality above comes from the result of Theorems A and 4.8. Assuming t ≥ 2τt − 1, we have,

1

1 + t− τt

t∑
k=τt

E∥zk∥2 = O(log2 t · tσ−2ν) +O(t2σ−ν−1) +O(log2 t · t−3ν+2σ).

So, we can observe that E∥zt∥2 → 0 as t→ ∞, if the following conditions are satisfied:

2σ − ν < 1,

2σ < 3ν.

Hence (vt − v∗(θt)) → 0 as t→ ∞.
Now as actor is on the faster timescale compared to critic , we can say that when observed from the timescale of critic, θt

closely tracks θ(vt).Therefore we can conclude that vt converges to a point w such that w − v∗(θ(w)) = 0.



Optimising over the values of ν and σ we have ν = 0.5 and σ = 0.5 + β where β > 0 can be made arbitrarily close to zero.
Hence we have the following :-

1

1 + t− τt

t∑
k=τt

E∥zk∥2 = O(log2 t · t(2β−0.5))

Now,

2β > 0

⇒ 2β − 0.5 > −0.5

⇒ 1

2β − 0.5
< −2

So we can write 1
2β−0.5 = −2− δ where δ > 0 is arbitrarily close to zero as β > 0 is made arbitrarily close to zero.

Therefore in order for the mean squared error of the critic to be upper bounded by ϵ, namely,

1

1 + t− τt

t∑
k=τt

E∥zk∥2 = O(log2 T · T (2β−0.5)) ≤ ϵ,

we need to set T = Õ(ϵ−(2+δ)) where δ > 0 can be made arbitrarily close to zero.

Remark A.2. It is important to note here that unlike (Wu et al. 2022), none of our results have terms corresponding to function
approximation errors as we do not encounter the term ∆h

′
(O, θ) in our analysis. For the definition of ∆h

′
(O, θ) please refer the

proof of Theorem 4.5 of (Wu et al. 2022).

Asymptotic Analysis
We now analyse Algorithm 1 which represents the two-timescale CA algorithm involving linear function approximation for
its asymptotic convergence. To begin with, we first present the asymptotic analysis of (almost sure) convergence by using two
projection operators Γ1 and Γ2 respectively. Let C and D be compact subsets of Rd1 and Rd2 , respectively. Then, Γ1 : Rd1 → C
and Γ2 : Rd → D are the two projection operators. These operators ensure that the algorithm remains stable throughout the run.

Subsequently, in Section A, we remove the projection operator Γ1 and consider an un-projected critic that can take values in
the whole of Rd1 . We also prove the stability of the recursion in this case in addition to asymptotic convergence. In other words,
we show that supt ∥vt∥ <∞ w.p.1. Such results on asymptotic stability and almost sure convergence are not available in many
non-asymptotic (finite-time) analyses of algorithms in the literature. The resulting scheme that we analyse is then similar to AC
algorithms in the literature, where one projects the actor but not the critic, see for instance, (Bhatnagar et al. 2009), except that
now the time scales of the recursions are reversed.

We prove the stability and convergence of our two-timescale CA algorithm by proving that the critic recursion asymptotically
tracks a compact connected internally chain transitive invariant set of an associated differential inclusion (DI) (Aubin and
Frankowska 2009; Benaïm, Hofbauer, and Sorin 2005). A DI-based analysis is a generalization of the ordinary differential
equation (ODE) approach to stochastic approximation recursions and is necessitated because we allow for multiple local maxima
for the actor-recursion for any given critic update that result in an underlying DI instead of an ODE. In the context of AC or CA
algorithms, ours is the first analysis that incorporates this level of sophistication and generality.

As noted in Assumption 5.2, all step-sizes satisfy the standard Robbins-Monro conditions. In addition, βt = o(αt) for t ≥ 0
and γt = Kαt for some K > 0, t ≥ 0. As a result of this, the average reward and actor updates are performed on the faster
timescale compared to the critic updates.

The Case of Projected Critic To begin with, we consider the case where the critic recursion is projected using a projection
operator Γ1(·) to a compact and convex set C ⊂ Rd1 . Thus, for any x ∈ Rd1 , Γ1(x) ∈ C. For any vector y ∈ C, we have
∥y∥ ≤ Uθ, where Uθ > 0 is a constant. As mentioned earlier, the single-stage reward is a function of the current state and action
taken.

Asymptotic Convergence of average reward estimate and the actor We begin here with the case where both critic and actor
recursions are projected to certain compact and convex sets. In this case, we rewrite the critic recursion as follows:

vt+1 = Γ1(vt + βtδtϕ(st)), (34)

= Γ1(vt + αt

(
βt
αt

)
δtϕ(st)), (35)



where
δt = rt − Lt + ϕ(st+1)

⊤vt − ϕ(st)
⊤vt. (36)

Observe now that since βt = o(αt), the above asymptotically tracks the ordinary differential equation (ODE)

v̇(t) = 0,

which means we may let v(t) ≡ v (i.e., independent of t). Now consider the average reward recursion, viz.,

Lt+1 = Lt + γt(rt − Lt), (37)

where γt = Kαt. For simplicity, let K = 1. In other words, the timescales of recursions governed by γt and αt are the same and
faster while the recursion governed by βt is on the slower timescale. Recall also the (faster) θ-update rule here:

θt+1 = Γ2(θt + αtδtψstat), (38)

where ψstat
= ∇θ log πθt(at|st).

Consider now the following system of ODEs associated with all the above recursions:

v̇ = 0, (39)

L̇ = −L+
∑
s

µθ(s)
∑
a

πθ(a|s)R(s, a), (40)

θ̇ = Γ̂2

(
E[δt∇θ log π

θ(at|st)|θ]
)
, (41)

where the operator Γ̂2(·) is defined as

Γ̂2(v(y)) = lim
0<η→∞

(
Γ2(y + ηv(y))− y

η

)
.

Here, as before, µθ(s), s ∈ S denotes the stationary distribution of the state-valued Markov chain {st} when actions in the MDP
are chosen as per the parameterized policy πθ.

The system of ODEs (39)-(41) has the following set of equilibria:

{(v, Lθ, θ)|θ ∈ θ∗(v), v ∈ Rd1},

where for any v ∈ Rd1 , θ ∈ θ∗(v),
Lθ =

∑
s

µθ(s)
∑
a

πθ(s, a)R(s, a), (42)

is the unique globally asymptotically stable equilibrium of the ODE (40). Note here that for any v ∈ Rd1 , θ∗(v) is the set of
asymptotically stable equilibria of the ODE (41). Here R(s, a) is the expected single-stage reward when state is s and action a is
chosen. Thus, R(s, a) = E[rt|st = s, at = a].

By Assumption 4.4, πθ is continuously differentiable. Let

p̌θ(s, s
′)

△
=

∑
a∈A(s)

πθ(s, a)p(s, a, s′).

Then, from Assumption 4.4, p̌θ(s, s′) are continuously differentiable (in θ) transition probabilities of the resulting Markov chain,
∀s, s′ ∈ S. We have the following preliminary result:

Lemma 8. Under Assumptions 4.4 and 5.1, Lθ, θ ∈ C is continuously differentiable in θ.

Proof. By Theorem A.1, νθ is continuously differentiable in θ. Recall that Assumption 4.4 has been used in that proof. Now
since the set of states and actions is finite, from the definition of Lθ in (42), it is easy to see that Lθ is continuously differentiable
as well.

Notice that the equilibrium of (41) depends on v since δt depends on v. Also, in general, for any given v, θ∗(v) will not be a
unique point. In fact, this is the set of local minima of the associated performance objective under function approximation.

For θ ∈ θ∗(v), let
δθ = rt − Lθ + ϕ(st+1)

T v − ϕ(st)
T v.

Lemma 9. Under Assumptions 4.4 and 5.1, for θ ∈ θ∗(v), we have

E[δθψstat
|θ] = ∇θL

θ +
∑
s

µθ(s)∇V̄ πθ

(s),



where

V̄ πθ

(s) =
∑
a

πθ(s, a)

[
R(s, a)− Lπθ

+
∑
s′

p(s, a, s′)vTϕ(s′)

]
.

Proof. Note that for θ ∈ θ∗(v),
∇θV̄

πθ

(s) =
∑
a

πθ(s, a)(−∇θL
πθ

)

+
∑
a

∇θπ
θ(s, a)

(
R(s, a)− Lπθ

+
∑
s′

p(s, a, s′)vTϕ(s′)

)
.

Hence, ∑
s

µθ(s)∇θV̄
πθ

(s) = −
∑
s

µθ(s)
∑
a

πθ(s, a)∇θL
πθ

+
∑
s

µθ(s)
∑
a

∇θπ
θ(s, a)

(
R(s, a)− Lπθ

+
∑
s′

p(s, a, s′)vTϕ(s′)

)
.

= −∇θL
πθ

+ E[δθψstat
|θ].

The claim now follows by rearranging the terms above.

Remark A.3. Lemma 9 is similar to Lemma 4 of (Bhatnagar et al. 2009). The main difference between these two results is
that since in (Bhatnagar et al. 2009), the critic is faster than the actor, the actor parameter θ is held fixed while analysing the
critic recursion. As a result the critic parameter v there depends on θ unlike here where the critic parameter v is held fixed. As a
result, there is an additional term that appears on the RHS of Lemma 4 of (Bhatnagar et al. 2009) contributing to the bias in
the estimator that is not present in Lemma 9. Note also that Lemma 9 tells us that for θ ∈ θ∗(v), δθψstat is a biased gradient
estimator of Lθ with

∑
s µθ(s)∇V̄ πθ

(s) as the bias term.
We now proceed with the analysis of the faster recursions.

Proposition A.4. Under Assumptions 4.4, 5.1 and 5.2, for any given v ∈ Rd1 , and Lt, θt updated as in (37)-(38), respectively,
we have Lt → Lθ and θt → θ, θ ∈ θ∗(v), where

Lθ =
∑
s

µθ(s)
∑
a

πθ(s, a)R(s, a),

and θ∗(v) is the set of points θ where Γ̂(E[δθψstat |θ]) = 0.

Proof. As described previously, the ODEs associated with (37)-(38) are (40)-(41). Consider (40) first and let

f(L) = −L+
∑
s

µθ(s)
∑
a

πθ(a|s)R(s, a),

i.e., the RHS of (40). For any integer c > 0, let fc(L)
△
= f(cL)/c. Since maxs,a |R(s, a)| <∞ as single-stage rewards are finite,

fc(L) → f∞(L) = −L as c→ ∞. The ODE
L̇ = f∞(L) = −L

is clearly globally asymptotically stable to the origin. Thus, from Chapter 6 of (Borkar 2023), it follows that supt |Lt| <∞ and
that Lt → Lθ almost surely as t→ ∞.

Recall now the θ-update (38):
θt+1 = Γ2(θt + αtδtψstat

).

We rewrite the same as
θt+1 = Γ2(θt + αtE[δθ

∗(v)ψstat
|F1(t)] + αtγ1(t) + αtγ2(t)),

where γ1(t) = δtψstat
− E[δtψstat

|F1(t)] and (for θ ∈ θ∗(v)), γ2(t) = E[(δtψstat
− δθψstat

)|F1(t)], respectively, and with
F1(t) = σ(θk, sk, ak, k ≤ t), t ≥ 0. Observe that (γ1(t),F1(t)), t ≥ 0, is a martingale difference sequence and is uniformly
bounded for any given v ∈ Rd1 . This is because rewards are bounded and so is the Lt-sequence as argued above. Moreover,
since state and action spaces are finite, we have that maxs,a |ψsa| ≤ Ǩ <∞, for some constant Ǩ <∞. If we now form the
sequence

Z(t) =

t−1∑
k=0

αkγ1(k), t ≥ 0,



with Z(0) = 0, then it is easy to see that (Z(t),F1(t)), t ≥ 0, forms a martingale. Moreover, from the square summability of the
step-size sequence {αk} and the fact that γ1(t) is uniformly bounded (see above), it can be shown from a routine application of
the martingale convergence theorem for square integrable martingales (cf. (Borkar 2012)), that supt |Z(t)| <∞ with probability
one, or in other words, the martingale converges almost surely. Now observe that γ2(t) → 0 as t→ ∞ a.s. by Assumption 4.3.

Now (for θ ∈ θ∗(v)), let

eπ
θ △
=
∑
s

µθ(s)∇V̄ πθ

(s).

Consider the ODE:
θ̇ = Γ̂2

(
∇Lθ + eπ

θ
)
. (43)

It follows from Theorem 5.3.1 of (Kushner and Clark 2012) that θt → θ ∈ θ∗(v) almost surely as t→ ∞. The claim follows.

Remark A.5. The claim in Proposition A.4 indicates that the recursion (38) converges to the stationary points of the ODE (43).
One can now argue as in (Bhatnagar et al. 2009), that the convergence is indeed to local maxima of the ODE (43) which are also
stationary points of the above ODE.

Asymptotic Convergence of the Critic We now turn to the analysis of the slower (critic) recursion (34). Similar to the actor
recursion, we define the following projection operator that will be used for the critic ODE, where the operator Γ̂2(·) is defined as

Γ̂1(w(x)) = lim
0<β→∞

(
Γ1(x+ βw(x))− x

β

)
.

Let
Yt = δtϕ(st)− E[δtϕ(st)|F2(t)],

where F2(t) = σ(vr, θr, sr, ar, r ≤ t), t ≥ 0, is a sequence of associated sigma fields. Then (Yt,F2(t)), t ≥ 0 is a martingale
difference sequence. Consider now the associated process

Ž(t) =

t−1∑
m=0

αmYm,

t ≥ 0 with Ž(0) = 0. Then (Ž(t),F2(t)), t ≥ 0 is a martingale sequence. Now because of the fact that single-stage rewards are
uniformly bounded, the set of states and actions is finite and hence the state features are uniformly bounded, the fact that vn ∈ C,
∀n, a compact set, and

∑
m α2

m < ∞, it follows from the martingale convergence theorem for square integrable martingales
(cf. Chapter 3 of (Borkar 2012)) that Ž(t), t ≥ 0 is an almost surely convergent martingale sequence.

We rewrite (34) as
vt+1 = Γ1(vt + βt(yt + Yt + κt)), (44)

where
yt =

∑
s

µθt(s)
∑
a

πθt(s, a)(R(s, a)− Lθt + vTt
∑
s′

p(s, a, s′)ϕ(s′)− vTt ϕ(s))ϕ(s),

κt = E[(R(st, at)− Lθt + vTt
∑
st+1

p(st, at, st+1)ϕ(st+1)− vTt ϕ(st))ϕ(st)|F2(t)]− yt,

respectively, with θt ∈ θ∗(v) (cf. Remark A.8). Now from Assumption 4.3, it follows that κt → 0 almost surely as t → ∞.
Proceeding as in Chapter 6 of (Borkar 2023), one can rewrite (44) as

vt+1 = vt + βt

(
Γ1(vt + βt(yt + Yt + κt))− vt

βt

)
(45)

= vt + βt(γ̌1(vt; yt + Yt) + ξt, (46)

where

γ̌1(v; y) = lim
η→0

(
Γ1(v + ηy)− v

η

)
,

is the directional derivative of Γ1 at v in the direction y. Note that in (46) and in what follows, we drop κt since as explained
before, κt → 0 a.s. as t→ ∞. Thus, in the limiting system, this term will not appear. From the definition of γ̌1(v, y), note that if
v ∈ Co (i.e., the interior of C), then for any y ∈ Rd1 , Γ1(v + ηy) = v + ηy for η > 0 ‘small enough’. Thus, γ̌1(v; y) = y if
v ∈ Co.

Suppose now

zt
△
= E[γ̌1(vt; yt + Yt)|F2(t)]



and
Y̌t

△
= γ̌1(vt; yt + Yt)− zt.

Thus, (46) can be rewritten as
vt+1 = vt + βt(zt + Y̌t + ξt). (47)

Let h(v) denote the set-valued map

h(v) = {
∑
s

µθ(s)
∑
a

πθ(s, a)(R(s, a)− Lθ + vT
∑
s′

p(s, a, s′)ϕ(s′)

−vTϕ(s))ϕ(s)|θ ∈ θ̄∗(v)},
where θ̄∗(v) is the closure of the set θ∗(v). Now since µθ(s), πθ(s, a), Lθ are all continuous functions of θ and θ̄∗(v) is a
compact set for any v, it follows that h(v) is a compact set.

Now from the definition of Yt, it can be seen that

Yt ∈ {vTt (ϕ(st+1)−
∑
s′,at

πθ(st, at)p(st, at, s
′)ϕ(s′))ϕ(st)|θ ∈ θ̄∗(v)}.

Since {
∑
s′,at

πθ(st, at)p(st, at, s
′)|θ ∈ θ̄∗(v)} is compact for every v and st takes only finitely many values, the conditional

distribution of Yt given F2(t) has a compact support B(vt).
Let

Γ̂v(h(v))
△
= ∩ϵ>0c̄o

(
∪∥w−v∥<ϵ{γ1(w; y + Y )|y ∈ h(v), Y ∈ B(v)}

)
,

where c̄o(·) is the closed convex hull of ‘·’. We now have the following result.

Lemma 10. We have

(i) Γ̂v(h(v)) is a compact and convex set for any v ∈ C.
(ii) For all v ∈ C,

sup
w∈Γ̂v(h(v))

∥w∥ ≤M(1 + ∥w∥),

for some M > 0.
(iii) Γ̂v(h(v)) is upper semi-continuous, i.e., if vn → v and wn → w with wn ∈ Γ̂vn

(h(vn)) for all n, then w ∈ Γ̂v(h(v)).

Proof. (i) By definition Γ̂v(h(v)) is convex and closed. It is also easily seen to be bounded and hence is compact.
(ii) Let

Q
△
= sup

v∈C
sup

w∈Γ̂v(h(v))

∥w∥

Then since C is compact and Γ̂v(h(v)) is compact as well from the foregoing, 0 < Q <∞. The claim then follows by letting
M = Q.

(iii) Let

g(v)
△
= ∪{γ1(w; y + Y )|y ∈ h(v), Y ∈ B(v)}.

Then,
Γ̂v(h(v)) = ∩ϵ>0c̄o({g(v)|∥w − v∥ < ϵ}).

Note now that the family of sets H(v, ϵ)
△
= c̄o({g(v)|∥w − v∥ < ϵ}) with ϵ > 0 is a family of diminishing sets in ϵ and

H(v, ϵ) ↓ Γ̂v(h(v)) as ϵ ↓ 0.
Let wn ∈ Γ̂vn(h(vn)) for n large enough so that ∥vn − v∥ < ϵ/3 for some ϵ > 0. It is easy to find such a vn since vn → v
as n → ∞. Then, wn ∈ H(vn,

ϵ
3 ). It is then easy to see that H(vn,

ϵ
3 ) ⊂ H(v, 2ϵ3 ) for n large. Thus, given ϵ, there exists

N0 > 0 such that for all n > N0, wn ∈ H(v, 2ϵ3 ). Further, wn → w as n→ ∞. Thus, w ∈ H(v, 2ϵ3 ) since it is a closed set.
The claim now follows since H(v, 2ϵ3 ) ↓ Γ̂v(h(v)) as ϵ ↓ 0 implying that w ∈ Γ̂v(h(v)).

Thus, all three claims are verified.

Remark A.6. Any set-valued map H : Rl → { subsets of Rm and satisfying the three claims in Lemma 10 is called a Marchaud
or Peano map, cf. (Aubin and Frankowska 2009). If such a map is used for the driving vector field of a differential inclusion, the
trajectories of the inclusion are absolutely continuous functions.



Define now a sequence of time points {t(n)}, n ≥ 0 in the following manner: t(0) = 0 and for n ≥ 1, t(n) =
n−1∑
τ=0

βτ . We

now define a process v̄(t) obtained from the iterate sequence {vn} as given by the recursion (34) as follows: v(t(n)) = vn, ∀n
and for t ∈ [t(n), t(n+ 1)], v̄(t) is obtained as

v̄(t) =

(
t(n+ 1)− t

βn

)
vn +

(
t− t(n)

βn

)
vn+1.

Let
G = ∩t≥0{v̄(t+ s)|s ≥ 0}. (48)

Consider now the differential inclusion (DI):
v̇(t) ∈ Γ̂v(h(v(t))). (49)

Any solution to (49) as mentioned in Remark A.6, is guaranteed to be absolutely continuous and satisfy (49) almost everywhere.
We recall Definition II of (Benaïm, Hofbauer, and Sorin 2005). By a perturbed solution y : [0,∞) → Rd1 to the DI (49), we

mean that y is absolutely continuous. In addition, there exists a locally integrable function t 7→ U(t) such that

lim
t→∞

sup
0≤v≤T

∥
∫ t+v

t

U(s)ds∥ = 0.

Also, y and U together satisfy the DI
ẏ(t)− U(t) ∈ Γ̂δ(t)

v (h(v(t))),

for almost every t > 0 and where δ(t) → 0 as t→ ∞. Here,

Γ̂δ(t)
v (h(v(t))) = {y ∈ Rd1 |∃z : ∥z − x∥ < δ, d(y, Γ̂δ(t)

v (h(z))) < δ}.
We have the following result on the convergence of (34):

Theorem A.7. Under Assumptions 4.4, 4.2, 5.1 and 5.2, the iterates {vt, t ≥ 0} obtained according to (34) satisfy vn → G
almost surely, where G is as in (48). Further, G is a closed connected internally chain recurrent invariant set of the DI (49).

Proof. Note again that as a consequence of the projection operator Γ1, supn ∥vn∥ <∞ w.p.1. From the foregoing, the process
v̄(t) can be shown as in Proposition 1.3 of (Benaïm, Hofbauer, and Sorin 2005) to be a bounded perturbation of the DI. The
claim now follows from Theorem 3.6 and Lemma 3.8 of (Benaïm, Hofbauer, and Sorin 2005).

Remark A.8. Recall that θ∗(v) is the set of stable equilibria of the ODE (43. Consider now another associated ODE for the faster
(actor) recursion:

θ̇ = Γ̂2(∇Lθ). (50)

Let the set of asymptotically stable equilibria (i.e., the maxima of Lθ) correspond to θ̌(v). It follows as a consequence of
Proposition A.4 and the continuity of ∇Lθ and eπ

θ

that given ϵ > 0, there exists δ > 0 such that if ∥eπθ∥ < δ, then

θt → θ̌(v)ϵ
△
= {θ|∥θ − θ0∥ < ϵ, θ0 ∈ θ̌(v)}.

As a consequence of Remark A.8, we may let h(v) be defined as

h(v) = {
∑
s

µθ(s)
∑
a

πθ(s, a)(R(s, a)− Lθ + vT
∑
s′

p(s, a, s′)ϕ(s′)

−vTϕ(s))ϕ(s)|θ ∈ ¯̌θ(v)ϵ},
where ¯̌θ(v)ϵ is the closure of θ̌(v)ϵ.

Let Rπθ

= (
∑

a π
θ(s, a)R(s, a), s ∈ S)T be a column vector of the size of the state space. Also, recall (see Lemma 8) that

Pθ denotes the transition probability matrix under policy πθ. For J ∈ R|S|, let Tθ : R|S| → R|S| be the Bellman operator under
policy πθ defined according to

Tθ(J) = Rπθ

− Lθe+ PθJ,

where e ∈ R|S| is the unit vector with all entries one. Let Φ denote the |S| × d1 feature matrix with d1-dimensional rows ϕ(s)T ,
s ∈ S. Then, in vector-matrix notation, we have

h(v) = ΦTDθ(T (Φv)− Φv).

Notice that h(v) is a set-valued map for any v and v0 will be an equilibrium for the DI (49) if 0 ∈ Γ̂v(h(v0)). Now as per
Remark A.8, if ∥eπθ∥ < δ, then θ ∈ N ϵ(¯̌θ(v)), an ϵ-neighborhood of the set of local maxima of the function Lθ. We now have
the following useful result:



Theorem A.9. Consider a solution v(·) to the differential inclusion (49). Suppose limt→∞ v(t) = v̂. Then v̂ is an equilibrium of
the DI (49), i.e., 0 ∈ Γ̂v(h(v̂).

Proof. Recall that by Lemma 10, the set-valued map Γ̂v(h(v)) is a Peano map. The claim now follows by Theorem 10.1.12 of
(Aubin and Frankowska 2009).

Theorem A.10 gives the main result. For any function f , we say that it’s local maxima are isolated if around each such
maximum, one can construct an open ball of small enough radius so that any two balls do not intersect.

Theorem A.10. Suppose the ODE (43) has isolated local maxima θ∗. Correspondingly suppose v∗ ∈ Co (the interior of C)
is a limit point of the solution to the DI (49). Then under Assumptions 4.4, 4.2, 5.1 and 5.2, {(vt, θt)} governed according to
(34)-(38) satisfy (vt, θt) → (v∗, θ∗) almost surely, where θ∗ is a local maximum of (43) and v∗ is the unique solution to the
projected Bellman equation corresponding to the policy πθ∗

, i.e., the two together satisfy

ΦTDθ∗
Φv∗ = ΦTDθ∗

Tθ∗(Φv∗). (51)

Proof. Recall that for any v, θt → θ∗ almost surely according to Proposition A.4-Remark A.5. Moreover, v∗ ∈ Co would mean
0 ∈ h(v∗) and in fact since θt → θ∗ almost surely, as t→ ∞, we have that corresponding to θ∗, h(v) would be a point-to-point
map and will no longer be a (nontrivial) point-to-set map as before. Setting h(v) = 0 in this case would imply the Bellman
equation (51) for policy πθ∗

. The claim follows.

Remark A.11. In Theorem A.10, (51) may or may not hold if v∗ ∈ ∂C (the boundary of C). This is because projection set
boundaries themselves can induce spurious attractors, see (Kushner and Yin 2003). We analyze below the case where the critic
is not projected to the set C but can take any value in Rd1 . We prove the stability of the critic recursion in this case, i.e., that
supt ∥vt∥ <∞ w.p.1 and Theorem 5.4 presents the main (general) result on convergence of the joint iterate process in this case
of unprojected critic iterates.
Remark A.12. It has been argued in the case of the discounted cost CA algorithm in (Bhatnagar, Borkar, and Guin 2023) for the
look-up table setting that the algorithm there mimics value iteration unlike AC that mimics the policy iteration procedure. Now
by iterating θ on a faster timescale as opposed to the v-update, the resulting scheme is seen to resemble projected value iteration,
see (Bertsekas 2017).

The Case of Critic without Projection We now consider the case when the critic recursion is unconstrained though the actor
recursion continues to be constrained (using the projection operator Γ2 as before). The AC analog of this algorithm has for
instance been analysed for its asymptotic convergence in (Bhatnagar et al. 2009). An important observation here is that since
there is no projection now on the critic, one needs to establish explicitly that the critic recursion remains uniformly bounded
almost surely. In this case, we rewrite (34) as

vt+1 = vt + βt(yt + Yt + κt), (52)

where,
yt =

∑
s

µθt(s)
∑
a

πθt(s, a)(R(s, a)− Lθt + vTt
∑
s′

p(s, a, s′)ϕ(s′)− vTt ϕ(s))ϕ(s),

Yt = δtϕ(st)− E[δtϕ(st)|F2(t)],

κt = E[(R(st, at)− Lθt + vTt
∑
st+1

p(st, at, st+1)ϕ(st+1)− vTt ϕ(st))ϕ(st)|F2(t)]− yt,

as before. Thus, (Yt,F2(t)), t ≥ 0 is a martingale difference sequence and κt, t ≥ 0 constitutes the Markov noise. Now from
Assumption 5.1, it follows that κt → 0 almost surely as t → ∞. We now prove Theorem 5.3 concerning the stability of the
recursion (52):

Proof of Theorem 5.3:

Note that (53) denotes the differential inclusion (5) associated with the critic update.

v̇ ∈ h(v), (53)

where recall that
h(v) = {

∑
s

µθ(s)
∑
a

πθ(s, a)(R(s, a)− Lθ + vT
∑
s′

p(s, a, s′)ϕ(s′)

−vTϕ(s))ϕ(s)|θ ∈ θ̄∗(v)},



Table 3: Hyper-parameters used for the Average Reward CA Algorithm

Hyper-parameter Value/Description
Number of hidden layers in actor NN 1
Number of hidden layers in critic NN 1

Number of nodes in hidden layer of actor NN 64
Number of nodes in hidden layer of critic NN 64

Activation Function used in critic NN ReLU
Activation Function used in actor NN softmax

Learning rate for actor update (at time instant t) 1.5
(1+t)0.5

Learning rate for critic update (at time instant t) 1.5
(1+t)0.51

Table 4: Hyper-parameters used for the Average Reward AC Algorithm

Hyper-parameter Value/Description
Number of hidden layers in actor NN 1
Number of hidden layers in critic NN 1

Number of nodes in hidden layer of actor NN 64
Number of nodes in hidden layer of critic NN 64

Activation Function used in critic NN ReLU
Activation Function used in actor NN softmax

Learning rate for actor update (at time instant t) 1.5
(1+t)0.6

Learning rate for critic update (at time instant t) 1.5
(1+t)0.4

and where θ̄∗(v) is the closure of the set θ∗(v), that in turn is convex and bounded. Thus, θ̄∗(v) is a convex and compact set.

Observe that µθ, πθ and Lθ are bounded and Lipschitz continuous. Moreover, letting h∞(v) = lim
c→∞

h(cv)

c
, we have

h∞(v) = {
∑
s

µθ(s)
∑
a

πθ(s, a)(vT
∑
s′

p(s, a, s′)ϕ(s′)− vTϕ(s))ϕ(s)|θ ∈ θ̌∗}, (54)

where θ̌∗ = limc→∞ θ̄∗(cv). By Assumption 4.2, for all potential policy parameters θ, the matrix A defined as under is negative
definite: A := Es,a,s′

[
ϕ(s)

(
ϕ(s

′
)− ϕ(s)

)⊤]
, where s ∼ µθ(·), a ∼ πθ(s, ·), s′ ∼ p(s, a, ·). Consider now the DI:

v̇ ∈ {Av|θ ∈ θ̌∗}.

Since A is negative definite regardless of θ, the above DI will have the origin as an asymptotically stable attractor with a unit ball
around the origin as its fundamental neighborhood. The claim now follows from Theorem 1 of (Ramaswamy and Bhatnagar
2018). □

The conclusions of Theorem A.7-A.9 shown above continue to hold. We finally come to the proof of Theorem A.10.

Proof of Theorem 5.4:

The proof now follows from Theorem 2 of (Ramaswamy and Bhatnagar 2018).

Hyper-parameters and Compute time
We describe in Tables 3-8 below the hyper-parameters used for each of the algorithms and subsequently the training time for the
various algorithms is given in Table 9. The learning rates used for our CA algorithm are those that have been found optimal (see
the finite-time analysis). Similarly, the rates used in the AC algorithm are those that have been found optimal in (Wu et al. 2022).
These rates have also been used in the PPO-CA and PPO-AC algorithms respectively.

Observe from Table 9 that CA shows better results than AC. In particular, on Pendulum and Frozen Lake environments, CA
requires nearly half the training time of AC while showing better average reward performance (see Table 2. Similarly, amongst
PPO-CA and PPO-AC, the former requires lower training time. Amongst all algorithms, DQN has the lowest training time even
though it does not perform as well as the CA algorithm in terms of average reward performance, see Table 2. We have used the
pytorch library in our code.

We observed that when the number of hidden layers in both the actor NN and critic NN was more than 1, the performance of
the algorithms was affected negatively. Hence the number of hidden layers in both the actor NN and critic NN was chosen to be



Table 5: Hyper-parameters used for the Average Reward Single timescale AC Algorithm

Hyper-parameter Value/Description
Number of hidden layers in actor NN 1
Number of hidden layers in critic NN 1

Number of nodes in hidden layer of actor NN 64
Number of nodes in hidden layer of critic NN 64

Activation Function used in critic NN ReLU
Activation Function used in actor NN softmax

Learning rate for actor update (at time instant t) 1.5
(1+t)0.6

Learning rate for critic update (at time instant t) 1.5
(1+t)0.6

Table 6: Hyper-parameters used for the Average Reward DQN Algorithm

Hyper-parameter Value/Description
Number of hidden layers in QNN 1

Number of nodes in hidden layer of QNN 64
Activation Function used in QNN ReLU

Learning rate 0.5

1. Similarly the performance was observed to be the best when 64 nodes were used in the hidden layer. This was obtained by
trying out over the full range of values 1-100. For finding the best activation function, we tried Linear, Tanh, ReLU and Softmax
for each network, in the various algorithms. The best in each case was selected for each network (actor/critic) and these are
provided in Tables 3–8, respectively.

Finally, Table 10 shows the CPU configuration of the server on which the various simulations were conducted.



Table 7: Hyper-parameters used for the Average Reward PPO-AC Algorithm

Hyper-parameter Value/Description
Number of hidden layers in actor NN 1
Number of hidden layers in critic NN 1

Number of nodes in hidden layer of actor NN 64
Number of nodes in hidden layer of critic NN 64

Activation Function used in critic NN ReLU
Activation Function used in actor NN softmax

Learning rate for actor update (at time instant t) 1.5
(1+t)0.6

Learning rate for critic update (at time instant t) 1.5
(1+t)0.4

Batch length 50

Table 8: Hyper-parameters used for the Average Reward PPO-CA Algorithm

Hyper-parameter Value/Description
Number of hidden layers in actor NN 1
Number of hidden layers in critic NN 1

Number of nodes in hidden layer of actor NN 64
Number of nodes in hidden layer of critic NN 64

Activation Function used in critic NN ReLU
Activation Function used in actor NN softmax

Learning rate for actor update (at time instant t) 1.5
(1+t)0.5

Learning rate for critic update (at time instant t) 1.5
(1+t)0.51

Batch length 50

Table 9: Training Time (in seconds) Averaged over 10 Seeds for 10,000 Iterations.

Environment CA AC DQN PPO-AC PPO-CA Single Timescale AC

Frozen Lake 21.82 22.66 14.26 53.01 51.72 23.77
Pendulum 13.31 26.87 9.51 61.84 61.55 27.91

Mountain Car Continous 12.09 24.2 7.77 53.86 53.13 26.28

Table 10: CPU Configuration of the Server used for the Experiments

Architecture x86_64
CPU op-mode(s) 32-bit, 64-bit

Byte Order Little Endian
Address sizes 46 bits physical, 48 bits virtual

CPU(s) 40
On-line CPU(s) list 0-39

CPU family 6
Model name Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
CPU MHz 2759.590

OS Linux


