Computer Science > Machine Learning
[Submitted on 2 Feb 2024 (this version), latest version 16 Dec 2024 (v3)]
Title:Critic-Actor for Average Reward MDPs with Function Approximation: A Finite-Time Analysis
View PDFAbstract:In recent years, there has been a lot of research work activity focused on carrying out asymptotic and non-asymptotic convergence analyses for two-timescale actor critic algorithms where the actor updates are performed on a timescale that is slower than that of the critic. In a recent work, the critic-actor algorithm has been presented for the infinite horizon discounted cost setting in the look-up table case where the timescales of the actor and the critic are reversed and asymptotic convergence analysis has been presented. In our work, we present the first critic-actor algorithm with function approximation and in the long-run average reward setting and present the first finite-time (non-asymptotic) analysis of such a scheme. We obtain optimal learning rates and prove that our algorithm achieves a sample complexity of $\mathcal{\tilde{O}}(\epsilon^{-2.08})$ for the mean squared error of the critic to be upper bounded by $\epsilon$ which is better than the one obtained for actor-critic in a similar setting. We also show the results of numerical experiments on three benchmark settings and observe that the critic-actor algorithm competes well with the actor-critic algorithm.
Submission history
From: Prashansa Panda [view email][v1] Fri, 2 Feb 2024 12:48:49 UTC (233 KB)
[v2] Fri, 24 May 2024 06:57:17 UTC (413 KB)
[v3] Mon, 16 Dec 2024 16:17:46 UTC (2,987 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.