+

WO2019035358A1 - Vehicular mirror, and vehicular mirror equipped with image display function - Google Patents

Vehicular mirror, and vehicular mirror equipped with image display function Download PDF

Info

Publication number
WO2019035358A1
WO2019035358A1 PCT/JP2018/028865 JP2018028865W WO2019035358A1 WO 2019035358 A1 WO2019035358 A1 WO 2019035358A1 JP 2018028865 W JP2018028865 W JP 2018028865W WO 2019035358 A1 WO2019035358 A1 WO 2019035358A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
mirror
image display
polarized light
Prior art date
Application number
PCT/JP2018/028865
Other languages
French (fr)
Japanese (ja)
Inventor
二村 恵朗
田口 貴雄
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019536725A priority Critical patent/JP6967075B2/en
Publication of WO2019035358A1 publication Critical patent/WO2019035358A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/04Rear-view mirror arrangements mounted inside vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/12Mirror assemblies combined with other articles, e.g. clocks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a vehicle mirror and a mirror with an image display function for a vehicle.
  • Patent Document 1 exemplifies a mirror with an image display function that uses a reflection layer using selective reflection of cholesteric liquid crystal.
  • the inventors of the present invention examined a mirror equipped with an image display function using a reflection layer using selective reflection of cholesteric liquid crystal as described in Patent Document 1 mounted on a vehicle.
  • hatched light and dark unevenness more specifically, formed by a plurality of hatchings
  • lattice-like unevenness may occur.
  • this invention makes it a subject to provide the mirror for vehicles which can observe the mirror reflected image without a nonuniformity.
  • Another object of the present invention is to provide a mirror with an image display function for a vehicle.
  • a vehicle mirror including a retardation layer formed by fixing a liquid crystal compound which is twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along a thickness direction, and a circularly polarized light reflection layer.
  • [5] Furthermore, including a front plate, The vehicle mirror according to any one of [1] to [4], wherein the front plate, the retardation layer, and the circularly polarized light reflection layer are disposed in this order. [6] Further, it contains a transparent substrate, The vehicle mirror according to [5], wherein the front plate, the retardation layer, the transparent substrate, and the circularly polarized light reflection layer are disposed in this order. [7] Further, it includes a transparent substrate, The vehicle mirror according to [5], wherein the front plate, the retardation layer, the circularly polarized light reflection layer, and the transparent substrate are disposed in this order.
  • a vehicle mirror according to any one of [1] to [7] and an image display device The mirror with the image display function for vehicles by which the said phase difference layer, the said circularly polarized light reflection layer, and the said image display apparatus are arrange
  • the present invention it is possible to provide a vehicle mirror capable of observing a mirror reflection image without unevenness. Further, according to the present invention, it is possible to provide a mirror with an image display function for a vehicle.
  • angles such as “45 °”, “parallel”, “vertical” or “orthogonal” have a difference with the exact angle within the range of less than 5 degrees unless otherwise specified. Means The difference from the exact angle is preferably less than 4 degrees, more preferably less than 3 degrees.
  • the term "sense” for circularly polarized light means that it is right circularly polarized light or left circularly polarized light.
  • the sense of circularly polarized light is right circularly polarized when the tip of the electric field vector rotates clockwise with time increase when the light is viewed as it travels to the front, and left when counterclockwise. Defined as circularly polarized.
  • the term “sense” may be used with respect to the twist direction of the helix of the cholesteric liquid crystal.
  • the selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the twisting direction (sense) of the cholesteric liquid crystal spiral is right, transmits left circularly polarized light, and reflects left circularly polarized light when the sense is left, and right Transmits circularly polarized light.
  • Visible light is light of wavelengths visible to human eyes among electromagnetic waves, and shows light in a wavelength range of 380 to 780 nm. That is, the visible light region intends a region of 380 to 780 nm.
  • Infrared infrared light
  • Infrared light is an electromagnetic wave in a wavelength range longer than visible light. That is, the infrared light region is intended for a region of more than 780 nm, and is preferably a region of more than 780 nm and 2500 nm or less.
  • a retardation layer (hereinafter also referred to as a twist retardation layer) formed by immobilizing a liquid crystal compound twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along the thickness direction. And a circularly polarized light reflection layer.
  • the inventors of the present invention have the cause of unevenness in the mirror reflection image of light incident from the rear of the vehicle through the rear glass because fine retardation unevenness (Re (550) present in the rear glass is about 50 nm.
  • Re (550) Means that the retardation is at a wavelength of 550 nm.
  • the tempered glass for example, tempered glass which is not the composition of laminated glass
  • Tempered glass is generally produced by heating float sheet glass to 700 ° C. near the softening point and then blowing air onto the glass surface for quenching.
  • the above-mentioned unevenness arises in the mirror reflection image by the light which penetrates the rear glass etc. of the vehicle in which the produced tempered glass is used, and enters the vehicle mirror (front) including the circularly polarized light reflection layer . More specifically, first, the light reflected by the surface of the vehicle has a large proportion of s-polarized light. When light including polarized light passes through the rear glass, a polarization distribution is generated in the transmitted light due to the birefringence distribution of the rear glass.
  • the vehicle mirror of the present invention includes the twist phase difference layer to shift the phase of the incident light whose polarization state differs depending on the place to a region where the difference in the intensity of the reflected light is less likely to occur, thereby reducing unevenness.
  • the vehicle mirror according to the present invention includes the twist phase difference layer to increase the reflectance of incident light as a whole and to increase the overall brightness of the mirror reflection image. As a result, unevenness is caused.
  • FIG. 1 shows a cross-sectional view of a first embodiment of a mirror with an image display function for a vehicle of the present invention.
  • the figures in the present invention are schematic views, and the relationship of thickness of each layer, positional relationship and the like do not necessarily coincide with the actual ones. The same is true for the following figures.
  • the vehicle image display function-equipped mirror 10 includes an image display device 12, a quarter wavelength plate 14, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, and a twist retardation layer 18 in this order.
  • the circularly polarized light reflection layer 16 and the twist retardation layer 18 constitute a vehicle mirror of the present invention.
  • the quarter wavelength plate 14 is included in the first embodiment shown in FIG. 1, the invention is not limited to this embodiment, and even if the quarter wavelength plate is not included in the mirror with the image display function for vehicles Good.
  • the circularly polarized light reflection layer 16 includes a first cholesteric liquid crystal layer 20 which selectively reflects red light, a second cholesteric liquid crystal layer 22 which selectively reflects green light, and a third cholesteric which selectively reflects blue light. And a liquid crystal layer 24.
  • the twist retardation layer 18 is on the viewing side.
  • the circularly polarized light reflection layer 16 reflects one of right-handed circularly polarized light and left-handed circularly polarized light, and transmits the other.
  • This function makes it possible to use the mirror as a mirror that reflects the rear of the vehicle in a non-display mode such as when the power of the image display device 12 is turned off.
  • the phase of light transmitted through the rear glass of the vehicle and the like and incident on the mirror 10 with an image display function for a vehicle is reflected light by the twist phase difference layer 18 It shifts to the area where the difference in strength is unlikely to occur. As a result, a mirror reflection image without unevenness is obtained.
  • the quarter wavelength plate 14 is disposed between the image display device 12 and the circularly polarized light reflection layer 16 to circularly polarize the light from the image display device 12. And the circularly polarized light reflection layer 16. That is, light reflected by the circularly polarized light reflection layer 16 and returned to the image display device 12 side can be largely reduced, and image display with high luminance can be performed.
  • the image display device 12 and the quarter wavelength plate 14 are preferably in direct contact with each other, and preferably, the quarter wavelength plate 14 and the circularly polarized light reflection layer 16 are also in direct contact with each other. .
  • the present invention is not limited to this aspect, and other layers (for example, between the image display 12 and the 1 ⁇ 4 wavelength plate 14 and between the 1 ⁇ 4 wavelength plate 14 and the circularly polarized light reflection layer 16 may be used. , An adhesive layer, a transparent substrate, etc.) may be disposed. In addition, it is preferable that the spiral sense of the circularly polarized light reflection layer 16 and the spiral sense of the twist retardation layer 18 coincide with each other.
  • each member which comprises the mirror 10 with an image display function for vehicles is explained in full detail.
  • the image display device is not particularly limited, but a liquid crystal display device or an organic electroluminescent display device is preferable. Moreover, it is preferable that an image display apparatus is an image display apparatus which radiate
  • the liquid crystal display device may be transmissive or reflective, and is preferably transmissive.
  • the liquid crystal display device has an IPS (In-Place-Switching) mode, an FFS (Fringe Field Switching) mode, a VA (Virtical Alignment) mode, an ECB (Electrically Controlled Birefringence) mode, an STN (super twisted nematic) mode, and a TN (Twisted Nematic) Or any optically liquid crystal display device such as OCB (Optically Compensated Bend) mode.
  • the organic electroluminescent display device preferably includes at least a light emitting layer, and preferably further includes an anti-reflection circularly polarizing plate.
  • the circularly polarizing plate includes a form including a ⁇ / 4 wavelength plate and a polarizer.
  • the image display device preferably has a visible light average reflection of at least 20%, more preferably at least 30%, at a wavelength of 400 to 700 nm when the power is off.
  • the reflection of visible light when the power of the image display apparatus is off may be derived from the constituent members of the image display apparatus (such as a reflective polarizing plate and a backlight unit).
  • the image shown on the image display unit of the image display device may be a still image, a moving image, or mere text information.
  • monochrome display such as black and white, multi-color display, and full-color display may be performed.
  • the quarter-wave plate is a retardation plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a retardation plate whose retardation at a predetermined wavelength ⁇ nm (preferably a wavelength in the visible light region) indicates Re ( ⁇ ) ⁇ ⁇ / 4 (or an odd multiple thereof). It is preferable that the angle of the slow axis of the quarter-wave plate be adjusted so that the image becomes brightest when the quarter-wave plate is bonded to the image display device.
  • the polarization direction (transmission axis) of the linearly polarized light and the quarter-wave plate of the linearly polarized light so that the linearly polarized light is best transmitted through the circularly polarized light reflection layer, particularly to the image display device displaying an image by the linearly polarized light.
  • the angle with the slow axis be adjusted.
  • the polarization direction (transmission axis) and the slow axis of the quarter-wave plate form an angle of 45 °.
  • the circularly polarized light reflection layer is preferably composed of a cholesteric liquid crystal layer having a twisting direction that transmits the above-mentioned sense circularly polarized light.
  • the quarter-wave plate examples include a single-layer quarter-wave plate and a wide-band quarter-wave plate in which a quarter-wave plate and a half-wave plate are stacked.
  • the half-wave plate refers to a retardation plate in which the phase difference at a specific wavelength ⁇ nm (preferably, the wavelength in the visible light region) satisfies Re ( ⁇ ) ⁇ ⁇ / 2.
  • the phase difference of the former 1 ⁇ 4 wavelength plate may be 1 ⁇ 4 of the emission wavelength of the image display device.
  • the wavelength of 450 nm is 112.5 nm ⁇ 10 nm (preferably 112.5 nm ⁇ 5 nm, more preferably 112.5 nm), 530 nm 132.5 nm ⁇ 10 nm (preferably 132.5 nm ⁇ 5 nm, more preferably 132.5 nm) at the wavelength, and 160 nm ⁇ 10 nm (preferably 160 nm ⁇ 5 nm, more preferably 160 nm) at the 640 nm wavelength.
  • a reverse dispersion retardation layer is preferably a quarter wave plate.
  • the 1 ⁇ 4 wavelength plate it is also possible to use a retardation plate with small wavelength dispersion of retardation, and a retardation plate of forward dispersion.
  • the inverse dispersion means a property that the absolute value of the retardation increases as the wavelength becomes longer
  • the forward dispersion means the property that the absolute value of the retardation increases as the wavelength becomes shorter.
  • the quarter-wave plate and the half-wave plate are bonded at an angle of 60 ° between the slow axes of both, and the half-wave plate side is linearly polarized. It is preferable to use one that is disposed on the incident side of the light source and that the slow axis of the half-wave plate crosses 15 ° or 75 ° with the polarization direction (transmission axis) of the incident linearly polarized light.
  • the phase difference means front retardation.
  • the phase difference can be measured using a polarization phase difference analyzer AxoScan manufactured by AXOMETRICS.
  • light of a specific wavelength may be made incident in the film normal direction in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) for measurement.
  • the quarter wavelength plate is not particularly limited, and can be appropriately selected according to the purpose.
  • An obliquely deposited thin film and the like can be mentioned.
  • a commercially available product can also be used as the 1 ⁇ 4 wavelength plate, and examples of the commercially available product include trade name: Pure Ace WR (manufactured by Teijin Limited).
  • the quarter-wave plate may be formed by aligning and fixing a polymerizable liquid crystal compound or a polymer liquid crystal compound, and is preferably a layer formed by curing a liquid crystal composition containing the polymerizable liquid crystal compound.
  • a quarter wavelength plate applies a liquid crystal composition containing a polymerizable liquid crystal compound on a predetermined substrate, heat-treats the polymerizable liquid crystal compound in a nematic orientation, and then fixes it by photocrosslinking or thermal crosslinking. , Can be formed.
  • the liquid crystal composition may contain other components (for example, a polymerization initiator, a solvent, and the like) in addition to the polymerizable liquid crystal compound.
  • the thickness of the quarter-wave plate is not particularly limited, but is preferably 0.2 to 10 ⁇ m, and more preferably 0.5 to 2.0 ⁇ m.
  • the circularly polarized light reflection layer is a layer that reflects circularly polarized light, and in the first embodiment, the central wavelength of the selective reflection band (selective reflection wavelength band) is located in the visible light region (shows selective reflection in the visible light region) It is a layer containing a cholesteric liquid crystal layer. That is, the circularly polarized light reflection layer includes a predetermined cholesteric liquid crystal layer, and the central wavelength of the band (reflection band) selectively reflected by the predetermined cholesteric liquid crystal layer is located in the visible light region.
  • the specific configuration of the cholesteric liquid crystal layer will be described in detail later. In FIG.
  • the circularly polarized light reflection layer 16 includes a first cholesteric liquid crystal layer 20 that reflects red light, a second cholesteric liquid crystal layer 22 that reflects green light, and a third cholesteric liquid crystal layer 24 that reflects blue light. It contains three cholesteric liquid crystal layers.
  • the circularly polarized light reflection layer 12 includes three cholesteric liquid crystal layers, but the present invention is not limited to this embodiment, and the circularly polarized light reflection layer includes at least one cholesteric liquid crystal layer described above.
  • the number of cholesteric liquid crystal layers may be two or four or more.
  • the circularly polarized light reflection layer contains a plurality of cholesteric liquid crystal layers, it is preferable that central wavelengths of selective reflection bands of the cholesteric liquid crystal layers be different from each other.
  • the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, they are preferably in direct contact with the adjacent cholesteric liquid crystal layers.
  • the thickness of the circularly polarized light reflective layer is preferably 2.0 to 300 ⁇ m, and more preferably 5.0 to 200 ⁇ m.
  • the thickness of each cholesteric liquid crystal layer is preferably 1.0 to 150 ⁇ m.
  • Examples of the first cholesteric liquid crystal layer 20 that selectively reflects red light include a cholesteric liquid crystal layer having a central wavelength of the selective reflection band in 580 to 700 nm. Further, as the second cholesteric liquid crystal layer 22 that selectively reflects green light, a cholesteric liquid crystal layer having a central wavelength of the selective reflection band in the range of 500 nm to less than 580 nm can be mentioned. Further, as the third cholesteric liquid crystal layer 20 which selectively reflects blue light, a cholesteric liquid crystal layer having a central wavelength of the selective reflection band in the range of 400 nm to less than 500 nm can be mentioned. In FIG.
  • the first cholesteric liquid crystal layer 20, the second cholesteric liquid crystal layer 22, and the third cholesteric liquid crystal layer 24 are arranged from the side close to the image display device 12, but this aspect is not limited.
  • the three layers may be arranged in any order. Among them, as shown in FIG. 1, when the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, the cholesteric liquid crystal layer closer to the image display device has a central wavelength of a longer (longer wavelength side) selective reflection band. It is preferable to have With such a configuration, it is possible to suppress the oblique color in the display image and the mirror reflection image.
  • a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed.
  • the cholesteric liquid crystal layer may be simply referred to as a liquid crystal layer.
  • the cholesteric liquid crystal phase exhibits circularly polarized selective reflection that selectively reflects circularly polarized light of either one of right circularly polarized light and left circularly polarized light and transmits circularly polarized light of the other sense in a specific wavelength range Are known.
  • circular polarization selective reflection may be simply referred to as selective reflection.
  • the cholesteric liquid crystal layer may be any layer as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained, and typically, after the polymerizable liquid crystal compound is in the aligned state of the cholesteric liquid crystal phase, ultraviolet irradiation is performed.
  • the layer may be polymerized and cured by heating or the like to form a layer having no fluidity, and at the same time, the layer may be changed to a state in which no change in orientation is caused by an external field or an external force.
  • the polymerizable liquid crystal compound may become high in molecular weight by the curing reaction and may no longer have liquid crystallinity.
  • the central wavelength ⁇ of the selective reflection band of the cholesteric liquid crystal layer means a wavelength at the central position of the circularly polarized light reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
  • the central wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure.
  • the central wavelength ⁇ can be adjusted in order to selectively reflect either right circular polarization or left circular polarization with respect to light of a desired wavelength by adjusting the n value and the P value.
  • the pitch of the cholesteric liquid crystal phase depends on the type of the chiral agent used with the liquid crystal compound (preferably, the polymerizable liquid crystal compound) or the addition concentration thereof, and the desired pitch can be obtained by adjusting these.
  • the method of measuring the sense and pitch of the spiral use the method described in “Introduction to Liquid Crystal Chemistry Experiment” edited by The Liquid Crystal Society of Japan, published by Sigma Publication 2007, p. 46, and “Liquid Crystal Handbook” Liquid Crystal Handbook Editorial Committee Maruzen p. 196. it can.
  • a bright image excellent in light utilization efficiency can be displayed by adjusting the central wavelength of the selective reflection band of the cholesteric liquid crystal layer to be used according to the light emission wavelength range of the image display device and the use mode of the circularly polarized light reflection layer. .
  • the sense of the reflected circular polarization of the cholesteric liquid crystal layer corresponds to the sense of the helix.
  • a cholesteric liquid crystal layer a cholesteric in which the sense of the spiral is either right or left according to the sense of circular polarization of sense obtained by being emitted from the image display device and transmitted through the 1 ⁇ 4 wavelength plate A liquid crystal layer is used.
  • the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, preferably the senses of the spirals are all the same.
  • the adjustment of ⁇ n can be performed by adjusting the type of liquid crystal compound and the mixing ratio thereof, or controlling the temperature at the time of alignment fixation.
  • a plurality of cholesteric liquid crystal layers having the same period P and the same helical sense may be stacked. By laminating cholesteric liquid crystal layers of the same helical sense with the same period P, it is possible to increase the circular polarization selectivity at a specific wavelength.
  • the formation method of a cholesteric liquid crystal layer is not specifically limited, A well-known method is mentioned. Among them, a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent is coated on a predetermined substrate from the viewpoint of excellent productivity, and the polymerizable liquid crystal compound is aligned in cholesteric liquid crystal by heat treatment, and then irradiated with light. Alternatively, a method may be mentioned in which the polymerization of the polymerizable liquid crystal compound is advanced by heat treatment to be cured.
  • the liquid crystal composition may further contain other components (for example, a polymerization initiator, a solvent, and the like).
  • the circularly polarized light reflection layer is a circularly polarized light reflection layer including a quarter wavelength plate and a reflective linear polarizer (hereinafter, also referred to as a reflective linear polarizer). It may be.
  • the twist retardation layer is a layer for turning the polarization axis of linearly polarized light, and is a layer for changing the ellipticity of elliptically polarized light more.
  • the twist retardation layer is a layer formed by fixing a liquid crystal compound twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along the thickness direction. Among them, as described later, it is preferable that the layer be obtained by polymerizing and curing the polymerizable liquid crystal compound by ultraviolet irradiation, heating or the like after setting the liquid crystal compound in a predetermined twisted alignment state.
  • liquid crystal compound is twist-oriented means that the liquid crystal compound from one surface to the other surface is twisted, with the thickness direction of the layer as an axis (helical axis). Along with that, the alignment direction (in-plane slow axis direction) of the liquid crystal compound differs depending on the position in the thickness direction.
  • the liquid crystal compound will be described in detail later, but as the liquid crystal compound used in the twist retardation layer, a liquid crystal compound exhibiting a nematic liquid crystal phase is preferable.
  • the black arrows in the twist retardation layer shown in FIG. 2 intend an in-plane slow axis.
  • the twisting direction of the liquid crystal compound is preferably determined by the spiral sense of the circularly polarized light reflecting layer described above, but may be right twist or left twist.
  • the twist angle of the liquid crystal compound is 360 ° or less. The lower limit is, for example, about 20 °. Among them, 50 to 200 ° is preferable and 50 to 100 ° is more preferable in that the effect of the present invention is more excellent.
  • the twist angle corresponds to an angle ⁇ between the in-plane slow axis at one surface 18 a in the twist retardation layer 18 in FIG. 2 and the in-plane slow axis at the other surface 18 b.
  • the product ⁇ nd of the refractive index anisotropy ⁇ n of the twist retardation layer measured at a wavelength of 550 nm and the film thickness d of the twist retardation layer is not particularly limited, but it is preferably 10 to 500 nm and more preferably 50 to 300 nm.
  • the type of liquid crystal compound used to form the twist retardation layer is not particularly limited.
  • the twist retardation layer for example, a layer obtained by orientating a low molecular weight liquid crystal compound in a predetermined direction and then immobilizing it by photocrosslinking or thermal crosslinking is preferable.
  • liquid crystal compounds can be classified into rod-like types (rod-like liquid crystal compounds) and disk-like types (disk-like liquid crystal compounds and discotic liquid crystal compounds) according to their shapes. Furthermore, there are low molecular type and high molecular type, respectively.
  • a polymer refers to one having a degree of polymerization of 100 or more (Polymer physics / phase transition dynamics, Masao Doi, page 2, Iwanami Shoten, 1992). Any liquid crystal compound can also be used in the present invention.
  • two or more types of rod-like liquid crystal compounds, two or more types of discotic liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a discotic liquid crystal compound may be used.
  • the twist retardation layer is more preferably formed using a liquid crystal compound (a rod-like liquid crystal compound or a disc-like liquid crystal compound) having a polymerizable group, since the change in optical properties due to temperature and / or humidity can be reduced.
  • the liquid crystal compound may be a mixture of two or more types, in which case it is preferable that at least one has two or more polymerizable groups. That is, the twist retardation layer is preferably a layer formed by fixing a liquid crystal compound having a polymerizable group by polymerization, and in this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
  • the type of the polymerizable group contained in the liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, (meth) acryloyl group, vinyl group, styryl group or allyl group is preferable, and (meth) acryloyl group is more preferable. At this time, “(meth) acryloyl group” is a notation representing both an acryloyl group and a methacryloyl group.
  • the twist angle of the liquid crystal compound in the twist retardation layer can be adjusted by the type of chiral agent or the concentration thereof.
  • the thickness of the twist retardation layer is not particularly limited, but is preferably 0.5 to 10 ⁇ m, and more preferably 0.5 to 5.0 ⁇ m.
  • the formation method of a twist retardation layer is not specifically limited, A well-known method is mentioned. Among them, a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent is coated on a predetermined substrate from the viewpoint of excellent productivity, and the polymerizable liquid crystal compound is twisted by heat treatment, and then light irradiation or light irradiation is performed. There is a method in which the polymerization of the polymerizable liquid crystal compound is advanced by heat treatment to be cured and the twist-oriented polymerizable liquid crystal compound is immobilized.
  • the conditions for the heat treatment are not particularly limited, and are preferably 50 ° C. to 120 ° C., and more preferably 60 ° C. to 100 ° C. At the time of light irradiation, it is preferable to use ultraviolet light.
  • the irradiation energy is preferably 20mJ / cm 2 ⁇ 50J / cm 2, more preferably 100 ⁇ 1,500mJ / cm 2.
  • the definition of the polymerizable liquid crystal compound is as described above.
  • the content of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and 85 to 99. More preferably, it is 5% by mass.
  • the chiral agent is not particularly limited, and known compounds (for example, Liquid Crystal Device Handbook, Chapter 3 4-3, TN, chiral agents for STN, page 199, edited by Japan Society for the Promotion of Science 142th Committee, 1989) Description), isosorbide and isomannide derivatives can be used.
  • the chiral agent may also be a liquid crystal compound.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, and more preferably 1 mol% to 30 mol% of the amount of the liquid crystal compound (particularly, polymerizable liquid crystal compound).
  • the liquid crystal composition further includes other components (for example, a polymerization initiator, a solvent, a surfactant, an alignment control agent, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like). It may be.
  • a polymerization initiator for example, a solvent, a surfactant, an alignment control agent, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like.
  • a method of laminating a twist retardation layer and a circularly polarized light reflection layer for example, a method of directly forming a twist retardation layer on a circularly polarized light reflection layer using the above-mentioned liquid crystal composition, and a temporary support The method of transcribe
  • the vehicle image display function-equipped mirror 10 may include other layers other than the image display device 12, the 1 ⁇ 4 wavelength plate 14, the circularly polarized light reflection layer 16, and the twist retardation layer 18.
  • the twist retardation layer 18 may be described in detail.
  • the vehicle image display function mirror may include an adhesive layer for adhering each layer.
  • the adhesive layer may be formed of an adhesive.
  • the adhesive there are a hot melt type, a thermosetting type, a photocuring type, a reactive curing type, and a pressure sensitive adhesive type which does not require curing from the viewpoint of curing system.
  • the vehicle image display function mirror may include a support.
  • the support may be used in the formation of the above-mentioned quarter-wave plate, cholesteric liquid crystal layer and twist retardation layer, and may constitute a part of the mirror with an image display function for a vehicle as it is.
  • the support include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, and plastic films such as silicones.
  • the thickness of the support may be about 5 to 1000 ⁇ m.
  • the mirror with an image display function for vehicles may contain an orientation layer as a lower layer to which a liquid crystal composition is applied at the time of formation of a quarter wavelength plate, a cholesteric liquid crystal layer, and a twist phase contrast layer.
  • the thickness of the alignment layer is preferably 0.01 to 5.0 ⁇ m, more preferably 0.05 to 2.0 ⁇ m.
  • the liquid crystal composition may be coated on the surface of the temporary support or on the surface of the temporary support subjected to rubbing treatment without providing the alignment layer.
  • the method for producing a mirror with an image display function for vehicles according to the present invention is not particularly limited, and, for example, a laminate including a twist retardation layer, a circularly polarized light reflection layer and a quarter wavelength plate on the image display surface of the image display device. It can be produced by bonding on the quarter wavelength plate side.
  • the manufacturing method of each layer is as having mentioned above.
  • a mirror with an image display function for a vehicle can be used as a rearview mirror (inner mirror) of a vehicle.
  • the vehicle image display function mirror may have a frame, a housing, a support arm for mounting on a vehicle body, and the like for use as a rearview mirror.
  • the vehicle image display function mirror may be one that is shaped for incorporation into a rear view mirror.
  • the mirror with an image display function for vehicles may be plate-like or film-like, and may have a curved surface.
  • the front surface of the vehicle image display function mirror may be flat or curved. It is also possible to make it the wide mirror which can visually recognize a back visual field etc. in a wide angle by curving and making a convex curve into the front side.
  • the curvature may be in the vertical direction, the horizontal direction, or the vertical direction and the horizontal direction.
  • the curvature is usually 500 to 3000 mm, preferably 1000 to 2500 mm.
  • the radius of curvature is the radius of the circumscribed circle when assuming the circumscribed circle of the curved portion in the cross section.
  • FIG. 3 shows a cross-sectional view of a second embodiment of the mirror with an image display function of the present invention.
  • the mirror 100 for an image display function for a vehicle includes an image display device 12, a quarter wavelength plate 14, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, a twist retardation layer 18, and a front plate 26 in this order Include.
  • the circularly polarized light reflection layer 16, the twist retardation layer 18, and the front plate 26 constitute the vehicle mirror of the present invention.
  • the front plate 26 is on the viewing side. Since the mirror 100 with the image display function for vehicles shown in FIG. 3 includes the same layer as the mirror 10 with the image display function shown in FIG. 1 except that the front plate 26 is included, Are attached with the same reference numerals, the description thereof is omitted, and the configuration of the front plate 26 will be described in detail below.
  • the front plate may be larger than, the same as, or smaller than the twist retardation layer.
  • the twist retardation layer may be bonded to a part of the front plate, and other types of reflective layers such as metal foil may be bonded or formed on other portions.
  • the twist retardation layer may be disposed on the entire surface of the front plate. That is, by forming the front plate, the twist retardation layer, the circularly polarized light reflection layer, and the image display unit of the image display device as the same area, image display on the entire surface of the mirror is also possible.
  • the type of front plate is not particularly limited.
  • the front plate includes a glass plate or a plastic plate used for producing a conventional mirror.
  • the front plate is preferably transparent in the visible light range and has a small birefringence.
  • the plastic film include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, silicones, and the like.
  • PET polyethylene terephthalate
  • acrylic resins epoxy resins
  • polyurethanes polyamides
  • polyolefins polyolefins
  • cellulose derivatives cellulose derivatives
  • silicones and the like.
  • a glass plate is preferable as the front plate.
  • a preferred embodiment of the front plate is a front plate having a haze of 1 or less.
  • the haze is more preferably 0.1 or less.
  • the lower limit is not particularly limited. If the haze is within the above range, the visibility of the image is further improved.
  • a general haze meter can be used, and for example, NDH4000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) can be mentioned as a measuring device.
  • the thickness of the front plate may be about 100 ⁇ m to 10 mm, preferably 200 ⁇ m to 5 mm, and more preferably 500 to 1000 ⁇ m.
  • ⁇ Method of producing mirror 100 with image display function for vehicle> For example, after forming a twist retardation layer, a circularly polarized light reflection layer, and a quarter-wave plate in this order from the front plate side on the front plate, the mirror 100 with an image display function for a vehicle is obtained Alternatively, after a laminate is obtained by sequentially transferring a quarter wavelength plate, a circularly polarized light reflection layer, and a twist retardation layer formed on a temporary support to a front plate, the image display surface of the image display device In addition, the laminate can be manufactured by bonding on the quarter wavelength plate side.
  • FIG. 4 shows a cross-sectional view of a third embodiment of the mirror with an image display function for a vehicle according to the present invention.
  • a mirror 120 with an image display function for vehicle includes an image display 12, a quarter wavelength plate 14, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, a transparent substrate 28, a twist retardation layer 18, and a front plate And 26 in this order. That is, the twist retardation layer 18 is disposed between the transparent substrate 28 and the front plate 26.
  • the vehicle mirror of the present invention is constituted by the circularly polarized light reflection layer 16, the transparent substrate 28, the twist retardation layer 18 and the front plate 26.
  • the front plate 26 is on the viewing side.
  • a mirror 120 for an image display function for a vehicle shown in FIG. 4 includes the same layers as the mirror 100 for an image display function shown in FIG. 3 except that the transparent substrate 28 is included. Are attached with the same reference numerals, the description thereof is omitted, and the configuration of the transparent substrate 28 will be described in detail below.
  • the type of transparent substrate is not particularly limited.
  • a transparent substrate the glass plate or plastic plate used for preparation of a normal mirror is mentioned.
  • the transparent substrate is preferably transparent in the visible light range and has a small birefringence.
  • a glass plate is preferable as the transparent substrate.
  • the transparency of the transparent substrate is preferably 1 or less.
  • the haze is more preferably 0.1 or less.
  • the lower limit is not particularly limited.
  • the method of measuring the haze is as described above.
  • the thickness of the transparent substrate may be about 100 ⁇ m to 10 mm, preferably 200 ⁇ m to 5.0 mm, and more preferably 500 to 1000 ⁇ m.
  • the image display function-equipped mirror 120 for a vehicle includes, for example, a laminate 1 obtained by forming a twist retardation layer on a front plate, and a circularly polarized light reflection layer and a quarter wavelength plate on the transparent substrate side on a transparent substrate.
  • the laminate 2 obtained by forming in this order can be manufactured by bonding to the image display surface of the image display device.
  • the laminate 1 is adhered to the laminate 2 on the twist retardation layer side.
  • the laminate 2 is bonded to the image display device on the quarter wavelength plate side.
  • the types of the transparent substrate and the front plate are both glass
  • a laminated glass having a twist retardation layer sandwiched is produced, and this laminated glass May be bonded to another member.
  • FIG. 5 shows a cross-sectional view of a fourth embodiment of the mirror for image display function for a vehicle according to the present invention.
  • a mirror 140 with an image display function for a vehicle includes an image display 12, a quarter wavelength plate 14, a transparent substrate 28, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, a twist retardation layer 18, and a front plate And 26 in this order. That is, the twist retardation layer 18 and the circularly polarized light reflection layer 16 are disposed between the transparent substrate 28 and the front plate 26.
  • the transparent substrate 28, the circularly polarized light reflection layer 16, the twist retardation layer 18, and the front plate 26 constitute the vehicle mirror of the present invention.
  • the front plate 26 is on the viewing side.
  • the mirror 140 for an image display function for vehicles shown in FIG. 5 includes the same layers as the mirror 120 for an image display function shown in FIG. 4 except that the arrangement of the transparent substrate 28 is different.
  • the same reference numerals are assigned to the elements, and the description thereof is omitted.
  • the image display function-equipped mirror 140 for a vehicle is, for example, a laminate 3 obtained by forming a twist retardation layer and a circularly polarized light reflection layer in this order from the front plate side on the front plate, and 1/4 on the transparent substrate.
  • the laminate 4 obtained by forming the wave plate can be manufactured by bonding to the image display surface of the image display device.
  • the laminate 4 is bonded to the laminate 5 on the side of the circularly polarized light reflection layer.
  • the laminate 5 is bonded to the image display device on the quarter wavelength plate side.
  • the circularly polarized light reflecting layer including the cholesteric liquid crystal layer is shown as the circularly polarized light reflecting layer, but the circularly polarized light reflecting layer is not limited to this embodiment. It may be a circularly polarized light reflective layer including a reflective linear polarizer (hereinafter also referred to as a reflective linear polarizer).
  • the vehicle mirror of the present invention includes other layers (for example, an adhesive layer, a support, an orientation layer , And a quarter wave plate etc.) may be further included.
  • Example 1 Production of Vehicle Mirror (Half Mirror) (Preparation of coating solution for quarter-wave plate) The components shown below were mixed to prepare a coating solution for a quarter wave plate.
  • -Rod-like liquid crystal compound shown below 100 parts by mass of compound 1-Initiator: 4 parts by mass of IRGACURE 819 (manufactured by BASF)-Alignment control agent shown below: 0.1 parts by mass of compound 2-Crosslinking agent: A-TMMT ( Made by Shin-Nakamura Chemical Co., Ltd. 1 part by mass Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
  • crosslinking agent "A-TMMT” is intended to be pentaerythritol tetraacrylate.
  • the compound 2 was produced by the method described in JP-A-2005-99248.
  • Preparation of coating solution for circularly polarized light reflective layer ⁇ Preparation of Coating Liquid 1 for Cholesteric Liquid Crystal Layer
  • the components shown below were mixed to prepare a coating liquid 1 for a cholesteric liquid crystal layer.
  • the central wavelength (“selective reflection center wavelength") of the selective reflection band of the cholesteric liquid crystal layer formed by the coating liquid 1 for the cholesteric liquid crystal layer is 630 nm.
  • the produced cholesteric liquid crystal layer was a right circularly polarized light reflection layer.
  • the above rod-like liquid crystal compound 100 parts by mass of compound 1 Chiral agent for right twist: PARIO COLOR LC756 (manufactured by BASF AG) 4.7 parts by mass-Initiator: 4 parts by mass of IRGACURE 819 (manufactured by BASF Corp.)-Alignment control agent: 0.1 parts by mass of compound 2-Crosslinking agent: 1 part by mass of A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.) Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
  • ⁇ Preparation of Coating Liquid 2 for Cholesteric Liquid Crystal Layer The components shown below were mixed to prepare a coating liquid 2 for a cholesteric liquid crystal layer.
  • the central wavelength (“selective reflection center wavelength") of the selective reflection band of the cholesteric liquid crystal layer formed by the coating liquid 2 for cholesteric liquid crystal layer is 540 nm.
  • the produced cholesteric liquid crystal layer was a right circularly polarized light reflection layer.
  • the above rod-like liquid crystal compound 100 parts by mass of compound 1 Chiral agent for right twist: PARIO COLOR LC756 (manufactured by BASF AG) 5.5 parts by mass Initiator: IRGACURE 819 (manufactured by BASF) 4 parts by mass Alignment control agent: 0.1 part by mass Compound 2 Crosslinking agent: A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1 part by mass Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
  • Preparation of Coating Liquid 3 for Cholesteric Liquid Crystal Layer The components shown below were mixed to prepare a coating liquid 3 for a cholesteric liquid crystal layer.
  • the central wavelength (“selective reflection center wavelength") of the selective reflection band of the cholesteric liquid crystal layer formed by the coating liquid 3 for the cholesteric liquid crystal layer is 450 nm.
  • the produced cholesteric liquid crystal layer was a right circularly polarized light reflection layer.
  • the above rod-like liquid crystal compound 100 parts by mass of compound 1 Chiral agent for right twist: PARIO COLOR LC756 (manufactured by BASF AG) 6.7 parts by mass Initiator: IRGACURE 819 (manufactured by BASF) 4 parts by mass Alignment control agent: 0.1 parts by mass Compound 2 Crosslinking agent: A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1 part by mass Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
  • a PET (polyethylene terephthalate) film (Cosmo Shine A4100, thickness: 100 ⁇ m) manufactured by Toyobo Co., Ltd. is prepared as a temporary support (280 mm ⁇ 85 mm), and the surface of the temporary support is rubbed (rayon cloth, pressure: 0.1 kgf) (0. 98 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, frequency: 1 reciprocation).
  • a coating solution for a quarter wave plate was applied to the rubbing-treated surface of the PET film using a wire bar to form a coating, which was then dried.
  • UV (ultraviolet) radiation was performed to fix the cholesteric liquid crystal phase. According to the above procedure, a 1 ⁇ 4 wavelength plate with a film thickness of 0.8 ⁇ m was obtained.
  • the circularly polarized light reflection layer includes a cholesteric liquid crystal layer 1 having a central wavelength of a selective reflection band in the wavelength range of red light, a cholesteric liquid crystal layer 2 having a central wavelength of a selective reflection band in the wavelength range of green light, and blue light.
  • the coating liquid 1 for cholesteric liquid crystal layers was apply
  • the obtained coated film with a coated film is placed on a hot plate at 30 ° C., and for 6 seconds with respect to the above-mentioned coated film using an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Inc.
  • the cholesteric liquid crystal phase was fixed by carrying out UV (ultraviolet) irradiation of the above to obtain a cholesteric liquid crystal layer 1 having a film thickness of 3.5 ⁇ m.
  • the film thickness of the cholesteric liquid crystal layer 2 was 3.0 ⁇ m, and the film thickness of the cholesteric liquid crystal layer 3 was 2.7 ⁇ m.
  • the transmission spectrum of the layered product A was measured by a spectrophotometer (V-670, manufactured by JASCO Corporation), and transmission spectra having reflection peaks at 630 nm, 540 nm, and 450 nm were obtained.
  • the prepared coating solution 1 for a twist retardation layer was applied to the surface of the circularly polarized light reflective layer of the obtained laminate A using a wire bar, and a coating film was obtained by drying at room temperature.
  • the obtained coated laminate A was allowed to stand on a hot plate at 100 ° C. for 1 minute to perform heat treatment of the coating.
  • UV irradiation was performed for a fixed time at room temperature under a nitrogen atmosphere (oxygen concentration of 500 ppm or less) on the coated film after the heat treatment to cure the coated film.
  • a laminate (laminate B) of a twist retardation layer having a film thickness of 1.25 ⁇ m and the laminate A was formed.
  • the obtained twist retardation layer contained a liquid crystal compound twisted and oriented along a helical axis extending along the thickness direction, and the twist angle of the liquid crystal compound was 70 ° (see FIG. 2).
  • the twist angle ⁇ of the liquid crystal compound of the twist retardation layer was measured by the method described later.
  • the cholesteric liquid crystal layer 1, the cholesteric liquid crystal layer 2, the cholesteric liquid crystal layer 3, and the twist retardation layer all have the same helical sense (right twist).
  • the twist angle ⁇ in the twist retardation layer was measured by the following method.
  • a temporary support (280 mm ⁇ 85 mm)
  • a PET (polyethylene terephthalate) film (Cosmo Shine A4100, thickness: 100 ⁇ m) manufactured by Toyobo Co., Ltd. was prepared, and the surface of the temporary support was subjected to rubbing treatment.
  • the coating solution 1 for the twist retardation layer was coated on the temporary support using a wire bar, and dried at room temperature to obtain a coated film.
  • the obtained film-coated temporary support was allowed to stand on a hot plate at 100 ° C. for 1 minute to carry out heat treatment of the film.
  • UV irradiation was performed for a fixed time at room temperature under a nitrogen atmosphere (oxygen concentration of 500 ppm or less) on the coated film after the heat treatment to cure the coated film.
  • a twist retardation layer having a thickness of 1.25 ⁇ m was formed.
  • a temporary support with a twist retardation layer was cut out to a sample size of 50 mm ⁇ 50 mm.
  • the twisted retardation layer in the cut temporary support with twisted retardation layer was transferred to an optical glass to prepare a measurement sample.
  • the obtained measurement sample was measured using AxoScan OPMF-1 (manufactured by Opto Science), and the twist angle ⁇ of the liquid crystal compound in the twist retardation layer was determined using the attached device analysis software.
  • Example 2 and Example 3 Production of Vehicle Mirror (Half Mirror)]
  • a coating solution for twist retardation layer was prepared in the same manner as in the preparation of coating solution 1 for twist retardation layer except that the amount of chiral agent 2 was changed to the amount shown in Table 1.
  • the mirror for a vehicle (half mirror) of Example 2 and Example 3 was produced by the method similar to Example 1 using each obtained coating liquid for twist phase difference layers.
  • the twist angle ⁇ was 120 °.
  • the twist angle ⁇ was 40 °.
  • Comparative Example 1 Production of Vehicle Mirror (Half Mirror) A vehicle mirror (half mirror) of Comparative Example 1 was produced in the same manner as in Example 1 except that the twist retardation layer was not formed.
  • A The lightness-and-dark unevenness of the light in the shape of oblique lines to be recognized is less than 10% (the unevenness in the lightness and darkness of the oblique lines is hardly recognized)
  • B 10% or more and less than 50% of light and dark unevenness of hatched light can be visually recognized
  • C 50% or more and less than 90% of light and dark unevenness of hatched light can be visually recognized
  • D light of hatched shape 90% or more of the light and dark unevenness can be visually recognized Note that, for example, when 10% or more of the light and dark unevenness of hatched light can be visually recognized, the unevenness can be visually recognized in the area of 10% or more of the visual field range under the above conditions. Intended.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Multimedia (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention addresses the problem of providing a vehicular mirror with which a mirror reflection image having no irregularities can be observed, and a vehicular mirror equipped with an image display function. This vehicular mirror includes: a phase difference layer which is obtained by immobilizing a liquid crystal compound which is twist-aligned at a twist angle equal to or less than 360˚ along a helical axis extending along the thickness direction; and a circular polarization reflection layer.

Description

車両用ミラー、車両用画像表示機能付きミラーVehicle mirror, mirror with image display function for vehicle
 本発明は、車両用ミラー、及び、車両用画像表示機能付きミラーに関する。 The present invention relates to a vehicle mirror and a mirror with an image display function for a vehicle.
 近年、画像表示装置の画像表示部の表面にハーフミラーを設け、表示モード時は画像を表示し、画像表示装置の電源オフ時等の非表示モード時はミラーとして機能させる画像表示機能付きミラーが提案されている。例えば、特許文献1においては、コレステリック液晶の選択反射を用いた反射層を使用する画像表示機能付きミラーが例示されている。 In recent years, a half mirror is provided on the surface of the image display unit of an image display device, and a mirror with an image display function that displays an image in display mode and functions as a mirror in non-display mode such as power off of the image display device. Proposed. For example, Patent Document 1 exemplifies a mirror with an image display function that uses a reflection layer using selective reflection of cholesteric liquid crystal.
国際公開第2016/199786号International Publication No. 2016/199786
 本発明者らは、特許文献1に記載されたようなコレステリック液晶の選択反射を用いた反射層を使用する画像表示機能付きミラーを車両に搭載して検討したところ、画像表示装置の電源オフ時等の非表示モード時にミラーとして使用された際、車両表面で反射して車両後方からリアガラスを通して入射する光のミラー反射像に斜線状の明暗ムラ(より詳細には、複数の斜線により形成された格子状の明暗ムラ)が生じる場合があることを知見した。 The inventors of the present invention examined a mirror equipped with an image display function using a reflection layer using selective reflection of cholesteric liquid crystal as described in Patent Document 1 mounted on a vehicle. When used as a mirror in a non-display mode, etc., hatched light and dark unevenness (more specifically, formed by a plurality of hatchings) on a mirror reflection image of light reflected from the vehicle surface and incident from the vehicle rear through the rear glass It has been found that lattice-like unevenness (brightness and darkness unevenness) may occur.
 そこで、本発明は、ムラのないミラー反射像の観察が可能な車両用ミラーを提供することを課題とする。
 また、本発明は、車両用画像表示機能付きミラーを提供することも課題とする。
Then, this invention makes it a subject to provide the mirror for vehicles which can observe the mirror reflected image without a nonuniformity.
Another object of the present invention is to provide a mirror with an image display function for a vehicle.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、円偏光反射層と所定の特性を有する位相差層とを積層した車両用ミラーを用いることで上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to achieve the said subject, the present inventors discover that the said subject can be solved by using the mirror for vehicles which laminated | stacked the circularly-polarized-light reflection layer and the phase difference layer which has a predetermined | prescribed characteristic. Completed the invention.
That is, it discovered that the said objective could be achieved by the following structures.
 〔1〕 厚み方向に沿って延びる螺旋軸に沿って360°以下の捩れ角で捩れ配向した液晶化合物を固定化してなる位相差層と、円偏光反射層と、を含む車両用ミラー。
 〔2〕 上記捩れ角が50~200°である、〔1〕に記載の車両用ミラー。
 〔3〕 上記捩れ角が50~100°である、〔1〕又は〔2〕に記載の車両用ミラー。
 〔4〕 上記円偏光反射層がコレステリック液晶層を含む、〔1〕~〔3〕のいずれかに記載の車両用ミラー。
 〔5〕 更に、前面板を含み、
 上記前面板、上記位相差層、及び、上記円偏光反射層がこの順で配置された、〔1〕~〔4〕のいずれかに記載の車両用ミラー。
 〔6〕 更に、透明基板を含み、
 上記前面板、上記位相差層、上記透明基板、及び、上記円偏光反射層がこの順で配置された、〔5〕に記載の車両用ミラー。
 〔7〕 更に、透明基板を含み、
 上記前面板、上記位相差層、上記円偏光反射層、及び、上記透明基板がこの順に配置された、〔5〕に記載の車両用ミラー。
 〔8〕 〔1〕~〔7〕のいずれかに記載の車両用ミラーと、画像表示装置とを含み、
 上記位相差層、上記円偏光反射層、及び、上記画像表示装置がこの順で配置された、車両用画像表示機能付きミラー。
 〔9〕 更に、上記車両用ミラーと上記画像表示装置との間に、1/4波長板を含む、〔8〕に記載の車両用画像表示機能付きミラー。
 〔10〕 上記円偏光反射層と上記1/4波長板とが互いに直接接している、〔9〕に記載の車両用画像表示機能付きミラー。
[1] A vehicle mirror including a retardation layer formed by fixing a liquid crystal compound which is twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along a thickness direction, and a circularly polarized light reflection layer.
[2] The vehicle mirror according to [1], wherein the twist angle is 50 to 200 °.
[3] The vehicle mirror according to [1] or [2], wherein the twist angle is 50 to 100 °.
[4] The vehicle mirror according to any one of [1] to [3], wherein the circularly polarized light reflection layer includes a cholesteric liquid crystal layer.
[5] Furthermore, including a front plate,
The vehicle mirror according to any one of [1] to [4], wherein the front plate, the retardation layer, and the circularly polarized light reflection layer are disposed in this order.
[6] Further, it contains a transparent substrate,
The vehicle mirror according to [5], wherein the front plate, the retardation layer, the transparent substrate, and the circularly polarized light reflection layer are disposed in this order.
[7] Further, it includes a transparent substrate,
The vehicle mirror according to [5], wherein the front plate, the retardation layer, the circularly polarized light reflection layer, and the transparent substrate are disposed in this order.
[8] A vehicle mirror according to any one of [1] to [7] and an image display device,
The mirror with the image display function for vehicles by which the said phase difference layer, the said circularly polarized light reflection layer, and the said image display apparatus are arrange | positioned in this order.
[9] The mirror with an image display function for a vehicle according to [8], further including a quarter-wave plate between the mirror for a vehicle and the image display device.
[10] The mirror with an image display function for a vehicle according to [9], wherein the circularly polarized light reflection layer and the 1⁄4 wavelength plate are in direct contact with each other.
 本発明によれば、ムラのないミラー反射像の観察が可能な車両用ミラーを提供することができる。
 また、本発明によれば、車両用画像表示機能付きミラーを提供することもできる。
According to the present invention, it is possible to provide a vehicle mirror capable of observing a mirror reflection image without unevenness.
Further, according to the present invention, it is possible to provide a mirror with an image display function for a vehicle.
車両用画像表示機能付きミラーの第1実施態様の断面図である。It is a sectional view of the 1st embodiment of the mirror with a picture display function for vehicles. 位相差層の面内遅相軸の関係を示す模式図である。It is a schematic diagram which shows the relationship of the in-plane slow axis of a phase difference layer. 車両用画像表示機能付きミラーの第2実施態様の断面図である。It is a sectional view of the 2nd embodiment of the mirror with a picture display function for vehicles. 車両用画像表示機能付きミラーの第3実施態様の断面図である。It is sectional drawing of 3rd embodiment of the mirror with a picture display function for vehicles. 車両用画像表示機能付きミラーの第4実施態様の断面図である。It is sectional drawing of the 4th embodiment of the mirror with a picture display function for vehicles.
 以下、本発明を詳細に説明する。
 なお、本明細書において「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書において、例えば、「45°」、「平行」、「垂直」又は「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5度未満の範囲内であることを意味する。厳密な角度との差異は、4度未満であることが好ましく、3度未満であることがより好ましい。
Hereinafter, the present invention will be described in detail.
In the present specification, “to” is used in the meaning including the numerical values described before and after it as the lower limit value and the upper limit value.
In the present specification, for example, angles such as “45 °”, “parallel”, “vertical” or “orthogonal” have a difference with the exact angle within the range of less than 5 degrees unless otherwise specified. Means The difference from the exact angle is preferably less than 4 degrees, more preferably less than 3 degrees.
 本明細書において、円偏光につき「センス」というときは、右円偏光であるか、又は左円偏光であるかを意味する。円偏光のセンスは、光が手前に向かって進んでくるように眺めた場合に電場ベクトルの先端が時間の増加に従って時計回りに回る場合が右円偏光であり、反時計回りに回る場合が左円偏光であるとして定義される。
 本明細書においては、コレステリック液晶の螺旋の捩れ方向について「センス」との用語を用いることもある。コレステリック液晶による選択反射は、コレステリック液晶の螺旋の捩れ方向(センス)が右の場合は右円偏光を反射し、左円偏光を透過し、センスが左の場合は左円偏光を反射し、右円偏光を透過する。
In the present specification, the term "sense" for circularly polarized light means that it is right circularly polarized light or left circularly polarized light. The sense of circularly polarized light is right circularly polarized when the tip of the electric field vector rotates clockwise with time increase when the light is viewed as it travels to the front, and left when counterclockwise. Defined as circularly polarized.
In the present specification, the term "sense" may be used with respect to the twist direction of the helix of the cholesteric liquid crystal. The selective reflection by the cholesteric liquid crystal reflects right circularly polarized light when the twisting direction (sense) of the cholesteric liquid crystal spiral is right, transmits left circularly polarized light, and reflects left circularly polarized light when the sense is left, and right Transmits circularly polarized light.
 可視光は電磁波のうち、ヒトの目で見える波長の光であり、380~780nmの波長域の光を示す。つまり、可視光領域とは、380~780nmの領域を意図する。赤外線(赤外光)は可視光線より長い波長域電磁波である。つまり、赤外光領域とは、780nm超の領域を意図し、780nm超2500nm以下の領域であることが好ましい。 Visible light is light of wavelengths visible to human eyes among electromagnetic waves, and shows light in a wavelength range of 380 to 780 nm. That is, the visible light region intends a region of 380 to 780 nm. Infrared (infrared light) is an electromagnetic wave in a wavelength range longer than visible light. That is, the infrared light region is intended for a region of more than 780 nm, and is preferably a region of more than 780 nm and 2500 nm or less.
 本発明の特徴点としては、厚み方向に沿って延びる螺旋軸に沿って360°以下の捩れ角で捩れ配向した液晶化合物を固定化してなる位相差層(以下、ツイスト位相差層ともいう。)と、円偏光反射層と、を含む点にある。 As a feature of the present invention, a retardation layer (hereinafter also referred to as a twist retardation layer) formed by immobilizing a liquid crystal compound twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along the thickness direction. And a circularly polarized light reflection layer.
 本発明者らは、車両後方からリアガラスを通して入射する光のミラー反射像に明暗ムラが生じる原因が、リアガラスに存在する微細な位相差ムラ(Re(550)が50nm程度。なお、Re(550)とは、波長550nmでのレターデーションを意味する。)であることを知見している。
 リアガラスに用いられる強化ガラス(例えば、合わせガラスの構成ではない強化ガラス)は複屈折分布を有することが知られている。強化ガラスは、一般に、フロート板ガラスを軟化点付近の700℃まで加熱した後、ガラス表面に空気を吹き付けて急冷して作製される。この処理によってガラス表面の温度が先に下がり収縮して固まる一方、ガラス内部は表面に比べて温度が下がるのが遅く、収縮するのも遅れるため、内部に応力分布が生じ、複屈折性のないフロート板ガラスを用いた場合であっても強化ガラスに複屈折分布が発生する。
The inventors of the present invention have the cause of unevenness in the mirror reflection image of light incident from the rear of the vehicle through the rear glass because fine retardation unevenness (Re (550) present in the rear glass is about 50 nm. Re (550) Means that the retardation is at a wavelength of 550 nm.
It is known that the tempered glass (for example, tempered glass which is not the composition of laminated glass) used for rear glass has a birefringence distribution. Tempered glass is generally produced by heating float sheet glass to 700 ° C. near the softening point and then blowing air onto the glass surface for quenching. While this treatment lowers the temperature of the glass surface first and shrinks and hardens, the temperature inside the glass is slower than the surface and slower to shrink, so that stress distribution occurs inside and there is no birefringence. Even when float plate glass is used, birefringence distribution occurs in the tempered glass.
 そのため、作製した強化ガラスが使用されている車両のリアガラス等を透過して、円偏光反射層を含む車両用ミラー(前面)に入射する光によるミラー反射像には上述のムラが生じると考えられる。より具体的には、まず、車両の表面で反射した光ではs偏光の割合が多い。偏光を含む光がリアガラスを透過するとリアガラスの複屈折分布によって透過光に偏光分布が発生する。偏光分布が生じた光が車両用ミラーの円偏光反射層で反射されると、入射光の偏光状態の違いによって反射率が異なるため、明暗ムラが視認されてしまう。
 これに対して、本発明の車両用ミラーはツイスト位相差層を含むことで、場所によって偏光状態の異なる入射光の位相を反射光の強度の差が生じにくい領域にずらし、ムラを軽減している。具体的には、本発明の車両用ミラーはツイスト位相差層を含むことで、入射光の反射率を全体的により高めて、ミラー反射像の全体輝度をより高めており、この結果として、ムラの軽減が可能となったと考えられる。
 また、本発明者らは、ツイスト位相差層中の配向した液晶化合物の捩れ角が360°を超えた場合、明暗ムラが低減されないことを確認している。
 以下に、本発明の車両用ミラー及び車両用画像表示機能付きミラーの実施形態を示す。
Therefore, it is thought that the above-mentioned unevenness arises in the mirror reflection image by the light which penetrates the rear glass etc. of the vehicle in which the produced tempered glass is used, and enters the vehicle mirror (front) including the circularly polarized light reflection layer . More specifically, first, the light reflected by the surface of the vehicle has a large proportion of s-polarized light. When light including polarized light passes through the rear glass, a polarization distribution is generated in the transmitted light due to the birefringence distribution of the rear glass. When the light in which the polarization distribution is generated is reflected by the circularly polarized light reflection layer of the vehicle mirror, since the reflectance is different due to the difference in the polarization state of the incident light, the unevenness of brightness is visually recognized.
On the other hand, the vehicle mirror of the present invention includes the twist phase difference layer to shift the phase of the incident light whose polarization state differs depending on the place to a region where the difference in the intensity of the reflected light is less likely to occur, thereby reducing unevenness. There is. Specifically, the vehicle mirror according to the present invention includes the twist phase difference layer to increase the reflectance of incident light as a whole and to increase the overall brightness of the mirror reflection image. As a result, unevenness is caused. It is believed that the reduction of
Furthermore, the present inventors confirmed that when the twist angle of the aligned liquid crystal compound in the twist retardation layer exceeds 360 °, the unevenness in brightness and darkness is not reduced.
Below, embodiment of the mirror for vehicles of this invention and the mirror with an image display function for vehicles is shown.
<<第1実施態様>>
 以下に、本発明の車両用画像表示機能付きミラーの第1実施態様について図面を参照して説明する。図1に、本発明の車両用画像表示機能付きミラーの第1実施態様の断面図を示す。なお、本発明における図は模式図であり、各層の厚みの関係及び位置関係等は必ずしも実際のものとは一致しない。以下の図も同様である。
 車両用画像表示機能付きミラー10は、画像表示装置12と、1/4波長板14と、コレステリック液晶層を含む円偏光反射層16と、ツイスト位相差層18と、をこの順で含む。なお、上記円偏光反射層16とツイスト位相差層18とによって、本発明の車両用ミラーが構成される。また、図1に示す第1実施態様においては1/4波長板14が含まれるが、この態様に限定されず、1/4波長板は車両用画像表示機能付きミラーに含まれていなくてもよい。
 円偏光反射層16は、赤色光を選択的に反射する第1コレステリック液晶層20と、緑色光を選択的に反射する第2コレステリック液晶層22と、青色光を選択的に反射する第3コレステリック液晶層24とを含む。なお、ツイスト位相差層18が、視認側にある。また、円偏光反射層16は、右円偏光及び左方円偏光の一方を反射し、他方を透過する。この機能により、画像表示装置12の電源オフ時等の非表示モード時に車両後方を映すミラーとしての使用が可能となる。
 上述したように、車両用画像表示機能付きミラー10においては、車両のリアガラス等を透過して車両用画像表示機能付きミラー10に入射する光の位相が、ツイスト位相差層18によって、反射光の強度の差が生じにくい領域にずれる。この結果として、ムラのないミラー反射像が得られる。
 また、車両用画像表示機能付きミラー10においては、画像表示装置12と円偏光反射層16との間に1/4波長板14が配置されることにより、画像表示装置12からの光を円偏光に変換して円偏光反射層16に入射させることが可能となっている。つまり、円偏光反射層16において反射されて画像表示装置12側に戻る光を大幅に減らすことができ、輝度の高い画像表示が可能となる。
 なお、図1に示すように、画像表示装置12と1/4波長板14とは直接接していることが好ましく、1/4波長板14と円偏光反射層16とも直接接していることが好ましい。ただし、この態様には限定されず、画像表示装置12と1/4波長板14との間、及び、1/4波長板14と円偏光反射層16との間には、他の層(例えば、接着層、及び透明基板等)が配置されていてもよい。
 また、円偏光反射層16の螺旋センスと、ツイスト位相差層18の螺旋センスとが一致していることが好ましい。
 以下、車両用画像表示機能付きミラー10を構成する各部材について詳述する。
<< First embodiment >>
Hereinafter, a first embodiment of a mirror with an image display function for a vehicle according to the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a first embodiment of a mirror with an image display function for a vehicle of the present invention. The figures in the present invention are schematic views, and the relationship of thickness of each layer, positional relationship and the like do not necessarily coincide with the actual ones. The same is true for the following figures.
The vehicle image display function-equipped mirror 10 includes an image display device 12, a quarter wavelength plate 14, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, and a twist retardation layer 18 in this order. The circularly polarized light reflection layer 16 and the twist retardation layer 18 constitute a vehicle mirror of the present invention. Further, although the quarter wavelength plate 14 is included in the first embodiment shown in FIG. 1, the invention is not limited to this embodiment, and even if the quarter wavelength plate is not included in the mirror with the image display function for vehicles Good.
The circularly polarized light reflection layer 16 includes a first cholesteric liquid crystal layer 20 which selectively reflects red light, a second cholesteric liquid crystal layer 22 which selectively reflects green light, and a third cholesteric which selectively reflects blue light. And a liquid crystal layer 24. The twist retardation layer 18 is on the viewing side. The circularly polarized light reflection layer 16 reflects one of right-handed circularly polarized light and left-handed circularly polarized light, and transmits the other. This function makes it possible to use the mirror as a mirror that reflects the rear of the vehicle in a non-display mode such as when the power of the image display device 12 is turned off.
As described above, in the mirror 10 with an image display function for a vehicle, the phase of light transmitted through the rear glass of the vehicle and the like and incident on the mirror 10 with an image display function for a vehicle is reflected light by the twist phase difference layer 18 It shifts to the area where the difference in strength is unlikely to occur. As a result, a mirror reflection image without unevenness is obtained.
Further, in the mirror 10 with an image display function for a vehicle, the quarter wavelength plate 14 is disposed between the image display device 12 and the circularly polarized light reflection layer 16 to circularly polarize the light from the image display device 12. And the circularly polarized light reflection layer 16. That is, light reflected by the circularly polarized light reflection layer 16 and returned to the image display device 12 side can be largely reduced, and image display with high luminance can be performed.
As shown in FIG. 1, the image display device 12 and the quarter wavelength plate 14 are preferably in direct contact with each other, and preferably, the quarter wavelength plate 14 and the circularly polarized light reflection layer 16 are also in direct contact with each other. . However, the present invention is not limited to this aspect, and other layers (for example, between the image display 12 and the 1⁄4 wavelength plate 14 and between the 1⁄4 wavelength plate 14 and the circularly polarized light reflection layer 16 may be used. , An adhesive layer, a transparent substrate, etc.) may be disposed.
In addition, it is preferable that the spiral sense of the circularly polarized light reflection layer 16 and the spiral sense of the twist retardation layer 18 coincide with each other.
Hereinafter, each member which comprises the mirror 10 with an image display function for vehicles is explained in full detail.
<画像表示装置>
 画像表示装置としては特に限定されないが、液晶表示装置又は有機エレクトロルミネッセンス表示装置が好ましい。また、画像表示装置は直線偏光を出射して(発光して)画像を形成する画像表示装置であることが好ましい。
 液晶表示装置は透過型であっても反射型であってもよく、透過型であることが好ましい。液晶表示装置は、IPS(In-Place-Switching)モード、FFS(Fringe Field Switching)モード、VA(Virtical Alignment)モード、ECB(Electrically Controlled Birefringence)モード、STN(super twisted nematic)モード、TN(Twisted Nematic)モード、及び、OCB(Optically Compensated Bend)モード等のいずれの液晶表示装置であってもよい。
 有機エレクトロルミネッセンス表示装置は、発光層を少なくとも含み、反射防止用の円偏光板を更に含むことが好ましい。円偏光板は、λ/4波長板と偏光子とを含む形態が挙げられる。
 画像表示装置は電源オフ時において、波長400~700nmの可視光平均反射が20%以上であることが好ましく、30%以上であることがより好ましい。画像表示装置の電源オフ時の可視光の反射は、画像表示装置の構成部材(反射偏光板及びバックライトユニット等)に由来するものであればよい。
<Image display device>
The image display device is not particularly limited, but a liquid crystal display device or an organic electroluminescent display device is preferable. Moreover, it is preferable that an image display apparatus is an image display apparatus which radiate | emits linearly polarized light (it emits light) and forms an image.
The liquid crystal display device may be transmissive or reflective, and is preferably transmissive. The liquid crystal display device has an IPS (In-Place-Switching) mode, an FFS (Fringe Field Switching) mode, a VA (Virtical Alignment) mode, an ECB (Electrically Controlled Birefringence) mode, an STN (super twisted nematic) mode, and a TN (Twisted Nematic) Or any optically liquid crystal display device such as OCB (Optically Compensated Bend) mode.
The organic electroluminescent display device preferably includes at least a light emitting layer, and preferably further includes an anti-reflection circularly polarizing plate. The circularly polarizing plate includes a form including a λ / 4 wavelength plate and a polarizer.
The image display device preferably has a visible light average reflection of at least 20%, more preferably at least 30%, at a wavelength of 400 to 700 nm when the power is off. The reflection of visible light when the power of the image display apparatus is off may be derived from the constituent members of the image display apparatus (such as a reflective polarizing plate and a backlight unit).
 画像表示装置の画像表示部に示される画像は、静止画であっても動画であっても、単なる文字情報であってもよい。また、白黒等のモノカラー表示であってもよく、マルチカラー表示であってもよく、フルカラー表示であってもよい。 The image shown on the image display unit of the image display device may be a still image, a moving image, or mere text information. In addition, monochrome display such as black and white, multi-color display, and full-color display may be performed.
<1/4波長板(λ/4波長板)>
 1/4波長板は、ある特定の波長の直線偏光を円偏光に(又は、円偏光を直線偏光に)変換する機能を有する位相差板である。より具体的には、所定の波長λnm(好ましくは、可視光領域の波長)における位相差がRe(λ)≒λ/4(又は、この奇数倍)を示す位相差板である。
 1/4波長板は画像表示装置に接着した際に、画像が最も明るくなるように、1/4波長板の遅相軸の角度が調整されていることが好ましい。すなわち、特に直線偏光により画像表示している画像表示装置に対し、上記直線偏光が円偏光反射層を最もよく透過させるように、上記直線偏光の偏光方向(透過軸)と1/4波長板の遅相軸との角度が調整されていることが好ましい。例えば、後述する一層型の1/4波長板の場合、上記偏光方向(透過軸)と1/4波長板の遅相軸とは45°の角度をなしていることが好ましい。直線偏光により画像表示している画像表示装置から出射した光は1/4波長板を透過後、右及び左のいずれかのセンスの円偏光となっている。円偏光反射層は、上記のセンスの円偏光を透過する捩れ方向を有するコレステリック液晶層で構成されていることが好ましい。
<1/4 wave plate (λ / 4 wave plate)>
The quarter-wave plate is a retardation plate having a function of converting linearly polarized light of a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a retardation plate whose retardation at a predetermined wavelength λ nm (preferably a wavelength in the visible light region) indicates Re (λ) ≒ λ / 4 (or an odd multiple thereof).
It is preferable that the angle of the slow axis of the quarter-wave plate be adjusted so that the image becomes brightest when the quarter-wave plate is bonded to the image display device. That is, the polarization direction (transmission axis) of the linearly polarized light and the quarter-wave plate of the linearly polarized light so that the linearly polarized light is best transmitted through the circularly polarized light reflection layer, particularly to the image display device displaying an image by the linearly polarized light. It is preferable that the angle with the slow axis be adjusted. For example, in the case of a single-layer quarter-wave plate described later, it is preferable that the polarization direction (transmission axis) and the slow axis of the quarter-wave plate form an angle of 45 °. The light emitted from the image display device displaying an image by linearly polarized light, after passing through the 1⁄4 wavelength plate, becomes circularly polarized light of either right or left sense. The circularly polarized light reflection layer is preferably composed of a cholesteric liquid crystal layer having a twisting direction that transmits the above-mentioned sense circularly polarized light.
 1/4波長板の例としては、一層型の1/4波長板、及び、1/4波長板と1/2波長板とを積層した広帯域1/4波長板等が挙げられる。なお、1/2波長板とは、特定の波長λnm(好ましくは、可視光領域の波長)における位相差がRe(λ)≒λ/2を満たす位相差板のことをいう。
 前者の1/4波長板の位相差は、画像表示装置の発光波長の1/4の長さであればよい。それゆえに、例えば、画像表示装置の発光波長が450nm、530nm、640nmの場合は、450nmの波長で112.5nm±10nm(好ましくは、112.5nm±5nm、より好ましくは112.5nm)、530nmの波長で132.5nm±10nm(好ましくは、132.5nm±5nm、より好ましくは132.5nm)、640nmの波長で160nm±10nm(好ましくは、160nm±5nm、より好ましくは160nm)の位相差であるような逆分散性の位相差層が1/4波長板が好ましい。
 なお、1/4波長板としては、位相差の波長分散性の小さい位相差板、及び、順分散性の位相差板も使用できる。
 なお、逆分散性とは長波長になるほど位相差の絶対値が大きくなる性質を意味し、順分散性とは短波長になるほど位相差の絶対値が大きくなる性質を意味する。
Examples of the quarter-wave plate include a single-layer quarter-wave plate and a wide-band quarter-wave plate in which a quarter-wave plate and a half-wave plate are stacked. Here, the half-wave plate refers to a retardation plate in which the phase difference at a specific wavelength λ nm (preferably, the wavelength in the visible light region) satisfies Re (λ) ≒ λ / 2.
The phase difference of the former 1⁄4 wavelength plate may be 1⁄4 of the emission wavelength of the image display device. Therefore, for example, when the emission wavelength of the image display device is 450 nm, 530 nm, and 640 nm, the wavelength of 450 nm is 112.5 nm ± 10 nm (preferably 112.5 nm ± 5 nm, more preferably 112.5 nm), 530 nm 132.5 nm ± 10 nm (preferably 132.5 nm ± 5 nm, more preferably 132.5 nm) at the wavelength, and 160 nm ± 10 nm (preferably 160 nm ± 5 nm, more preferably 160 nm) at the 640 nm wavelength Such a reverse dispersion retardation layer is preferably a quarter wave plate.
As the 1⁄4 wavelength plate, it is also possible to use a retardation plate with small wavelength dispersion of retardation, and a retardation plate of forward dispersion.
The inverse dispersion means a property that the absolute value of the retardation increases as the wavelength becomes longer, and the forward dispersion means the property that the absolute value of the retardation increases as the wavelength becomes shorter.
 積層型の1/4波長板としては、1/4波長板と1/2波長板とを両者の遅相軸がなす角が60°の角度で貼り合わせ、1/2波長板側を直線偏光の入射側に配置して、且つ、1/2波長板の遅相軸を入射直線偏光の偏光方向(透過軸)に対して15°又は75°に交差して使用するものが好ましい。
 本明細書において、位相差は正面レターデーションを意味する。位相差はAXOMETRICS社製の偏光位相差解析装置AxoScanを用いて測定できる。または、KOBRA 21ADH又はWR(王子計測機器(株)製)において特定の波長の光をフィルム法線方向に入射させて測定してもよい。
As a laminated quarter-wave plate, the quarter-wave plate and the half-wave plate are bonded at an angle of 60 ° between the slow axes of both, and the half-wave plate side is linearly polarized. It is preferable to use one that is disposed on the incident side of the light source and that the slow axis of the half-wave plate crosses 15 ° or 75 ° with the polarization direction (transmission axis) of the incident linearly polarized light.
In the present specification, the phase difference means front retardation. The phase difference can be measured using a polarization phase difference analyzer AxoScan manufactured by AXOMETRICS. Alternatively, light of a specific wavelength may be made incident in the film normal direction in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) for measurement.
 1/4波長板としては、特に限定はなく、目的に応じて適宜選択できる。例えば、石英板、延伸されたポリカーボネートフィルム、延伸されたノルボルネン系ポリマーフィルム、炭酸ストロンチウムのような複屈折を有する無機粒子を含有して配向させた透明フィルム、及び、支持体上に無機誘電体を斜め蒸着した薄膜等が挙げられる。
 1/4波長板としては、市販品を用いることもでき、市販品としては、例えば商品名:ピュアエース WR(帝人株式会社製)等が挙げられる。
The quarter wavelength plate is not particularly limited, and can be appropriately selected according to the purpose. For example, a quartz plate, a stretched polycarbonate film, a stretched norbornene-based polymer film, a transparent film oriented by containing inorganic particles having birefringence such as strontium carbonate, and an inorganic dielectric on a support An obliquely deposited thin film and the like can be mentioned.
A commercially available product can also be used as the 1⁄4 wavelength plate, and examples of the commercially available product include trade name: Pure Ace WR (manufactured by Teijin Limited).
 1/4波長板は、重合性液晶化合物又は高分子液晶化合物を配列させて固定して形成してもよく、重合性液晶化合物を含む液晶組成物の硬化により形成された層であることが好ましい。例えば、1/4波長板は、所定の基板上に重合性液晶化合物を含む液晶組成物を塗布し、加熱処理により重合性液晶化合物をネマチック配向させた後、光架橋又は熱架橋によって固定化して、形成することができる。
 液晶組成物は、重合性液晶化合物以外に、他の成分(例えば、重合開始剤、及び溶媒等)が含んでいてもよい。
The quarter-wave plate may be formed by aligning and fixing a polymerizable liquid crystal compound or a polymer liquid crystal compound, and is preferably a layer formed by curing a liquid crystal composition containing the polymerizable liquid crystal compound. . For example, a quarter wavelength plate applies a liquid crystal composition containing a polymerizable liquid crystal compound on a predetermined substrate, heat-treats the polymerizable liquid crystal compound in a nematic orientation, and then fixes it by photocrosslinking or thermal crosslinking. , Can be formed.
The liquid crystal composition may contain other components (for example, a polymerization initiator, a solvent, and the like) in addition to the polymerizable liquid crystal compound.
 1/4波長板の厚みは、特に限定はされないが、0.2~10μmが好ましく、0.5~2.0μmがより好ましい。 The thickness of the quarter-wave plate is not particularly limited, but is preferably 0.2 to 10 μm, and more preferably 0.5 to 2.0 μm.
<円偏光反射層>
 円偏光反射層は、円偏光を反射する層であり、第1実施形態においては選択反射帯域(選択反射波長帯域)の中心波長が可視光領域に位置する(可視光領域で選択反射を示す)コレステリック液晶層を含む層である。つまり、円偏光反射層は、所定のコレステリック液晶層を含み、上記所定のコレステリック液晶層が選択的に反射する帯域(反射帯域)の中心波長は可視光領域に位置する。なお、コレステリック液晶層の具体的な構成については、後段で詳述する。
 図1においては、円偏光反射層16は、赤色光を反射する第1コレステリック液晶層20と、緑色光を反射する第2コレステリック液晶層22と、青色光を反射する第3コレステリック液晶層24の3層のコレステリック液晶層を含む。
<Circularly polarized light reflection layer>
The circularly polarized light reflection layer is a layer that reflects circularly polarized light, and in the first embodiment, the central wavelength of the selective reflection band (selective reflection wavelength band) is located in the visible light region (shows selective reflection in the visible light region) It is a layer containing a cholesteric liquid crystal layer. That is, the circularly polarized light reflection layer includes a predetermined cholesteric liquid crystal layer, and the central wavelength of the band (reflection band) selectively reflected by the predetermined cholesteric liquid crystal layer is located in the visible light region. The specific configuration of the cholesteric liquid crystal layer will be described in detail later.
In FIG. 1, the circularly polarized light reflection layer 16 includes a first cholesteric liquid crystal layer 20 that reflects red light, a second cholesteric liquid crystal layer 22 that reflects green light, and a third cholesteric liquid crystal layer 24 that reflects blue light. It contains three cholesteric liquid crystal layers.
 図1の第1実施態様においては円偏光反射層12には3層のコレステリック液晶層が含まれるが、この態様には限定されず、円偏光反射層には、少なくとも1層の上記コレステリック液晶層が含まれていればよく、コレステリック液晶層の層数は2層であっても、4層以上であってもよい。
 なお、円偏光反射層に複数のコレステリック液晶層が含まれる場合、各コレステリック液晶層の選択反射帯域の中心波長が互いに異なることが好ましい。
In the first embodiment of FIG. 1, the circularly polarized light reflection layer 12 includes three cholesteric liquid crystal layers, but the present invention is not limited to this embodiment, and the circularly polarized light reflection layer includes at least one cholesteric liquid crystal layer described above. The number of cholesteric liquid crystal layers may be two or four or more.
When the circularly polarized light reflection layer contains a plurality of cholesteric liquid crystal layers, it is preferable that central wavelengths of selective reflection bands of the cholesteric liquid crystal layers be different from each other.
 円偏光反射層が複数のコレステリック液晶層を含むときは、それらは隣接するコレステリック液晶層と直接接していることが好ましい。
 円偏光反射層の膜厚は、2.0~300μmが好ましく、5.0~200μmがより好ましい。
 また、個々のコレステリック液晶層の厚みは、1.0~150μmが好ましい。
When the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, they are preferably in direct contact with the adjacent cholesteric liquid crystal layers.
The thickness of the circularly polarized light reflective layer is preferably 2.0 to 300 μm, and more preferably 5.0 to 200 μm.
The thickness of each cholesteric liquid crystal layer is preferably 1.0 to 150 μm.
 赤色光を選択的に反射する第1コレステリック液晶層20としては、580~700nmに選択反射帯域の中心波長を有するコレステリック液晶層が挙げられる。また、緑色光を選択的に反射する第2コレステリック液晶層22としては、500nm以上580nm未満に選択反射帯域の中心波長を有するコレステリック液晶層が挙げられる。また、青色光を選択的に反射する第3コレステリック液晶層20としては、400nm以上500nm未満に選択反射帯域の中心波長を有するコレステリック液晶層が挙げられる。
 図1においては、画像表示装置12に近い側から第1コレステリック液晶層20、第2コレステリック液晶層22、及び、第3コレステリック液晶層24が配置されているが、この態様は限定されず、上記3つの層はどのような配置順であってもよい。
 なかでも、図1に示すように、円偏光反射層が複数のコレステリック液晶層を含むときは、より画像表示装置に近いコレステリック液晶層がより長い(より長波長側の)選択反射帯域の中心波長を有していることが好ましい。このような構成により、表示画像及びミラー反射像における斜め色味を抑えることができる。
Examples of the first cholesteric liquid crystal layer 20 that selectively reflects red light include a cholesteric liquid crystal layer having a central wavelength of the selective reflection band in 580 to 700 nm. Further, as the second cholesteric liquid crystal layer 22 that selectively reflects green light, a cholesteric liquid crystal layer having a central wavelength of the selective reflection band in the range of 500 nm to less than 580 nm can be mentioned. Further, as the third cholesteric liquid crystal layer 20 which selectively reflects blue light, a cholesteric liquid crystal layer having a central wavelength of the selective reflection band in the range of 400 nm to less than 500 nm can be mentioned.
In FIG. 1, the first cholesteric liquid crystal layer 20, the second cholesteric liquid crystal layer 22, and the third cholesteric liquid crystal layer 24 are arranged from the side close to the image display device 12, but this aspect is not limited. The three layers may be arranged in any order.
Among them, as shown in FIG. 1, when the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, the cholesteric liquid crystal layer closer to the image display device has a central wavelength of a longer (longer wavelength side) selective reflection band. It is preferable to have With such a configuration, it is possible to suppress the oblique color in the display image and the mirror reflection image.
(コレステリック液晶層)
 本明細書において、コレステリック液晶層は、コレステリック液晶相を固定した層を意味する。コレステリック液晶層を単に液晶層ということもある。
 コレステリック液晶相は、特定の波長域において右円偏光及び左円偏光のいずれか一方のセンスの円偏光を選択的に反射させるとともに他方のセンスの円偏光を透過する円偏光選択反射を示すことが知られている。本明細書において、円偏光選択反射を単に選択反射ということもある。
 円偏光選択反射性を示すコレステリック液晶相を固定した層を含むフィルムとして、重合性液晶化合物を含む組成物から形成されたフィルムは従来から数多く知られており、コレステリック液晶層については、それらの従来技術を参照できる。
(Cholesteric liquid crystal layer)
In the present specification, a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed. The cholesteric liquid crystal layer may be simply referred to as a liquid crystal layer.
The cholesteric liquid crystal phase exhibits circularly polarized selective reflection that selectively reflects circularly polarized light of either one of right circularly polarized light and left circularly polarized light and transmits circularly polarized light of the other sense in a specific wavelength range Are known. In the present specification, circular polarization selective reflection may be simply referred to as selective reflection.
Many films formed from a composition containing a polymerizable liquid crystal compound as a film including a layer to which a cholesteric liquid crystal phase exhibiting a circularly polarized light selective reflectance is fixed are conventionally known, and for cholesteric liquid crystal layers, those films You can refer to the technology.
 コレステリック液晶層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射及び加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場又は外力によって配向形態に変化を生じさせることない状態に変化した層であればよい。なお、コレステリック液晶層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。 The cholesteric liquid crystal layer may be any layer as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained, and typically, after the polymerizable liquid crystal compound is in the aligned state of the cholesteric liquid crystal phase, ultraviolet irradiation is performed. The layer may be polymerized and cured by heating or the like to form a layer having no fluidity, and at the same time, the layer may be changed to a state in which no change in orientation is caused by an external field or an external force. In the cholesteric liquid crystal layer, it is sufficient as long as the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may become high in molecular weight by the curing reaction and may no longer have liquid crystallinity.
 コレステリック液晶層の選択反射帯域の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。
 なお、本明細書において、コレステリック液晶層が有する選択反射帯域の中心波長λは、コレステリック液晶層の法線方向から測定した円偏光反射スペクトルの中心位置にある波長を意味する。
 上記式から分かるように、螺旋構造のピッチを調節することによって、選択反射の中心波長を調整できる。n値とP値を調節して、所望の波長の光に対して右円偏光及び左円偏光のいずれか一方を選択的に反射させるために、中心波長λを調節できる。
The central wavelength λ of the selective reflection band of the cholesteric liquid crystal layer depends on the pitch P (= helical period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal layer and λ = n × P.
In the present specification, the central wavelength λ of the selective reflection band of the cholesteric liquid crystal layer means a wavelength at the central position of the circularly polarized light reflection spectrum measured from the normal direction of the cholesteric liquid crystal layer.
As understood from the above equation, the central wavelength of selective reflection can be adjusted by adjusting the pitch of the helical structure. The central wavelength λ can be adjusted in order to selectively reflect either right circular polarization or left circular polarization with respect to light of a desired wavelength by adjusting the n value and the P value.
 コレステリック液晶相のピッチは液晶化合物(好ましくは、重合性液晶化合物)とともに用いるキラル剤の種類、又はその添加濃度に依存するため、これらを調整することによって所望のピッチを得ることができる。なお、螺旋のセンス及びピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、及び「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を使用できる。 The pitch of the cholesteric liquid crystal phase depends on the type of the chiral agent used with the liquid crystal compound (preferably, the polymerizable liquid crystal compound) or the addition concentration thereof, and the desired pitch can be obtained by adjusting these. For the method of measuring the sense and pitch of the spiral, use the method described in “Introduction to Liquid Crystal Chemistry Experiment” edited by The Liquid Crystal Society of Japan, published by Sigma Publication 2007, p. 46, and “Liquid Crystal Handbook” Liquid Crystal Handbook Editorial Committee Maruzen p. 196. it can.
 使用するコレステリック液晶層の選択反射帯域の中心波長を、画像表示装置の発光波長域、及び、円偏光反射層の使用態様に応じて調整することにより、光利用効率に優れた明るい画像を表示できる。 A bright image excellent in light utilization efficiency can be displayed by adjusting the central wavelength of the selective reflection band of the cholesteric liquid crystal layer to be used according to the light emission wavelength range of the image display device and the use mode of the circularly polarized light reflection layer. .
 コレステリック液晶層の反射円偏光のセンスは螺旋のセンスに一致する。各コレステリック液晶層としては、画像表示装置から出射して1/4波長板を透過して得られているセンスの円偏光のセンスに応じて、螺旋のセンスが右及び左のいずれかであるコレステリック液晶層が用いられる。具体的には、画像表示装置から出射して1/4波長板を透過して得られているセンスの円偏光を透過する螺旋のセンスを有するコレステリック液晶層を用いればよい。円偏光反射層に複数のコレステリック液晶層が含まれるとき、それらの螺旋のセンスは全て同じであることが好ましい。 The sense of the reflected circular polarization of the cholesteric liquid crystal layer corresponds to the sense of the helix. As each cholesteric liquid crystal layer, a cholesteric in which the sense of the spiral is either right or left according to the sense of circular polarization of sense obtained by being emitted from the image display device and transmitted through the 1⁄4 wavelength plate A liquid crystal layer is used. Specifically, it is preferable to use a cholesteric liquid crystal layer having a sense of a spiral that transmits circularly polarized light of a sense obtained by being emitted from the image display device and transmitted through the 1⁄4 wavelength plate. When the circularly polarized light reflection layer includes a plurality of cholesteric liquid crystal layers, preferably the senses of the spirals are all the same.
 選択反射を示す選択反射帯域の半値幅Δλ(nm)は、Δλが液晶化合物の複屈折Δnと上記ピッチPに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調整して行うことができる。Δnの調整は液晶化合物の種類及びその混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。
 選択反射帯域の中心波長が同一の1種のコレステリック液晶層の形成のために、周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層を複数積層してもよい。周期Pが同じで、同じ螺旋のセンスのコレステリック液晶層を積層することによっては、特定の波長で円偏光選択性を高くすることができる。
The half width Δλ (nm) of the selective reflection band exhibiting selective reflection depends on the birefringence Δn of the liquid crystal compound and the pitch P, and follows the relationship Δλ = Δn × P. Therefore, control of the width of the selective reflection band can be performed by adjusting Δn. The adjustment of Δn can be performed by adjusting the type of liquid crystal compound and the mixing ratio thereof, or controlling the temperature at the time of alignment fixation.
In order to form one type of cholesteric liquid crystal layer having the same central wavelength of the selective reflection band, a plurality of cholesteric liquid crystal layers having the same period P and the same helical sense may be stacked. By laminating cholesteric liquid crystal layers of the same helical sense with the same period P, it is possible to increase the circular polarization selectivity at a specific wavelength.
 コレステリック液晶層の形成方法は特に限定されず、公知の方法が挙げられる。なかでも、生産性が優れる点で、重合性液晶化合物及びキラル剤を含む液晶組成物を所定の基板上に塗布して、加熱処理によって重合性液晶化合物をコレステリック液晶配向させて、その後、光照射又は加熱処理により重合性液晶化合物の重合を進行させて、硬化する方法が挙げられる。
 なお、上記液晶組成物は、更に他の成分(例えば、重合開始剤、及び溶媒等)を含んでいてもよい。
The formation method of a cholesteric liquid crystal layer is not specifically limited, A well-known method is mentioned. Among them, a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent is coated on a predetermined substrate from the viewpoint of excellent productivity, and the polymerizable liquid crystal compound is aligned in cholesteric liquid crystal by heat treatment, and then irradiated with light. Alternatively, a method may be mentioned in which the polymerization of the polymerizable liquid crystal compound is advanced by heat treatment to be cured.
The liquid crystal composition may further contain other components (for example, a polymerization initiator, a solvent, and the like).
 なお、後段で詳述するように、円偏光反射層は、1/4波長板と反射型の直線偏光子(以下、反射型直線偏光子ともいう。)とを含む円偏光反射層の態様であってもよい。 As described in detail later, the circularly polarized light reflection layer is a circularly polarized light reflection layer including a quarter wavelength plate and a reflective linear polarizer (hereinafter, also referred to as a reflective linear polarizer). It may be.
<ツイスト位相差層>
 ツイスト位相差層は、直線偏光の偏光軸を旋回させる層であり、また、楕円偏光の楕円率をより大きく変化させる層である。
 ツイスト位相差層は、その厚み方向に沿って延びる螺旋軸に沿って360°以下の捩れ角で捩れ配向した液晶化合物を固定してなる層である。なかでも、後述するように、重合性液晶化合物を所定の捩れ配向状態としたうえで、紫外線照射及び加熱等によって重合、硬化して得られる層であることが好ましい。
 なお、液晶化合物が捩れ配向するとは、層の厚み方向を軸(螺旋軸)として、一方の表面から他方の表面までの液晶化合物が捩れることを意図する。それに伴い、液晶化合物の配向方向(面内遅相軸方向)が、厚さ方向の位置によって異なる。液晶化合物については後段で詳述するが、ツイスト位相差層で使用される液晶化合物としては、ネマチック液晶相を示す液晶化合物が好ましい。なお、上記相を形成する際には、ネマチック液晶相を示す液晶化合物と後述するキラル剤(カイラル剤)とを混合したものが使用されることが好ましい。
<Twist retardation layer>
The twist retardation layer is a layer for turning the polarization axis of linearly polarized light, and is a layer for changing the ellipticity of elliptically polarized light more.
The twist retardation layer is a layer formed by fixing a liquid crystal compound twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along the thickness direction. Among them, as described later, it is preferable that the layer be obtained by polymerizing and curing the polymerizable liquid crystal compound by ultraviolet irradiation, heating or the like after setting the liquid crystal compound in a predetermined twisted alignment state.
In addition, that the liquid crystal compound is twist-oriented means that the liquid crystal compound from one surface to the other surface is twisted, with the thickness direction of the layer as an axis (helical axis). Along with that, the alignment direction (in-plane slow axis direction) of the liquid crystal compound differs depending on the position in the thickness direction. The liquid crystal compound will be described in detail later, but as the liquid crystal compound used in the twist retardation layer, a liquid crystal compound exhibiting a nematic liquid crystal phase is preferable. In addition, when forming the said phase, it is preferable to use what mixed the liquid crystal compound which shows a nematic liquid crystal phase, and the chiral agent (chiral agent) mentioned later.
 次に、図2を用いて、ツイスト位相差層中の面内遅相軸の位置関係について詳述する。図2に示すツイスト位相差層中の黒矢印は、面内遅相軸を意図する。
 液晶化合物の捩れ方向は、上述した円偏光反射層の螺旋センスによって決定することが好ましいが、右捩れであっても、左捩れであってもよい。
 液晶化合物の捩れ角は、360°以下である。下限は、例えば、20°程度である。なかでも、本発明の効果がより優れる点で、50~200°が好ましく、50~100°がより好ましい。なお、上記捩れ角は、図2中のツイスト位相差層18中の一方の表面18aにおける面内遅相軸と、他方の表面18bにおける面内遅相軸とのなす角θに該当する。
Next, the positional relationship of the in-plane slow axis in the twist retardation layer will be described in detail with reference to FIG. The black arrows in the twist retardation layer shown in FIG. 2 intend an in-plane slow axis.
The twisting direction of the liquid crystal compound is preferably determined by the spiral sense of the circularly polarized light reflecting layer described above, but may be right twist or left twist.
The twist angle of the liquid crystal compound is 360 ° or less. The lower limit is, for example, about 20 °. Among them, 50 to 200 ° is preferable and 50 to 100 ° is more preferable in that the effect of the present invention is more excellent. The twist angle corresponds to an angle θ between the in-plane slow axis at one surface 18 a in the twist retardation layer 18 in FIG. 2 and the in-plane slow axis at the other surface 18 b.
 波長550nmで測定したツイスト位相差層の屈折率異方性Δnとツイスト位相差層の膜厚dとの積Δndは特に限定されないが、10~500nmが好ましく、50~300nmがより好ましい。 The product Δnd of the refractive index anisotropy Δn of the twist retardation layer measured at a wavelength of 550 nm and the film thickness d of the twist retardation layer is not particularly limited, but it is preferably 10 to 500 nm and more preferably 50 to 300 nm.
 ツイスト位相差層の形成に用いられる液晶化合物の種類は、特に限定されない。ツイスト位相差層としては、例えば、低分子液晶化合物を所定の方向に配向させた後、光架橋又は熱架橋によって固定化して得られる層が好ましい。 The type of liquid crystal compound used to form the twist retardation layer is not particularly limited. As the twist retardation layer, for example, a layer obtained by orientating a low molecular weight liquid crystal compound in a predetermined direction and then immobilizing it by photocrosslinking or thermal crosslinking is preferable.
 一般的に、液晶化合物はその形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(円盤状液晶化合物、及びディスコティック液晶化合物)とに分類できる。更にそれぞれ低分子タイプと高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできる。また、2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、又は、棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。 Generally, liquid crystal compounds can be classified into rod-like types (rod-like liquid crystal compounds) and disk-like types (disk-like liquid crystal compounds and discotic liquid crystal compounds) according to their shapes. Furthermore, there are low molecular type and high molecular type, respectively. In general, a polymer refers to one having a degree of polymerization of 100 or more (Polymer physics / phase transition dynamics, Masao Doi, page 2, Iwanami Shoten, 1992). Any liquid crystal compound can also be used in the present invention. In addition, two or more types of rod-like liquid crystal compounds, two or more types of discotic liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a discotic liquid crystal compound may be used.
 ツイスト位相差層は、温度及び/又は湿度による光学特性の変化を小さくできることから、重合性基を有する液晶化合物(棒状液晶化合物、又は、円盤状液晶化合物)を用いて形成することがより好ましい。液晶化合物は2種類以上の混合物でもよく、その場合、少なくとも1つが2以上の重合性基を有していることが好ましい。
 つまり、ツイスト位相差層は、重合性基を有する液晶化合物が重合によって固定されて形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。
 液晶化合物に含まれる重合性基の種類は特に限定されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基又は環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、又は、アリル基が好ましく、(メタ)アクリロイル基がより好ましい。
 このとき、「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の両方を表す表記である。
 なお、ツイスト位相差層中の液晶化合物の捩れ角は、キラル剤の種類、又はその添加濃度で調整できる。
The twist retardation layer is more preferably formed using a liquid crystal compound (a rod-like liquid crystal compound or a disc-like liquid crystal compound) having a polymerizable group, since the change in optical properties due to temperature and / or humidity can be reduced. The liquid crystal compound may be a mixture of two or more types, in which case it is preferable that at least one has two or more polymerizable groups.
That is, the twist retardation layer is preferably a layer formed by fixing a liquid crystal compound having a polymerizable group by polymerization, and in this case, it is no longer necessary to exhibit liquid crystallinity after forming a layer.
The type of the polymerizable group contained in the liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferable. More specifically, (meth) acryloyl group, vinyl group, styryl group or allyl group is preferable, and (meth) acryloyl group is more preferable.
At this time, “(meth) acryloyl group” is a notation representing both an acryloyl group and a methacryloyl group.
The twist angle of the liquid crystal compound in the twist retardation layer can be adjusted by the type of chiral agent or the concentration thereof.
 ツイスト位相差層の厚みは特に限定はされないが、0.5~10μmが好ましく、0.5~5.0μmがより好ましい。 The thickness of the twist retardation layer is not particularly limited, but is preferably 0.5 to 10 μm, and more preferably 0.5 to 5.0 μm.
 ツイスト位相差層の形成方法は特に限定されず、公知の方法が挙げられる。なかでも、生産性が優れる点で、重合性液晶化合物及びキラル剤を含む液晶組成物を所定の基板上に塗布して、加熱処理によって重合性液晶化合物を捩れ配向させて、その後、光照射又は加熱処理により重合性液晶化合物の重合を進行させて、硬化し、捩れ配向した重合性液晶化合物を固定化する方法が挙げられる。
 加熱処理の条件は特に制限されず、50℃~120℃が好ましく、60℃~100℃がより好ましい。
 光照射の際には、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2が好ましく、100~1,500mJ/cm2がより好ましい。
The formation method of a twist retardation layer is not specifically limited, A well-known method is mentioned. Among them, a liquid crystal composition containing a polymerizable liquid crystal compound and a chiral agent is coated on a predetermined substrate from the viewpoint of excellent productivity, and the polymerizable liquid crystal compound is twisted by heat treatment, and then light irradiation or light irradiation is performed. There is a method in which the polymerization of the polymerizable liquid crystal compound is advanced by heat treatment to be cured and the twist-oriented polymerizable liquid crystal compound is immobilized.
The conditions for the heat treatment are not particularly limited, and are preferably 50 ° C. to 120 ° C., and more preferably 60 ° C. to 100 ° C.
At the time of light irradiation, it is preferable to use ultraviolet light. The irradiation energy is preferably 20mJ / cm 2 ~ 50J / cm 2, more preferably 100 ~ 1,500mJ / cm 2.
 重合性液晶化合物の定義は、上述した通りである。
 ま液晶組成物中の重合性液晶化合物の含有量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましい。
The definition of the polymerizable liquid crystal compound is as described above.
The content of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and 85 to 99. More preferably, it is 5% by mass.
 キラル剤としては、特に限定はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を使用できる。
 また、キラル剤は、液晶化合物であってもよい。
 液晶組成物における、キラル剤の含有量は、液晶化合物(特に、重合性液晶化合物)量の0.01モル%~200モル%が好ましく、1モル%~30モル%がより好ましい。
The chiral agent is not particularly limited, and known compounds (for example, Liquid Crystal Device Handbook, Chapter 3 4-3, TN, chiral agents for STN, page 199, edited by Japan Society for the Promotion of Science 142th Committee, 1989) Description), isosorbide and isomannide derivatives can be used.
The chiral agent may also be a liquid crystal compound.
The content of the chiral agent in the liquid crystal composition is preferably 0.01 mol% to 200 mol%, and more preferably 1 mol% to 30 mol% of the amount of the liquid crystal compound (particularly, polymerizable liquid crystal compound).
 なお、上記液晶組成物は、更に他の成分(例えば、重合開始剤、溶媒、界面活性剤、配向制御剤、重合禁止剤、酸化防止剤、紫外線吸収剤、及び光安定化剤等)が含んでいてもよい。 The liquid crystal composition further includes other components (for example, a polymerization initiator, a solvent, a surfactant, an alignment control agent, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like). It may be.
 なお、ツイスト位相差層と円偏光反射層とを積層する方法としては、例えば、上記液晶組成物を用いて円偏光反射層上にツイスト位相差層を直接形成する方法、及び、仮支持体上に形成されたツイスト位相差層を円偏光反射層上に転写する方法が挙げられる。 In addition, as a method of laminating a twist retardation layer and a circularly polarized light reflection layer, for example, a method of directly forming a twist retardation layer on a circularly polarized light reflection layer using the above-mentioned liquid crystal composition, and a temporary support The method of transcribe | transferring the twist retardation layer formed in (4) on a circularly polarized light reflection layer is mentioned.
<その他の層>
 車両用画像表示機能付きミラー10は、画像表示装置12、1/4波長板14、円偏光反射層16、及びツイスト位相差層18以外の他の層を含んでいてもよい。
 以下、任意の部材について詳述する。
<Other layers>
The vehicle image display function-equipped mirror 10 may include other layers other than the image display device 12, the 1⁄4 wavelength plate 14, the circularly polarized light reflection layer 16, and the twist retardation layer 18.
Hereinafter, optional members will be described in detail.
(接着層)
 例えば、車両用画像表示機能付きミラーは、各層の接着のための接着層を含んでいてもよい。接着層は接着剤から形成されるものであればよい。
 接着剤としては硬化方式の観点からホットメルトタイプ、熱硬化タイプ、光硬化タイプ、反応硬化タイプ、及び硬化の不要な感圧接着タイプがある。
(Adhesive layer)
For example, the vehicle image display function mirror may include an adhesive layer for adhering each layer. The adhesive layer may be formed of an adhesive.
As the adhesive, there are a hot melt type, a thermosetting type, a photocuring type, a reactive curing type, and a pressure sensitive adhesive type which does not require curing from the viewpoint of curing system.
(支持体)
 車両用画像表示機能付きミラーは、支持体を含んでいてもよい。支持体は、上述した1/4波長板、コレステリック液晶層及びツイスト位相差層の形成の際に使用され、そのまま車両用画像表示機能付きミラーの一部を構成してもよい。
 支持体としてはポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、及びシリコーン等のプラスチックフィルムが挙げられる。
 支持体の膜厚としては、5~1000μm程度であればよい。
(Support)
The vehicle image display function mirror may include a support. The support may be used in the formation of the above-mentioned quarter-wave plate, cholesteric liquid crystal layer and twist retardation layer, and may constitute a part of the mirror with an image display function for a vehicle as it is.
Examples of the support include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, and plastic films such as silicones.
The thickness of the support may be about 5 to 1000 μm.
(配向層)
 車両用画像表示機能付きミラーは、1/4波長板、コレステリック液晶層及びツイスト位相差層の形成の際に液晶組成物が塗布される下層として、配向層を含んでいてもよい。
 配向層の厚さは0.01~5.0μmが好ましく、0.05~2.0μmがより好ましい。
 配向層を設けずに仮支持体表面、又は仮支持体をラビング処理した表面に、液晶組成物を塗布してもよい。
(Alignment layer)
The mirror with an image display function for vehicles may contain an orientation layer as a lower layer to which a liquid crystal composition is applied at the time of formation of a quarter wavelength plate, a cholesteric liquid crystal layer, and a twist phase contrast layer.
The thickness of the alignment layer is preferably 0.01 to 5.0 μm, more preferably 0.05 to 2.0 μm.
The liquid crystal composition may be coated on the surface of the temporary support or on the surface of the temporary support subjected to rubbing treatment without providing the alignment layer.
<車両用画像表示機能付きミラーの製造方法>
 本発明の車両用画像表示機能付きミラーの製造方法は特に制限されず、例えば、画像表示装置の画像表示面に、ツイスト位相差層、円偏光反射層及び1/4波長板を含む積層体を1/4波長板側で接着して作製できる。
 なお、各層の製造方法は上述した通りである。
<Method of manufacturing mirror with image display function for vehicle>
The method for producing a mirror with an image display function for vehicles according to the present invention is not particularly limited, and, for example, a laminate including a twist retardation layer, a circularly polarized light reflection layer and a quarter wavelength plate on the image display surface of the image display device. It can be produced by bonding on the quarter wavelength plate side.
In addition, the manufacturing method of each layer is as having mentioned above.
<用途>
 車両用画像表示機能付きミラーは、車両のルームミラー(インナーミラー)として使用できる。車両用画像表示機能付きミラーは、ルームミラーとしての使用のため、フレーム、ハウジング、及び車両本体に取り付けるための支持アーム等を有していてもよい。または、車両用画像表示機能付きミラーはルームミラーへの組み込み用に成形されたものであってもよい。
<Use>
A mirror with an image display function for a vehicle can be used as a rearview mirror (inner mirror) of a vehicle. The vehicle image display function mirror may have a frame, a housing, a support arm for mounting on a vehicle body, and the like for use as a rearview mirror. Alternatively, the vehicle image display function mirror may be one that is shaped for incorporation into a rear view mirror.
 車両用画像表示機能付きミラーは、板状又はフィルム状であればよく、曲面を有していてもよい。車両用画像表示機能付きミラーの前面は平坦であってもよく、湾曲していてもよい。湾曲させて、凸曲面を前面側とすることにより、広角的に後方視野等を視認できるワイドミラーとすることも可能である。
 湾曲は、上下方向、左右方向、又は、上下方向及び左右方向にあればよい。また、湾曲は、曲率半径が、通常、500~3000mmであり、1000~2500mmが好ましい。曲率半径は、断面で湾曲部分の外接円を仮定した場合の、この外接円の半径である。
The mirror with an image display function for vehicles may be plate-like or film-like, and may have a curved surface. The front surface of the vehicle image display function mirror may be flat or curved. It is also possible to make it the wide mirror which can visually recognize a back visual field etc. in a wide angle by curving and making a convex curve into the front side.
The curvature may be in the vertical direction, the horizontal direction, or the vertical direction and the horizontal direction. The curvature is usually 500 to 3000 mm, preferably 1000 to 2500 mm. The radius of curvature is the radius of the circumscribed circle when assuming the circumscribed circle of the curved portion in the cross section.
<<第2実施態様>>
 以下に、本発明の車両用画像表示機能付きミラーの第2実施態様について図面を参照して説明する。図3に、本発明の車両用画像表示機能付きミラーの第2実施態様の断面図を示す。
 車両用画像表示機能付きミラー100は、画像表示装置12と、1/4波長板14と、コレステリック液晶層を含む円偏光反射層16と、ツイスト位相差層18と、前面板26とをこの順で含む。なお、上記円偏光反射層16とツイスト位相差層18と前面板26とによって、本発明の車両用ミラーが構成される。なお、前面板26が、視認側にある。
 図3に示す車両用画像表示機能付きミラー100は、前面板26を含む点を除いて、図1に示す車両用画像表示機能付きミラー10と同様の層を含むものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、以下では前面板26の構成について詳述する。
<< Second embodiment >>
Hereinafter, a second embodiment of the mirror with an image display function for a vehicle according to the present invention will be described with reference to the drawings. FIG. 3 shows a cross-sectional view of a second embodiment of the mirror with an image display function of the present invention.
The mirror 100 for an image display function for a vehicle includes an image display device 12, a quarter wavelength plate 14, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, a twist retardation layer 18, and a front plate 26 in this order Include. The circularly polarized light reflection layer 16, the twist retardation layer 18, and the front plate 26 constitute the vehicle mirror of the present invention. The front plate 26 is on the viewing side.
Since the mirror 100 with the image display function for vehicles shown in FIG. 3 includes the same layer as the mirror 10 with the image display function shown in FIG. 1 except that the front plate 26 is included, Are attached with the same reference numerals, the description thereof is omitted, and the configuration of the front plate 26 will be described in detail below.
<前面板>
 前面板はツイスト位相差層より大きくてもよく、同じであってもよく、小さくてもよい。前面板の一部にツイスト位相差層が接着されており、その他の部位に金属箔等の他の種類の反射層が接着又は形成されていてもよい。
 一方、前面板の全面にツイスト位相差層が配置してもよい。つまり、前面板、ツイスト位相差層、円偏光反射層、及び画像表示装置の画像表示部を同面積として形成することにより、ミラー全面での画像表示も可能である。
<Front plate>
The front plate may be larger than, the same as, or smaller than the twist retardation layer. The twist retardation layer may be bonded to a part of the front plate, and other types of reflective layers such as metal foil may be bonded or formed on other portions.
On the other hand, the twist retardation layer may be disposed on the entire surface of the front plate. That is, by forming the front plate, the twist retardation layer, the circularly polarized light reflection layer, and the image display unit of the image display device as the same area, image display on the entire surface of the mirror is also possible.
 前面板の種類は、特に限定されない。前面板としては、通常のミラーの作製に用いられるガラス板、又はプラスチック板が挙げられる。前面板は可視光領域で透明であって、複屈折が小さいことが好ましい。プラスチックフィルムとしては、ポリエチレンテレフタレート(PET)等のポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、及びシリコーン等が挙げられる。
 前面板としては、なかでも、ガラス板が好ましい。
The type of front plate is not particularly limited. The front plate includes a glass plate or a plastic plate used for producing a conventional mirror. The front plate is preferably transparent in the visible light range and has a small birefringence. Examples of the plastic film include polyesters such as polyethylene terephthalate (PET), polycarbonates, acrylic resins, epoxy resins, polyurethanes, polyamides, polyolefins, cellulose derivatives, silicones, and the like.
Among them, a glass plate is preferable as the front plate.
 前面板の好適態様としては、ヘイズが1以下である前面板が好ましい。上記ヘイズは、0.1以下がより好ましい。下限は特に限定されない。
 ヘイズが上記範囲内であれば、画像の視認性がより向上される。
 ヘイズの測定方法としては、一般的なヘイズメーターを用いることができ、例えば、NDH4000(日本電色工業株式会社製)が測定装置として挙げられる。
 前面板の膜厚としては、100μm~10mm程度であればよく、200μm~5mmが好ましく、500~1000μmがより好ましい。
A preferred embodiment of the front plate is a front plate having a haze of 1 or less. The haze is more preferably 0.1 or less. The lower limit is not particularly limited.
If the haze is within the above range, the visibility of the image is further improved.
As a method of measuring the haze, a general haze meter can be used, and for example, NDH4000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) can be mentioned as a measuring device.
The thickness of the front plate may be about 100 μm to 10 mm, preferably 200 μm to 5 mm, and more preferably 500 to 1000 μm.
<車両用画像表示機能付きミラー100の作製方法>
 車両用画像表示機能付きミラー100は、例えば、前面板上で、ツイスト位相差層、円偏光反射層、及び1/4波長板を前面板側からこの順で形成して積層体を得た後、又は、仮支持体上に形成された1/4波長板、円偏光反射層及びツイスト位相差層を、前面板に順に転写することにより積層体を得た後、画像表示装置の画像表示面に、上記積層体を1/4波長板側で接着して作製できる。
<Method of producing mirror 100 with image display function for vehicle>
For example, after forming a twist retardation layer, a circularly polarized light reflection layer, and a quarter-wave plate in this order from the front plate side on the front plate, the mirror 100 with an image display function for a vehicle is obtained Alternatively, after a laminate is obtained by sequentially transferring a quarter wavelength plate, a circularly polarized light reflection layer, and a twist retardation layer formed on a temporary support to a front plate, the image display surface of the image display device In addition, the laminate can be manufactured by bonding on the quarter wavelength plate side.
<<第3実施態様>>
 以下に、本発明の車両用画像表示機能付きミラーの第3実施態様について図面を参照して説明する。図4に、本発明の車両用画像表示機能付きミラーの第3実施態様の断面図を示す。
 車両用画像表示機能付きミラー120は、画像表示装置12と、1/4波長板14と、コレステリック液晶層を含む円偏光反射層16と、透明基板28と、ツイスト位相差層18と、前面板26とをこの順で含む。つまり、ツイスト位相差層18が、透明基板28と前面板26との間に配置される。なお、上記円偏光反射層16と透明基板28とツイスト位相差層18と前面板26とによって、本発明の車両用ミラーが構成される。なお、前面板26が、視認側にある。
 図4に示す車両用画像表示機能付きミラー120は、透明基板28を含む点を除いて、図3に示す車両用画像表示機能付きミラー100と同様の層を含むものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、以下では透明基板28の構成について詳述する。
<< Third Embodiment >>
Hereinafter, a third embodiment of the mirror with an image display function for a vehicle according to the present invention will be described with reference to the drawings. FIG. 4 shows a cross-sectional view of a third embodiment of the mirror with an image display function for a vehicle according to the present invention.
A mirror 120 with an image display function for vehicle includes an image display 12, a quarter wavelength plate 14, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, a transparent substrate 28, a twist retardation layer 18, and a front plate And 26 in this order. That is, the twist retardation layer 18 is disposed between the transparent substrate 28 and the front plate 26. Here, the vehicle mirror of the present invention is constituted by the circularly polarized light reflection layer 16, the transparent substrate 28, the twist retardation layer 18 and the front plate 26. The front plate 26 is on the viewing side.
A mirror 120 for an image display function for a vehicle shown in FIG. 4 includes the same layers as the mirror 100 for an image display function shown in FIG. 3 except that the transparent substrate 28 is included. Are attached with the same reference numerals, the description thereof is omitted, and the configuration of the transparent substrate 28 will be described in detail below.
<透明基板>
 透明基板の種類は、特に限定されない。透明基板としては、通常のミラーの作製に用いられるガラス板又はプラスチック板が挙げられる。透明基板は可視光領域で透明であって、複屈折が小さいことが好ましい。透明基板の種類としては、具体的に、上述した前面板と同様のものが挙げられる。透明基板としては、なかでも、ガラス板が好ましい。
<Transparent substrate>
The type of transparent substrate is not particularly limited. As a transparent substrate, the glass plate or plastic plate used for preparation of a normal mirror is mentioned. The transparent substrate is preferably transparent in the visible light range and has a small birefringence. As a kind of transparent substrate, specifically, the same one as the front plate described above can be mentioned. Among them, a glass plate is preferable as the transparent substrate.
 透明基板の透明度としては、ヘイズが1以下であることが好ましい。上記ヘイズは、0.1以下がより好ましい。下限は特に限定されない。ヘイズの測定方法としては、上述のとおりである。
 透明基板の膜厚としては、100μm~10mm程度であればよく、200μm~5.0mmが好ましく、500~1000μmがより好ましい。
The transparency of the transparent substrate is preferably 1 or less. The haze is more preferably 0.1 or less. The lower limit is not particularly limited. The method of measuring the haze is as described above.
The thickness of the transparent substrate may be about 100 μm to 10 mm, preferably 200 μm to 5.0 mm, and more preferably 500 to 1000 μm.
<車両用画像表示機能付きミラー120の作製方法>
 車両用画像表示機能付きミラー120は、例えば、前面板上でツイスト位相差層を形成して得た積層体1と、透明基板上で、円偏光反射層及び1/4波長板を透明基板側からこの順で形成して得た積層体2とを、画像表示装置の画像表示面に接着して作製できる。なお、積層体1は、ツイスト位相差層側で積層体2と接着される。また、積層体2は、1/4波長板側で画像表示装置と接着される。
 また、透明基板及び前面板の種類がいずれもガラスである場合、車両用画像表示機能付きミラー120の製造方法としては、まず、ツイスト位相差層を挟みこんだ合わせガラスを作製し、この合わせガラスを他の部材と接着する製造方法であってもよい。
<Method of producing mirror 120 with image display function for vehicle>
The image display function-equipped mirror 120 for a vehicle includes, for example, a laminate 1 obtained by forming a twist retardation layer on a front plate, and a circularly polarized light reflection layer and a quarter wavelength plate on the transparent substrate side on a transparent substrate. The laminate 2 obtained by forming in this order can be manufactured by bonding to the image display surface of the image display device. The laminate 1 is adhered to the laminate 2 on the twist retardation layer side. In addition, the laminate 2 is bonded to the image display device on the quarter wavelength plate side.
In addition, when the types of the transparent substrate and the front plate are both glass, as a method of manufacturing the mirror 120 with an image display function for a vehicle, first, a laminated glass having a twist retardation layer sandwiched is produced, and this laminated glass May be bonded to another member.
<<第4実施態様>>
 以下に、本発明の車両用画像表示機能付きミラーの第4実施態様について図面を参照して説明する。図5に、本発明の車両用画像表示機能付きミラーの第4実施態様の断面図を示す。
 車両用画像表示機能付きミラー140は、画像表示装置12と、1/4波長板14と、透明基板28と、コレステリック液晶層を含む円偏光反射層16と、ツイスト位相差層18と、前面板26とをこの順で含む。つまり、ツイスト位相差層18及び円偏光反射層16が、透明基板28と前面板26との間に配置される。なお、透明基板28と円偏光反射層16とツイスト位相差層18と前面板26とによって、本発明の車両用ミラーが構成される。なお、前面板26が、視認側にある。
 図5に示す車両用画像表示機能付きミラー140は、透明基板28の配置が異なる点を除いて、図4に示す車両用画像表示機能付きミラー120と同様の層を含むものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
<< Fourth embodiment >>
Hereinafter, a fourth embodiment of the mirror with an image display function for a vehicle according to the present invention will be described with reference to the drawings. FIG. 5 shows a cross-sectional view of a fourth embodiment of the mirror for image display function for a vehicle according to the present invention.
A mirror 140 with an image display function for a vehicle includes an image display 12, a quarter wavelength plate 14, a transparent substrate 28, a circularly polarized light reflection layer 16 including a cholesteric liquid crystal layer, a twist retardation layer 18, and a front plate And 26 in this order. That is, the twist retardation layer 18 and the circularly polarized light reflection layer 16 are disposed between the transparent substrate 28 and the front plate 26. The transparent substrate 28, the circularly polarized light reflection layer 16, the twist retardation layer 18, and the front plate 26 constitute the vehicle mirror of the present invention. The front plate 26 is on the viewing side.
The mirror 140 for an image display function for vehicles shown in FIG. 5 includes the same layers as the mirror 120 for an image display function shown in FIG. 4 except that the arrangement of the transparent substrate 28 is different. The same reference numerals are assigned to the elements, and the description thereof is omitted.
<車両用画像表示機能付きミラー140の作製方法>
 車両用画像表示機能付きミラー140は、例えば、前面板上でツイスト位相差層及び円偏光反射層を前面板側からこの順で形成して得た積層体3と、透明基板上に1/4波長板を形成して得た積層体4とを、画像表示装置の画像表示面に接着して作製できる。なお、積層体4は、円偏光反射層側で積層体5と接着される。また、積層体5は、1/4波長板側で画像表示装置と接着される。
<Method of producing mirror 140 with image display function for vehicle>
The image display function-equipped mirror 140 for a vehicle is, for example, a laminate 3 obtained by forming a twist retardation layer and a circularly polarized light reflection layer in this order from the front plate side on the front plate, and 1/4 on the transparent substrate. The laminate 4 obtained by forming the wave plate can be manufactured by bonding to the image display surface of the image display device. The laminate 4 is bonded to the laminate 5 on the side of the circularly polarized light reflection layer. In addition, the laminate 5 is bonded to the image display device on the quarter wavelength plate side.
<<その他の実施形態>>
 第1~第4実施形態では、円偏光反射層として、コレステリック液晶層を含む円偏光反射層を示したが、円偏光反射層としてはこの態様に限定されず、例えば、1/4波長板と反射型の直線偏光子(以下、反射型直線偏光子ともいう。)とを含む円偏光反射層であってもよい。
 また、本発明の車両用ミラーは、円偏光反射層16、ツイスト位相差層18、並びに任意で含む前面板26及び透明基板28以外に、その他の層(例えば、接着層、支持体、配向層、及び1/4波長板等)を更に含んでいてもよい。
<< Other Embodiments >>
In the first to fourth embodiments, the circularly polarized light reflecting layer including the cholesteric liquid crystal layer is shown as the circularly polarized light reflecting layer, but the circularly polarized light reflecting layer is not limited to this embodiment. It may be a circularly polarized light reflective layer including a reflective linear polarizer (hereinafter also referred to as a reflective linear polarizer).
In addition to the circularly polarized light reflection layer 16, the twist retardation layer 18, and optionally the front plate 26 and the transparent substrate 28, the vehicle mirror of the present invention includes other layers (for example, an adhesive layer, a support, an orientation layer , And a quarter wave plate etc.) may be further included.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、及び、操作等は本発明の趣旨から逸脱しない限り適宜変更できる。従って、本発明の範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples. Materials, reagents, substance amounts and proportions thereof, operations, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention is not limited to the following examples.
〔実施例1:車両用ミラー(ハーフミラー)の作製〕
(1/4波長板用塗布液の調製)
 下記に示す成分を混合し、1/4波長板用塗布液を調製した。
 ・下記に示す棒状液晶化合物:化合物1        100質量部
 ・開始剤:IRGACURE 819(BASF社製)     4質量部
 ・下記に示す配向制御剤:化合物2          0.1質量部
 ・架橋剤:A-TMMT(新中村化学工業社製)      1質量部
 ・溶剤:2-ブタノン(和光純薬社製)        170質量部
Example 1 Production of Vehicle Mirror (Half Mirror)
(Preparation of coating solution for quarter-wave plate)
The components shown below were mixed to prepare a coating solution for a quarter wave plate.
-Rod-like liquid crystal compound shown below: 100 parts by mass of compound 1-Initiator: 4 parts by mass of IRGACURE 819 (manufactured by BASF)-Alignment control agent shown below: 0.1 parts by mass of compound 2-Crosslinking agent: A-TMMT ( Made by Shin-Nakamura Chemical Co., Ltd. 1 part by mass Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
 なお、架橋剤「A-TMMT」は、ペンタエリスリトールテトラアクリレートを意図する。 The crosslinking agent "A-TMMT" is intended to be pentaerythritol tetraacrylate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、上記化合物2については、特開2005-99248号公報に記載の方法で製造した。 The compound 2 was produced by the method described in JP-A-2005-99248.
(円偏光反射層用塗布液の調製)
≪コレステリック液晶層用塗布液1の調製≫
 下記に示す成分を混合し、コレステリック液晶層用塗布液1を調製した。コレステリック液晶層用塗布液1により形成されるコレステリック液晶層の選択反射帯域の中心波長(「選択反射中心波長」)は、630nmである。なお、作製されたコレステリック液晶層は右円偏光反射層であった。
 ・上記棒状液晶化合物:化合物1           100質量部
 ・右捩れ用キラル剤:パリオカラーLC756(BASF社製)
                           4.7質量部
 ・開始剤:IRGACURE 819(BASF社製)     4質量部
 ・上記配向制御剤:化合物2             0.1質量部
 ・架橋剤:A-TMMT(新中村化学工業社製)      1質量部
 ・溶剤:2-ブタノン(和光純薬社製)        170質量部
(Preparation of coating solution for circularly polarized light reflective layer)
<< Preparation of Coating Liquid 1 for Cholesteric Liquid Crystal Layer >>
The components shown below were mixed to prepare a coating liquid 1 for a cholesteric liquid crystal layer. The central wavelength ("selective reflection center wavelength") of the selective reflection band of the cholesteric liquid crystal layer formed by the coating liquid 1 for the cholesteric liquid crystal layer is 630 nm. The produced cholesteric liquid crystal layer was a right circularly polarized light reflection layer.
The above rod-like liquid crystal compound: 100 parts by mass of compound 1 Chiral agent for right twist: PARIO COLOR LC756 (manufactured by BASF AG)
4.7 parts by mass-Initiator: 4 parts by mass of IRGACURE 819 (manufactured by BASF Corp.)-Alignment control agent: 0.1 parts by mass of compound 2-Crosslinking agent: 1 part by mass of A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.) Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
≪コレステリック液晶層用塗布液2の調製≫
 下記に示す成分を混合し、コレステリック液晶層用塗布液2を調製した。コレステリック液晶層用塗布液2により形成されるコレステリック液晶層の選択反射帯域の中心波長(「選択反射中心波長」)は、540nmである。なお、作製されたコレステリック液晶層は右円偏光反射層であった。
 ・上記棒状液晶化合物:化合物1           100質量部
 ・右捩れ用キラル剤:パリオカラーLC756(BASF社製)
                           5.5質量部
 ・開始剤:IRGACURE 819(BASF社製)     4質量部
 ・上記配向制御剤:化合物2             0.1質量部
 ・架橋剤:A-TMMT(新中村化学工業社製)      1質量部
 ・溶剤:2-ブタノン(和光純薬社製)        170質量部
<< Preparation of Coating Liquid 2 for Cholesteric Liquid Crystal Layer >>
The components shown below were mixed to prepare a coating liquid 2 for a cholesteric liquid crystal layer. The central wavelength ("selective reflection center wavelength") of the selective reflection band of the cholesteric liquid crystal layer formed by the coating liquid 2 for cholesteric liquid crystal layer is 540 nm. The produced cholesteric liquid crystal layer was a right circularly polarized light reflection layer.
The above rod-like liquid crystal compound: 100 parts by mass of compound 1 Chiral agent for right twist: PARIO COLOR LC756 (manufactured by BASF AG)
5.5 parts by mass Initiator: IRGACURE 819 (manufactured by BASF) 4 parts by mass Alignment control agent: 0.1 part by mass Compound 2 Crosslinking agent: A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1 part by mass Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
≪コレステリック液晶層用塗布液3の調製≫
 下記に示す成分を混合し、コレステリック液晶層用塗布液3を調製した。コレステリック液晶層用塗布液3により形成されるコレステリック液晶層の選択反射帯域の中心波長(「選択反射中心波長」)は、450nmである。なお、作製されたコレステリック液晶層は右円偏光反射層であった。
 ・上記棒状液晶化合物:化合物1           100質量部
 ・右捩れ用キラル剤:パリオカラーLC756(BASF社製)
                           6.7質量部
 ・開始剤:IRGACURE 819(BASF社製)     4質量部
 ・上記配向制御剤:化合物2             0.1質量部
 ・架橋剤:A-TMMT(新中村化学工業社製)      1質量部
 ・溶剤:2-ブタノン(和光純薬社製)        170質量部
<< Preparation of Coating Liquid 3 for Cholesteric Liquid Crystal Layer >>
The components shown below were mixed to prepare a coating liquid 3 for a cholesteric liquid crystal layer. The central wavelength ("selective reflection center wavelength") of the selective reflection band of the cholesteric liquid crystal layer formed by the coating liquid 3 for the cholesteric liquid crystal layer is 450 nm. The produced cholesteric liquid crystal layer was a right circularly polarized light reflection layer.
The above rod-like liquid crystal compound: 100 parts by mass of compound 1 Chiral agent for right twist: PARIO COLOR LC756 (manufactured by BASF AG)
6.7 parts by mass Initiator: IRGACURE 819 (manufactured by BASF) 4 parts by mass Alignment control agent: 0.1 parts by mass Compound 2 Crosslinking agent: A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1 part by mass Solvent: 2-butanone (manufactured by Wako Pure Chemical Industries, Ltd.) 170 parts by mass
(積層体Aの作製)
≪1/4波長板の形成≫
 仮支持体(280mm×85mm)として、東洋紡株式会社製PET(ポリエチレンテレフタラート)フィルム(コスモシャインA4100、厚み:100μm)を用意し、仮支持体表面をラビング処理(レーヨン布、圧力:0.1kgf(0.98N)、回転数:1000rpm、搬送速度:10m/min、回数:1往復)した。
(Production of Laminate A)
«Formation of quarter-wave plate»
A PET (polyethylene terephthalate) film (Cosmo Shine A4100, thickness: 100 μm) manufactured by Toyobo Co., Ltd. is prepared as a temporary support (280 mm × 85 mm), and the surface of the temporary support is rubbed (rayon cloth, pressure: 0.1 kgf) (0. 98 N), rotation speed: 1000 rpm, conveyance speed: 10 m / min, frequency: 1 reciprocation).
 次に、ワイヤーバーを用いてPETフィルムのラビング処理面に1/4波長板用塗布液を塗布して塗膜を形成し、これを乾燥させた。30℃のホットプレート上に、得られた塗膜付きPETフィルムを置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて、上記塗膜に対して6秒間のUV(紫外線)照射を実施し、コレステリック液晶相を固定した。上記手順により、膜厚0.8μmの1/4波長板を得た。 Next, a coating solution for a quarter wave plate was applied to the rubbing-treated surface of the PET film using a wire bar to form a coating, which was then dried. Place the obtained coated film with PET film on a hot plate at 30 ° C., and apply 6 seconds to the above coating film with an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Inc. UV (ultraviolet) radiation was performed to fix the cholesteric liquid crystal phase. According to the above procedure, a 1⁄4 wavelength plate with a film thickness of 0.8 μm was obtained.
≪円偏光反射層の形成≫
 後述する手順により、得られた仮支持体付き1/4波長板上に円偏光反射層を積層した。なお、円偏光反射層は、赤色光の波長域に選択反射帯域の中心波長を有するコレステリック液晶層1と、緑色光の波長域に選択反射帯域の中心波長を有するコレステリック液晶層2と、青色光の波長域に選択反射帯域の中心波長を有するコレステリック液晶層3との3層構成とした。
«Formation of circularly polarized light reflection layer»
A circularly polarized light reflective layer was laminated on the obtained temporary support-equipped quarter-wave plate according to the procedure described later. The circularly polarized light reflection layer includes a cholesteric liquid crystal layer 1 having a central wavelength of a selective reflection band in the wavelength range of red light, a cholesteric liquid crystal layer 2 having a central wavelength of a selective reflection band in the wavelength range of green light, and blue light The three-layer configuration with the cholesteric liquid crystal layer 3 having the central wavelength of the selective reflection band in the wavelength range of
 1/4波長板面に、ワイヤーバーを用いてコレステリック液晶層用塗布液1を塗布して塗膜を形成し、これを乾燥させた。30℃のホットプレート上に、得られた塗膜付き積層体フィルムを置き、フュージョンUVシステムズ株式会社製無電極ランプ「Dバルブ」(60mW/cm2)にて、上記塗膜に対して6秒間のUV(紫外線)照射を実施することによりコレステリック液晶相を固定し、膜厚3.5μmのコレステリック液晶層1を得た。更に、コレステリック液晶層用塗布液2及びコレステリック液晶層用塗布液3をこの順で用いて同様の工程を繰り返した。上記手順により、仮支持体付き1/4波長板と3層のコレステリック液晶層から構成される円偏光反射層との積層体(積層体A)を得た。 The coating liquid 1 for cholesteric liquid crystal layers was apply | coated to a quarter wavelength plate surface using a wire bar, the coating film was formed, and this was dried. The obtained coated film with a coated film is placed on a hot plate at 30 ° C., and for 6 seconds with respect to the above-mentioned coated film using an electrodeless lamp “D bulb” (60 mW / cm 2 ) manufactured by Fusion UV Systems Inc. The cholesteric liquid crystal phase was fixed by carrying out UV (ultraviolet) irradiation of the above to obtain a cholesteric liquid crystal layer 1 having a film thickness of 3.5 μm. Furthermore, the same steps were repeated using the coating liquid 2 for the cholesteric liquid crystal layer and the coating liquid 3 for the cholesteric liquid crystal layer in this order. According to the above procedure, a laminate (laminate A) of a temporary support-equipped quarter-wave plate and a circularly polarized light reflection layer composed of three cholesteric liquid crystal layers was obtained.
 なお、積層体Aにおいて、コレステリック液晶層2の膜厚は3.0μm、コレステリック液晶層3の膜厚は2.7μmであった。
 積層体Aの透過スペクトルを分光光度計(日本分光株式会社製、V-670)で測定したところ、630nm、540nm、及び450nmに反射ピークを有する透過スペクトルが得られた。
In the laminate A, the film thickness of the cholesteric liquid crystal layer 2 was 3.0 μm, and the film thickness of the cholesteric liquid crystal layer 3 was 2.7 μm.
The transmission spectrum of the layered product A was measured by a spectrophotometer (V-670, manufactured by JASCO Corporation), and transmission spectra having reflection peaks at 630 nm, 540 nm, and 450 nm were obtained.
(ツイスト位相差層用塗布液の調製)
 25℃に保温された容器内にて下記に示す成分を混合し、ツイスト位相差層用塗布液1を調製した。
 ・下記に示す液晶化合物1と下記に示す液晶化合物2との混合物
(組成比:液晶化合物1/液晶化合物2=80質量%/20質量%) 1g
 ・下記に示すキラル剤2                  3mg
 ・下記に示す水平配向剤1                 1mg
 ・開始剤:IRGACURE 907 (BASF社製)    40mg
 ・MEK(メチルエチルケトン)             1.6g
(Preparation of coating solution for twist retardation layer)
The components shown below were mixed in a container kept at 25 ° C. to prepare a coating solution 1 for twist retardation layer.
・ A mixture of liquid crystal compound 1 shown below and liquid crystal compound 2 shown below (composition ratio: liquid crystal compound 1 / liquid crystal compound 2 = 80 mass% / 20 mass%) 1 g
-Chiral agent 2 3 mg shown below
・ Horizontal alignment agent 1 1 mg shown below
-Initiator: IRGACURE 907 (manufactured by BASF) 40 mg
-MEK (methyl ethyl ketone) 1.6 g
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(ツイスト位相差層1の形成)
 得られた積層体Aの円偏光反射層面に、調製したツイスト位相差層用塗布液1を、ワイヤーバーを用いて塗布し、室温にて乾燥することにより塗膜を得た。得られた塗膜付き積層体Aを、100℃のホットプレート上に1分間静置し、塗膜の加熱処理を行った。
 次に、加熱処理後の塗膜に対して、窒素雰囲気下(酸素濃度500ppm以下)、室温にて、一定時間UV照射を行い、塗膜を硬化させた。上記手順により、膜厚1.25μmのツイスト位相差層と積層体Aとの積層体(積層体B)を形成した。
 次いで、得られた積層体B中のツイスト位相差層と対向するように粘着剤(厚み30μm、綜研化学製「SK2057」)を介してガラス基板(厚み1mm、松浪硝子工業製)を貼り合せた後、仮支持体である東洋紡株式会社製PETのみを剥離した。
(Formation of twist retardation layer 1)
The prepared coating solution 1 for a twist retardation layer was applied to the surface of the circularly polarized light reflective layer of the obtained laminate A using a wire bar, and a coating film was obtained by drying at room temperature. The obtained coated laminate A was allowed to stand on a hot plate at 100 ° C. for 1 minute to perform heat treatment of the coating.
Next, UV irradiation was performed for a fixed time at room temperature under a nitrogen atmosphere (oxygen concentration of 500 ppm or less) on the coated film after the heat treatment to cure the coated film. According to the above-described procedure, a laminate (laminate B) of a twist retardation layer having a film thickness of 1.25 μm and the laminate A was formed.
Then, a glass substrate (thickness: 1 mm, manufactured by Matsunami Glass Industrial Co., Ltd.) was bonded via an adhesive (thickness: 30 μm, manufactured by Soken Chemical Co., Ltd., “SK2057”) to face the twist retardation layer in the obtained laminate B After that, only PET manufactured by Toyobo Co., Ltd., which is a temporary support, was peeled off.
 得られたツイスト位相差層にはその厚み方向に沿って延びる螺旋軸に沿って捩れ配向した液晶化合物が含まれ、液晶化合物の捩れ角は、70°であった(図2参照)。なお、ツイスト位相差層の液晶化合物の捩れ角θは、後述する方法により測定した。
 また、コレステリック液晶層1、コレステリック液晶層2、コレステリック液晶層3、及びツイスト位相差層は、いずれも螺旋センスが同じ(右捩れ)である。
The obtained twist retardation layer contained a liquid crystal compound twisted and oriented along a helical axis extending along the thickness direction, and the twist angle of the liquid crystal compound was 70 ° (see FIG. 2). The twist angle θ of the liquid crystal compound of the twist retardation layer was measured by the method described later.
The cholesteric liquid crystal layer 1, the cholesteric liquid crystal layer 2, the cholesteric liquid crystal layer 3, and the twist retardation layer all have the same helical sense (right twist).
(ツイスト位相差層における捩れ角θの測定)
 ツイスト位相差層における捩れ角θについては、下記の方法により測定した。
 仮支持体(280mm×85mm)として、東洋紡株式会社製PET(ポリエチレンテレフタラート)フィルム(コスモシャインA4100、厚み:100μm)を用意し、仮支持体表面をラビング処理した。
 上記仮支持体上に、上記ツイスト位相差層用塗布液1を、ワイヤーバーを用いて塗布し、室温にて乾燥することにより塗膜を得た。得られた塗膜付き仮支持体を、100℃のホットプレート上に1分間静置し、塗膜の加熱処理を行った。
 次に、加熱処理後の塗膜に対して、窒素雰囲気下(酸素濃度500ppm以下)、室温にて、一定時間UV照射を行い、塗膜を硬化させた。上記手順により、膜厚1.25μmのツイスト位相差層を形成した。
 次いで、ツイスト位相差層付き仮支持体を試料サイズ50mm×50mmに切り出した。次に、市販の粘着剤「SK2057」を用いて、切り出したツイスト位相差層付き仮支持体中のツイスト位相差層を光学用ガラスに転写し、測定試料を作製した。
 AxoScan OPMF-1(オプトサイエンス社製)を用いて、得られた測定試料を測定し、付属の装置解析ソフトウエアを用いて、ツイスト位相差層中の液晶化合物の捩れ角θを求めた。
(Measurement of twist angle θ in twist retardation layer)
The twist angle θ in the twist retardation layer was measured by the following method.
As a temporary support (280 mm × 85 mm), a PET (polyethylene terephthalate) film (Cosmo Shine A4100, thickness: 100 μm) manufactured by Toyobo Co., Ltd. was prepared, and the surface of the temporary support was subjected to rubbing treatment.
The coating solution 1 for the twist retardation layer was coated on the temporary support using a wire bar, and dried at room temperature to obtain a coated film. The obtained film-coated temporary support was allowed to stand on a hot plate at 100 ° C. for 1 minute to carry out heat treatment of the film.
Next, UV irradiation was performed for a fixed time at room temperature under a nitrogen atmosphere (oxygen concentration of 500 ppm or less) on the coated film after the heat treatment to cure the coated film. According to the above-described procedure, a twist retardation layer having a thickness of 1.25 μm was formed.
Subsequently, a temporary support with a twist retardation layer was cut out to a sample size of 50 mm × 50 mm. Next, using a commercially available adhesive “SK 2057”, the twisted retardation layer in the cut temporary support with twisted retardation layer was transferred to an optical glass to prepare a measurement sample.
The obtained measurement sample was measured using AxoScan OPMF-1 (manufactured by Opto Science), and the twist angle θ of the liquid crystal compound in the twist retardation layer was determined using the attached device analysis software.
〔実施例2及び実施例3:車両用ミラー(ハーフミラー)の作製〕
 上記ツイスト位相差層用塗布液1の調製において、キラル剤2を表1に記載の配合量とした以外は同様の方法により、ツイスト位相差層用塗布液を調製した。次いで、得られた各ツイスト位相差層用塗布液を用いて、実施例1と同様の方法により、実施例2、及び実施例3の車両用ミラー(ハーフミラー)を作製した。
 実施例2の車両用ミラー中のツイスト位相差層において、捩れ角θは120°であった。また、実施例3の車両用ミラー中のツイスト位相差層においては、捩れ角θは40°であった。
[Example 2 and Example 3: Production of Vehicle Mirror (Half Mirror)]
A coating solution for twist retardation layer was prepared in the same manner as in the preparation of coating solution 1 for twist retardation layer except that the amount of chiral agent 2 was changed to the amount shown in Table 1. Subsequently, the mirror for a vehicle (half mirror) of Example 2 and Example 3 was produced by the method similar to Example 1 using each obtained coating liquid for twist phase difference layers.
In the twist retardation layer in the vehicle mirror of Example 2, the twist angle θ was 120 °. Further, in the twist retardation layer in the vehicle mirror of Example 3, the twist angle θ was 40 °.
〔比較例1:車両用ミラー(ハーフミラー)の作製〕
 上記ツイスト位相差層を形成しなかった以外は実施例1と同様の方法により、比較例1の車両用ミラー(ハーフミラー)を作製した。
Comparative Example 1: Production of Vehicle Mirror (Half Mirror)
A vehicle mirror (half mirror) of Comparative Example 1 was produced in the same manner as in Example 1 except that the twist retardation layer was not formed.
〔車両用画像表示機能付きミラーの作製〕
 得られた実施例1~3、及び比較例1の車両用ミラーに、更に画像表示装置を接着し、それぞれ、実施例4~6、及び比較例2の車両用画像表示機能付きミラーを作製した。
 以下に、車両用画像表示機能付きミラーの具体的な作製方法を示す。
 画像表示装置(iPad(登録商標)Retina)の画像表示部表面に、ツイスト位相差層、円偏光反射層、1/4波長板、及び画像表示装置がこの順になるように、上記で作製した車両用ミラーを接着し、車両用画像表示機能付きミラーを作製した。このとき、1/4波長板の遅相軸が、画像表示装置の透過軸(LCD(liquid crystal display)の発光の偏光方向)に対して45度傾けた角度になるように配置した。
[Production of mirror with image display function for vehicles]
An image display was further adhered to the obtained vehicle mirrors of Examples 1 to 3 and Comparative Example 1, and mirrors for the vehicle with an image display function of Examples 4 to 6 and Comparative Example 2 were produced. .
Below, the concrete preparation method of the mirror with a picture display function for vehicles is shown.
The vehicle manufactured in the above manner such that the twist retardation layer, the circularly polarized light reflection layer, the quarter wavelength plate, and the image display device are in this order on the surface of the image display unit of the image display device (iPad (registered trademark) Retina) The mirror for the vehicle was adhered, and the mirror with the image display function for vehicles was produced. At this time, the slow axis of the quarter-wave plate was disposed at an angle of 45 degrees with respect to the transmission axis of the image display device (polarization direction of light emission of LCD (liquid crystal display)).
〔ミラー反射像のムラの評価〕
 車両(車種:ホンダ製2002年式ステップワゴン)のインナーミラーの位置に上記作製した車両用画像表示機能付きミラーをツイスト位相差層が最も運転席側(観察者側)になる配置で取り付けた。車両のリアガラス(100×50cm)からインナーミラーの位置に太陽光が入射している状態で運転席の観察者から確認できるミラー反射像を、以下の基準で評価した。また、評価はガラス部材の中心付近(ムラが均一に発生している部分)で評価した。結果を表1に示す。
(評価基準)
 「A」:視認される斜線状の光の明暗ムラが10%未満である(斜線状の光の明暗ムラが、ほぼ視認されない)
 「B」:斜線状の光の明暗ムラが、10%以上50%未満視認できる
 「C」:斜線状の光の明暗ムラが、50%以上90%未満視認できる
 「D」:斜線状の光の明暗ムラが、90%以上視認できる
 なお、例えば、斜線状の光の明暗ムラが10%以上視認できる場合とは、上記条件で視野範囲の10%の面積以上の部分でムラが視認できることを意図する。
[Evaluation of unevenness of mirror reflection image]
The mirror with an image display function produced above was attached at the position of the inner mirror of a vehicle (vehicle type: Honda's 2002 model step wagon) so that the twist retardation layer is closest to the driver's seat (observer). The mirror reflection image which can be confirmed from the observer of the driver's seat in a state where sunlight is incident on the position of the inner mirror from the rear glass (100 × 50 cm) of the vehicle was evaluated according to the following criteria. In addition, the evaluation was made in the vicinity of the center of the glass member (a part where unevenness is uniformly generated). The results are shown in Table 1.
(Evaluation criteria)
"A": The lightness-and-dark unevenness of the light in the shape of oblique lines to be recognized is less than 10% (the unevenness in the lightness and darkness of the oblique lines is hardly recognized)
"B": 10% or more and less than 50% of light and dark unevenness of hatched light can be visually recognized "C": 50% or more and less than 90% of light and dark unevenness of hatched light can be visually recognized "D": light of hatched shape 90% or more of the light and dark unevenness can be visually recognized Note that, for example, when 10% or more of the light and dark unevenness of hatched light can be visually recognized, the unevenness can be visually recognized in the area of 10% or more of the visual field range under the above conditions. Intended.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示す結果より、ツイスト位相差層を用いた実施例4~6ではミラー反射像のリアガラスの複屈折由来のムラは視認しにくくなっていることがわかる。また、特に、ツイスト位相差層中の液晶化合物の捩れ角を50~200°(より好ましくは50~100°)とした場合、ミラー反射像のリアガラスの複屈折由来のムラはより視認しにくくなることが確認された。 From the results shown in Table 1, it can be seen that in Examples 4 to 6 in which the twist retardation layer is used, unevenness due to birefringence of the rear glass of the mirror reflection image is difficult to visually recognize. Furthermore, in particular, when the twist angle of the liquid crystal compound in the twist retardation layer is 50 to 200 ° (more preferably 50 to 100 °), unevenness due to birefringence of the rear glass of the mirror reflection image becomes more difficult to visually recognize. That was confirmed.
 10,100,120,140  車両用画像表示機能付きミラー
 12  画像表示装置
 14  1/4波長板
 16  円偏光反射層
 18  ツイスト位相差層
 18a  ツイスト位相差層18中の一方の表面
 18b  ツイスト位相差層18中の他方の表面
 20  第1コレステリック液晶層
 22  第2コレステリック液晶層
 24  第3コレステリック液晶層
 26  前面板
 28  透明基板
10, 100, 120, 140 Mirror with Image Display Function for Vehicle 12 Image Display Device 14 Quarter Wave Plate 16 Circularly Polarized Reflective Layer 18 Twisted Retardation Layer 18a One Surface in Twisted Retardation Layer 18 18b Twisted Retardation Layer 18 other surface 20 first cholesteric liquid crystal layer 22 second cholesteric liquid crystal layer 24 third cholesteric liquid crystal layer 26 front plate 28 transparent substrate

Claims (10)

  1.  厚み方向に沿って延びる螺旋軸に沿って360°以下の捩れ角で捩れ配向した液晶化合物を固定化してなる位相差層と、円偏光反射層と、を含む車両用ミラー。 A vehicle mirror comprising: a retardation layer formed by fixing a liquid crystal compound twisted and oriented at a twist angle of 360 ° or less along a helical axis extending along a thickness direction; and a circularly polarized light reflection layer.
  2.  前記捩れ角が50~200°である、請求項1に記載の車両用ミラー。 The vehicle mirror according to claim 1, wherein the twisting angle is 50 to 200 °.
  3.  前記捩れ角が50~100°である、請求項1又は2に記載の車両用ミラー。 The vehicle mirror according to claim 1 or 2, wherein the twisting angle is 50 to 100 °.
  4.  前記円偏光反射層がコレステリック液晶層を含む、請求項1~3のいずれか1項に記載の車両用ミラー。 The vehicle mirror according to any one of claims 1 to 3, wherein the circularly polarized light reflection layer includes a cholesteric liquid crystal layer.
  5.  更に、前面板を含み、
     前記前面板、前記位相差層、及び、前記円偏光反射層がこの順で配置された、請求項1~4のいずれか1項に記載の車両用ミラー。
    In addition, including the front plate,
    The vehicle mirror according to any one of claims 1 to 4, wherein the front plate, the retardation layer, and the circularly polarized light reflection layer are disposed in this order.
  6.  更に、透明基板を含み、
     前記前面板、前記位相差層、前記透明基板、及び、前記円偏光反射層がこの順で配置された、請求項5に記載の車両用ミラー。
    Furthermore, it includes a transparent substrate,
    The vehicle mirror according to claim 5, wherein the front plate, the retardation layer, the transparent substrate, and the circularly polarized light reflection layer are disposed in this order.
  7.  更に、透明基板を含み、
     前記前面板、前記位相差層、前記円偏光反射層、及び、前記透明基板がこの順に配置された、請求項5に記載の車両用ミラー。
    Furthermore, it includes a transparent substrate,
    The vehicle mirror according to claim 5, wherein the front plate, the retardation layer, the circularly polarized light reflection layer, and the transparent substrate are disposed in this order.
  8.  請求項1~7のいずれか1項に記載の車両用ミラーと、画像表示装置とを含み、
     前記位相差層、前記円偏光反射層、及び、前記画像表示装置がこの順で配置された、車両用画像表示機能付きミラー。
    A vehicle mirror according to any one of claims 1 to 7 and an image display device,
    A mirror with an image display function for a vehicle, in which the retardation layer, the circularly polarized light reflection layer, and the image display device are arranged in this order.
  9.  更に、前記車両用ミラーと前記画像表示装置との間に、1/4波長板を含む、請求項8に記載の車両用画像表示機能付きミラー。 The mirror with an image display function for a vehicle according to claim 8, further comprising a quarter wave plate between the mirror for a vehicle and the image display device.
  10.  前記円偏光反射層と前記1/4波長板とが互いに直接接している、請求項9に記載の車両用画像表示機能付きミラー。 The mirror with an image display function for a vehicle according to claim 9, wherein the circularly polarized light reflection layer and the quarter wavelength plate are in direct contact with each other.
PCT/JP2018/028865 2017-08-15 2018-08-01 Vehicular mirror, and vehicular mirror equipped with image display function WO2019035358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019536725A JP6967075B2 (en) 2017-08-15 2018-08-01 Mirror for vehicles, mirror with image display function for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156861 2017-08-15
JP2017-156861 2017-08-15

Publications (1)

Publication Number Publication Date
WO2019035358A1 true WO2019035358A1 (en) 2019-02-21

Family

ID=65362205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028865 WO2019035358A1 (en) 2017-08-15 2018-08-01 Vehicular mirror, and vehicular mirror equipped with image display function

Country Status (2)

Country Link
JP (1) JP6967075B2 (en)
WO (1) WO2019035358A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060402A1 (en) * 2019-09-27 2021-04-01 富士フイルム株式会社 Projector for head-up display
JPWO2021200433A1 (en) * 2020-03-30 2021-10-07

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211007A (en) * 2009-03-11 2010-09-24 Dainippon Printing Co Ltd Optical rotation plate and liquid crystal display device using the same
WO2011028018A2 (en) * 2009-09-01 2011-03-10 신화인터텍 주식회사 Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device
JP2016188960A (en) * 2015-03-30 2016-11-04 Jxエネルギー株式会社 Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate
WO2017130683A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Half mirror and mirror with image display function
WO2017145580A1 (en) * 2016-02-22 2017-08-31 富士フイルム株式会社 Vehicle mirror including image display function and method for manufacturing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232681A (en) * 2010-04-30 2011-11-17 Nippon Zeon Co Ltd Privacy film and liquid crystal display device
JP2014174468A (en) * 2013-03-12 2014-09-22 Fujifilm Corp Circularly polarizing layer, laminate of circularly polarizing layer, spectacles, and 3d image appreciation system
JP6277088B2 (en) * 2013-08-26 2018-02-07 富士フイルム株式会社 Brightness improving film, optical sheet member, and liquid crystal display device
JP6492397B2 (en) * 2013-12-26 2019-04-03 日本ゼオン株式会社 Light control element and in-vehicle liquid crystal display device
JP6574368B2 (en) * 2015-09-30 2019-09-11 富士フイルム株式会社 Mirror with image display function for vehicles
JP6632479B2 (en) * 2016-05-31 2020-01-22 富士フイルム株式会社 Half mirror and mirror with image display function
EP3617787B1 (en) * 2017-04-28 2022-06-29 FUJIFILM Corporation Image display function-equipped anti-glare mirror

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211007A (en) * 2009-03-11 2010-09-24 Dainippon Printing Co Ltd Optical rotation plate and liquid crystal display device using the same
WO2011028018A2 (en) * 2009-09-01 2011-03-10 신화인터텍 주식회사 Broadband reflective liquid crystal film, method for manufacturing same, light source assembly comprising the broadband reflective liquid crystal film, and liquid crystal display device
JP2016188960A (en) * 2015-03-30 2016-11-04 Jxエネルギー株式会社 Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate
WO2017130683A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Half mirror and mirror with image display function
WO2017145580A1 (en) * 2016-02-22 2017-08-31 富士フイルム株式会社 Vehicle mirror including image display function and method for manufacturing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060402A1 (en) * 2019-09-27 2021-04-01 富士フイルム株式会社 Projector for head-up display
JPWO2021060402A1 (en) * 2019-09-27 2021-04-01
CN114467048A (en) * 2019-09-27 2022-05-10 富士胶片株式会社 Head-up display projector
EP4036644A4 (en) * 2019-09-27 2022-11-30 FUJIFILM Corporation PROJECTOR FOR HEADUP DISPLAY
JP7313457B2 (en) 2019-09-27 2023-07-24 富士フイルム株式会社 Head-up display projector
CN114467048B (en) * 2019-09-27 2024-08-27 富士胶片株式会社 Head-up display projector
JPWO2021200433A1 (en) * 2020-03-30 2021-10-07
WO2021200433A1 (en) * 2020-03-30 2021-10-07 富士フイルム株式会社 Wind shield glass and head-up display system
JP7260715B2 (en) 2020-03-30 2023-04-18 富士フイルム株式会社 Windshield glass and head-up display system

Also Published As

Publication number Publication date
JP6967075B2 (en) 2021-11-17
JPWO2019035358A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6114728B2 (en) Projected image display member and projected image display system
JP6865683B2 (en) Mirror with image display function
US7393570B2 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illiminator, and liquid-crystal display
JP6530763B2 (en) Image display function mirror
US11142128B2 (en) Anti-glare mirror with image display function
WO2003044575A1 (en) Circular polarizing plate and liquid crystal display device
WO2002084389A1 (en) Translucent reflective liquid crystal display
JPWO2005050299A1 (en) Liquid crystal display
WO2016031946A1 (en) Brightness enhancement film and liquid crystal display device
US10746906B2 (en) Half mirror and mirror with image display function
JP6450264B2 (en) Mirror with image display function for vehicle and manufacturing method
JP6967075B2 (en) Mirror for vehicles, mirror with image display function for vehicles
JP2017122776A (en) Mirror with image display function and half mirror
CN100489572C (en) Polarized plate and its producing method and liquid crystal display
JP2006024519A (en) Direct backlight and liquid crystal display device
JP6574368B2 (en) Mirror with image display function for vehicles
WO2021060247A1 (en) Retardation plate, and circular polarization plate, liquid crystal display device, and organic el display device including retardation plate
WO2024161975A1 (en) Display device, interior member for automobile interior, and decorative sheet
JP6793781B2 (en) Mirror with image display function for vehicles
JP6806848B2 (en) Mirror with image display function for vehicles
WO2016088709A1 (en) Vehicle mirror having image display function
JP2021056521A (en) Vehicular mirror with image display function
JP2002214609A (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845661

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载