+

WO2016031946A1 - Brightness enhancement film and liquid crystal display device - Google Patents

Brightness enhancement film and liquid crystal display device Download PDF

Info

Publication number
WO2016031946A1
WO2016031946A1 PCT/JP2015/074321 JP2015074321W WO2016031946A1 WO 2016031946 A1 WO2016031946 A1 WO 2016031946A1 JP 2015074321 W JP2015074321 W JP 2015074321W WO 2016031946 A1 WO2016031946 A1 WO 2016031946A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
brightness enhancement
enhancement film
plate
Prior art date
Application number
PCT/JP2015/074321
Other languages
French (fr)
Japanese (ja)
Inventor
阿出川 豊
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016545629A priority Critical patent/JPWO2016031946A1/en
Publication of WO2016031946A1 publication Critical patent/WO2016031946A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a brightness enhancement film and a liquid crystal display device. More specifically, the present invention relates to a brightness enhancement film that has high brightness and can suppress oblique color change when incorporated in a liquid crystal display device, and a liquid crystal display device using the brightness enhancement film.
  • LCDs liquid crystal display devices
  • the liquid crystal display device has a configuration in which a backlight (hereinafter also referred to as BL), a backlight side polarizing plate, a liquid crystal cell, and a viewing side polarizing plate are provided in this order.
  • BL backlight
  • a backlight side polarizing plate a backlight side polarizing plate
  • LCD performance improvement development for power saving, high definition, and color reproducibility is progressing as LCD performance improvement. These performance improvements are particularly noticeable in small-sized liquid crystal display devices such as tablet PCs and smartphones.
  • the reflective polarizer is an optical element that transmits only light oscillating in a specific polarization direction among light incident while oscillating in all directions, and reflects light oscillating in other polarization directions. This makes it possible to recycle the light that is reflected without being reflected by the reflective polarizer, and the light utilization rate in the LCD can be improved.
  • Patent Document 1 discloses a reflective polarizing plate having a structure in which a layer formed by fixing a ⁇ / 4 plate and a cholesteric liquid crystal phase is laminated, and a layer formed by fixing three or more cholesteric liquid crystal phases having different pitches of cholesteric liquid crystal phases.
  • DBEF optical sheet member
  • FIG. 1 discloses a reflective polarizing plate having a structure in which a layer formed by fixing a ⁇ / 4 plate and a cholesteric liquid crystal phase is laminated, and a layer formed by fixing three or more cholesteric liquid crystal phases having different pitches of cholesteric liquid crystal phases.
  • Patent Document 3 proposes a method of setting the pitch of the cholesteric liquid crystal phase to a short pitch on the light incident side, and providing a compensation layer having a refractive index larger in the vertical direction than the in-plane refractive index.
  • Patent Document 4 proposes a method in which the retardation in the thickness direction of the ⁇ / 4 plate is less than zero.
  • Patent Documents 1 and 2 have a problem that the manufacturing cost is high due to a complicated design that takes into account the multi-layer structure and the wavelength dispersion of the members in order to improve the light utilization rate in a wide band for white light. .
  • the liquid crystal display device using the polarizing plate which combined the layer formed by fixing the cholesteric liquid crystal phase and the ⁇ / 4 plate described in Patent Documents 3 and 4 contributes to the improvement of the light utilization rate of BL light, The improvement in color change when viewed obliquely was insufficient.
  • the problem to be solved by the present invention is to provide a brightness enhancement film capable of giving a high brightness improvement rate and suppressing oblique color change when incorporated in a liquid crystal display device.
  • Patent Documents 5 and 6 describe the use of a ⁇ / 4 plate including a layer made of a resin having a negative intrinsic birefringence.
  • the present inventors have further studied a configuration using a ⁇ / 4 plate including a layer made of a resin having a negative intrinsic birefringence, and have completed the present invention having the following configurations [1] to [12]. Completed. That is, the said subject is solved by this invention of the following structures.
  • a brightness enhancement film having a ⁇ / 4 plate and a reflective polarizer includes a resin layer I,
  • the resin layer I includes a polymer having a negative intrinsic birefringence value,
  • the polymer includes repeating units derived from acid anhydride monomers,
  • the polymer contains 5% by mass or more and 50% by mass or less of the repeating unit derived from an acid anhydride monomer,
  • the reflective polarizer includes a light reflecting layer formed by fixing a cholesteric liquid crystal phase,
  • the brightness enhancement film, wherein the light reflection layer is a layer laminated through an alignment layer in direct contact with the ⁇ / 4 plate.
  • the ⁇ / 4 plate includes a resin layer II containing a compound selected from the group consisting of a polymer having an alicyclic structure, a chain polyolefin, cellulose acylate, and polyester cellulose acylate.
  • the brightness enhancement film according to any one of [6] to [6].
  • the light reflecting layer is a layer formed by coating on the surface of the alignment film provided on the ⁇ / 4 plate, The brightness enhancement film according to [7] or [8], wherein the resin layer II and the alignment layer are in direct contact, and the alignment layer and the light reflection layer are in direct contact.
  • a liquid crystal display device including a backlight unit, the reflective polarizer, the ⁇ / 4 plate, a backlight unit side polarizer, a liquid crystal cell, and a viewing side polarizer in this order.
  • a brightness enhancement film capable of improving brightness and suppressing oblique color change when incorporated in a liquid crystal display device.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “half width” of a peak means the width of the peak at a peak height of 1/2.
  • the reflection center wavelength and half width of the light reflection layer can be obtained as follows. When the transmission spectrum of the light reflection layer is measured using a spectrophotometer UV3150 (Shimadzu Corporation), a peak of decrease in transmittance is observed in the selective reflection region.
  • the wavelength value on the short wave side is ⁇ 1 (nm) and the wavelength value on the long wave side is ⁇ 2 (nm).
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at the wavelength ⁇ , respectively.
  • the unit is nm.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of ⁇ nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is Re ( ⁇ ) with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (in the absence of the slow axis, in-film plane) Measure the light at a wavelength of ⁇ nm from each tilted direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction.
  • KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • the value is calculated by KOBRA 21ADH or WR after changing its sign to negative.
  • the retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, the arbitrary direction in the film plane is the rotation axis).
  • Rth can also be calculated from the following formula (A) and formula (B) based on the value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz is the direction orthogonal to nx and ny.
  • d is the film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is ⁇ 50 ° with respect to the normal direction of the film, using Re ( ⁇ ) described above as the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis).
  • Re ( ⁇ ) described above as the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis).
  • 11 points of light having a wavelength of ⁇ nm are incident in 10 ° steps from 1 ° to + 50 °, and the measured retardation value, average refractive index assumption and input film thickness value are used as the basis.
  • KOBRA 21ADH or WR Calculated by KOBRA 21ADH or WR.
  • the values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. If the average refractive index is not known, it can be measured with an Abbe refractometer.
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • KOBRA 21ADH or WR calculates nx, ny, and nz.
  • Nz (nx ⁇ nz) / (nx ⁇ ny) is further calculated from the calculated nx, ny, and nz.
  • Rth of the first light reflection layer, the second light reflection layer, and the third light reflection layer adopts a value calculated using the following formula, and the first light reflection wavelength is ⁇ nm.
  • Rth of the light reflecting layer, the second light reflecting layer, and the third light reflecting layer is denoted as Rth ( ⁇ ).
  • a method for obtaining Rth of a layer formed by fixing a cholesteric liquid crystal phase a method using a polarization ellipso can be applied.
  • a method using a polarization ellipso can be applied as described in 03B021
  • the thickness, pitch, twist angle, etc. of the layer formed by fixing the cholesteric liquid crystal phase can be obtained, and the value of Rth can be obtained therefrom. it can.
  • visible light means light having a wavelength of 380 nm to 780 nm.
  • a measurement wavelength is 550 nm.
  • an angle for example, an angle such as “90 °”
  • a relationship for example, “orthogonal”, “parallel”, “intersection at 45 °”, etc.
  • the “absorption axis” of a polarizer or a polarizing plate means a direction having the highest absorbance.
  • the “slow axis” of a retardation film such as a ⁇ / 4 plate means a direction in which the refractive index is maximum.
  • “polarizer” and “reflection polarizer” are distinguished from each other.
  • numerical values, numerical ranges, and qualitative expressions for example, “equivalent”, “equal”, etc.) indicating optical characteristics of each member such as a retardation region, a retardation film, and a liquid crystal layer are used. ) Is interpreted to indicate numerical values, numerical ranges and properties including generally allowable errors for liquid crystal display devices and members used therefor.
  • the brightness enhancement film has a ⁇ / 4 plate and a reflective polarizer.
  • the reflective polarizer includes a light reflection layer formed by fixing a cholesteric liquid crystal phase.
  • the brightness enhancement film is provided in the liquid crystal display device and has a function of improving the brightness of the liquid crystal display device.
  • the film thickness of the brightness enhancement film is preferably 11 to 400 ⁇ m, more preferably 15 to 200 ⁇ m, and particularly preferably 20 to 150 ⁇ m. It is known that a light reflection layer formed by fixing a cholesteric liquid crystal phase used for a reflective polarizer of a brightness enhancement film generally has a positive Rth.
  • the ⁇ / 4 plate has an in-plane retardation Re ( ⁇ ) at a specific wavelength ⁇ nm.
  • Re ( ⁇ ) ⁇ / 4
  • the ⁇ / 4 plate functions as a layer for converting circularly polarized light obtained by passing through the reflective polarizer into linearly polarized light.
  • the ⁇ / 4 plate preferably satisfies at least one of the following formulas (A) to (C), and more preferably satisfies all of the following formulas (A) to (C).
  • the ⁇ / 4 plate includes a resin layer I including a polymer having a negative intrinsic birefringence value.
  • the resin layer I exhibits a negative Rth as a layer, particularly when formed through a stretching process. Therefore, a change in hue when viewed from an oblique direction can be suppressed by a combination of the resin layer I and a light reflection layer in which a cholesteric liquid crystal phase having positive Rth is fixed.
  • a polymer having a negative intrinsic birefringence value a polymer containing a repeating unit derived from an acid anhydride monomer is used.
  • the present inventors derive from an acid anhydride monomer in a form in which a light reflecting layer is formed by coating a film on a ⁇ / 4 plate and fixing a cholesteric liquid crystal phase using the ⁇ / 4 plate as a support.
  • the resin layer I containing a polymer containing 5% by mass or more and 50% by mass or less of repeating units a brightness enhancement film having low haze even after a 30-second heat resistance test in an oven at 120 ° C. as a compulsory condition for the heat resistance test It was found that can be obtained.
  • the haze after the heat resistance test is preferably 0 to 1.0%, more preferably 0 to 0.7%, and still more preferably 0 to 0.5%.
  • the haze can be measured on a film sample of 40 mm ⁇ 80 mm at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Machine) according to JIS K-7136.
  • the resin layer I is a polymer having a negative intrinsic birefringence value of 90% by mass or more, 95% by mass, 98% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.8% by mass or more, or 99
  • the resin layer I is also preferably made of a polymer having a substantially negative intrinsic birefringence value.
  • the acid anhydride monomer is not particularly limited, and examples thereof include maleic anhydride, citraconic anhydride, itaconic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic acid.
  • Anhydrides, bicyclo [2.2.2] -5-octene-2,3-dicarboxylic anhydride, 3-methyl-1,2,6-tetrahydrophthalic anhydride, and 2-methyl-1,3, Examples include 6-tetrahydrophthalic anhydride. Of these, maleic anhydride is preferred.
  • the repeating unit derived from the acid anhydride monomer means a structure of a portion derived from the acid anhydride monomer in the polymer obtained by polymerization of the raw material containing the acid anhydride monomer, and the acid anhydride monomer is maleic anhydride. In the case of, it becomes the following part.
  • the resin layer I contains 5% by mass or more and 50% by mass or less of repeating units derived from the acid anhydride monomer with respect to the total mass of the resin layer I.
  • the content of the repeating unit derived from the acid anhydride monomer in the resin layer I is determined by the ATR measurement method of infrared spectroscopy.
  • ATR measurement method of infrared spectroscopy For example, in the case of a copolymer of maleic anhydride and styrene, refer to “Infrared absorption spectrum of maleic anhydride copolymer” (Fukui University Faculty of Engineering Research Report 18 (1), 173-181, 1970-03).
  • a calibration curve using the peak intensity near 1780 cm ⁇ 1 attributed to carbonyl of maleic anhydride and the peak intensity near 3050 cm ⁇ 1 attributed to CH stretching of the benzene ring of styrene can be determined.
  • maleic anhydride other than the acid anhydride by use of the peak in the vicinity of 1780 cm -1 vicinity or 1855Cm -1 attributable to the carbonyl of the acid anhydride to be used, and for the case of using a monomer other than styrene
  • a calibration curve can be prepared to determine the content.
  • methyl methacrylate in the case of methyl methacrylate, it may be used ⁇ - near 1470 cm -1 attributable to the antisymmetric deformation methyl group, a peak near 1390 cm -1 attributable to symmetrical deformation.
  • About content of the repeating unit derived from the acid anhydride monomer in a polymer it may be calculated
  • the content of the repeating unit derived from the acid anhydride monomer in the polymer having a negative intrinsic birefringence value is 7% by mass to 45% by mass with respect to the total mass of the polymer having a negative intrinsic birefringence value. Is also preferable.
  • repeating units contained in the polymer having a negative intrinsic birefringence value are not particularly limited, but a vinyl aromatic monomer is used as a raw material as a repeating unit for realizing a polymer having a negative intrinsic birefringence value.
  • the repeating unit formed is preferred.
  • vinyl aromatic monomers include styrene, styrene derivatives such as 4-methylstyrene, 4-chlorostyrene, 3-methylstyrene, 4-methoxystyrene, 4-tert-butoxystyrene, and ⁇ -methylstyrene. Is mentioned. Of these, repeating units formed using styrene as a raw material shown below are preferred.
  • the polymer having a negative intrinsic birefringence value is preferably a copolymer of an acid anhydride monomer and a vinyl aromatic monomer, more preferably a copolymer of maleic anhydride and a vinyl aromatic monomer, More preferred is a copolymer of maleic anhydride and styrene.
  • the ⁇ / 4 plate is also preferably a laminated film including a resin layer other than the resin layer I.
  • the other resin layer may be a layer containing a polymer having a negative intrinsic birefringence value or a layer containing a polymer having a positive intrinsic birefringence value, but a laminated film, that is, a ⁇ / 4 plate Preferably represents negative Rth.
  • the other resin layer include a resin layer II containing a compound selected from the group consisting of a polymer having an alicyclic structure, a chain polyolefin, cellulose acylate, and polyester cellulose acylate.
  • the ⁇ / 4 plate includes the resin layer II, the resin layer I, and the resin layer II in this order.
  • the resin layer I and other resin layers other than the resin layer I may be bonded with an adhesive.
  • Adhesives include acrylate, urethane, urethane acrylate, epoxy, epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide A compound such as a system, a polyimide system, a polystyrene system, or a polyvinyl butyral system can be used.
  • the ⁇ / 4 plate As a specific method for producing the ⁇ / 4 plate, reference can be made to the production method of the long wound body (A) described in JP-A-2009-288812.
  • the film thickness of the ⁇ / 4 plate is preferably 10 to 300 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the reflective polarizer includes at least one light reflecting layer formed by fixing a cholesteric liquid crystal phase.
  • the reflective polarizer preferably includes two or more light reflecting layers, more preferably includes two to four layers, and more preferably includes two or three layers.
  • the reflective polarizer preferably includes two or more light reflecting layers having different reflection center wavelengths, and more preferably includes two or three light reflecting layers having different reflection center wavelengths.
  • the reflective polarizer preferably has a function of reflecting blue light, green light and red light.
  • the thickness of the reflective polarizer is preferably 1.5 to 60 ⁇ m, preferably 1.5 to 30 ⁇ m, more preferably 2 to 24 ⁇ m, and most preferably 2 to 18 ⁇ m.
  • a layer formed by fixing a cholesteric liquid crystal phase is known to selectively reflect either right-handed circularly polarized light or left-handed circularly-polarized light in a specific wavelength region and to exhibit selective reflection that transmits the other circularly polarized light.
  • a film including a layer in which a cholesteric liquid crystal phase exhibiting selective reflectivity is fixed many films formed from a composition containing a polymerizable liquid crystal compound have been known (for example, Fuji Film Research Report No. 50 (2005 (Year) p.60-63), for the layer in which the cholesteric liquid crystal phase is fixed, those prior arts can be referred to.
  • the reflection center wavelength that gives the peak of reflectance can be adjusted by changing the pitch or refractive index of the helical structure in the cholesteric liquid crystal phase of the light reflection layer formed by fixing the cholesteric liquid crystal phase.
  • the pitch of the helical structure can be adjusted by changing the amount of chiral agent added.
  • the pitch is the pitch length P of the helical structure in the cholesteric liquid crystal phase, and means the thickness of the molecular layer when the orientation direction of the molecular layer of the liquid crystal compound is rotated 360 degrees.
  • ⁇ n can be adjusted by adjusting the kind of the polymerizable liquid crystal compound and the mixing ratio thereof, or by controlling the temperature at the time of
  • the light reflecting layer is preferably a pitch gradient layer in which the pitch of the cholesteric liquid crystal phase is gradually changed in the direction of the helical axis.
  • the pitch gradient layer By using the pitch gradient layer, the reflection wavelength region of the light reflection layer can be broadened.
  • a wide half-value width can be realized by gradually changing the pitch in the spiral direction (normal film thickness direction) of the cholesteric liquid crystal phase.
  • the pitch In the light reflection layer to which the pitch gradient method is applied, it is preferable that the pitch continuously changes in the film thickness direction.
  • the pitch continuously increases or decreases continuously from one surface of the layer to the other surface.
  • the concentration of a compound that does not form a spiral in the thickness direction of the liquid crystal layer is continuously changed in the thickness direction of the liquid crystal layer, or the concentration of the chiral agent is continuously changed in the thickness direction of the liquid crystal layer.
  • a chiral agent with a photoisomerization moiety and change the HTP (helical twisting power) of the chiral agent by isomerizing the photoisomerization part of the chiral agent with UV irradiation etc. when forming the light reflection layer.
  • this photoisomerization moiety a vinylene group, an azo group, or the like is preferable.
  • a weak gradient of 0.01 to 50 mJ / cm 2 and heating may be alternately repeated a plurality of times to obtain a pitch gradient layer.
  • a relatively strong ultraviolet ray of, for example, 50 to 10,000 mJ / cm 2 is irradiated to completely polymerize the liquid crystalline compound to form a cholesteric resin layer.
  • the above-described weak ultraviolet irradiation and strong ultraviolet irradiation may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
  • pitch gradient method those described in others (Nature 378, 467-469 1995) and Japanese Patent No. 4990426 can be applied.
  • the compound which does not form a helix and has a fluorinated alkyl group as described in Japanese Patent No. 4570377 can also be used.
  • the thickness of the light reflecting layer is preferably 1.5 to 20 ⁇ m, more preferably 1.5 to 10 ⁇ m, and preferably 2 to 8 ⁇ m from the viewpoints of reflectivity, orientation disorder and prevention of transmittance reduction. More preferred is 2 to 7 ⁇ m.
  • the light reflecting layer formed by fixing the cholesteric liquid crystal phase can be formed as a coating cured layer obtained by curing a coating film after coating a polymerizable liquid crystal composition containing a liquid crystal compound on another layer.
  • the light reflection layer closest to the ⁇ / 4 plate in the brightness enhancement film is formed by coating and curing on the ⁇ / 4 plate. It is also preferred that all light reflecting layers in the brightness enhancement film are formed by coating and curing on a ⁇ / 4 plate.
  • “on a ⁇ / 4 plate” includes the meaning of “directly on the surface of the ⁇ / 4 plate” or “directly on the surface of another layer such as an alignment layer provided on the surface of the ⁇ / 4 plate”. .
  • the other layers at this time may be one layer or two or more layers.
  • the polymerizable liquid crystal composition may contain other components such as a chiral agent, an alignment controller, a polymerization initiator, and an alignment aid.
  • the liquid crystal compound include a rod-like liquid crystal compound and a disk-like liquid crystal compound. In order to form a light reflecting layer formed by fixing a cholesteric liquid crystal phase exhibiting positive Rth, it is preferable to use a rod-like liquid crystal compound.
  • rod-like liquid crystal compound examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • high-molecular liquid crystalline molecules can also be used.
  • the polymerizable rod-like liquid crystal compound examples include those described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, 5,770,107, WO 95/22586, 95/24455, 97/97 No. 0600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and JP-A-2001-328773.
  • the described compounds can be used.
  • the rod-like liquid crystal compound for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
  • the liquid crystal compound preferably has an intrinsic birefringence ⁇ n having reverse wavelength dispersion, that is, wavelength dispersion satisfying the following formula. ⁇ n (450 nm) / ⁇ n (550 nm) ⁇ 1.0
  • the intrinsic birefringence ⁇ n is calculated according to p. It can be measured according to the method described in 202.
  • ⁇ n reverse wavelength dispersibility
  • the liquid crystal compound in which ⁇ n is reverse wavelength dispersive is preferably contained in an amount of 50 to 100% by mass, more preferably 70 to 100% by mass, based on the total amount of the liquid crystal compound in the polymerizable liquid crystal composition. preferable.
  • the addition amount of the liquid crystal compound in the polymerizable liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the polymerizable liquid crystal composition, and preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
  • a chiral agent As the chiral agent, various known chiral agents (for example, described in Liquid Crystal Device Handbook, Chapter 3-4-3, TN, chiral agent for STN, page 199, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989) You can choose from.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the chiral agent When the chiral agent has a polymerizable group and the rod-shaped liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-shaped liquid crystal compound by a polymerization reaction between the chiral agent having a polymerizable group and the polymerizable rod-shaped liquid crystal compound. Polymers having repeating units and repeating units derived from chiral agents can be formed.
  • the polymerizable group possessed by the chiral agent having a polymerizable group is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound.
  • the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group.
  • the chiral agent may be a liquid crystal compound. Examples of the chiral agent exhibiting a strong twisting force include, for example, JP 2010-181852 A, JP 2003-287623 A, JP 2002-80851 A, JP 2002-80478 A, and JP 2002-302487 A.
  • the chiral agent described in the publication can be mentioned and can be preferably used in the present invention.
  • isosorbide compounds having a corresponding structure can be used for the isosorbide compounds described in these publications, and isosorbide compounds having a corresponding structure can be used for the isomannide compounds described in these publications. It can also be used.
  • Orientation control agent examples include compounds exemplified in [0092] and [0093] of JP-A No. 2005-99248, and [0076] to [0078] and [0082] of JP-A No. 2002-129162. To [0085], the compounds exemplified in JP-A-2005-99248, [0094] and [0095], and JP-A-2005-99248, [0096]. Are included.
  • the orientation control agent compounds described in [0082] to [0090] of JP-A No. 2014-119605 can also be used.
  • photopolymerization initiator examples include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No. 2,722,512
  • polynuclear quinone compounds described in US Pat. Nos. 3,046,127 and 2,951,758
  • a combination of triarylimidazole dimer and p-aminophenyl ketone US patent
  • the polymerizable liquid crystal composition may contain a solvent.
  • an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the application of the polymerizable liquid crystal composition is carried out by using a suitable liquid crystal composition such as a roll coating method, a gravure printing method, a spin coating method, etc. It can be performed by a method of developing by a method. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • a coating film can be formed by discharging a liquid crystal composition from a nozzle using an inkjet apparatus.
  • the polymerizable liquid crystal composition is cured to fix the alignment state of the molecules of the liquid crystal compound.
  • Curing is preferably carried out by a polymerization reaction of a polymerizable group introduced into a liquid crystal molecule.
  • the coating film may be dried by a known method after the application of the polymerizable liquid crystal composition and before the polymerization reaction for curing. For example, it may be dried by standing or may be dried by heating.
  • the liquid crystal compound molecules in the polymerizable liquid crystal composition only need to be aligned in the steps of applying and drying the polymerizable liquid crystal composition.
  • the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase. Further, heating at a transition temperature to the cholesteric liquid crystal phase may be performed.
  • the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature of the aforementioned polymerizable liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase.
  • a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred. It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules.
  • the irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 .
  • light irradiation may be performed under heating conditions.
  • ultraviolet irradiation may be performed under heating conditions.
  • the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable.
  • a preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
  • the reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 70% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 80% or more, more preferably 90% or more.
  • a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective.
  • polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can also be used.
  • the reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
  • the optical properties based on the orientation of the liquid crystal compound molecules of the polymerizable liquid crystal composition for example, the optical properties of the cholesteric liquid crystal phase are retained in the layer, and the cured ⁇ / 4 plate or light reflection
  • the liquid crystal composition of the layer no longer needs to exhibit liquid crystallinity.
  • the liquid crystal composition may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the cholesteric liquid crystal phase is fixed by the above-described curing, and the light reflection layer is formed.
  • the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • this layer has no fluidity and is oriented by an external field or external force. It shall mean a state in which the fixed orientation form can be kept stable without causing a change in form.
  • the liquid crystal film formed by fixing the cholesteric liquid crystal phase is formed using the ⁇ / 4 plate itself included in the brightness enhancement film as a support.
  • the polymerizable liquid crystal composition may be applied directly to the surface of the ⁇ / 4 plate, or the polymerizable liquid crystal composition may be applied directly to the alignment layer formed on the ⁇ / 4 plate. It is particularly preferable to apply to the alignment layer surface.
  • the second and subsequent light reflecting layers may be formed by applying a polymerizable liquid crystal composition on the surface of the previously formed light reflecting layer.
  • An alignment layer may be formed on the surface of the layer, and the polymerizable liquid crystal composition may be applied to the surface of the formed alignment layer.
  • the second and subsequent light reflecting layers may be formed on another support and bonded to the previously formed reflecting layer.
  • the brightness enhancement film includes an alignment layer.
  • the alignment layer is in direct contact with the ⁇ / 4 plate.
  • the alignment layer is used for aligning the molecules of the liquid crystal compound in the polymerizable composition when forming the light reflecting layer.
  • the alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves.
  • an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also used.
  • the lower light reflecting layer may act as an alignment layer, and the liquid crystal compound for producing the upper light reflecting layer may be aligned.
  • the upper liquid crystal compound can be aligned without providing an alignment layer or without performing a special alignment process (for example, rubbing process).
  • a rubbing alignment layer used by rubbing the surface as a preferred example will be described.
  • Examples of the polymer that can be used for the rubbing treatment oriented layer include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, polyvinyl alcohol, and the like described in paragraph No. [0022] of JP-A-8-338913.
  • Examples include modified polyvinyl alcohol, poly (N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, and polycarbonate.
  • Silane coupling agents can be used as the polymer.
  • Water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred.
  • the aforementioned composition is applied to the rubbing-treated surface of the alignment layer to align the molecules of the liquid crystal compound. After that, if necessary, the alignment layer polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment layer polymer is crosslinked using a crosslinking agent, thereby the optical anisotropy described above.
  • a layer can be formed.
  • the film thickness of the alignment layer is preferably in the range of 0.1 to 10 ⁇ m.
  • the surface of the alignment layer, temporary support, ⁇ / 4 plate, or light reflection layer to which the polymerizable liquid crystal composition is applied may be rubbed as necessary.
  • the rubbing treatment can be generally performed by rubbing the surface of a film containing a polymer as a main component with paper or cloth in a certain direction.
  • a general method of rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).
  • the rubbing density (L) is quantified by the following formula (A).
  • Formula (A) L Nl (1 + 2 ⁇ rn / 60v)
  • N is the number of rubbing
  • l is the contact length of the rubbing roller
  • r is the radius of the roller
  • n is the number of rotations (rpm) of the roller
  • v is the stage moving speed (second speed).
  • the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this.
  • the description in Japanese Patent No. 4052558 can also be referred to as conditions for the rubbing process.
  • the brightness enhancement film may include a positive C plate in addition to the reflective polarizer and the ⁇ / 4 plate.
  • the positive C plate can be produced by applying a homeotropic alignment liquid crystal composition to a substrate having vertical alignment ability and solidifying or curing the composition.
  • the brightness enhancement film is provided between the backlight unit and the backlight unit side polarizer.
  • the backlight unit, the reflective polarizer, the ⁇ / 4 plate, the backlight unit side polarizer, the liquid crystal cell, and the viewing side polarizer may be arranged in this order.
  • the brightness enhancement film improves the brightness of the liquid crystal display device by the following mechanism.
  • the light reflecting layer formed by fixing the cholesteric liquid crystal phase contained in the reflective polarizer in the brightness enhancement film has at least one of right circularly polarized light and left circularly polarized light (circularly polarized light in the first polarization state) having a reflection center wavelength. Reflects in the nearby wavelength band and transmits the other (circularly polarized light in the second polarization state).
  • the reflected circularly polarized light in the second polarization state is randomized in its direction and polarization state by a reflection member (also referred to as a light guide or an optical resonator), which will be described later, and is recycled.
  • the light emitted from the reflective polarizer that is, the polarization state of the transmitted light and the reflected light of the reflective polarizer can be measured, for example, by measuring the polarization with an Axoscan from Axometrics.
  • the angle formed by the slow axis of the ⁇ / 4 plate of the brightness enhancement film and the absorption axis of the backlight unit side polarizer may be 30 to 60 °.
  • an adhesive layer may be disposed between the ⁇ / 4 plate and the backlight unit side polarizer.
  • a polarizing plate having a polarizing plate protective film on both sides or one side of a polarizer and a ⁇ / 4 plate of a brightness enhancement film may be bonded with an adhesive.
  • the brightness enhancement film and the backlight unit side polarizer may be provided as an optical sheet member in which these are integrated, and in the optical sheet member, there is another between the ⁇ / 4 plate and the polarizer. There may be a layer, but it may be in direct contact.
  • the liquid crystal cell, backlight unit, polarizer (polarizing plate), polarizing plate protective film, etc. that constitute the liquid crystal display device, and any known or commercially available product can be used without any limitation. Can do. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers. From the above mechanism, the liquid crystal display device converts and reflects the polarization state of the light emitted from the light source and reflected by the brightness enhancement film or the optical sheet member at the rear of the light source. It is preferable to include a reflecting member.
  • the backlight unit preferably includes a known diffusion plate, diffusion sheet, prism sheet (for example, BEF), and a light guide. There is no restriction
  • a layer that disturbs the polarization state of the light reflected from the light reflection layer (for example, a highly retardation film such as a stretched PET film) can be used to improve the brightness.
  • a highly retardation film such as a stretched PET film
  • the relationship between the average refractive index of the layer disturbing the polarization state of the light reflected from the light reflecting layer and the average refractive index of the light reflecting layer closest to the backlight in the brightness enhancement film satisfies the following formula. 0 ⁇ average refractive index of layer disturbing polarization state of light reflected from light reflecting layer ⁇ average refractive index of third light reflecting layer ⁇ 0.2
  • each numerical value was measured by the following method.
  • HGM-2DP haze meter
  • Re of film Using an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH), measurement was performed at a wavelength of 550 nm at intervals of 50 mm in the width direction at a distance of 50 mm and in the flow direction at a length of 1000 mm. The in-plane direction retardation Re was determined by averaging all measurement results.
  • the front luminance of the liquid crystal display device was measured by the method described in JP 2009-93166 [0180]. That is, using the measuring device (EZ-Contrast 160D, manufactured by ELDIM), the measured front luminance during white display was measured. In addition, as a reference, the luminance was measured in the same manner even when there was no luminance enhancement film. The ratio of the brightness when the brightness enhancement film to be measured was placed to the brightness of the reference was determined as the brightness enhancement rate.
  • the oblique color change ⁇ u′v ′ of the liquid crystal display device was evaluated by the following method.
  • the hue color difference ⁇ u′v ′ obtained by calculating the difference between the hue coordinates u ′ and v ′ in the front direction (polar angle 0 degree) and the polar angle direction 60 degrees is measured in the azimuth angle 0 to 360 degrees direction, and the average The value was used as an evaluation index of the diagonal color change ⁇ u′v ′.
  • a measuring machine (EZ-Contrast 160D, manufactured by ELDIM) was used for measuring the color coordinates u′v ′. Based on the results, evaluation was made according to the following criteria.
  • the content of the repeating unit derived from the acid anhydride monomer in the resin layer I was determined by the ATR measurement method of infrared spectroscopy. Using a ZnSe prism for the resin layer I, the peak intensity around 1780 cm ⁇ 1 attributed to carbonyl of maleic anhydride and the peak near 3050 cm ⁇ 1 attributed to CH stretching of the benzene ring of styrene by 45 ° incident light Calculated using intensity.
  • “content of repeating unit derived from acid anhydride monomer” is described as “content of acid anhydride monomer” (specifically, “content of maleic anhydride”).
  • Example 1 In the quarter wave plate of Production Example 2 described in JP-A-2009-288812, a resin P1 (styrene maleic anhydride copolymer, maleic anhydride content 15 having a negative intrinsic refraction value instead of the resin “Daylark D332” 15 A laminated film 1 was obtained in the same manner except that (mass%) was used.
  • resin P1 styrene maleic anhydride copolymer, maleic anhydride content 15 having a negative intrinsic refraction value instead of the resin “Daylark D332” 15
  • a laminated film 1 was obtained in the same manner except that (mass%) was used.
  • a layer made of norbornene-based polymer 1 (layer II), a layer made of resin P1 having a negative intrinsic refraction value (styrene maleic anhydride copolymer, maleic anhydride content 15 mass%), and (layer I)
  • An II layer (30 ⁇ m) -III layer having an adhesive layer (III layer) composed of a modified ethylene-vinyl acetate copolymer (Mitsubishi Chemical Corporation, trade name “Modic AP A543”, Vicat softening point 80 ° C.) 6 ⁇ m) -I layer (150 ⁇ m) -III layer (6 ⁇ m) -II layer (30 ⁇ m) of an unstretched laminate is obtained by coextrusion molding, and then this unstretched laminate is rolled Using a tenter stretching machine, the shaped body was stretched obliquely in the ⁇ 13 ° direction with respect to the width direction at a stretching temperature of 138 ° C., a stretching ratio of 1.5 times, and
  • One side of the laminated film 1 was subjected to corona discharge treatment.
  • a polyvinyl alcohol aqueous solution was applied to this corona discharge treated surface, dried at 120 ° C. for 5 minutes, and the resulting dry film was rubbed in one direction to obtain a long base material 1 having an alignment film.
  • the cholesteric liquid crystal composition (X) obtained by mixing each component with the composition shown below was applied to the surface of the substrate 1 having the alignment film with a wire bar.
  • the coating film was subjected to orientation treatment at 100 ° C. for 5 minutes and irradiated with ultraviolet rays in a nitrogen atmosphere. After applying a process of broadening the reflection band by repeating the process consisting of a 10 mJ / cm 2 weak UV irradiation process followed by a heating process at 100 ° C. for 1 minute, it is cured by UV irradiation and dried. A long brightness enhancement film 1 having a cholesteric resin layer having a film thickness of 5.3 ⁇ m was obtained. About the obtained brightness improvement film 1, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured. There was a 1.24 times increase in brightness over the reference.
  • Example 2 In place of the resin P1 of Example 1, resin P2 (styrene maleic anhydride copolymer, maleic anhydride content 8 mass%) was used, and the other operations were performed in the same manner as in Example 1 to improve luminance. Film 2 was obtained. About the obtained brightness improvement film 2, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured. (Example 3) Using resin P3 (styrene maleic anhydride copolymer, maleic anhydride content 5 mass%) instead of resin P1 of Example 1, the same operation as in Example 1 was performed, and the luminance was improved. Film 3 was obtained. About the obtained brightness improvement film 3, after heat-processing for 30 second in 120 degreeC oven, haze and the brightness improvement rate were measured.
  • Example 4 Using the styrene maleic anhydride copolymer (maleic anhydride content 40% by mass) instead of the resin P1 in Example 1, the same operation as in Example 1 above was performed, and the brightness enhancement film was obtained. 4 was obtained. About the obtained brightness improvement film 4, after heat-processing for 30 second in 120 degreeC oven, haze and the brightness improvement rate were measured. (Example 5) Instead of the rod-shaped liquid crystal compound of (X) of Example 1, the polymerizable liquid crystal compound (3) (the following structure) described in WO09 / 041512 was used, and the other operations were performed in the same manner as in Example 1, A brightness enhancement film 5 was obtained.
  • the polymerizable liquid crystal compound (3) the following structure described in WO09 / 041512 was used, and the other operations were performed in the same manner as in Example 1, A brightness enhancement film 5 was obtained.
  • Example 6 Instead of the rod-like liquid crystal compound of (X) of Example 1, the polymerizable liquid crystal compound (5) (the following structure) described in WO09 / 041512 was used, and the other operations were performed in the same manner as in Example 1, A brightness enhancement film 6 was obtained.
  • Example 101 The laminate 1 of Example 1-1 described in JP 2010-181710 A was used as the brightness enhancement film 101. About the brightness improvement film 101, after heat-processing for 30 seconds in 120 degreeC oven, the haze and the brightness improvement rate were measured.
  • Comparative Example 102 The brightness enhancement film of Example 1 described in JP2011-118137A was designated as brightness enhancement film 102. About the brightness improvement film 102, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured.
  • Example 103 Using the styrene maleic anhydride copolymer (maleic anhydride content 2 mass%) instead of the resin P1 of Example 1, the same operation as in Example 1 was performed, and the brightness enhancement film 103 was obtained. Produced. About the brightness improvement film 103, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured. (Comparative Example 104) A brightness enhancement film 104 was produced in the same manner as in Example 1 except that the laminated film 1 was replaced with the ⁇ / 4 retardation plate of the example described in Japanese Patent Application Laid-Open No. 2014-0774729. About the brightness improvement film 104, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured.
  • Example 105 A brightness enhancement film 105 was produced in the same manner as in Example 1 except that the stretched retardation film 1 of Example 1 described in JP2012-198282A was used instead of the laminated film 1. About the brightness improvement film 105, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured. (Comparative Example 106) Using the laminated film (FAB-1) of Example 1 described in Japanese Patent Application Laid-Open No. 2011-242723 instead of the laminated film 1, the same operation as in Example 1 was performed to produce the brightness enhancement film 106. did. About the brightness improvement film 106, after heat-processing for 30 seconds in 120 degreeC oven, the haze and the brightness improvement rate were measured.
  • Example 7 A commercially available vertical alignment film (JALS-204R, manufactured by Nippon Synthetic Rubber Co., Ltd.) was diluted 1: 1 with methyl ethyl ketone on the laminated film 1 obtained in Example 1, and then 2.4 ml / m 2 with a wire bar coater. Applied. Immediately, it was dried with 120 ° C. hot air for 120 seconds to form a rod-like liquid crystal homeotropic alignment layer.
  • JALS-204R manufactured by Nippon Synthetic Rubber Co., Ltd.
  • Example 8 Using the polymerizable liquid crystal compound (A5-1) described in JP-A-2011-207765 instead of the rod-shaped liquid crystal compound of (X) of Example 1, the same operations as in Example 1 were performed, except that A brightness enhancement film 8 was obtained.
  • the obtained brightness enhancement film 8 was heat-treated in an oven at 120 ° C. for 30 seconds, and then measured for haze and brightness enhancement rate.
  • the color from an oblique direction shifted from the normal direction of the reflective polarizer was compared with Example 1, the color was less than that of Example 1.
  • Example 9 In place of the rod-like liquid crystal compound (X) of Example 1, the polymerizable liquid crystal compound (Compound 9) described in WO2012 / 147904 pamphlet was used, and the other operations were performed in the same manner as in Example 1 to improve the luminance. Film 9 was obtained.
  • Example 10 In place of the rod-like liquid crystal compound (X) of Example 1, the polymerizable liquid crystal compound (Compound 14) described in the pamphlet of WO2012 / 147904 was used, and the other operations were performed in the same manner as in Example 1 to improve the luminance. Film 10 was obtained.
  • Example 1 About the obtained brightness improvement film 10, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured. When the color from an oblique direction shifted from the normal direction of the reflective polarizer was compared with Example 1, the color was less than that of Example 1.
  • the Re of the ⁇ / 4 plate in each brightness enhancement film, the haze of each brightness enhancement film, the brightness enhancement rate, and the oblique color change are shown in the table below.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

This invention provides a brightness enhancement film having a λ/4 plate and a reflective polarizer, wherein the λ/4 plate includes a resin layer I, the resin layer I includes a polymer having a negative intrinsic birefringence value, the polymer includes a repeating unit derived from an acid anhydride monomer, the polymer includes 5-50% by weight of the repeating unit derived from the acid anhydride monomer, the reflective polarizer includes a light reflection layer formed by fixing a cholesteric liquid crystalline phase, and in which the light reflection layer is a laminated layer with an alignment layer in direct contact with the λ/4 plate interposed therebetween. The invention further provides a liquid crystal display device using the brightness enhancement film. When installed in the liquid crystal display device, the brightness enhancement film yields a high brightness improvement rate and is able to suppress diagonal color change.

Description

輝度向上フィルムおよび液晶表示装置Brightness enhancement film and liquid crystal display device
 本発明は、輝度向上フィルムおよび液晶表示装置に関する。より詳しくは、液晶表示装置に組み込んだときに、輝度が高く、斜め色味変化を抑制できる輝度向上フィルムおよびこの輝度向上フィルムを用いた液晶表示装置に関する。 The present invention relates to a brightness enhancement film and a liquid crystal display device. More specifically, the present invention relates to a brightness enhancement film that has high brightness and can suppress oblique color change when incorporated in a liquid crystal display device, and a liquid crystal display device using the brightness enhancement film.
 液晶表示装置(以下、LCDとも言う)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、バックライト(以下、BLとも言う)、バックライト側偏光板、液晶セル、視認側偏光板がこの順で設けられた構成となっている。
 近年のフラットパネルディスプレイ市場において、LCD性能改善として省電力化、高精細化及び色再現性向上のための開発が進んでいる。これらの性能改善は特にタブレットPCやスマートフォンなどの小型サイズの液晶表示装置で顕著にみられる。
 一方、TV用途を扱う大型サイズにおいては、現行のTV規格(FHD、NTSC(National Television System Committee)比72%≒(EBU European Broadcasting Union)比100%)の次世代ハイビジョン(4K2K、EBU比100%以上)の開発が進められており、小型サイズ同様の性能改善として省電力化、高精細化及び色再現性向上のための開発が進んでいる。そのため、液晶表示装置の省電力化、高精細化、色再現性向上がますます求められている。
Flat panel displays such as liquid crystal display devices (hereinafter also referred to as LCDs) have low power consumption and are increasingly used as space-saving image display devices year by year. The liquid crystal display device has a configuration in which a backlight (hereinafter also referred to as BL), a backlight side polarizing plate, a liquid crystal cell, and a viewing side polarizing plate are provided in this order.
In the flat panel display market in recent years, development for power saving, high definition, and color reproducibility is progressing as LCD performance improvement. These performance improvements are particularly noticeable in small-sized liquid crystal display devices such as tablet PCs and smartphones.
On the other hand, in the large size handling TV applications, the next-generation high-definition (4K2K, EBU ratio 100%) of the current TV standard (FHD, NTSC (National Television System Committee) ratio 72% ≒ (EBU European Broadcasting Union) ratio 100%) Development of the above is underway, and development for power saving, high definition, and improvement of color reproducibility is progressing as performance improvement similar to the small size. Therefore, power saving, high definition, and improvement in color reproducibility of liquid crystal display devices are increasingly required.
 バックライトの省電力化に伴い、バックライトとバックライト側偏光板の間に反射偏光子を設けることが提案されている。反射偏光子は、あらゆる方向に振動しながら入射する光のうち、特定の偏光方向に振動する光のみ透過させて、他の偏光方向に振動する光は反射する光学素子である。これにより、反射偏光子で透過せず反射する光をリサイクルすることができ、LCDにおける光利用率を改善できる。
 これに関し、バックライトとバックライト側偏光板の間に光学シート部材(DBEF(登録商標)(Dual Brightness Enhancement Film、二重輝度向上フィルム)など)を組合せることでBLの光利用率を向上させ、バックライトを省電力化しつつ、その輝度を向上させる技術が知られている(特許文献1参照)。
 特許文献2には、λ/4板とコレステリック液晶相を固定してなる層を積層した構成の反射偏光板、コレステリック液晶相のピッチの異なる3層以上のコレステリック液晶相を固定してなる層により、反射波長領域を広帯域化することで、BLの光利用率を向上させる技術が記載されている。
With the power saving of the backlight, it has been proposed to provide a reflective polarizer between the backlight and the backlight side polarizing plate. The reflective polarizer is an optical element that transmits only light oscillating in a specific polarization direction among light incident while oscillating in all directions, and reflects light oscillating in other polarization directions. This makes it possible to recycle the light that is reflected without being reflected by the reflective polarizer, and the light utilization rate in the LCD can be improved.
In this regard, by combining an optical sheet member (DBEF (registered trademark) (Dual Brightness Enhancement Film), etc.) between the backlight and the backlight-side polarizing plate, the light utilization rate of the BL is improved, and the backlight A technique for improving the luminance of a light while saving power is known (see Patent Document 1).
Patent Document 2 discloses a reflective polarizing plate having a structure in which a layer formed by fixing a λ / 4 plate and a cholesteric liquid crystal phase is laminated, and a layer formed by fixing three or more cholesteric liquid crystal phases having different pitches of cholesteric liquid crystal phases. A technology for improving the light utilization rate of BL by broadening the reflection wavelength region is described.
 ここでλ/4板とコレステリック液晶相を固定してなる層を積層した構成の反射偏光板を液晶表示装置に組み込んだときには、コレステリック液晶相及びλ/4板の光学的特性に起因する、斜め方向から見た際の色味変化が発生しやすいことが知られている。これに対し、特許文献3ではコレステリック液晶相のピッチを光の入射側を短ピッチにする方法、及び面内の屈折率よりも垂直方向の屈折率の大きい補償層を設けることが提案されている。また、特許文献4ではλ/4板の厚み方向のレターデーションを0未満にする方法が提案されている。 Here, when a reflective polarizing plate having a structure in which a λ / 4 plate and a layer in which a cholesteric liquid crystal phase is fixed is stacked is incorporated in a liquid crystal display device, the oblique polarization caused by the optical characteristics of the cholesteric liquid crystal phase and the λ / 4 plate. It is known that color changes are likely to occur when viewed from the direction. On the other hand, Patent Document 3 proposes a method of setting the pitch of the cholesteric liquid crystal phase to a short pitch on the light incident side, and providing a compensation layer having a refractive index larger in the vertical direction than the in-plane refractive index. . Patent Document 4 proposes a method in which the retardation in the thickness direction of the λ / 4 plate is less than zero.
特許3448626号公報Japanese Patent No. 3448626 特開平1-133003号公報JP-A-1-133003 特許3518660号公報Japanese Patent No. 3518660 WO2008/016056号公報WO2008 / 016056 特開2010-181710号公報JP 2010-181710 A 特開2009-288812号公報JP 2009-288812 A
 特許文献1、2に記載の技術は、白色光に対する広帯域において光利用率を改善するため、多層構成、部材の波長分散性を考慮した複雑な設計の上、製造コストが高いという問題があった。
 一方、特許文献3および4に記載のコレステリック液晶相を固定してなる層とλ/4板を組み合わせた偏光板を用いた液晶表示装置は、BL光の光利用率改善には寄与するものの、斜めからみたときの色味変化の改善が不十分であった。
 本発明の解決しようとする課題は、液晶表示装置に組み込んだときに、高い輝度向上率を与えるとともに、斜め色味変化を抑制できる輝度向上フィルムを提供することである。
The techniques described in Patent Documents 1 and 2 have a problem that the manufacturing cost is high due to a complicated design that takes into account the multi-layer structure and the wavelength dispersion of the members in order to improve the light utilization rate in a wide band for white light. .
On the other hand, although the liquid crystal display device using the polarizing plate which combined the layer formed by fixing the cholesteric liquid crystal phase and the λ / 4 plate described in Patent Documents 3 and 4 contributes to the improvement of the light utilization rate of BL light, The improvement in color change when viewed obliquely was insufficient.
The problem to be solved by the present invention is to provide a brightness enhancement film capable of giving a high brightness improvement rate and suppressing oblique color change when incorporated in a liquid crystal display device.
 本発明者らは鋭意検討し、一般的にRthが正となるコレステリック液晶相を固定してなる層に対し、固有複屈折が負である樹脂を含む、Rthが負である層を、λ/4板として組み合わせて用いることに着眼した。固有複屈折が負の樹脂からなる層を含むλ/4板の利用については、特許文献5および6に記載がある。しかし、本発明者らが特許文献5または特許文献6に記載のとおりに輝度向上フィルムを形成しようと試みたところ、耐熱性試験後にヘイズが上昇し、意図した輝度向上率が得られなかった。
 そこで、本発明者らは、固有複屈折が負の樹脂からなる層を含むλ/4板を利用した構成についてさらに検討を重ねて、以下の[1]~[12]の構成の本発明を完成させた。
 すなわち、上記課題は、以下の構成の本発明によって解決される。
The present inventors have intensively studied, and in general, a layer having a negative Rth including a resin having a negative intrinsic birefringence is compared to a layer formed by fixing a cholesteric liquid crystal phase in which Rth is positive. We focused on using it in combination as four plates. Patent Documents 5 and 6 describe the use of a λ / 4 plate including a layer made of a resin having a negative intrinsic birefringence. However, when the present inventors tried to form a brightness enhancement film as described in Patent Document 5 or Patent Document 6, the haze increased after the heat resistance test, and the intended brightness enhancement rate was not obtained.
Therefore, the present inventors have further studied a configuration using a λ / 4 plate including a layer made of a resin having a negative intrinsic birefringence, and have completed the present invention having the following configurations [1] to [12]. Completed.
That is, the said subject is solved by this invention of the following structures.
[1]λ/4板と反射偏光子とを有する輝度向上フィルムであって、
上記λ/4板は樹脂層Iを含み、
樹脂層Iは固有複屈折値が負であるポリマーを含み、
上記ポリマーは酸無水物モノマーに由来する繰り返し単位を含み、
上記ポリマーは酸無水物モノマーに由来する上記の繰り返し単位を5質量%以上50質量%以下含み、
上記反射偏光子はコレステリック液晶相を固定してなる光反射層を含み、
上記光反射層は上記λ/4板に直接接する配向層を介して積層された層である
輝度向上フィルム。
[2]上記光反射層がコレステリック液晶相の螺旋ピッチが螺旋軸方向で徐々に変化しているピッチグラジエント層である[1]に記載の輝度向上フィルム。
[3]上記光反射層が上記配向膜表面に塗布された液晶化合物を含む重合性液晶組成物を硬化した層である[1]または[2]に記載の輝度向上フィルム。
[4]上記液晶化合物の固有複屈折率Δnが逆波長分散性である[3]に記載の輝度向上フィルム。
[5]酸無水物モノマーに由来する上記の繰り返し単位が以下式Iで表される[1]~[4]のいずれか一項に記載の輝度向上フィルム。
[1] A brightness enhancement film having a λ / 4 plate and a reflective polarizer,
The λ / 4 plate includes a resin layer I,
The resin layer I includes a polymer having a negative intrinsic birefringence value,
The polymer includes repeating units derived from acid anhydride monomers,
The polymer contains 5% by mass or more and 50% by mass or less of the repeating unit derived from an acid anhydride monomer,
The reflective polarizer includes a light reflecting layer formed by fixing a cholesteric liquid crystal phase,
The brightness enhancement film, wherein the light reflection layer is a layer laminated through an alignment layer in direct contact with the λ / 4 plate.
[2] The brightness enhancement film according to [1], wherein the light reflection layer is a pitch gradient layer in which the helical pitch of the cholesteric liquid crystal phase is gradually changed in the direction of the helical axis.
[3] The brightness enhancement film according to [1] or [2], wherein the light reflecting layer is a layer obtained by curing a polymerizable liquid crystal composition including a liquid crystal compound applied to the alignment film surface.
[4] The brightness enhancement film according to [3], wherein the intrinsic birefringence Δn of the liquid crystal compound is reverse wavelength dispersion.
[5] The brightness enhancement film according to any one of [1] to [4], wherein the repeating unit derived from the acid anhydride monomer is represented by the following formula I:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[6]上記ポリマーが以下式IIで表される繰り返し単位を含む[1]~[5]のいずれか1項に記載の輝度向上フィルム。 [6] The brightness enhancement film according to any one of [1] to [5], wherein the polymer includes a repeating unit represented by the following formula II.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[7]上記λ/4板が、脂環式構造を有する重合体、鎖状ポリオレフィン、セルロースアシレート、およびポリエステルセルロースアシレートからなる群から選択される化合物を含む樹脂層IIを含む[1]~[6]のいずれか一項に記載の輝度向上フィルム。
[8]上記λ/4板が、樹脂層II、樹脂層I、樹脂層IIをこの順で含む[1]~[7]のいずれか一項に記載の輝度向上フィルム。
[9]上記光反射層が上記λ/4板上に設けられた配向膜表面で塗布成膜された層であり、
樹脂層IIと上記配向層とが直接接しており、かつ上記配向層と上記光反射層とが直接接している[7]または[8]に記載の輝度向上フィルム。
[10]上記λ/4板の厚みが10~300μmである[1]~[9]のいずれか一項に記載の輝度向上フィルム。
[11]さらに、ポジティブCプレートを含む[1]~[10]のいずれか一項に記載の輝度向上フィルム。
[12][1]~[11]のいずれか一項に記載の輝度向上フィルムを含み、
バックライトユニット、上記反射偏光子、上記λ/4板、バックライトユニット側偏光子、液晶セル、視認側偏光子を、この順に含む液晶表示装置。
[7] The λ / 4 plate includes a resin layer II containing a compound selected from the group consisting of a polymer having an alicyclic structure, a chain polyolefin, cellulose acylate, and polyester cellulose acylate. The brightness enhancement film according to any one of [6] to [6].
[8] The brightness enhancement film according to any one of [1] to [7], wherein the λ / 4 plate includes a resin layer II, a resin layer I, and a resin layer II in this order.
[9] The light reflecting layer is a layer formed by coating on the surface of the alignment film provided on the λ / 4 plate,
The brightness enhancement film according to [7] or [8], wherein the resin layer II and the alignment layer are in direct contact, and the alignment layer and the light reflection layer are in direct contact.
[10] The brightness enhancement film according to any one of [1] to [9], wherein the λ / 4 plate has a thickness of 10 to 300 μm.
[11] The brightness enhancement film according to any one of [1] to [10], further including a positive C plate.
[12] The brightness enhancement film according to any one of [1] to [11],
A liquid crystal display device including a backlight unit, the reflective polarizer, the λ / 4 plate, a backlight unit side polarizer, a liquid crystal cell, and a viewing side polarizer in this order.
 本発明によれば、液晶表示装置に組み込んだときに、輝度を向上させることができるとともに、斜め色味変化を抑制できる輝度向上フィルムを提供することができる。 According to the present invention, it is possible to provide a brightness enhancement film capable of improving brightness and suppressing oblique color change when incorporated in a liquid crystal display device.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書中、ピークの「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。
 光反射層の反射中心波長と半値幅は下記のように求めることができる。
 分光光度計UV3150(島津製作所)を用いて光反射層の透過スペクトルを測定すると、選択反射領域に透過率の低下ピークがみられる。この最も大きいピーク高さの1/2の高さの透過率となる2つの波長のうち、短波側の波長の値をλ1(nm)、長波側の波長の値をλ2(nm)とすると、反射中心波長と半値幅は下記式で表すことができる。
反射中心波長=(λ1+λ2)/2
半値幅=(λ2-λ1)
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, the “half width” of a peak means the width of the peak at a peak height of 1/2.
The reflection center wavelength and half width of the light reflection layer can be obtained as follows.
When the transmission spectrum of the light reflection layer is measured using a spectrophotometer UV3150 (Shimadzu Corporation), a peak of decrease in transmittance is observed in the selective reflection region. Of the two wavelengths having a transmittance of 1/2 the maximum peak height, the wavelength value on the short wave side is λ1 (nm) and the wavelength value on the long wave side is λ2 (nm). The reflection center wavelength and the half width can be expressed by the following formula.
Reflection center wavelength = (λ1 + λ2) / 2
Half width = (λ2-λ1)
 本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。単位はいずれもnmである。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。なお、この測定方法は、後述する光学異方性層中のディスコティック液晶分子の配向層側の平均チルト角、その反対側の平均チルト角の測定においても一部利用される。
 Rth(λ)は、Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(B)よりRthを算出することもできる。
In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at the wavelength λ, respectively. The unit is nm. Re (λ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of λ nm incident in the normal direction of the film. In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like. When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method. This measuring method is also partially used for measuring the average tilt angle on the alignment layer side of the discotic liquid crystal molecules in the optically anisotropic layer, which will be described later, and the average tilt angle on the opposite side.
Rth (λ) is Re (λ) with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (in the absence of the slow axis, in-film plane) Measure the light at a wavelength of λnm from each tilted direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction. KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value. In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated by KOBRA 21ADH or WR after changing its sign to negative. The retardation value is measured from two inclined directions with the slow axis as the tilt axis (rotation axis) (if there is no slow axis, the arbitrary direction in the film plane is the rotation axis). Rth can also be calculated from the following formula (A) and formula (B) based on the value, the assumed value of the average refractive index, and the input film thickness value.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは膜厚である。
Rth=((nx+ny)/2-nz)×d・・・・・・・・・・式(B)
Note that Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction. In the formula (A), nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction orthogonal to nx in the plane, and nz is the direction orthogonal to nx and ny. Represents the refractive index. d is the film thickness.
Rth = ((nx + ny) / 2−nz) × d Expression (B)
 測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、前述のRe(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx-nz)/(nx-ny)が更に算出される。 When the film to be measured is a film that cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film having no so-called optical axis, Rth (λ) is calculated by the following method. Rth (λ) is −50 ° with respect to the normal direction of the film, using Re (λ) described above as the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis). Then, 11 points of light having a wavelength of λ nm are incident in 10 ° steps from 1 ° to + 50 °, and the measured retardation value, average refractive index assumption and input film thickness value are used as the basis. Calculated by KOBRA 21ADH or WR. In the above measurement, as the assumed value of the average refractive index, the values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. If the average refractive index is not known, it can be measured with an Abbe refractometer. The average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59). By inputting these assumed values of average refractive index and film thickness, KOBRA 21ADH or WR calculates nx, ny, and nz. Nz = (nx−nz) / (nx−ny) is further calculated from the calculated nx, ny, and nz.
 コレステリック液晶相を固定してなる光反射層においては、液晶本来の常光屈折率noと異常光屈折率neを用いると、面内の屈折率の平均値は
(nx+ny)/2=(no+ne)/2
で表される。
 また、膜厚方向の屈折率はnoとなるため、コレステリック液晶相を固定してなる光反射層のRthは下記式で表せる。本発明の輝度向上フィルムは、第一の光反射層、第二の光反射層および第三の光反射層のRthは下記式を用いて計算した値を採用し、波長λnmのときの第一の光反射層、第二の光反射層および第三の光反射層のRthをRth(λ)と記載する。
Rth={(no+ne)/2-no}×d={(ne-no)/2}×d
 なお、ne及びnoはアッベ屈折計にて測定することができる。
In the light reflection layer formed by fixing the cholesteric liquid crystal phase, when the normal ordinary refractive index no and the extraordinary refractive index ne of the liquid crystal are used, the average value of the in-plane refractive index is (nx + ny) / 2 = (no + ne) / 2
It is represented by
Further, since the refractive index in the film thickness direction is no, Rth of the light reflecting layer formed by fixing the cholesteric liquid crystal phase can be expressed by the following formula. In the brightness enhancement film of the present invention, Rth of the first light reflection layer, the second light reflection layer, and the third light reflection layer adopts a value calculated using the following formula, and the first light reflection wavelength is λ nm. Rth of the light reflecting layer, the second light reflecting layer, and the third light reflecting layer is denoted as Rth (λ).
Rth = {(no + ne) / 2−no} × d = {(ne−no) / 2} × d
Note that ne and no can be measured with an Abbe refractometer.
 また、コレステリック液晶相を固定してなる層のRthを得る方法として、偏光エリプソを用いた方法を適用することもできる。
 例えば、M. Kimura et al. Jpn. J. Appl. Phys. 48 (2009) 03B021に記載されているようにエリプソ測定法を用いれば、コレステリック液晶相を固定してなる層の厚さ、ピッチ、捩れ角等が得られ、そこからRthの値を得ることができる。
In addition, as a method for obtaining Rth of a layer formed by fixing a cholesteric liquid crystal phase, a method using a polarization ellipso can be applied.
For example, M.M. Kimura et al. Jpn. J. et al. Appl. Phys. 48 (2009) When the ellipsometry method is used as described in 03B021, the thickness, pitch, twist angle, etc. of the layer formed by fixing the cholesteric liquid crystal phase can be obtained, and the value of Rth can be obtained therefrom. it can.
 本明細書では、「可視光」とは、波長380nm~780nmの光のことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 本明細書において、角度(例えば「90°」等の角度)、及びその関係(例えば「直交」、「平行」、及び「45°で交差」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
In this specification, “visible light” means light having a wavelength of 380 nm to 780 nm. Moreover, in this specification, when there is no special mention about a measurement wavelength, a measurement wavelength is 550 nm.
In this specification, an angle (for example, an angle such as “90 °”) and a relationship (for example, “orthogonal”, “parallel”, “intersection at 45 °”, etc.) are allowable in the technical field to which the present invention belongs. The range of errors to be included. For example, it means that the angle is within the range of strict angle ± 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
 本明細書において、偏光子または偏光板の「吸収軸」は、吸光度の最も高い方向を意味する。
 本明細書において、λ/4板などの位相差フィルム等の「遅相軸」は、屈折率が最大となる方向を意味する。
 本明細書において、「偏光子」と「反射偏光子」は区別して用いられる。
 また、本明細書において、位相差領域、位相差フィルム、及び液晶層等の各部材の光学特性を示す数値、数値範囲、及び定性的な表現(例えば、「同等」、「等しい」等の表現)については、液晶表示装置やそれに用いられる部材について一般的に許容される誤差を含む数値、数値範囲及び性質を示していると解釈されるものとする。
In the present specification, the “absorption axis” of a polarizer or a polarizing plate means a direction having the highest absorbance.
In the present specification, the “slow axis” of a retardation film such as a λ / 4 plate means a direction in which the refractive index is maximum.
In the present specification, “polarizer” and “reflection polarizer” are distinguished from each other.
Further, in this specification, numerical values, numerical ranges, and qualitative expressions (for example, “equivalent”, “equal”, etc.) indicating optical characteristics of each member such as a retardation region, a retardation film, and a liquid crystal layer are used. ) Is interpreted to indicate numerical values, numerical ranges and properties including generally allowable errors for liquid crystal display devices and members used therefor.
[輝度向上フィルム]
 輝度向上フィルムは、λ/4板と反射偏光子とを有する。反射偏光子はコレステリック液晶相を固定してなる光反射層を含む。輝度向上フィルムは後述するように、液晶表示装置に設けられて、液晶表示装置の輝度を向上させる機能を有する。
 輝度向上フィルムの膜厚は11~400μmであることが好ましく、15~200μmであることがより好ましく、20~150μmであることが特に好ましい。
 輝度向上フィルムの反射偏光子に用いられるコレステリック液晶相を固定してなる光反射層は、一般的に、正のRthを有することが知られている。本発明においては、このようなコレステリック液晶相を固定してなる光反射層と固有複屈折が負の樹脂からなる層を含むλ/4板とを組み合わせて用いることにより、斜め方向から見た際の色味変化の抑制を実現した。
[Brightness enhancement film]
The brightness enhancement film has a λ / 4 plate and a reflective polarizer. The reflective polarizer includes a light reflection layer formed by fixing a cholesteric liquid crystal phase. As will be described later, the brightness enhancement film is provided in the liquid crystal display device and has a function of improving the brightness of the liquid crystal display device.
The film thickness of the brightness enhancement film is preferably 11 to 400 μm, more preferably 15 to 200 μm, and particularly preferably 20 to 150 μm.
It is known that a light reflection layer formed by fixing a cholesteric liquid crystal phase used for a reflective polarizer of a brightness enhancement film generally has a positive Rth. In the present invention, when a light reflection layer having such a cholesteric liquid crystal phase fixed and a λ / 4 plate including a layer made of a resin having a negative intrinsic birefringence are used in combination, when viewed from an oblique direction, Suppression of the color change of the was realized.
<λ/4板>
 λ/4板は特定の波長λnmにおける面内レターデーションRe(λ)が
  Re(λ)=λ/4
を満たす光学異方性層のことをいう。λ/4板は輝度向上フィルムにおいて、反射偏光子を透過して得られる円偏光を直線偏光に変換するための層として機能する。
 λ/4板は、下記式(A)~(C)を少なくともひとつ満たすことが好ましく、下記式(A)~(C)を全て満たすことがさらに好ましい。
式(A) 450nm/4-35nm<Re(450)<450nm/4+35nm
式(B) 550nm/4-35nm<Re(550)<550nm/4+35nm
式(C) 630nm/4-35nm<Re(630)<630nm/4+35nm
<Λ / 4 plate>
The λ / 4 plate has an in-plane retardation Re (λ) at a specific wavelength λnm. Re (λ) = λ / 4
An optically anisotropic layer satisfying the above. In the brightness enhancement film, the λ / 4 plate functions as a layer for converting circularly polarized light obtained by passing through the reflective polarizer into linearly polarized light.
The λ / 4 plate preferably satisfies at least one of the following formulas (A) to (C), and more preferably satisfies all of the following formulas (A) to (C).
Formula (A) 450 nm / 4-35 nm <Re (450) <450 nm / 4 + 35 nm
Formula (B) 550 nm / 4-35 nm <Re (550) <550 nm / 4 + 35 nm
Formula (C) 630 nm / 4-35 nm <Re (630) <630 nm / 4 + 35 nm
 λ/4板は固有複屈折値が負であるポリマーを含む樹脂層Iを含む。樹脂層Iは、特に延伸工程を経て形成されると、層として負のRthを示す。そのため、樹脂層Iと、正のRthを有するコレステリック液晶相を固定してなる光反射層との組み合わせで斜め方向から見た際の色味変化が抑制できる。 The λ / 4 plate includes a resin layer I including a polymer having a negative intrinsic birefringence value. The resin layer I exhibits a negative Rth as a layer, particularly when formed through a stretching process. Therefore, a change in hue when viewed from an oblique direction can be suppressed by a combination of the resin layer I and a light reflection layer in which a cholesteric liquid crystal phase having positive Rth is fixed.
 固有複屈折値が負であるポリマーとしては、酸無水物モノマーに由来する繰り返し単位を含むポリマーが用いられる。本発明者らは、λ/4板を支持体として、λ/4板上で塗布成膜してコレステリック液晶相を固定してなる光反射層を形成する形態において、酸無水物モノマーに由来する繰り返し単位を5質量%以上50質量%以下含むポリマーを含む樹脂層Iを用いることにより、耐熱性試験の強制条件として120℃のオーブンで30秒の耐熱性試験後も、ヘイズが低い輝度向上フィルムが得られることを見出した。
 耐熱性試験後のヘイズとしては、好ましくは0~1.0%であり、より好ましくは0~0.7%であり、さらに好ましくは0~0.5%である。
 ヘイズの測定は、フィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM-2DP、スガ試験機)でJIS K-7136に従って測定できる。
As the polymer having a negative intrinsic birefringence value, a polymer containing a repeating unit derived from an acid anhydride monomer is used. The present inventors derive from an acid anhydride monomer in a form in which a light reflecting layer is formed by coating a film on a λ / 4 plate and fixing a cholesteric liquid crystal phase using the λ / 4 plate as a support. By using the resin layer I containing a polymer containing 5% by mass or more and 50% by mass or less of repeating units, a brightness enhancement film having low haze even after a 30-second heat resistance test in an oven at 120 ° C. as a compulsory condition for the heat resistance test It was found that can be obtained.
The haze after the heat resistance test is preferably 0 to 1.0%, more preferably 0 to 0.7%, and still more preferably 0 to 0.5%.
The haze can be measured on a film sample of 40 mm × 80 mm at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Machine) according to JIS K-7136.
 特定の理論に拘泥するものではないが、上記の量で酸無水物モノマーに由来する繰り返し単位を含む樹脂層を用いることにより、λ/4板と光反射層との熱線膨張係数が整合し、層間の歪みに基づく配向欠陥などが生じにくくなったためと推定される。樹脂層Iは、固有複屈折値が負であるポリマーを90質量%以上、95質量%、98質量%以上、99質量%以上、99.5質量%以上、99.8質量%以上、または99.9質量%以上含んでいればよく、樹脂層Iは実質的に固有複屈折値が負であるポリマーからなることも好ましい。 Although not bound by a specific theory, by using a resin layer containing a repeating unit derived from an acid anhydride monomer in the above amount, the thermal expansion coefficients of the λ / 4 plate and the light reflecting layer are matched, This is presumably because alignment defects and the like based on interlayer strain are less likely to occur. The resin layer I is a polymer having a negative intrinsic birefringence value of 90% by mass or more, 95% by mass, 98% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.8% by mass or more, or 99 The resin layer I is also preferably made of a polymer having a substantially negative intrinsic birefringence value.
 酸無水物モノマーとしては、特に限定されないが、例えば、無水マレイン酸、無水シトラコン酸、無水イタコン酸、1,2,3,6-テトラヒドロフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物、3-メチル-1,2,6-テトラヒドロフタル酸無水物、および2-メチル-1,3,6-テトラヒドロフタル酸無水物が挙げられる。これらのうち、無水マレイン酸が好ましい。
 酸無水物モノマーに由来する繰り返し単位とは、酸無水物モノマーを含む原料の重合により得られるポリマー中の酸無水物モノマーを源とする部分の構造を意味し、酸無水物モノマーが無水マレイン酸の場合は、以下の部分となる。
The acid anhydride monomer is not particularly limited, and examples thereof include maleic anhydride, citraconic anhydride, itaconic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic acid. Anhydrides, bicyclo [2.2.2] -5-octene-2,3-dicarboxylic anhydride, 3-methyl-1,2,6-tetrahydrophthalic anhydride, and 2-methyl-1,3, Examples include 6-tetrahydrophthalic anhydride. Of these, maleic anhydride is preferred.
The repeating unit derived from the acid anhydride monomer means a structure of a portion derived from the acid anhydride monomer in the polymer obtained by polymerization of the raw material containing the acid anhydride monomer, and the acid anhydride monomer is maleic anhydride. In the case of, it becomes the following part.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 樹脂層Iは酸無水物モノマーに由来する繰り返し単位を樹脂層Iの総質量に対して5質量%以上50質量%以下含む。
 樹脂層I中の酸無水物モノマーに由来する繰り返し単位の含有量は赤外分光法のATR測定法で求められる。例えば、無水マレイン酸とスチレンとの共重合体の場合、「無水マレイン酸系共重合体の赤外線吸収スペクトル」(福井大学工学部研究報告 18(1), 173-181, 1970-03)を参考にして、無水マレイン酸のカルボニルに帰属する1780cm-1付近のピーク強度とスチレンのベンゼン環のCH伸縮に帰属する3050cm-1付近のピーク強度を用いた検量線を作成して求めることができる。無水マレイン酸以外の酸無水物を用いる場合についても同様に、用いる酸無水物のカルボニルに帰属する1780cm-1付近あるいは1855cm-1付近のピークを用いることにより、またスチレン以外のモノマーを用いる場合についても同様に、上記カルボニルに帰属するピークと重ならない領域の、用いるモノマー由来のピークを用いることにより、検量線を作成して含有量を求めることができる。例えば、メタクリル酸メチルの場合、α-メチル基の逆対称変角に帰属する1470cm-1付近、対称変角に帰属する1390cm-1付近のピークを用いることができる。
 ポリマー中の酸無水物モノマーに由来する繰り返し単位の含有量については、ポリマー作製時の全モノマー中の酸無水物モノマーの割合として求めることができる場合もある。
 固有複屈折値が負であるポリマーにおける酸無水物モノマーに由来する繰り返し単位の含有量は、固有複屈折値が負であるポリマーの総質量に対して7質量%以上45質量%以下であることも好ましい。
The resin layer I contains 5% by mass or more and 50% by mass or less of repeating units derived from the acid anhydride monomer with respect to the total mass of the resin layer I.
The content of the repeating unit derived from the acid anhydride monomer in the resin layer I is determined by the ATR measurement method of infrared spectroscopy. For example, in the case of a copolymer of maleic anhydride and styrene, refer to “Infrared absorption spectrum of maleic anhydride copolymer” (Fukui University Faculty of Engineering Research Report 18 (1), 173-181, 1970-03). Thus, a calibration curve using the peak intensity near 1780 cm −1 attributed to carbonyl of maleic anhydride and the peak intensity near 3050 cm −1 attributed to CH stretching of the benzene ring of styrene can be determined. Similarly, the case of using maleic anhydride other than the acid anhydride, by use of the peak in the vicinity of 1780 cm -1 vicinity or 1855Cm -1 attributable to the carbonyl of the acid anhydride to be used, and for the case of using a monomer other than styrene Similarly, by using a peak derived from the monomer to be used in a region that does not overlap with the peak attributed to the carbonyl, a calibration curve can be prepared to determine the content. For example, in the case of methyl methacrylate, it may be used α- near 1470 cm -1 attributable to the antisymmetric deformation methyl group, a peak near 1390 cm -1 attributable to symmetrical deformation.
About content of the repeating unit derived from the acid anhydride monomer in a polymer, it may be calculated | required as a ratio of the acid anhydride monomer in all the monomers at the time of polymer preparation.
The content of the repeating unit derived from the acid anhydride monomer in the polymer having a negative intrinsic birefringence value is 7% by mass to 45% by mass with respect to the total mass of the polymer having a negative intrinsic birefringence value. Is also preferable.
 固有複屈折値が負であるポリマーに含まれる他の繰り返し単位としては、特に限定されないが、固有複屈折値が負であるポリマーを実現する繰り返し単位として、ビニル芳香族単量体を原料として用いて、形成される繰り返し単位が好ましい。ビニル芳香族単量体としては、例えば、スチレンのほか、4-メチルスチレン、4-クロロスチレン、3-メチルスチレン、4-メトキシスチレン、4-tert-ブトキシスチレン、α-メチルスチレンなどのスチレン誘導体が挙げられる。これらのうち、以下で示されるスチレンを原料として形成される繰り返し単位が好ましい。 Other repeating units contained in the polymer having a negative intrinsic birefringence value are not particularly limited, but a vinyl aromatic monomer is used as a raw material as a repeating unit for realizing a polymer having a negative intrinsic birefringence value. The repeating unit formed is preferred. Examples of vinyl aromatic monomers include styrene, styrene derivatives such as 4-methylstyrene, 4-chlorostyrene, 3-methylstyrene, 4-methoxystyrene, 4-tert-butoxystyrene, and α-methylstyrene. Is mentioned. Of these, repeating units formed using styrene as a raw material shown below are preferred.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 固有複屈折値が負であるポリマーとしては、酸無水物モノマーとビニル芳香族単量体との共重合体が好ましく、無水マレイン酸とビニル芳香族単量体との共重合体がより好ましく、無水マレイン酸とスチレンとの共重合体がさらに好ましい。 The polymer having a negative intrinsic birefringence value is preferably a copolymer of an acid anhydride monomer and a vinyl aromatic monomer, more preferably a copolymer of maleic anhydride and a vinyl aromatic monomer, More preferred is a copolymer of maleic anhydride and styrene.
 λ/4板は、樹脂層I以外の他の樹脂層を含む積層フィルムであることも好ましい。他の樹脂層は、固有複屈折値が負であるポリマーを含む層であっても、固有複屈折値が正であるポリマーを含む層であってもよいが、積層フィルム、すなわちλ/4板は負のRthを示すことが好ましい。他の樹脂層としては、脂環式構造を有する重合体、鎖状ポリオレフィン、セルロースアシレート、およびポリエステルセルロースアシレートからなる群から選択される化合物を含む樹脂層IIが挙げられる。
 λ/4板は、樹脂層II、樹脂層I、樹脂層IIをこの順で含むことも好ましい。
 樹脂層Iと樹脂層I以外の他の樹脂層とは接着剤で接着されていてもよい。接着剤としては、アクリレート系、ウレタン系、ウレタンアクリレート系、エポキシ系、エポキシアクリレート系、ポリオレフィン系、変性オレフィン系、ポリプロピレン系、エチレンビニルアルコール系、塩化ビニル系、クロロプレンゴム系、シアノアクリレート系、ポリアミド系、ポリイミド系、ポリスチレン系、ポリビニルブチラール系などの化合物を使用することができる。
 また、これらの層は積層後積層フィルムで延伸されていることが好ましい。
 λ/4板の具体的製造方法としては、特開2009-288812号公報の長尺巻状体(A)の製法を参照することができる。
 λ/4板の膜厚は10~300μmであることが好ましく、30~200μmであることがより好ましい。
The λ / 4 plate is also preferably a laminated film including a resin layer other than the resin layer I. The other resin layer may be a layer containing a polymer having a negative intrinsic birefringence value or a layer containing a polymer having a positive intrinsic birefringence value, but a laminated film, that is, a λ / 4 plate Preferably represents negative Rth. Examples of the other resin layer include a resin layer II containing a compound selected from the group consisting of a polymer having an alicyclic structure, a chain polyolefin, cellulose acylate, and polyester cellulose acylate.
It is also preferable that the λ / 4 plate includes the resin layer II, the resin layer I, and the resin layer II in this order.
The resin layer I and other resin layers other than the resin layer I may be bonded with an adhesive. Adhesives include acrylate, urethane, urethane acrylate, epoxy, epoxy acrylate, polyolefin, modified olefin, polypropylene, ethylene vinyl alcohol, vinyl chloride, chloroprene rubber, cyanoacrylate, polyamide A compound such as a system, a polyimide system, a polystyrene system, or a polyvinyl butyral system can be used.
Moreover, it is preferable that these layers are extended | stretched with the laminated | multilayer film after lamination | stacking.
As a specific method for producing the λ / 4 plate, reference can be made to the production method of the long wound body (A) described in JP-A-2009-288812.
The film thickness of the λ / 4 plate is preferably 10 to 300 μm, more preferably 30 to 200 μm.
<反射偏光子>
 反射偏光子は、コレステリック液晶相を固定してなる光反射層を少なくとも一層含む。反射偏光子は、光反射層を2層以上含むことも好ましく、2層~4層含むことがより好ましく、2層または3層含むことがより好ましい。反射偏光子は、反射中心波長が互いに異なる光反射層を2層以上含むことが好ましく、反射中心波長が互いに異なる光反射層を2層または3層含むことがより好ましい。
 反射偏光子は、青色光、緑色光および赤色光を反射する機能を持つことが好ましい。
 反射偏光子の膜厚は1.5~60μmが好ましく、1.5~30μmであることが好ましく、2~24μmであることがさらに好ましく、2~18μmであることが最も好ましい。
<Reflective polarizer>
The reflective polarizer includes at least one light reflecting layer formed by fixing a cholesteric liquid crystal phase. The reflective polarizer preferably includes two or more light reflecting layers, more preferably includes two to four layers, and more preferably includes two or three layers. The reflective polarizer preferably includes two or more light reflecting layers having different reflection center wavelengths, and more preferably includes two or three light reflecting layers having different reflection center wavelengths.
The reflective polarizer preferably has a function of reflecting blue light, green light and red light.
The thickness of the reflective polarizer is preferably 1.5 to 60 μm, preferably 1.5 to 30 μm, more preferably 2 to 24 μm, and most preferably 2 to 18 μm.
(コレステリック液晶相を固定してなる光反射層)
 コレステリック液晶相を固定してなる層は、特定の波長域において右円偏光または左円偏光のいずれか一方を選択的に反射させるとともに他方の円偏光を透過する選択反射を示すことが知られている。選択反射性を示すコレステリック液晶相を固定した層を含むフィルムとして、重合性液晶化合物を含む組成物から形成されたフィルムは従来から数多く知られており(例えば、富士フイルム研究報告No.50(2005年)p.60-63)、コレステリック液晶相を固定した層については、それらの従来技術を参照することができる。
(Light reflecting layer with fixed cholesteric liquid crystal phase)
A layer formed by fixing a cholesteric liquid crystal phase is known to selectively reflect either right-handed circularly polarized light or left-handed circularly-polarized light in a specific wavelength region and to exhibit selective reflection that transmits the other circularly polarized light. Yes. As a film including a layer in which a cholesteric liquid crystal phase exhibiting selective reflectivity is fixed, many films formed from a composition containing a polymerizable liquid crystal compound have been known (for example, Fuji Film Research Report No. 50 (2005 (Year) p.60-63), for the layer in which the cholesteric liquid crystal phase is fixed, those prior arts can be referred to.
 反射率のピークを与える反射中心波長は、コレステリック液晶相を固定してなる光反射層のコレステリック液晶相中の螺旋構造のピッチまたは屈折率を変えることにより調整することができる。螺旋構造のピッチはキラル剤の添加量を変えることによって調整可能である。なお、ピッチとはコレステリック液晶相における螺旋構造のピッチ長Pであり、液晶化合物の分子層の配向方向が360度回転したときの分子層の厚さをいう。選択反射を示す選択反射帯の半値幅Δλ(nm)は、Δλが液晶化合物の複屈折Δnとピッチ長Pに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯の幅の制御は、Δnを調整して行うことができる。Δnの調整は重合性液晶化合物の種類やその混合比率を調整したり、配向固定時の温度を制御したりすることで行うことができる。 The reflection center wavelength that gives the peak of reflectance can be adjusted by changing the pitch or refractive index of the helical structure in the cholesteric liquid crystal phase of the light reflection layer formed by fixing the cholesteric liquid crystal phase. The pitch of the helical structure can be adjusted by changing the amount of chiral agent added. The pitch is the pitch length P of the helical structure in the cholesteric liquid crystal phase, and means the thickness of the molecular layer when the orientation direction of the molecular layer of the liquid crystal compound is rotated 360 degrees. The full width at half maximum Δλ (nm) of the selective reflection band indicating selective reflection depends on the relationship of Δλ = Δn × P, where Δλ depends on the birefringence Δn of the liquid crystal compound and the pitch length P. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by adjusting the kind of the polymerizable liquid crystal compound and the mixing ratio thereof, or by controlling the temperature at the time of fixing the alignment.
 光反射層は、コレステリック液晶相のピッチが螺旋軸方向で徐々に変化しているピッチグラジエント層であることも好ましい。ピッチグラジエント層とすることにより、光反射層の反射波長領域を広帯域化することができる。
 ピッチグラジエント法では、コレステリック液晶相の螺旋方向(通常膜厚方向)でピッチを徐々に変化させることで、広い半値幅を実現できる。ピッチグラジエント法を適用した光反射層においては、ピッチは、膜厚方向で連続的に変化していることが好ましい。また、ピッチグラジエント法を適用した光反射層においては、層の片面から他方の面に向かって、ピッチが連続的に増加しているか、または連続的に減少していることが好ましい。ピッチグラジエント法は、液晶層の厚さ方向で螺旋を形成しない化合物濃度を液晶層の厚さ方向で連続的に変化させる、またはキラル剤の濃度を液晶層の厚さ方向で連続的に変化させる、または、光異性化部分を有するキラル剤を用い、光反射層形成時に、キラル剤の光異性化部分をUV照射などで異性化させることで、キラル剤のHTP(ヘリカルツイスティングパワー)を変化させることにより達成される。この光異性化部分としては、ビニレン基や、アゾ基などが好ましい。
The light reflecting layer is preferably a pitch gradient layer in which the pitch of the cholesteric liquid crystal phase is gradually changed in the direction of the helical axis. By using the pitch gradient layer, the reflection wavelength region of the light reflection layer can be broadened.
In the pitch gradient method, a wide half-value width can be realized by gradually changing the pitch in the spiral direction (normal film thickness direction) of the cholesteric liquid crystal phase. In the light reflection layer to which the pitch gradient method is applied, it is preferable that the pitch continuously changes in the film thickness direction. Moreover, in the light reflection layer to which the pitch gradient method is applied, it is preferable that the pitch continuously increases or decreases continuously from one surface of the layer to the other surface. In the pitch gradient method, the concentration of a compound that does not form a spiral in the thickness direction of the liquid crystal layer is continuously changed in the thickness direction of the liquid crystal layer, or the concentration of the chiral agent is continuously changed in the thickness direction of the liquid crystal layer. Alternatively, use a chiral agent with a photoisomerization moiety, and change the HTP (helical twisting power) of the chiral agent by isomerizing the photoisomerization part of the chiral agent with UV irradiation etc. when forming the light reflection layer. To achieve this. As this photoisomerization moiety, a vinylene group, an azo group, or the like is preferable.
 具体的には、例えば0.01~50mJ/cm2の微弱な紫外線照射と加温とを複数回交互に繰り返し、ピッチグラジエント層を得ることもできる。上記の微弱な紫外線照射等による反射波長領域の拡張を行った後に、例えば50~10,000mJ/cm2の比較的強い紫外線を照射し、液晶性化合物を完全に重合させ、コレステリック樹脂層とすることができる。上記の微弱な紫外線照射及び強い紫外線の照射は、空気下で行ってもよく、又はその工程の一部又は全部を、酸素濃度を制御した雰囲気(例えば、窒素雰囲気下)中で行うこともできる。 Specifically, for example, a weak gradient of 0.01 to 50 mJ / cm 2 and heating may be alternately repeated a plurality of times to obtain a pitch gradient layer. After the reflection wavelength region is expanded by the above-described weak ultraviolet irradiation or the like, for example, a relatively strong ultraviolet ray of, for example, 50 to 10,000 mJ / cm 2 is irradiated to completely polymerize the liquid crystalline compound to form a cholesteric resin layer. be able to. The above-described weak ultraviolet irradiation and strong ultraviolet irradiation may be performed in the air, or a part or all of the process may be performed in an atmosphere in which the oxygen concentration is controlled (for example, in a nitrogen atmosphere). .
 ピッチグラジエント法としては、その他(Nature 378、467-469 1995)や特許4990426号公報などの記載のものが適用できる。また、特許4570377号に記載の、螺旋を形成せずフッ化アルキル基を有する化合物を利用することもできる。 As the pitch gradient method, those described in others (Nature 378, 467-469 1995) and Japanese Patent No. 4990426 can be applied. Moreover, the compound which does not form a helix and has a fluorinated alkyl group as described in Japanese Patent No. 4570377 can also be used.
 光反射層の膜厚は、反射性、配向乱れや透過率低下の防止等の点より、1.5~20μmが好ましく、1.5~10μmであることが好ましく、2~8μmであることがさらに好ましく、2~7μmであることが最も好ましい。
 コレステリック液晶相を固定してなる光反射層は、液晶化合物を含む重合性液晶組成物を他の層に塗布後、塗布膜を硬化して得られる塗布硬化層として形成することができる。輝度向上フィルム中の最もλ/4板に近い光反射層はλ/4板上で塗布硬化して形成される。輝度向上フィルム中のすべての光反射層がλ/4板上で塗布硬化して形成されたものであることも好ましい。
 本明細書において「λ/4板上」というとき、「λ/4板表面に直接」または「λ/4板表面に設けられた配向層などの他の層の表面に直接」の意味を含む。この時の他の層は1層であっても2層以上であってもよい。
The thickness of the light reflecting layer is preferably 1.5 to 20 μm, more preferably 1.5 to 10 μm, and preferably 2 to 8 μm from the viewpoints of reflectivity, orientation disorder and prevention of transmittance reduction. More preferred is 2 to 7 μm.
The light reflecting layer formed by fixing the cholesteric liquid crystal phase can be formed as a coating cured layer obtained by curing a coating film after coating a polymerizable liquid crystal composition containing a liquid crystal compound on another layer. The light reflection layer closest to the λ / 4 plate in the brightness enhancement film is formed by coating and curing on the λ / 4 plate. It is also preferred that all light reflecting layers in the brightness enhancement film are formed by coating and curing on a λ / 4 plate.
In this specification, “on a λ / 4 plate” includes the meaning of “directly on the surface of the λ / 4 plate” or “directly on the surface of another layer such as an alignment layer provided on the surface of the λ / 4 plate”. . The other layers at this time may be one layer or two or more layers.
(重合性液晶組成物)
 重合性液晶組成物は液晶化合物のほか、キラル剤、配向制御剤、重合開始剤、配向助剤などのその他の成分を含有していてもよい。
(液晶化合物)
 液晶化合物としては、棒状液晶化合物および円盤状液晶化合物が挙げられる。正のRthを示すコレステリック液晶相を固定してなる光反射層の形成のためには、棒状液晶化合物を用いることが好ましい。
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
(Polymerizable liquid crystal composition)
In addition to the liquid crystal compound, the polymerizable liquid crystal composition may contain other components such as a chiral agent, an alignment controller, a polymerization initiator, and an alignment aid.
(Liquid crystal compound)
Examples of the liquid crystal compound include a rod-like liquid crystal compound and a disk-like liquid crystal compound. In order to form a light reflecting layer formed by fixing a cholesteric liquid crystal phase exhibiting positive Rth, it is preferable to use a rod-like liquid crystal compound.
Examples of the rod-like liquid crystal compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. In addition to the above low-molecular liquid crystalline molecules, high-molecular liquid crystalline molecules can also be used.
 棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号、同5622648号、同5770107号、WO95/22586号、同95/24455号、同97/00600号、同98/23580号、同98/52905号、特開平1-272551号、同6-16616号、同7-110469号、同11-80081号、および特開2001-328973号公報などに記載の化合物を用いることができる。さらに棒状液晶化合物としては、例えば、特表平11-513019号公報や特開2007-279688号公報に記載のものも好ましく用いることができる。 It is more preferable to fix the orientation of the rod-like liquid crystal compound by polymerization, and examples of the polymerizable rod-like liquid crystal compound include those described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, 5,770,107, WO 95/22586, 95/24455, 97/97 No. 0600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and JP-A-2001-328773. The described compounds can be used. Further, as the rod-like liquid crystal compound, for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
 液晶化合物は、固有複屈折率Δnが逆波長分散性、即ち下記式を満足する波長分散性を有することが好ましい。
Δn(450nm)/Δn(550nm)<1.0
 固有複屈折率Δnは液晶便覧(液晶便覧編集委員会)のp.202に記載の方法に従って測定することができる。
 Δnが逆波長分散性である液晶化合物を用いることにより、輝度向上フィルムを斜め方向から観察した場合の色味をさらに低減することができる。Δnが逆波長分散性である液晶化合物は重合性液晶組成物中の液晶化合物の全量に対して50~100質量%含まれていることが好ましく、70~100質量%含まれていることがより好ましい。
The liquid crystal compound preferably has an intrinsic birefringence Δn having reverse wavelength dispersion, that is, wavelength dispersion satisfying the following formula.
Δn (450 nm) / Δn (550 nm) <1.0
The intrinsic birefringence Δn is calculated according to p. It can be measured according to the method described in 202.
By using a liquid crystal compound in which Δn is reverse wavelength dispersibility, the color tone when the brightness enhancement film is observed from an oblique direction can be further reduced. The liquid crystal compound in which Δn is reverse wavelength dispersive is preferably contained in an amount of 50 to 100% by mass, more preferably 70 to 100% by mass, based on the total amount of the liquid crystal compound in the polymerizable liquid crystal composition. preferable.
 重合性液晶組成物中の液晶化合物の添加量は、重合性液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%であることが好ましく、85~99.5質量%であることがより好ましく、90~99質量%であることが特に好ましい。 The addition amount of the liquid crystal compound in the polymerizable liquid crystal composition is preferably 80 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the polymerizable liquid crystal composition, and preferably 85 to 99. It is more preferably 5% by mass, particularly preferably 90 to 99% by mass.
(キラル剤)
 キラル剤は、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989に記載)から選択することができる。キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤が重合性基を有するとともに、併用する棒状液晶化合物も重合性基を有する場合は、重合性基を有するキラル剤と重合性棒状液晶化合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性基を有するキラル剤が有する重合性基は、重合性棒状液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基又はアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、キラル剤は、液晶化合物であってもよい。
 強い捩れ力を示すキラル剤としては、例えば、特開2010-181852号公報、特開2003-287623号公報、特開2002-80851号公報、特開2002-80478号公報、特開2002-302487号公報、に記載のキラル剤が挙げられ、本発明に好ましく用いることができる。さらに、これらの公開公報に記載されているイソソルビド化合物類については対応する構造のイソマンニド化合物類を用いることもでき、これらの公報に記載されているイソマンニド化合物類については対応する構造のイソソルビド化合物類を用いることもできる。
(Chiral agent)
As the chiral agent, various known chiral agents (for example, described in Liquid Crystal Device Handbook, Chapter 3-4-3, TN, chiral agent for STN, page 199, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989) You can choose from. A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When the chiral agent has a polymerizable group and the rod-shaped liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-shaped liquid crystal compound by a polymerization reaction between the chiral agent having a polymerizable group and the polymerizable rod-shaped liquid crystal compound. Polymers having repeating units and repeating units derived from chiral agents can be formed. In this embodiment, the polymerizable group possessed by the chiral agent having a polymerizable group is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
The chiral agent may be a liquid crystal compound.
Examples of the chiral agent exhibiting a strong twisting force include, for example, JP 2010-181852 A, JP 2003-287623 A, JP 2002-80851 A, JP 2002-80478 A, and JP 2002-302487 A. The chiral agent described in the publication can be mentioned and can be preferably used in the present invention. Furthermore, isosorbide compounds having a corresponding structure can be used for the isosorbide compounds described in these publications, and isosorbide compounds having a corresponding structure can be used for the isomannide compounds described in these publications. It can also be used.
(配向制御剤)
 配向制御剤の例には、特開2005-99248号公報の[0092]及び[0093]中に例示されている化合物、特開2002-129162号公報の[0076]~[0078]及び[0082]~[0085]中に例示されている化合物、特開2005-99248号公報の[0094]及び[0095]中に例示されている化合物、特開2005-99248号公報の[0096]中に例示されている化合物が含まれる。
 配向制御剤としては、特開2014-119605号公報の[0082]~[0090]に記載の化合物を用いることもできる。
(Orientation control agent)
Examples of the alignment control agent include compounds exemplified in [0092] and [0093] of JP-A No. 2005-99248, and [0076] to [0078] and [0082] of JP-A No. 2002-129162. To [0085], the compounds exemplified in JP-A-2005-99248, [0094] and [0095], and JP-A-2005-99248, [0096]. Are included.
As the orientation control agent, compounds described in [0082] to [0090] of JP-A No. 2014-119605 can also be used.
(光重合開始剤)
 光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)等が挙げられる。
(Photopolymerization initiator)
Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850) and oxadiazole compounds (US Pat. No. 4,221,970), acylphosphine Oxide compounds (Japanese Patent Publication No. 63-40) No. 799, JP-B-5-29234, JP-A-10-95788, JP-A-10-29997) and the like.
(溶媒)
 重合性液晶組成物は溶媒を含んでいてもよい。溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N、N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1、2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
(solvent)
The polymerizable liquid crystal composition may contain a solvent. As the solvent, an organic solvent is preferably used. Examples of organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
(重合性液晶組成物の塗布および硬化)
 重合性液晶組成物の塗布は、重合性液晶組成物を溶媒により溶液状態としたり、加熱による溶融液等の液状物としたものを、ロールコーティング方式やグラビア印刷方式、スピンコート方式などの適宜な方式で展開する方法などにより行うことができる。さらにワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、等の種々の方法によって行うことができる。また、インクジェット装置を用いて、液晶組成物をノズルから吐出して、塗布膜を形成することもできる。
(Application and curing of polymerizable liquid crystal composition)
The application of the polymerizable liquid crystal composition is carried out by using a suitable liquid crystal composition such as a roll coating method, a gravure printing method, a spin coating method, etc. It can be performed by a method of developing by a method. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. In addition, a coating film can be formed by discharging a liquid crystal composition from a nozzle using an inkjet apparatus.
 その後重合性液晶組成物の硬化により、液晶化合物の分子の、配向状態を維持して固定する。硬化は、液晶性分子に導入した重合性基の重合反応により実施することが好ましい。
 重合性液晶組成物の塗布後であって、硬化のための重合反応前に、塗布膜は、公知の方法で乾燥してもよい。例えば放置によって乾燥してもよく、加熱によって乾燥してもよい。
重合性液晶組成物の塗布および乾燥の工程で、重合性液晶組成物中の液晶化合物分子が配向していればよい。
Thereafter, the polymerizable liquid crystal composition is cured to fix the alignment state of the molecules of the liquid crystal compound. Curing is preferably carried out by a polymerization reaction of a polymerizable group introduced into a liquid crystal molecule.
The coating film may be dried by a known method after the application of the polymerizable liquid crystal composition and before the polymerization reaction for curing. For example, it may be dried by standing or may be dried by heating.
The liquid crystal compound molecules in the polymerizable liquid crystal composition only need to be aligned in the steps of applying and drying the polymerizable liquid crystal composition.
 例えば、重合性液晶組成物が、溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥し、溶媒を除去することで、コレステリック液晶相の状態にすることができる場合がある。また、コレステリック液晶相への転移温度での加熱を行ってもよい。例えば、一旦等方性相の温度まで加熱し、その後、コレステリック液晶相転移温度まで冷却する等によって、安定的にコレステリック液晶相の状態にすることができる。前述の重合性液晶組成物の液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。10℃未満であると液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し、熱エネルギーの浪費、基板の変形、変質等からも不利になる。 For example, in an embodiment in which the polymerizable liquid crystal composition is prepared as a coating liquid containing a solvent, the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase. Further, heating at a transition temperature to the cholesteric liquid crystal phase may be performed. For example, the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature. The liquid crystal phase transition temperature of the aforementioned polymerizable liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like. When the temperature is lower than 10 ° C., a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase. When the temperature exceeds 200 ° C., a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
 重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2であることが好ましく、100~800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。 The polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator. A photopolymerization reaction is preferred. It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules. The irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 . In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions.
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。特に光反射層の形成の際、紫外線照射時の温度は、コレステリック液晶相が乱れないように、コレステリック液晶相を呈する温度範囲に維持することが好ましい。
 また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達せず、膜強度が不十分の場合には、窒素置換等の方法により、雰囲気中の酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。紫外線照射によって進行される硬化反応(例えば重合反応)の反応率は、層の機械的強度の保持等や未反応物が層から流出するのを抑える等の観点から、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりさらに好ましい。反応率を向上させるためには照射する紫外線の照射量を増大する方法や窒素雰囲気下あるいは加熱条件下での重合が効果的である。また、一旦重合させた後に、重合温度よりも高温状態で保持して熱重合反応によって反応をさらに推し進める方法や、再度紫外線を照射する方法を用いることもできる。反応率の測定は反応性基(例えば重合性基)の赤外振動スペクトルの吸収強度を、反応進行の前後で比較することによって行うことができる。
In order to accelerate the curing reaction, ultraviolet irradiation may be performed under heating conditions. In particular, when forming the light reflecting layer, it is preferable to maintain the temperature at the time of ultraviolet irradiation within a temperature range exhibiting a cholesteric liquid crystal phase so that the cholesteric liquid crystal phase is not disturbed.
Also, since the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable. A preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less. The reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 70% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 80% or more, more preferably 90% or more. In order to improve the reaction rate, a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective. Moreover, after superposing | polymerizing once, the method of hold | maintaining at a temperature higher than superposition | polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can also be used. The reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
 重合性液晶組成物の液晶化合物分子の配向に基づく光学的性質、例えば、コレステリック液晶相の光学的性質は、層中において保持されていれば十分であり、硬化後のλ/4板または光反射層の液晶組成物はもはや液晶性を示す必要はない。例えば、液晶組成物が、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。 It is sufficient that the optical properties based on the orientation of the liquid crystal compound molecules of the polymerizable liquid crystal composition, for example, the optical properties of the cholesteric liquid crystal phase are retained in the layer, and the cured λ / 4 plate or light reflection The liquid crystal composition of the layer no longer needs to exhibit liquid crystallinity. For example, the liquid crystal composition may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
 光反射層の形成においては、上記の硬化により、コレステリック液晶相が固定されて、光反射層が形成される。ここで、液晶相を「固定化した」状態は、コレステリック液晶相となっている液晶化合物の配向が保持された状態が最も典型的、且つ好ましい態様である。それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、この層に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味するものとする。
 コレステリック液晶相を固定してなる光反射層の製造方法としては、他に、例えば、特開平1-133003号公報、特許3416302号、特許3363565号、特開平8-271731号公報に記載の方法を参照してもよい。
In the formation of the light reflection layer, the cholesteric liquid crystal phase is fixed by the above-described curing, and the light reflection layer is formed. Here, the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. However, it is not limited to this. Specifically, in a temperature range of 0 ° C. to 50 ° C., or -30 ° C. to 70 ° C. under severe conditions, this layer has no fluidity and is oriented by an external field or external force. It shall mean a state in which the fixed orientation form can be kept stable without causing a change in form.
Other methods for producing a light reflecting layer having a fixed cholesteric liquid crystal phase include, for example, the methods described in JP-A-1-133003, JP-A-3416302, JP-A-3363565, and JP-A-8-271731. You may refer to it.
 コレステリック液晶相を固定してなる液晶膜は、輝度向上フィルムに含まれるλ/4板そのものを支持体として用いてを形成する。λ/4板表面に直接重合性液晶組成物を塗布してもよく、また、λ/4板上に形成された配向層に直接重合性液晶組成物を塗布してもよい。特に配向層表面に塗布することが好ましい。
 2層以上の光反射層を形成する場合は、2層目以降の光反射層は先に形成された光反射層の表面に重合性液晶組成物を塗布して形成してもよく、光反射層の表面に配向層を形成し、形成された配向層の表面に重合性液晶組成物を塗布して形成してもよい。2層目以降の光反射層は別の支持体上で形成され先に形成された反射層に接着されていてもよい。
 2層以上の光反射層を形成する場合は、同じ方向の円偏光を反射する組合せで用いることが好ましい。これにより各層で反射される円偏光の位相状態を揃えて各波長域で異なる偏光状態となることを防止でき、光の利用効率を高めることができる。
The liquid crystal film formed by fixing the cholesteric liquid crystal phase is formed using the λ / 4 plate itself included in the brightness enhancement film as a support. The polymerizable liquid crystal composition may be applied directly to the surface of the λ / 4 plate, or the polymerizable liquid crystal composition may be applied directly to the alignment layer formed on the λ / 4 plate. It is particularly preferable to apply to the alignment layer surface.
In the case of forming two or more light reflecting layers, the second and subsequent light reflecting layers may be formed by applying a polymerizable liquid crystal composition on the surface of the previously formed light reflecting layer. An alignment layer may be formed on the surface of the layer, and the polymerizable liquid crystal composition may be applied to the surface of the formed alignment layer. The second and subsequent light reflecting layers may be formed on another support and bonded to the previously formed reflecting layer.
When two or more light reflecting layers are formed, it is preferable to use a combination that reflects circularly polarized light in the same direction. Thereby, it is possible to align the phase states of the circularly polarized light reflected by the respective layers and prevent different polarization states in the respective wavelength ranges, thereby increasing the light use efficiency.
<配向層>
 輝度向上フィルムは配向層を含む。配向層は、λ/4板に直接接している。配向層は光反射層の形成の際、重合性組成物中の液晶化合物の分子を配向させるために用いられる。
 配向層は、有機化合物(好ましくはポリマー)のラビング処理、SiOなどの無機化合物の斜方蒸着、マイクログルーブを有する層の形成等の手段で設けることができる。さらには、電場の付与、磁場の付与、或いは光照射により配向機能が生じる配向層も用いられている。
 光反射層の上に直接光反射層を積層する場合、下層の光反射層が配向層として振舞い上層の光反射層の作製のための液晶化合物を配向させることができる場合もある。このような場合、配向層を設けなくても、また、特別な配向処理(例えば、ラビング処理)を実施しなくても上層の液晶化合物を配向することができる。
 以下、好ましい例として表面をラビング処理して用いられるラビング処理配向層を説明する。
<Alignment layer>
The brightness enhancement film includes an alignment layer. The alignment layer is in direct contact with the λ / 4 plate. The alignment layer is used for aligning the molecules of the liquid crystal compound in the polymerizable composition when forming the light reflecting layer.
The alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves. Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also used.
When the light reflecting layer is laminated directly on the light reflecting layer, the lower light reflecting layer may act as an alignment layer, and the liquid crystal compound for producing the upper light reflecting layer may be aligned. In such a case, the upper liquid crystal compound can be aligned without providing an alignment layer or without performing a special alignment process (for example, rubbing process).
Hereinafter, a rubbing alignment layer used by rubbing the surface as a preferred example will be described.
(ラビング処理配向層)
 ラビング処理配向層に用いることができるポリマーの例には、例えば特開平8-338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールが更に好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
(Rubbing alignment layer)
Examples of the polymer that can be used for the rubbing treatment oriented layer include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, polyvinyl alcohol, and the like described in paragraph No. [0022] of JP-A-8-338913. Examples include modified polyvinyl alcohol, poly (N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, and polycarbonate. Silane coupling agents can be used as the polymer. Water-soluble polymers (eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol) are preferred, gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred. .
 配向層のラビング処理面に前述の組成物を塗布して、液晶化合物の分子を配向させる。その後、必要に応じて、配向層ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向層ポリマーを架橋させることで、前述の光学異方性層を形成することができる。
 配向層の膜厚は、0.1~10μmの範囲にあることが好ましい。
The aforementioned composition is applied to the rubbing-treated surface of the alignment layer to align the molecules of the liquid crystal compound. After that, if necessary, the alignment layer polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment layer polymer is crosslinked using a crosslinking agent, thereby the optical anisotropy described above. A layer can be formed.
The film thickness of the alignment layer is preferably in the range of 0.1 to 10 μm.
-ラビング処理-
 重合性液晶組成物が塗布される配向層、仮支持体、λ/4板、または光反射層の表面は、必要に応じてラビング処理をしてもよい。ラビング処理は、一般にはポリマーを主成分とする膜の表面を、紙や布で一定方向に擦ることにより実施することができる。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
-Rubbing treatment-
The surface of the alignment layer, temporary support, λ / 4 plate, or light reflection layer to which the polymerizable liquid crystal composition is applied may be rubbed as necessary. The rubbing treatment can be generally performed by rubbing the surface of a film containing a polymer as a main component with paper or cloth in a certain direction. A general method of rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).
 ラビング密度を変える方法としては、「液晶便覧」(丸善社発行)に記載されている方法を用いることができる。ラビング密度(L)は、下記式(A)で定量化されている。
式(A) L=Nl(1+2πrn/60v)
 式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm)、vはステージ移動速度(秒速)である。
As a method for changing the rubbing density, a method described in “Liquid Crystal Handbook” (published by Maruzen) can be used. The rubbing density (L) is quantified by the following formula (A).
Formula (A) L = Nl (1 + 2πrn / 60v)
In the formula (A), N is the number of rubbing, l is the contact length of the rubbing roller, r is the radius of the roller, n is the number of rotations (rpm) of the roller, and v is the stage moving speed (second speed).
 ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。また、ラビング処理の際の条件としては、特許4052558号の記載を参照することもできる。 In order to increase the rubbing density, the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this. In addition, the description in Japanese Patent No. 4052558 can also be referred to as conditions for the rubbing process.
<ポジティブCプレート>
 輝度向上フィルムは、反射偏光子およびλ/4板以外にポジティブCプレートを含んでいてもよい。
 ポジティブCプレートは、nz>nx=nyを満たす屈折率を有するフィルムである。ポジティブCプレートは、垂直配向能を有する基材にホメオトロピック配向性の液晶組成物を塗布し、固化または硬化させることにより製造することができる。正のRthを有する光反射層と負のRthを有するλ/4板に加え、ポジティブCプレートを用いることにより、斜め方向から見た際の色味変化をさらに抑制することができる。
<Positive C plate>
The brightness enhancement film may include a positive C plate in addition to the reflective polarizer and the λ / 4 plate.
The positive C plate is a film having a refractive index satisfying nz> nx = ny. The positive C plate can be produced by applying a homeotropic alignment liquid crystal composition to a substrate having vertical alignment ability and solidifying or curing the composition. By using a positive C plate in addition to the light reflecting layer having a positive Rth and the λ / 4 plate having a negative Rth, it is possible to further suppress the color change when viewed from an oblique direction.
[輝度向上フィルムの応用]
 輝度向上フィルムが液晶表示装置に設けられる場合、輝度向上フィルムはバックライトユニットとバックライトユニット側偏光子との間に設けられる。このとき、バックライトユニット、反射偏光子、λ/4板、バックライトユニット側偏光子、液晶セル、視認側偏光子がこの順になるように配置すればよい。
 輝度向上フィルムを液晶表示装置に組み込んだとき、輝度向上フィルムは、以下のメカニズムで液晶表示装置の輝度を向上させる。
[Application of brightness enhancement film]
When the brightness enhancement film is provided in the liquid crystal display device, the brightness enhancement film is provided between the backlight unit and the backlight unit side polarizer. At this time, the backlight unit, the reflective polarizer, the λ / 4 plate, the backlight unit side polarizer, the liquid crystal cell, and the viewing side polarizer may be arranged in this order.
When the brightness enhancement film is incorporated in a liquid crystal display device, the brightness enhancement film improves the brightness of the liquid crystal display device by the following mechanism.
 輝度向上フィルム中の反射偏光子に含まれるコレステリック液晶相を固定してなる光反射層は、右円偏光または左円偏光の少なくとも一方(第一の偏光状態の円偏光)をその反射中心波長の近傍の波長帯域において反射し、他方(第二の偏光状態の円偏光)を透過させる。反射された第二の偏光状態の円偏光は、後述の反射部材(導光器、光共振器と言われることもある)によってその方向および偏光状態をランダム化され再循環され、反射偏光子によって再度第一の偏光状態の円偏光として一部が反射され、第二の偏光状態の円偏光として残りの一部が透過することによりバックライト側での光利用率を高め、液晶表示装置の明るさを向上させることができる。
 反射偏光子から出射される光、すなわち反射偏光子の透過光および反射光の偏光状態は、例えばAxometrics社のAxoscanで偏光測定することで計測することができる。
The light reflecting layer formed by fixing the cholesteric liquid crystal phase contained in the reflective polarizer in the brightness enhancement film has at least one of right circularly polarized light and left circularly polarized light (circularly polarized light in the first polarization state) having a reflection center wavelength. Reflects in the nearby wavelength band and transmits the other (circularly polarized light in the second polarization state). The reflected circularly polarized light in the second polarization state is randomized in its direction and polarization state by a reflection member (also referred to as a light guide or an optical resonator), which will be described later, and is recycled. Again, part of the light is reflected as circularly polarized light in the first polarization state and the remaining part is transmitted as circularly polarized light in the second polarization state, thereby increasing the light utilization rate on the backlight side and increasing the brightness of the liquid crystal display device. Can be improved.
The light emitted from the reflective polarizer, that is, the polarization state of the transmitted light and the reflected light of the reflective polarizer can be measured, for example, by measuring the polarization with an Axoscan from Axometrics.
 液晶表示装置において、輝度向上フィルムのλ/4板の遅相軸とバックライトユニット側偏光子の吸収軸とのなす角は30~60°であればよい。λ/4板とバックライトユニット側偏光子との間には、公知の偏光板保護フィルムの他、接着層が配されていてよい。例えば、偏光子の両面または片面に偏光板保護フィルムを有する偏光板と輝度向上フィルムのλ/4板とが接着剤により接着されていてもよい。または、輝度向上フィルムとバックライトユニット側偏光子とは、これらが一体となった光学シート部材として提供されていてもよく、光学シート部材において、λ/4板と偏光子との間には他の層があってもよいが、直接接していてもよい。 In the liquid crystal display device, the angle formed by the slow axis of the λ / 4 plate of the brightness enhancement film and the absorption axis of the backlight unit side polarizer may be 30 to 60 °. In addition to the known polarizing plate protective film, an adhesive layer may be disposed between the λ / 4 plate and the backlight unit side polarizer. For example, a polarizing plate having a polarizing plate protective film on both sides or one side of a polarizer and a λ / 4 plate of a brightness enhancement film may be bonded with an adhesive. Alternatively, the brightness enhancement film and the backlight unit side polarizer may be provided as an optical sheet member in which these are integrated, and in the optical sheet member, there is another between the λ / 4 plate and the polarizer. There may be a layer, but it may be in direct contact.
 液晶表示装置を構成する液晶セル、バックライトユニット、偏光子(偏光板)、偏光板保護フィルム等については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 なお、上記のメカニズムから、液晶表示装置は、前述のバックライトユニットが光源の後部に、光源から発光されて輝度向上フィルムまたは前述の光学シート部材で反射された光の偏光状態の変換および反射をする反射部材を備えることが好ましい。バックライトユニットは、その他、公知の拡散板や拡散シート、プリズムシート(例えば、BEFなど)、導光器を備えていることも好ましい。これらの部材としては特に制限は無く、公知のものを用いることができ、例えば、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されているものを用いることができる。
There are no particular limitations on the liquid crystal cell, backlight unit, polarizer (polarizing plate), polarizing plate protective film, etc. that constitute the liquid crystal display device, and any known or commercially available product can be used without any limitation. Can do. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
From the above mechanism, the liquid crystal display device converts and reflects the polarization state of the light emitted from the light source and reflected by the brightness enhancement film or the optical sheet member at the rear of the light source. It is preferable to include a reflecting member. In addition, the backlight unit preferably includes a known diffusion plate, diffusion sheet, prism sheet (for example, BEF), and a light guide. There is no restriction | limiting in particular as these members, A well-known thing can be used, For example, what is described in patent 3416302, patent 3363565, patent 4091978, patent 3448626 etc. can be used.
 輝度向上フィルムとバックライトユニットの間には、光反射層から反射された光の偏光状態を乱す層(たとえば延伸PETフィルムなどのレターデーションの高いフィルム)を入れることが、輝度を向上させる観点で好ましい。光反射層から反射された光の偏光状態を乱す層の平均屈折率と、 輝度向上フィルム中でもっともバックライト側にある光反射層の平均屈折率の関係が下記式を満たすことがさらに好ましい。
0<光反射層から反射された光の偏光状態を乱す層の平均屈折率-第三の光反射層の平均屈折率<0.2
Between the brightness enhancement film and the backlight unit, a layer that disturbs the polarization state of the light reflected from the light reflection layer (for example, a highly retardation film such as a stretched PET film) can be used to improve the brightness. preferable. More preferably, the relationship between the average refractive index of the layer disturbing the polarization state of the light reflected from the light reflecting layer and the average refractive index of the light reflecting layer closest to the backlight in the brightness enhancement film satisfies the following formula.
0 <average refractive index of layer disturbing polarization state of light reflected from light reflecting layer−average refractive index of third light reflecting layer <0.2
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
 以下の実施例において、各数値は以下の方法で測定した。
(ヘイズ)
 ヘイズの測定は、フィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM-2DP、スガ試験機)でJIS K-7136に従って測定した。
(フィルムのRe)
 自動複屈折計(王子計測機器社製、KOBRA-21ADH)を用いて波長550nmにおいて、幅方向に50mm間隔、流れ方向に長さ1000mmの範囲で50mm間隔で測定した。そして全測定結果を平均して面内方向レタ-デーションReを求めた。
In the following examples, each numerical value was measured by the following method.
(Haze)
For the measurement of haze, a film sample of 40 mm × 80 mm was measured at 25 ° C. and 60% RH with a haze meter (HGM-2DP, Suga Test Instruments) in accordance with JIS K-7136.
(Re of film)
Using an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH), measurement was performed at a wavelength of 550 nm at intervals of 50 mm in the width direction at a distance of 50 mm and in the flow direction at a length of 1000 mm. The in-plane direction retardation Re was determined by averaging all measurement results.
(輝度向上率の測定)
 液晶表示装置の正面輝度を、特開2009-93166号の〔0180〕に公報に記載の方法で測定した。すなわち、測定機(EZ-Contrast160D、ELDIM社製)を用いて、測定した白表示時の正面輝度を測定した。またレファレンスとして、輝度向上フィルムがない場合についても同様に輝度を測定した。測定対象の輝度向上フィルムを載置した際の輝度の、レファレンスの輝度に対する比を、輝度向上率として求めた。
(Measurement of luminance improvement rate)
The front luminance of the liquid crystal display device was measured by the method described in JP 2009-93166 [0180]. That is, using the measuring device (EZ-Contrast 160D, manufactured by ELDIM), the measured front luminance during white display was measured. In addition, as a reference, the luminance was measured in the same manner even when there was no luminance enhancement film. The ratio of the brightness when the brightness enhancement film to be measured was placed to the brightness of the reference was determined as the brightness enhancement rate.
(斜め色味変化の評価)
 液晶表示装置の斜め色味変化Δu’v’は、以下の方法で評価した。色味座標u’、v’の値を正面(極角0度)と極角60度方向で差分をとった色味色差Δu’v’を方位角0~360度方向で測定し、その平均値を斜め色味変化Δu’v’の評価指標とした。色味座標u’v’の測定には測定機(EZ-Contrast160D、ELDIM社製)を用いた。その結果をもとに、以下の基準で評価した。
7:比較例101の液晶表示装置の斜め色味変化よりも40%以上少ない。
6:比較例101の液晶表示装置の斜め色味変化よりも35%以上40%未満少ない。
5:比較例101の液晶表示装置の斜め色味変化よりも30%以上35%未満少ない。
4:比較例101の液晶表示装置の斜め色味変化よりも20%以上30%未満少ない。
3:比較例101の液晶表示装置の斜め色味変化よりも10%以上20%未満少ない。
2:比較例101の液晶表示装置の斜め色味変化と同等以上である。
(Evaluation of oblique color change)
The oblique color change Δu′v ′ of the liquid crystal display device was evaluated by the following method. The hue color difference Δu′v ′ obtained by calculating the difference between the hue coordinates u ′ and v ′ in the front direction (polar angle 0 degree) and the polar angle direction 60 degrees is measured in the azimuth angle 0 to 360 degrees direction, and the average The value was used as an evaluation index of the diagonal color change Δu′v ′. A measuring machine (EZ-Contrast 160D, manufactured by ELDIM) was used for measuring the color coordinates u′v ′. Based on the results, evaluation was made according to the following criteria.
7: 40% or less less than the oblique color change of the liquid crystal display device of Comparative Example 101.
6: 35% or more and less than 40% less than the oblique color change of the liquid crystal display device of Comparative Example 101.
5: 30% or more and less than 35% less than the oblique color change of the liquid crystal display device of Comparative Example 101.
4: 20% or more and less than 30% less than the oblique color change of the liquid crystal display device of Comparative Example 101.
3: 10% or more and less than 20% less than the oblique color change of the liquid crystal display device of Comparative Example 101.
2: It is equal to or greater than the oblique color change of the liquid crystal display device of Comparative Example 101.
 樹脂層I中の酸無水物モノマーに由来する繰り返し単位の含有量は赤外分光法のATR測定法で求めた。樹脂層Iに対してZnSeプリズムを用いて、45°入射光により、無水マレイン酸のカルボニルに帰属する1780cm-1付近のピーク強度とスチレンのベンゼン環のCH伸縮に帰属する3050cm-1付近のピーク強度を用いて算出した。なお、以下において、「酸無水物モノマーに由来する繰り返し単位の含有量」は「酸無水物モノマーの含有量」(具体的には「無水マレイン酸の含有量」)として記載する。 The content of the repeating unit derived from the acid anhydride monomer in the resin layer I was determined by the ATR measurement method of infrared spectroscopy. Using a ZnSe prism for the resin layer I, the peak intensity around 1780 cm −1 attributed to carbonyl of maleic anhydride and the peak near 3050 cm −1 attributed to CH stretching of the benzene ring of styrene by 45 ° incident light Calculated using intensity. In the following, “content of repeating unit derived from acid anhydride monomer” is described as “content of acid anhydride monomer” (specifically, “content of maleic anhydride”).
(実施例1)
 特開2009-288812号公報に記載の製造例2の1/4波長板において、樹脂「DaylarkD332の代わりに固有屈折値が負の樹脂P1(スチレン無水マレイン酸共重合体、無水マレイン酸含有量15質量%)を用いたこと以外は同様にして積層フィルム1を得た。
 すなわち、ノルボルネン系重合体1からなる層(II層)、固有屈折値が負の樹脂P1(スチレン無水マレイン酸共重合体、無水マレイン酸含有量15質量%)からなる層(I層)、及び変性したエチレン-酢酸ビニル共重合体(三菱化学社製、商品名「モディックAP A543」、ビカット軟化点80℃)からなる接着剤層(III層)を有する、II層(30μm)-III層(6μm)-I層(150μm)-III層(6μm)-II層(30μm)の未延伸積層体の長尺巻状体を共押出し成形により得て、次いで、この未延伸積層体の長尺巻状体を、テンター延伸機を用いて、延伸温度138℃、延伸倍率1.5倍、延伸速度115%/minで幅方向に対して-13°方向へ斜め延伸を行い、これを3000mに渡ってロール状に巻き取って積層フィルム1を得た。
 得られた積層フィルム1のReを測定したところ、137nmであった。
(Example 1)
In the quarter wave plate of Production Example 2 described in JP-A-2009-288812, a resin P1 (styrene maleic anhydride copolymer, maleic anhydride content 15 having a negative intrinsic refraction value instead of the resin “Daylark D332” 15 A laminated film 1 was obtained in the same manner except that (mass%) was used.
That is, a layer made of norbornene-based polymer 1 (layer II), a layer made of resin P1 having a negative intrinsic refraction value (styrene maleic anhydride copolymer, maleic anhydride content 15 mass%), and (layer I) An II layer (30 μm) -III layer having an adhesive layer (III layer) composed of a modified ethylene-vinyl acetate copolymer (Mitsubishi Chemical Corporation, trade name “Modic AP A543”, Vicat softening point 80 ° C.) 6 μm) -I layer (150 μm) -III layer (6 μm) -II layer (30 μm) of an unstretched laminate is obtained by coextrusion molding, and then this unstretched laminate is rolled Using a tenter stretching machine, the shaped body was stretched obliquely in the −13 ° direction with respect to the width direction at a stretching temperature of 138 ° C., a stretching ratio of 1.5 times, and a stretching speed of 115% / min. Rolled into a roll The laminated film 1 was obtained by scraping.
When Re of the obtained laminated film 1 was measured, it was 137 nm.
 積層フィルム1の片面にコロナ放電処理を施した。このコロナ放電処理面に、ポリビニルアルコール水溶液を塗布し、120℃で5分間乾燥し、得られた乾膜を一方向にラビング処理することで、配向膜を有する長尺の基材1を得た。
 次いで、以下に示す組成で各成分を混合して得たコレステリック液晶組成物(X)を、基材1の配向膜を有する面にワイヤーバーにて塗布した。
――――――――――――――――――――――――――――――――――
コレステリック液晶組成物(X)
――――――――――――――――――――――――――――――――――
化合物B1                     7.31質量部
棒状液晶化合物A2                   30質量部
光重合開始剤(「IRG907」、BASF社製)   1.20質量部
カイラル剤(「LC756」、BASF社製)     2.22質量部
界面活性剤(「KH40」、セイミケミカル製)    0.04質量部
2-ブタノン溶媒                 60.00質量部
――――――――――――――――――――――――――――――――――
One side of the laminated film 1 was subjected to corona discharge treatment. A polyvinyl alcohol aqueous solution was applied to this corona discharge treated surface, dried at 120 ° C. for 5 minutes, and the resulting dry film was rubbed in one direction to obtain a long base material 1 having an alignment film. .
Subsequently, the cholesteric liquid crystal composition (X) obtained by mixing each component with the composition shown below was applied to the surface of the substrate 1 having the alignment film with a wire bar.
――――――――――――――――――――――――――――――――――
Cholesteric liquid crystal composition (X)
――――――――――――――――――――――――――――――――――
Compound B1 7.31 parts by mass Bar-shaped liquid crystal compound A2 30 parts by mass photopolymerization initiator (“IRG907”, manufactured by BASF) 1.20 parts by mass chiral agent (“LC756”, manufactured by BASF) 2.22 parts by mass of surface activity Agent (“KH40”, manufactured by Seimi Chemical Co., Ltd.) 0.04 parts by mass 2-butanone solvent 60.00 parts by mass ――――――――――――――――――――――――― ――――――――
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 塗膜を100℃で5分間配向処理し、窒素雰囲気下で紫外線を照射した。10mJ/cm2の微弱な紫外線の照射処理と、それに続く100℃で1分間の加温処理からなるプロセスの2回繰り返して反射帯域の広帯域化処理を行ったあと、紫外線照射により硬化し、乾燥膜厚5.3μmのコレステリック樹脂層を有する長尺の輝度向上フィルム1を得た。得られた輝度向上フィルム1について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。レファレンスに対して1.24倍の輝度向上があった。 The coating film was subjected to orientation treatment at 100 ° C. for 5 minutes and irradiated with ultraviolet rays in a nitrogen atmosphere. After applying a process of broadening the reflection band by repeating the process consisting of a 10 mJ / cm 2 weak UV irradiation process followed by a heating process at 100 ° C. for 1 minute, it is cured by UV irradiation and dried. A long brightness enhancement film 1 having a cholesteric resin layer having a film thickness of 5.3 μm was obtained. About the obtained brightness improvement film 1, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured. There was a 1.24 times increase in brightness over the reference.
(実施例2)
 実施例1の樹脂P1の代わりに、樹脂P2(スチレン無水マレイン酸共重合体、無水マレイン酸含有量8質量%)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム2を得た。得られた輝度向上フィルム2について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(実施例3)
 実施例1の樹脂P1の代わりに、樹脂P3(スチレン無水マレイン酸共重合体、無水マレイン酸含有量5質量%)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム3を得た。得られた輝度向上フィルム3について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(Example 2)
In place of the resin P1 of Example 1, resin P2 (styrene maleic anhydride copolymer, maleic anhydride content 8 mass%) was used, and the other operations were performed in the same manner as in Example 1 to improve luminance. Film 2 was obtained. About the obtained brightness improvement film 2, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(Example 3)
Using resin P3 (styrene maleic anhydride copolymer, maleic anhydride content 5 mass%) instead of resin P1 of Example 1, the same operation as in Example 1 was performed, and the luminance was improved. Film 3 was obtained. About the obtained brightness improvement film 3, after heat-processing for 30 second in 120 degreeC oven, haze and the brightness improvement rate were measured.
(実施例4)
 実施例1の樹脂P1の代わりに、スチレン無水マレイン酸共重合体(無水マレイン酸含有量40質量%)を用いて、それ以外は上記本願実施例1と同様の操作を行って、輝度向上フィルム4を得た。得られた輝度向上フィルム4について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(実施例5)
 実施例1の(X)の棒状液晶化合物の代わりに、WO09/041512号記載の重合性液晶化合物(3)(下記構造)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム5を得た。
Example 4
Using the styrene maleic anhydride copolymer (maleic anhydride content 40% by mass) instead of the resin P1 in Example 1, the same operation as in Example 1 above was performed, and the brightness enhancement film was obtained. 4 was obtained. About the obtained brightness improvement film 4, after heat-processing for 30 second in 120 degreeC oven, haze and the brightness improvement rate were measured.
(Example 5)
Instead of the rod-shaped liquid crystal compound of (X) of Example 1, the polymerizable liquid crystal compound (3) (the following structure) described in WO09 / 041512 was used, and the other operations were performed in the same manner as in Example 1, A brightness enhancement film 5 was obtained.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 得られた輝度向上フィルム5について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(実施例6)
 実施例1の(X)の棒状液晶化合物の代わりに、WO09/041512号記載の重合性液晶化合物(5)(下記構造)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム6を得た。
About the obtained brightness improvement film 5, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured.
(Example 6)
Instead of the rod-like liquid crystal compound of (X) of Example 1, the polymerizable liquid crystal compound (5) (the following structure) described in WO09 / 041512 was used, and the other operations were performed in the same manner as in Example 1, A brightness enhancement film 6 was obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 得られた輝度向上フィルム6について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(比較例101)
 特開2010-181710号公報に記載の実施例1-1の積層体1を輝度向上フィルム101とした。輝度向上フィルム101について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(比較例102)
 特開2011-118137号記載の実施例1の輝度向上フィルムを輝度向上フィルム102とした。輝度向上フィルム102について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
About the obtained brightness improvement film 6, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(Comparative Example 101)
The laminate 1 of Example 1-1 described in JP 2010-181710 A was used as the brightness enhancement film 101. About the brightness improvement film 101, after heat-processing for 30 seconds in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(Comparative Example 102)
The brightness enhancement film of Example 1 described in JP2011-118137A was designated as brightness enhancement film 102. About the brightness improvement film 102, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(比較例103)
 実施例1の樹脂P1の代わりに、スチレン無水マレイン酸共重合体(無水マレイン酸含有量2質量%)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム103を作製した。輝度向上フィルム103について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(比較例104)
 積層フィルム1の代わりに特開2014-074729号公報記載の実施例のλ/4位相差板を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム104を作製した。輝度向上フィルム104について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(Comparative Example 103)
Using the styrene maleic anhydride copolymer (maleic anhydride content 2 mass%) instead of the resin P1 of Example 1, the same operation as in Example 1 was performed, and the brightness enhancement film 103 was obtained. Produced. About the brightness improvement film 103, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(Comparative Example 104)
A brightness enhancement film 104 was produced in the same manner as in Example 1 except that the laminated film 1 was replaced with the λ / 4 retardation plate of the example described in Japanese Patent Application Laid-Open No. 2014-0774729. About the brightness improvement film 104, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured.
(比較例105)
 積層フィルム1の代わりに特開2012-198282号公報記載の実施例1の延伸位相差フィルム1を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム105を作製した。輝度向上フィルム105について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(比較例106)
 積層フィルム1の代わりに特開2011-242723号公報記載の実施例1の積層フィルム(FAB-1)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム106を作製した。輝度向上フィルム106について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。
(Comparative Example 105)
A brightness enhancement film 105 was produced in the same manner as in Example 1 except that the stretched retardation film 1 of Example 1 described in JP2012-198282A was used instead of the laminated film 1. About the brightness improvement film 105, after heat-processing for 30 second in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(Comparative Example 106)
Using the laminated film (FAB-1) of Example 1 described in Japanese Patent Application Laid-Open No. 2011-242723 instead of the laminated film 1, the same operation as in Example 1 was performed to produce the brightness enhancement film 106. did. About the brightness improvement film 106, after heat-processing for 30 seconds in 120 degreeC oven, the haze and the brightness improvement rate were measured.
(実施例7)
 実施例1で得られた積層フィルム1に市販の垂直配向膜(JALS-204R、日本合成ゴム(株)製)をメチルエチルケトンで1:1に希釈したのち、ワイヤーバーコーターで2.4ml/m2塗布した。直ちに、120℃の温風で120秒乾燥し、棒状液晶ホメオトロピック配向層を形成した。
 配向膜上に、下記の棒状液晶化合物1.8g、光重合開始剤(イルガキュアー907、チバガイギー社製)0.06g、増感剤(カヤキュアーDETX、日本化薬(株)製)0.02g、下記の空気界面側垂直配向剤0.002gを9.2gのシクロヘキサン/シクロペンンタノン(=65/35(質量%))に溶解した溶液を、#2のワイヤーバーで塗布した。これを金属の枠に貼り付けて、100℃の恒温槽中で2分間加熱し、棒状液晶化合物を配向させた。次に、100℃で120W/cm高圧水銀灯を用いて、30秒間UV照射し棒状液晶化合物を架橋した。その後、室温まで放冷した。
 次に、架橋膜にラビング処理を行い、次いで製造例1で得たコレステリック液晶組成物(X)を、ラビング処理をした膜を有する面にワイヤーバーにて塗布した。塗膜を100℃で5分間配向処理し、窒素雰囲気下で紫外線を照射して反射帯域の広帯域化処理を行い、次いで紫外線照射により硬化し、乾燥膜厚5.3μmのコレステリック樹脂層を有する長尺の輝度向上フィルム7を得た。
 得られた輝度向上フィルム7について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。反射偏光子法線方向からずれた斜めからの色味を実施例1と比較したところ、実施例1よりも色味が少なかった。
(Example 7)
A commercially available vertical alignment film (JALS-204R, manufactured by Nippon Synthetic Rubber Co., Ltd.) was diluted 1: 1 with methyl ethyl ketone on the laminated film 1 obtained in Example 1, and then 2.4 ml / m 2 with a wire bar coater. Applied. Immediately, it was dried with 120 ° C. hot air for 120 seconds to form a rod-like liquid crystal homeotropic alignment layer.
On the alignment film, 1.8 g of the following rod-shaped liquid crystal compound, 0.06 g of photopolymerization initiator (Irgacure 907, manufactured by Ciba Geigy), 0.02 g of sensitizer (Kayacure DETX, manufactured by Nippon Kayaku Co., Ltd.), A solution prepared by dissolving 0.002 g of the following air interface side vertical alignment agent in 9.2 g of cyclohexane / cyclopentanone (= 65/35 (mass%)) was applied with a # 2 wire bar. This was affixed to a metal frame and heated in a constant temperature bath at 100 ° C. for 2 minutes to align the rod-like liquid crystal compound. Next, using a 120 W / cm high-pressure mercury lamp at 100 ° C., UV irradiation was performed for 30 seconds to crosslink the rod-like liquid crystal compound. Then, it stood to cool to room temperature.
Next, the crosslinked film was rubbed, and then the cholesteric liquid crystal composition (X) obtained in Production Example 1 was applied to the surface having the rubbed film with a wire bar. The coating film is oriented at 100 ° C. for 5 minutes, irradiated with ultraviolet rays in a nitrogen atmosphere to broaden the reflection band, then cured by ultraviolet irradiation, and has a cholesteric resin layer having a dry film thickness of 5.3 μm. A scale brightness enhancement film 7 was obtained.
About the obtained brightness improvement film 7, after heat-processing for 30 second in 120 degreeC oven, haze and the brightness improvement rate were measured. When the color from an oblique direction shifted from the normal direction of the reflective polarizer was compared with Example 1, the color was less than that of Example 1.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(実施例8)
 実施例1の(X)の棒状液晶化合物の代わりに、特開2011-207765号記載の重合性液晶化合物(A5-1)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム8を得た。
(Example 8)
Using the polymerizable liquid crystal compound (A5-1) described in JP-A-2011-207765 instead of the rod-shaped liquid crystal compound of (X) of Example 1, the same operations as in Example 1 were performed, except that A brightness enhancement film 8 was obtained.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 得られた輝度向上フィルム8について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。反射偏光子法線方向からずれた斜めからの色味を実施例1と比較したところ、実施例1よりも色味が少なかった。 The obtained brightness enhancement film 8 was heat-treated in an oven at 120 ° C. for 30 seconds, and then measured for haze and brightness enhancement rate. When the color from an oblique direction shifted from the normal direction of the reflective polarizer was compared with Example 1, the color was less than that of Example 1.
(実施例9)
 実施例1の(X)の棒状液晶化合物の代わりに、WO2012/147904号パンフレット記載の重合性液晶化合物(化合物9)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム9を得た。
Example 9
In place of the rod-like liquid crystal compound (X) of Example 1, the polymerizable liquid crystal compound (Compound 9) described in WO2012 / 147904 pamphlet was used, and the other operations were performed in the same manner as in Example 1 to improve the luminance. Film 9 was obtained.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 得られた輝度向上フィルム9について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。反射偏光子法線方向からずれた斜めからの色味を実施例1と比較したところ、実施例1よりも色味が少なかった。
(実施例10)
 実施例1の(X)の棒状液晶化合物の代わりに、WO2012/147904号パンフレット記載の重合性液晶化合物(化合物14)を用いて、それ以外は実施例1と同様の操作を行って、輝度向上フィルム10を得た。
About the obtained brightness improvement film 9, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured. When the color from an oblique direction shifted from the normal direction of the reflective polarizer was compared with Example 1, the color was less than that of Example 1.
Example 10
In place of the rod-like liquid crystal compound (X) of Example 1, the polymerizable liquid crystal compound (Compound 14) described in the pamphlet of WO2012 / 147904 was used, and the other operations were performed in the same manner as in Example 1 to improve the luminance. Film 10 was obtained.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 得られた輝度向上フィルム10について、120℃のオーブンで30秒の熱処理した後、ヘイズと輝度向上率を測定した。反射偏光子法線方向からずれた斜めからの色味を実施例1と比較したところ、実施例1よりも色味が少なかった。
 各輝度向上フィルム中のλ/4板のRe、各輝度向上フィルムのヘイズ、輝度向上率、および斜め色味変化を以下表に示す。
About the obtained brightness improvement film 10, after heat-processing for 30 seconds in 120 degreeC oven, haze and the brightness improvement rate were measured. When the color from an oblique direction shifted from the normal direction of the reflective polarizer was compared with Example 1, the color was less than that of Example 1.
The Re of the λ / 4 plate in each brightness enhancement film, the haze of each brightness enhancement film, the brightness enhancement rate, and the oblique color change are shown in the table below.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Claims (12)

  1. λ/4板と反射偏光子とを有する輝度向上フィルムであって、
    前記λ/4板は樹脂層Iを含み、
    樹脂層Iは固有複屈折値が負であるポリマーを含み、
    前記ポリマーは酸無水物モノマーに由来する繰り返し単位を含み、
    前記ポリマーは酸無水物モノマーに由来する前記の繰り返し単位を5質量%以上50質量%以下含み、
    前記反射偏光子はコレステリック液晶相を固定してなる光反射層を含み、
    前記光反射層は前記λ/4板に直接接する配向層を介して積層された層である
    輝度向上フィルム。
    A brightness enhancement film having a λ / 4 plate and a reflective polarizer,
    The λ / 4 plate includes a resin layer I,
    The resin layer I includes a polymer having a negative intrinsic birefringence value,
    The polymer includes repeating units derived from acid anhydride monomers,
    The polymer contains 5% by mass to 50% by mass of the repeating unit derived from an acid anhydride monomer,
    The reflective polarizer includes a light reflecting layer formed by fixing a cholesteric liquid crystal phase,
    The brightness enhancement film, wherein the light reflecting layer is a layer laminated through an alignment layer in direct contact with the λ / 4 plate.
  2. 前記光反射層がコレステリック液晶相の螺旋ピッチが螺旋軸方向で徐々に変化しているピッチグラジエント層である請求項1に記載の輝度向上フィルム。 The brightness enhancement film according to claim 1, wherein the light reflecting layer is a pitch gradient layer in which a helical pitch of a cholesteric liquid crystal phase is gradually changed in a helical axis direction.
  3. 前記光反射層が前記配向膜表面に塗布された液晶化合物を含む重合性液晶組成物を硬化した層である請求項1または2に記載の輝度向上フィルム。 The brightness enhancement film according to claim 1 or 2, wherein the light reflection layer is a layer obtained by curing a polymerizable liquid crystal composition including a liquid crystal compound applied to the surface of the alignment film.
  4. 前記液晶化合物の固有複屈折率Δnが逆波長分散性である請求項3に記載の輝度向上フィルム。 The brightness enhancement film according to claim 3, wherein the intrinsic birefringence Δn of the liquid crystal compound is reverse wavelength dispersion.
  5. 酸無水物モノマーに由来する前記の繰り返し単位が以下式Iで表される請求項1~4のいずれか一項に記載の輝度向上フィルム。
    Figure JPOXMLDOC01-appb-C000001
    The brightness enhancement film according to any one of claims 1 to 4, wherein the repeating unit derived from the acid anhydride monomer is represented by the following formula I:
    Figure JPOXMLDOC01-appb-C000001
  6. 前記ポリマーが以下式IIで表される繰り返し単位を含む請求項1~5のいずれか1項に記載の輝度向上フィルム。
    Figure JPOXMLDOC01-appb-C000002
    The brightness enhancement film according to any one of claims 1 to 5, wherein the polymer comprises a repeating unit represented by the following formula II.
    Figure JPOXMLDOC01-appb-C000002
  7. 前記λ/4板が、脂環式構造を有する重合体、鎖状ポリオレフィン、セルロースアシレート、およびポリエステルセルロースアシレートからなる群から選択される化合物を含む樹脂層IIを含む請求項1~6のいずれか一項に記載の輝度向上フィルム。 The λ / 4 plate includes a resin layer II containing a compound selected from the group consisting of a polymer having an alicyclic structure, a chain polyolefin, cellulose acylate, and polyester cellulose acylate. The brightness enhancement film according to any one of the above.
  8. 前記λ/4板が、樹脂層II、樹脂層I、樹脂層IIをこの順で含む請求項1~7のいずれか一項に記載の輝度向上フィルム。 The brightness enhancement film according to any one of claims 1 to 7, wherein the λ / 4 plate includes a resin layer II, a resin layer I, and a resin layer II in this order.
  9. 前記光反射層が前記λ/4板上に設けられた配向膜表面で塗布成膜された層であり、
    樹脂層IIと前記配向層とが直接接しており、かつ前記配向層と前記光反射層とが直接接している請求項7または8に記載の輝度向上フィルム。
    The light reflecting layer is a layer formed by coating on the surface of the alignment film provided on the λ / 4 plate;
    The brightness enhancement film according to claim 7 or 8, wherein the resin layer II and the alignment layer are in direct contact, and the alignment layer and the light reflection layer are in direct contact.
  10. 前記λ/4板の厚みが10~300μmである請求項1~9のいずれか一項に記載の輝度向上フィルム。 The brightness enhancement film according to any one of claims 1 to 9, wherein the λ / 4 plate has a thickness of 10 to 300 µm.
  11. さらに、ポジティブCプレートを含む請求項1~10のいずれか一項に記載の輝度向上フィルム。 The brightness enhancement film according to any one of claims 1 to 10, further comprising a positive C plate.
  12. 請求項1~11のいずれか一項に記載の輝度向上フィルムを含み、
    バックライトユニット、前記反射偏光子、前記λ/4板、バックライトユニット側偏光子、液晶セル、視認側偏光子を、この順に含む液晶表示装置。
    The brightness enhancement film according to any one of claims 1 to 11,
    A liquid crystal display device including a backlight unit, the reflective polarizer, the λ / 4 plate, a backlight unit side polarizer, a liquid crystal cell, and a viewing side polarizer in this order.
PCT/JP2015/074321 2014-08-29 2015-08-28 Brightness enhancement film and liquid crystal display device WO2016031946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545629A JPWO2016031946A1 (en) 2014-08-29 2015-08-28 Brightness enhancement film and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-176188 2014-08-29
JP2014176188 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031946A1 true WO2016031946A1 (en) 2016-03-03

Family

ID=55399829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074321 WO2016031946A1 (en) 2014-08-29 2015-08-28 Brightness enhancement film and liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2016031946A1 (en)
WO (1) WO2016031946A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113555A (en) * 2014-12-16 2016-06-23 日本ゼオン株式会社 Liquid crystalline composition, circular polarized light separation element and method for producing the same, medium for forgery prevention and method for producing the same, brightness improvement film and security medium
WO2016190435A1 (en) * 2015-05-28 2016-12-01 日本ゼオン株式会社 Circularly polarized light separating film and method for producing same
JP6055569B1 (en) * 2016-05-18 2016-12-27 日本ゼオン株式会社 Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device, and antireflection film
JPWO2016114346A1 (en) * 2015-01-16 2017-04-27 Dic株式会社 Polymerizable composition and optical anisotropic body using the same
JP6146526B1 (en) * 2016-10-06 2017-06-14 日本ゼオン株式会社 Mixture, polymerizable composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device and antireflection film, and method for using polymerizable compound
JP2017206504A (en) * 2017-04-27 2017-11-24 日本ゼオン株式会社 Compound, polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic product, polarizing plate, flat panel display device, organic electroluminescence display device, and anti-reflection film
JP2022510576A (en) * 2018-11-19 2022-01-27 ヒョスン ケミカル コーポレーション Cellulose ester retardation film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233666A (en) * 2003-01-30 2004-08-19 Nippon Zeon Co Ltd Method for producing raw optical laminate, optical laminate, backlight unit, and liquid crystal display
JP2005189392A (en) * 2003-12-25 2005-07-14 Nitto Denko Corp High brightness polarizing plate and image display device
JP2008273925A (en) * 2006-12-15 2008-11-13 Fujifilm Corp Optical film, retardation sheet and liquid crystal compound
JP2009237533A (en) * 2007-11-30 2009-10-15 Jsr Corp Method for producing optical film laminate, and the optical film laminate and application thereof
JP2010181710A (en) * 2009-02-06 2010-08-19 Nippon Zeon Co Ltd Polarizing plate and liquid crystal display device
JP2011118137A (en) * 2009-12-03 2011-06-16 Nippon Zeon Co Ltd Brightness-enhanced film, method for forming the same, and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233666A (en) * 2003-01-30 2004-08-19 Nippon Zeon Co Ltd Method for producing raw optical laminate, optical laminate, backlight unit, and liquid crystal display
JP2005189392A (en) * 2003-12-25 2005-07-14 Nitto Denko Corp High brightness polarizing plate and image display device
JP2008273925A (en) * 2006-12-15 2008-11-13 Fujifilm Corp Optical film, retardation sheet and liquid crystal compound
JP2009237533A (en) * 2007-11-30 2009-10-15 Jsr Corp Method for producing optical film laminate, and the optical film laminate and application thereof
JP2010181710A (en) * 2009-02-06 2010-08-19 Nippon Zeon Co Ltd Polarizing plate and liquid crystal display device
JP2011118137A (en) * 2009-12-03 2011-06-16 Nippon Zeon Co Ltd Brightness-enhanced film, method for forming the same, and liquid crystal display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113555A (en) * 2014-12-16 2016-06-23 日本ゼオン株式会社 Liquid crystalline composition, circular polarized light separation element and method for producing the same, medium for forgery prevention and method for producing the same, brightness improvement film and security medium
JPWO2016114346A1 (en) * 2015-01-16 2017-04-27 Dic株式会社 Polymerizable composition and optical anisotropic body using the same
JPWO2016190435A1 (en) * 2015-05-28 2018-03-15 日本ゼオン株式会社 Circularly polarized light separating film and method for producing the same
WO2016190435A1 (en) * 2015-05-28 2016-12-01 日本ゼオン株式会社 Circularly polarized light separating film and method for producing same
US10620352B2 (en) 2015-05-28 2020-04-14 Zeon Corporation Circularly polarized light separating film and method for producing same
JP6055569B1 (en) * 2016-05-18 2016-12-27 日本ゼオン株式会社 Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device, and antireflection film
JP2017206460A (en) * 2016-05-18 2017-11-24 日本ゼオン株式会社 Polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device, and antireflection film
WO2018066486A1 (en) * 2016-10-06 2018-04-12 日本ゼオン株式会社 Mixture, polymerizable composition, polymer, optical film, optically anisotropic object, polarizer, flat panel display device, organic electroluminescent display device, antireflection film, and method of using polymerizable compound
JP2018058998A (en) * 2016-10-06 2018-04-12 日本ゼオン株式会社 Mixture, polymerizable composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescent display and antireflection film, and method for using polymerizable compound
JP6146526B1 (en) * 2016-10-06 2017-06-14 日本ゼオン株式会社 Mixture, polymerizable composition, polymer, optical film, optical anisotropic body, polarizing plate, flat panel display device, organic electroluminescence display device and antireflection film, and method for using polymerizable compound
JP2017206504A (en) * 2017-04-27 2017-11-24 日本ゼオン株式会社 Compound, polymerizable compound, mixture, polymerizable liquid crystal composition, polymer, optical film, optically anisotropic product, polarizing plate, flat panel display device, organic electroluminescence display device, and anti-reflection film
JP2022510576A (en) * 2018-11-19 2022-01-27 ヒョスン ケミカル コーポレーション Cellulose ester retardation film
JP7157248B2 (en) 2018-11-19 2022-10-19 ヒョスン ケミカル コーポレーション Cellulose ester retardation film

Also Published As

Publication number Publication date
JPWO2016031946A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6321052B2 (en) Brightness improving film, optical sheet member, and liquid crystal display device
JP6441899B2 (en) Composition, light reflecting film, brightness enhancement film, backlight unit, and liquid crystal display device
WO2016031946A1 (en) Brightness enhancement film and liquid crystal display device
JP6375381B2 (en) Optical film, illumination device and image display device
TWI257508B (en) Methods of making polarization rotators and articles containing the polarization rotators
US20180143363A1 (en) Mirror with image display function
JP2019079064A (en) Optical film, liquid crystal display device, and manufacturing method of optical film
WO2016088708A1 (en) Mirror having image display function
JP6262351B2 (en) Film, film manufacturing method, brightness enhancement film, optical sheet member, and liquid crystal display device
WO2017145580A1 (en) Vehicle mirror including image display function and method for manufacturing same
JP2004226686A (en) Broadband 1/4 wavelength plate raw material, wideband circularly polarizing plate raw material, optical element raw material and display device
JP2017068111A (en) Polarizing plate and liquid crystal display
KR102140552B1 (en) Optical element, manufacturing method of optical element and liquid crystal display device
WO2017057316A1 (en) Optical film, luminance improved film, backlight unit with luminance improved film, and liquid crystal display device
WO2017104433A1 (en) Vehicular mirror having image display function and method for producing same
JP6321210B2 (en) Liquid crystal display
JP4307181B2 (en) Optically anisotropic layer, retardation plate using the same, elliptically polarizing plate and liquid crystal display device
JP2005062672A (en) Optical anisotropic layer, retardation plate using the same, elliptic polarization plate and liquid crystal display device
JP5025121B2 (en) Circularly polarized light separating sheet, method for producing the same, and liquid crystal display device using the same
JP4570377B2 (en) Optical laminate and brightness enhancement film
JP2007206112A (en) Liquid crystal display device
JP2004309598A (en) Retardation plate, elliptical polarizing plate and liquid crystal display device
JP2011145705A (en) Circularly polarized light isolating sheet, method of manufacturing the same, and liquid crystal display device using them
JP2017067964A (en) Optical sheet and manufacturing method of the same, and liquid crystal display
JP2004309596A (en) Elliptical polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836132

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载