+

WO2018236167A1 - Laser device including filter and operation method therefor - Google Patents

Laser device including filter and operation method therefor Download PDF

Info

Publication number
WO2018236167A1
WO2018236167A1 PCT/KR2018/007041 KR2018007041W WO2018236167A1 WO 2018236167 A1 WO2018236167 A1 WO 2018236167A1 KR 2018007041 W KR2018007041 W KR 2018007041W WO 2018236167 A1 WO2018236167 A1 WO 2018236167A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
temperature
selective filter
wavelength selective
laser
Prior art date
Application number
PCT/KR2018/007041
Other languages
French (fr)
Korean (ko)
Inventor
김정수
Original Assignee
김정수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김정수 filed Critical 김정수
Publication of WO2018236167A1 publication Critical patent/WO2018236167A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon

Definitions

  • the present invention relates to a laser apparatus and a method of operating the same, and more particularly, to a laser apparatus capable of being fabricated in an extremely small size equipped with a wavelength stabilizing apparatus including a filter and capable of reducing the line width of laser light emitted from the package, And a method of operating the laser device.
  • DWDM Dense Wavelength Division Multiplexing
  • DWDM In order to expand the optical communication at a low cost, DWDM, which can use the existing optical fiber as it is, is preferably applied because the portion where the most cost is consumed in the optical communication is the optical fiber installation part.
  • DWDM DWDM with a frequency interval of 100 GHz is now subdivided into DWDM with a frequency interval of 50 GHz.
  • a very fine DWDM of 25 GHz it is preferable that each optical device generates a constant wavelength irrespective of changes in the external environmental temperature.
  • thermoelectric cooler which can control the temperature electrically, has the function of keeping the temperature of the device such as the laser diode chip constant.
  • the thermoelectric element merely controls the temperature of the element thermally coupled to the upper plate by measuring the temperature in the vicinity of the upper surface of the thermoelectric element, and can not substantially control the temperature of the semiconductor laser diode chip. Therefore, there is a problem that it is difficult to precisely control the temperature of the laser diode chip even if a thermoelectric element is used, when the temperature inside the optical element changes due to external temperature change. This causes a ripple change of the laser diode chip.
  • the stability of the wavelength of the laser diode is more important in DWDM where the wavelength interval is narrowed, that is, the frequency interval is narrowed.
  • the International Telecommunication Union Telecommunication Standardization Sector (ITU-T), which defines the communication standard, permits the following wavelength changes. At a frequency interval of 200 GHz, only a wavelength change of +/- 300 pm at the center wavelength specified by the standard, only a wavelength change of +/- 100 pm at the central wavelength defined by the standard at the 100 GHz frequency interval, Only wavelength variations of +/- 20 pm at the center wavelength are allowed.
  • FIG. 1 shows a TO-can type laser which realizes the characteristics of a laser capable of long-distance transmission at high speed as described in the above-mentioned invention.
  • the present invention proposes a method in which an optical element is mounted on a support such as a silicon or the like having a good heat conductivity and disposed on a 45-degree reflection mirror. It has been demonstrated that optical devices fabricated in this way can transmit more than 100Km at a high-speed transmission rate of 10Gbps.
  • the wavelength stabilization mentioned in the above-mentioned invention is only a relative wavelength stabilization of the wavelength of the optical filter and the laser diode having the characteristics of the etalon.
  • the temperature of the optical filter changes with the temperature of the external environment although the thermoelectric element is at a constant temperature.
  • the material of the optical filter including the etalon in the stand structure shown in FIG. 2 glass or quartz is used as the material having a small refractive index change depending on the temperature, and these materials have a very low thermal conductivity.
  • the temperature control of the TEC is the main purpose of temperature control of the TEC top plate, and the thermally contacted stand with the thermoelectric device controls the temperature of the etalon filter by transmitting heat.
  • the temperature of the external environment changes when the thermoelectric element is at a constant temperature
  • conduction by the thermal radiation 60 occurs from the cap 50 of the package.
  • the etalon filter is thermally balanced between the conduction from the cap 50 of the package and the heat transfer by the stand 10.
  • the temperature change of the etalon filter means that the temperature of the etalon filter changes by about 20 ° C, for example, when a change in the external environment temperature of 40 ° C occurs even when the thermoelectric element is maintained at a constant temperature . Even if the refractive index change rate is low depending on the temperature such as glass or Quartz, the temperature change of the etalon filter has a temperature change of about 12 pm per degree centigrade. Therefore, even if the thermoelectric element is maintained at a constant temperature, the etalon peak (wavelength of the etalon filter) itself shows a wavelength change of about 6.25 pm per 1 deg.
  • the laser oscillation wavelength should be adjusted to have a certain relative position with the etalon peak by changing the laser temperature.
  • the temperature change of the external environment at 40 ° C changes the transmission wavelength of the etalon peak by about 240 pm, so that the laser wavelength itself needs to be changed by about 240 pm to enable long distance transmission. Therefore, the conventional method can be applied only to DWDM with a wavelength interval of 200 GHz or more.
  • the present invention provides a low-cost TO type laser device that emits a laser beam having a small size and a small oscillation line width in order to solve the above problems. And to provide optical devices that can be applied to DWDM with a wavelength interval of 100 GHz and further with a wavelength of 50 GHz.
  • a laser device comprising: a laser diode chip for emitting laser light; An FP (Fabry-Perot) type etalon filter or a thin film filter; A heat sink having a good heat transfer coefficient to surround an outer circumferential surface of the wavelength selective filter; a collimating lens provided on an optical path between the laser diode chip and the wavelength selective filter for collimating light emitted from the laser diode chip; A 45-degree partial reflective mirror that deflects laser light traveling horizontally to a laser beam that travels perpendicular to the package's bottom surface; And a photodiode monitoring photodiode disposed on the optical path through which the laser beam reflected by the wavelength selective filter after being emitted from the laser diode chip passes through the 45 degree partial reflecting mirror.
  • FP Fabry-Perot
  • a heat sink having a good heat transfer coefficient to surround an outer circumferential surface of the wavelength selective filter
  • a collimating lens provided on an optical path between the laser diode chip and the wavelength
  • a photodiode for monitoring the light intensity may be further disposed on one side of the 45-degree partial reflection mirror and disposed on an optical path that is diverged from the laser diode chip and transmits the 45-degree partial reflection mirror.
  • the laser diode chip, the collimating lens, the wavelength selective filter, the 45-degree partial reflection mirror, and the photodiode for monitoring the wavelength are fixed on the thermoelectric element and disposed inside the TO (transistor outline) package.
  • the material having a high thermal conductivity to surround the wavelength selective filter is preferably a thermal conductive adhesive such as silver epoxy or silicone or AlN or a metal having high thermal conductivity, and is simultaneously in thermal contact with the wavelength selective filter and the stand.
  • the heat sink having a good thermal conductivity to surround the wavelength selective filter is protruded so that the wavelength selective filter is buried, and the size of the protrusion is preferably 200 ⁇ m or more.
  • the temperature of the thermoelectric element is reset to a temperature that cancels the change of the external environment temperature.
  • the wavelength of the laser light emitted from the laser diode chip is adjusted by adjusting the current passing through the semiconductor laser to adjust the wavelength of the laser irrespective of the thermoelectric element so that the transmission curve of the wavelength selective filter has a predetermined transmission / Lt; / RTI >
  • the reflectance of the 45-degree partial reflection mirror is preferably 80% to 98%.
  • the package housing in which the laser diode chip, the collimating lens, the wavelength selective filter, the 45-degree partial reflection mirror, the photodiode for optical intensity monitoring, the photodiode for optical wavelength monitoring and the thermoelectric element are disposed in which the laser diode chip, the collimating lens, the wavelength selective filter, the 45-degree partial reflection mirror, the photodiode for optical intensity monitoring, the photodiode for optical wavelength monitoring and the thermoelectric element are disposed, .
  • a wavelength selective filter such as an etalon filter is mounted inside the optical device package, Quot; signal and the " 0 " signal, the relative wavelengths of the wavelength selective filter and the laser wavelength can be adjusted so that the transmittance passing through the wavelength selective filter is different. Therefore, the optical device according to an embodiment of the present invention facilitates long-distance transmission in high-speed operation and suppresses the change in the laser oscillation wavelength as a result of temperature change of the wavelength selective filter due to a change in the external environmental temperature can do.
  • the optical device further includes a window glass covering a heat radiating plate, a protruding heat radiating plate and a protruding heat radiating plate outside the wavelength selective filter so that the entire wavelength selective filter can more easily exchange heat with the thermoelectric element.
  • the wavelength selective filter responds to the effect of ambient temperature at a minimum.
  • the laser wavelength changes to a minimum extent to the external environmental temperature change, allowing the optical device to be used for the denser DWDM methods such as 100 GHz and 50 GHz.
  • 1 shows a conventional TO-can type optical device for high-speed long distance transmission
  • Fig. 2 is a view of a stand on which a wavelength selective filter is mounted in a conventional TO-can optical device for high-speed long distance transmission
  • FIG. 3 is a view showing that a wavelength selective filter has a temperature different from that of a thermoelectric element by thermal radiation in a conventional TO-can type optical element for high-speed long distance transmission
  • FIG. 4 is a view showing a wavelength selective filter mounted on a stand in a conventional TO-can type optical device for high-speed long distance transmission exposed to thermal radiation from an optical device package
  • FIG. 5 is a schematic diagram showing a relationship between a wavelength selective filter and a laser wavelength when a wavelength selective filter is mounted so that a conventional direct modulation DFB-LD can be used for high-speed long-
  • FIG. 6 is a view of a wavelength selective filter in which a heat sink is paved around the wavelength selective filter according to the present invention
  • Fig. 7 is a view of a wavelength selective filter in which a heat sink is protruded around the wavelength selective filter according to the present invention
  • FIG. 8 is a view of a wavelength selective filter in which a window is mounted on a heat sink having a protruding shape around the wavelength selective filter according to the present invention
  • Fig. 9 is a graph showing the influence of the external environment temperature on the temperature of the wavelength selective filter in the structures of Figs. 4, 6, and 7 according to the present invention
  • FIG. 10 is a graph illustrating a change in the wavelength of the laser when the external environment temperature changes when the C-structure of FIG. 7 is used
  • Fig. 11 is a graph showing the relationship between the temperature of the thermoelectric element and the wavelength of the laser, in order to compensate for the fact that the change in the external environment temperature substantially changes the temperature of the wavelength selective filter.
  • FIG. 12 is a schematic diagram for stabilizing a wavelength using a monitoring photodiode
  • FIG. 13 is a flowchart of a method for stabilizing a wavelength using the present invention
  • FIG. 1 shows a TO-can type optical device having a wavelength selective filter having a transmission distance of 20 Km by directly modulating a DFB-LD at a 10 Gbps level in a conventional 1.55- ⁇ m long wavelength band.
  • FIG. 2 shows a stand in which a wavelength selective filter is mounted in a conventional TO-can type optical device having a wavelength selective filter for high-speed long-distance transmission.
  • a hole is formed in the stand 10, and a 45-degree partial reflecting mirror for dividing the laser beam is mounted in the hole.
  • the stand can usually be made of silicon with good thermal conductivity.
  • FIG. 3 is a graph showing the relationship between the wavelength of the radiation from the cap 50 forming the outer periphery of the TO-can type optical device in the TO-can type optical device having the wavelength selective filter for high-speed long- And the like.
  • the laser light proceeding to the wavelength selective filter passes through the center of the wavelength selective filter.
  • the wavelength selective filter typically has a very low thermal conductivity and has a refractive index different from that of a ceramic material such as glass or quartz Reflective layer is used coated.
  • the temperature of the central part of the wavelength selective filter becomes Otherwise, it may vary depending on the temperature change of the external environment.
  • FIG. 4 is a view showing in detail a process of heat transfer to a wavelength selective filter mounted on a stand by heat radiation.
  • FIG. 5 shows a case in which a DFB-LD is directly subjected to high- This is a graph showing that this is possible.
  • the optical signal emitted from the laser is composed of a "1" signal having a large signal intensity and a "0" signal having a weak signal intensity.
  • the chirp phenomenon of the optical transmission is a phenomenon in which the wavelength varies depending on the current density injected into the semiconductor laser. When the magnitude of the injection current of the "1" signal and the "0" signal largely changes, a large chirp characteristic occurs. chirp property occurs.
  • the "1" signal lies in a region with a relatively low transmittance.
  • the "1" signal is relatively much attenuated and the "0" signal is less attenuated, so the signal intensity difference between the "1" signal and the "0” signal is rather reduced. Therefore, when the wavelength of the signal from the laser is combined with the wavelength-selective filter in the form of B-CASE, the transmission characteristics are deteriorated. Accordingly, it is very important to adjust the wavelength of the laser light emitted from the laser to match the " 1 " signal to the maximum transmittance wavelength band of the wavelength selective filter.
  • the wavelength of the laser and the wavelength selective filter and the relative position are usually controlled by the temperature change of the thermoelectric element at a specific current condition. That is, the semiconductor laser has a wavelength change rate of about 90 pm / ° C., and the wavelength selective filter such as a glass typically shows a wavelength change rate according to a temperature of about 12 pm / ° C. Therefore, the wavelength of the laser should be adjusted so that the temperature of the thermoelectric element is adjusted so that the "1" signal is at the desired position of the wavelength selective filter. Since the wavelength selective filter does not change the wavelength depending on the temperature, the wavelength of the laser should be adjusted to a wavelength having a good transmission quality by changing the wavelength of the laser. However, when the transmission peak of the wavelength selective filter is far away from the predetermined channel, the wavelength of the laser light itself deviates far from the predetermined channel in order to improve the transmission characteristic.
  • the A-structure is the temperature at the center of the wavelength selective filter measured in the structure shown in FIG. 4, and the B-structure and the C-structure are the same as those of the heat sink 120 ) Is the temperature at the center of the wavelength selective filter in the padded structure.
  • the external temperature changes by 40 ° C in the A-structure
  • the temperature of the central part of the wavelength selective filter shows a temperature change of about 20 ° C even though the thermoelectric element is maintained at a constant temperature.
  • the temperature change of the wavelength selective filter at 20 ⁇ changes the transmission wavelength of the wavelength selective filter by about 240 pm and the wavelength of the laser light can be adjusted by adjusting the temperature of the thermoelectric device to the wavelength. That is, since the wavelength of the laser diode chip varies by about 90 pm / C, when the temperature of the thermoelectric element rises by about 2.5 ° C, the "1" signal can be placed in the appropriate region of the wavelength selective filter.
  • the transmission wavelength of the wavelength selective filter increases again by about 30 pm, which can be canceled by the increase of the temperature of the thermoelectric element by about 0.3 ° C.
  • the temperature of the thermoelectric element In FIG. 1, the two monitor photodiodes measure the reflectance of the wavelength selective filter to adjust the wavelength of the laser light in the appropriate region of the wavelength selective filter. In this process, the wavelength of the laser is determined by the transmission wavelength of the wavelength selective filter.
  • wavelength selective filter since the wavelength selective filter is sensitive to changes in the external environment temperature, it is difficult to apply it to wavelength DWDM having a wavelength interval of 100 GHz, further, 50 GHz.
  • the difference between the temperature of the wavelength selective filter 30 and the temperature of the thermoelectric element is significant because the characteristic of the wavelength selective filter 30 is poor in thermal conductivity, Because it affects the center of the image.
  • the present invention attaches a heat sink 120 having a good thermal conductivity around the wavelength selective filter 130 as shown in FIGS.
  • the heat sink 120 facilitates the heat exchange with the thermoelectric element even in a region remote from the stand 110, thereby making the temperature of the central portion of the wavelength selective filter closer to the temperature of the thermoelectric element.
  • Figure 7 is an embodiment of a B-structure.
  • At least one side of the stand 110 may include a wavelength selective filter 130 and the wavelength selective filter 130 may be coupled to the stand 110 in a cantilever fashion.
  • the wavelength selective filter 130 may be coupled to the stand 110 only on one side or may be coupled to the plurality of stands 110 on a plurality of sides.
  • the surface to which the wavelength selective filter 130 is bonded is preferably a side surface of the wavelength selective filter 130.
  • the shape to which the wavelength selective filter 130 is coupled can be coupled horizontally with the lower surface of the stand 110 (FIG. 7 is an embodiment combined horizontally) .
  • a side surface of the wavelength selective filter 130 that is not coupled to the stand 110 may be coupled to the heat sink 120.
  • the width of the heat sink 120 may be approximately equal to the thickness of the wavelength selective filter 130.
  • the heat sink 120 may be installed on the side surface of the wavelength selective filter 130, or on a portion of the top surface and the bottom surface through which light does not pass.
  • the width of the heat sink 120 is larger than the thickness of the wavelength selective filter 130 so that the heat sink 120 is out of the region of the wavelength selective filter and the upper surface of the wavelength selective filter 130 and / And may be formed in a protruding shape in a bottom direction.
  • the protruding heat sink 120 prevents the thermal radiation line, which is transmitted in a linear form, from reaching the wavelength selective filter 130 directly, thereby bringing the temperature of the wavelength selective filter 130 closer to the thermoelectric element.
  • the heat sink 120 may protrude more than 100 ⁇ m, preferably 200 to 500 ⁇ m, more than the thickness of the wavelength selective filter.
  • the heat sink 120 may further include a cover 140 that absorbs heat to the protruded heat sink of the thermoelectric element.
  • the cover portion 140 includes a feature that blocks heat radiation similarly to the protruding heat sink 120, and light passes therethrough.
  • the cover portion 140 may block the radiant heat 60 that can reach the wavelength selective filter so that the temperature of the wavelength selective filter is closer to the temperature of the thermoelectric element.
  • the cover portion 140 is coated with an anti-reflective coating on the surface through which the light passes.
  • the heat sink 120 attached to the wavelength selective filter 130 may be formed of a material having a good thermal conductivity. Such a material may be a metal material such as Cu, Al, or CuW, or a ceramic material such as AlN or Silicon have.
  • the heat sink 120 is coupled to the wavelength selective filter with a thermally conductive adhesive, and one of the heat sinks is preferably in thermal contact with the stand with an adhesive.
  • the wavelength selective filter 130 can be less affected by changes in the external environmental temperature. Accordingly, even if the external environmental temperature changes, the wavelength of the laser beam passing through the wavelength selective filter 130 is relatively stable as compared with the conventional one. This process is supported by the graph shown in FIG.
  • FIG. 10 is a graph showing a change in the wavelength of the laser as the external environment temperature changes when the C-structure of FIG. 8 is used.
  • Fig. 10 illustrates the structure of Fig. 8 (C-structure) as an example.
  • the temperature of the center of the wavelength selective filter shows a temperature rise of about 2 ° C. Therefore, it is assumed that the transmission wavelength band of the wavelength selective filter is set to the channel set by the ITU-T when the external environment temperature is 40 ° C, as indicated by the solid line in FIG. 10 (a).
  • the temperature of the wavelength selective filter rises by about 2 ° C.
  • the center wavelength of the wavelength selective filter is deviated by about 24 pm from the ITU-T setting channel as indicated by the dotted line in Fig. 10 (a).
  • the " 1 " signal of the laser light must shift to the transmission wavelength peak of the wavelength selective filter, and therefore, the thermoelectric element should be raised by about 0.3 DEG C as shown in FIG. This is because the wavelength of the laser deviates more than 20 pm from the channel set by the ITU-T, and this structure can be applied to 100 GHz DWDM, but it is difficult to apply to 50 GHz DWDM requiring a wavelength stability range of 20 pm or less.
  • Another embodiment of the present invention is to eliminate the dependence of the wavelength selective filter on the external environmental temperature, which is difficult to completely remove, so that the wavelength of the laser passing through the wavelength selective filter can always have a constant value.
  • Fig. 11 is a graph showing the relationship between the temperature of the thermoelectric element and the wavelength of the laser, in order to compensate for the fact that the change in the external environment temperature substantially changes the temperature of the wavelength selective filter. And the current is changed to a wavelength having a predetermined transmission band of the wavelength selective filter.
  • the solid line in FIG. 11 (a) shows a case where the transmission peak of the wavelength-selective filter matches the ITU-T channel at an external temperature of 40 ° C / TEC setting temperature of 40 ° C.
  • the dotted line in FIG. 11 (a) shows the transmission peak of the wavelength selective filter at an external temperature of 80 ° C / TEC setting temperature of 40 ° C.
  • the wavelength selective filter is affected by the external temperature and shows that the wavelength has already shifted.
  • the broken line in FIG. 11 (a) shows the transmission peak of the wavelength selective filter when the external temperature is 80 ° C / TEC setting temperature 38 ° C.
  • the transmission wavelength of the wavelength selective filter can be matched to the original ITU-T setting channel by adjusting the temperature of the thermoelectric device in such a way that the laser device compensates for the influence of the external temperature change on the wavelength selective filter
  • the solid line and the dashed line do not coincide with each other, but this is to make a dashed line appear.
  • the setting temperature of the thermoelectric element for canceling the change in the external temperature of the laser device can be predetermined and stored in the memory, and the TEC setting temperature can be appropriately set according to the external temperature.
  • the wavelength of the semiconductor laser can be varied by self-heating or the like.
  • a wavelength change of 10 to 20 pm / mA occurs.
  • a wavelength change of 15 pm / mA as an example, a wavelength change of 180 pm can be generated by injecting a current of about 12 mA into the laser diode chip. Since the heat generated by the current flowing through the laser is absorbed by the thermoelectric element and the thermoelectric element is at a constant temperature regardless of the current flowing through the laser diode chip, the transmission peak of the wavelength selective filter, which depends only on the temperature of the thermoelectric element, It becomes irrelevant to the current.
  • the wavelength oscillated in the laser diode chip can be matched to the appropriate region of the wavelength selective filter. Since the temperature of the thermoelectric device is reset by the method of canceling the influence of the external environmental temperature, the transmission wavelength of the wavelength selective filter can coincide with the channel set by ITU-T.
  • the laser oscillation wavelength is placed in the appropriate region of the wavelength selective filter by the current flowing to the laser diode chip, so that it can be applied to 50 GHz DWDM which does not deviate from the wavelength set by the external environment change while enabling high speed long distance transmission.
  • Optical devices can be made.
  • FIG. 12 is a diagram showing a configuration of a laser device for stabilizing the wavelength of the laser of the present invention.
  • the laser device may further include a thermoelectric element for controlling the temperature of the laser and the wavelength selective filter, and a further lens capable of collimating the laser light.
  • the laser apparatus includes a 45-degree partial reflection mirror 230 for dividing the laser light passing through the lens, a first monitoring photodiode 210 for monitoring the intensity of laser light on the optical path passing through the 45-degree partial reflection mirror, And the wavelength selective filter 130 may be disposed on the optical path reflected from the 45-degree partial reflection mirror.
  • the laser device further includes a second monitoring photodiode 220 for monitoring the intensity of the reflected light in the wavelength selective filter of the laser light on the optical path through which the light reflected by the wavelength selective filter passes through the 45- .
  • the wavelength selective filter is in contact with the upper plate of the thermoelectric element by a stand or the like having a high thermal conductivity by a stand or the like, but is spaced apart from the upper plate of the thermoelectric element and relatively close to the outer wall of the package I was on the street. Therefore, a considerable temperature difference can be generated between the temperature of the thermoelectric device upper plate and the wavelength selective filter, so that the temperature of the thermoelectric device is kept constant, and the temperature of the wavelength selective filter is constant . Therefore, the present invention has the characteristic of complementing the conventional laser device.
  • the present invention can be implemented by using a TO-can type package, and a stand having a 45-degree partial reflection mirror and a wavelength selective filter is made of a material having a high thermal conductivity such as Silicon .
  • the wavelength selective filter may be any one of an etalon filter having a high refractive index and a low refractive index on both surfaces of a ceramic material such as glass or quartz and a wavelength selective filter in the form of a single pass filter for forming a reflective film on one surface Can be implemented.
  • the first monitoring photodiode 210 monitors the output P (t) of the laser beam passing through the partial reflection mirror 230 having the transmittance A.
  • (1-A) P (t) the intensity of the laser beam reflected by the 45-degree partial reflection mirror 230 becomes (1-A) P ).
  • F (t) is a function of the wavelength change depending on the temperature of the wavelength selective filter 130. At this time, if the transmission wavelength is exactly matched, F (t) will be very small, and if the transmission wavelength is changed by external influence, F (t) will become large.
  • the reflected output is again received by the second monitoring photodiode 220 through the 45-degree partial reflecting mirror 230 and its output P2 is (1-A) A * P (t) F (t) do. Accordingly, the ratio (P1 / P2) of the output (any one of power, current, and voltage) of the first and second monitoring photodiodes becomes (1-A) F (t) Is only a function of the wavelength change with the temperature of the wavelength selective filter 130.
  • the present invention can confirm the correct value of the wavelength output using the ratio of the monitored power of the first and second monitoring photodiodes and can stabilize the wavelength using the ratio value.
  • the process of stabilizing the wavelength is as follows.
  • the laser apparatus monitors the temperature of the external environment and controls the temperature of the thermoelectric element corresponding to the external environment temperature to a predetermined temperature (predetermined temperature is applied to the memory value of the system in advance . Then, the laser device adjusts the oscillation wavelength of the laser by adjusting the amount of current applied to the laser so that the ratio of the output of the first and second monitoring photodiodes to a predetermined value is varied according to the temperature of the thermoelectric element.
  • the laser apparatus monitors the values of the outputs of the first and second monitoring photodiodes in real time or with a predetermined period, and adjusts the oscillation wavelength of the laser by adjusting the current applied to the laser.
  • the oscillation wavelength of the laser can be finely adjusted so that the optimum wavelength for the system performance can be obtained.
  • the current applied to the laser is applied to the first and second monitoring photodiodes
  • a method of adjusting the ratio of the flowing current (voltage, electric power) of the battery pack to a predetermined value can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Disclosed are a laser device including a filter and an operation method therefor. According to an aspect of the present embodiment, the purpose of the present invention is to provide a low-cost subminiature TO type laser device that emits laser light having a reduced oscillation line width, and to provide an optical element which maintains the characteristics of a laser optimized for long-distance transmission and in which the variation in laser wavelength according to variations in the temperature of the external environment is minimized so that the optical element can even be applied in DWDM in which the wavelength spacing is 100 GHz or even 50 GHz.

Description

필터를 포함하는 레이저 장치 및 그 운용방법Laser device including filter and method of operation
본 발명은 레이저 장치 및 그 운용방법에 관한 것으로, 특히, 필터를 포함한 파장 안정화 장치를 갖추고 초소형으로 제작 가능한 레이저 장치이며, 패키지에서 발산되는 레이저 빛의 선폭이 줄어들어 장거리 전송이 가능하며, 외부 환경 온도 변화에 대해 파장 변화가 최소화 된 레이저 장치 및 그 운용방법에 관한 것이다.The present invention relates to a laser apparatus and a method of operating the same, and more particularly, to a laser apparatus capable of being fabricated in an extremely small size equipped with a wavelength stabilizing apparatus including a filter and capable of reducing the line width of laser light emitted from the package, And a method of operating the laser device.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The contents described in this section merely provide background information on the present embodiment and do not constitute the prior art.
근래에 들어 스마트폰 등의 동영상 서비스를 비롯하여 통신 용량이 매우 큰 통신 서비스들이 출시되고 있다. 이에 따라, 종래의 통신 용량을 대폭적으로 증가시킬 필요가 대두 되고 있으며, 종래에 포설되어 있는 광섬유를 이용하여 통신 용량을 증대시키기 위해 DWDM(Dense Wavelength Division Multiplexing) 방식의 통신 방식이 채택되어 있다. DWDM은 하나의 광섬유로 여러 파장의 빛을 동시에 전송하는 방식으로, 하나의 광섬유로 동시에 여러 가지 파장의 광 신호를 전송하여도 신호 간에 간섭이 발생하지 않는다.Recently, communication services such as a video service of a smart phone and the like have been introduced with a great communication capacity. Accordingly, there has been a great need to increase the conventional communication capacity, and a DWDM (Dense Wavelength Division Multiplexing) communication method has been adopted in order to increase the communication capacity using the optical fiber that has been conventionally installed. DWDM is a method of simultaneously transmitting light of various wavelengths with one optical fiber. Even if optical signals of various wavelengths are simultaneously transmitted to one optical fiber, no interference occurs between signals.
광통신에 있어서 가장 많은 비용이 소모되는 부분은 광섬유의 포설 부분이기 때문에, 적은 비용으로 광통신을 확대하기 위해서는 기존에 포설된 광섬유를 그대로 이용할 수 있는 DWDM의 적용이 바람직하다. DWDM도 주파수 간격이 100GHz 인 DWDM에서 현재는 주파수 간격이 50GHz 인 DWDM으로 파장 분할이 세분화되고 있다. 이러한 100GHz 및 50GHz, 더 나아가 25GHz의 매우 세분화된 DWDM에서는 각각의 광소자가 외부 환경 온도 변화에 관계없이 일정한 파장을 발생하는 것이 바람직하다. In order to expand the optical communication at a low cost, DWDM, which can use the existing optical fiber as it is, is preferably applied because the portion where the most cost is consumed in the optical communication is the optical fiber installation part. In DWDM, DWDM with a frequency interval of 100 GHz is now subdivided into DWDM with a frequency interval of 50 GHz. In such a 100 GHz and 50 GHz, and furthermore, a very fine DWDM of 25 GHz, it is preferable that each optical device generates a constant wavelength irrespective of changes in the external environmental temperature.
통상적으로 광통신에 사용되는 반도체 레이저는 1℃의 온도 변화에 대해 약 90pm의 파장 변화를 보인다. 전기적으로 온도를 조절할수 있는 열전소자(thermo electric cooler, TEC)는 레이저 다이오드 칩과 같은 소자의 온도를 일정하게 유지 할 수 있는 기능을 가지고 있다. 그러나 열전소자는 열전소자 상부판 근방의 온도를 측정하여, 상부판에 열적으로 결합된 소자의 온도를 제어할 뿐이며, 실질적으로 반도체 레이저 다이오드 칩의 온도까지 제어할 수 있는 것은 아니다. 그러므로 외부의 온도 변화에 의해 광소자 내부의 온도가 달라지는 경우, 열전소자를 사용하더라도 레이저 다이오드 칩의 온도를 정밀하게 제어하기가 어려운 문제가 있다. 이는 레이저 다이오드 칩의 파방 변화를 야기한다. A semiconductor laser typically used for optical communication exhibits a wavelength change of about 90 pm with respect to a temperature change of 1 占 폚. The thermoelectric cooler (TEC), which can control the temperature electrically, has the function of keeping the temperature of the device such as the laser diode chip constant. However, the thermoelectric element merely controls the temperature of the element thermally coupled to the upper plate by measuring the temperature in the vicinity of the upper surface of the thermoelectric element, and can not substantially control the temperature of the semiconductor laser diode chip. Therefore, there is a problem that it is difficult to precisely control the temperature of the laser diode chip even if a thermoelectric element is used, when the temperature inside the optical element changes due to external temperature change. This causes a ripple change of the laser diode chip.
파장간격이 좁아진, 즉, 주파수 간격이 좁아진 DWDM에서 레이저 다이오드의 파장의 안정도는 보다 중요한 요소이다. 이에 대해 통신 표준을 규정하는 ITU-T(International Telecommunication Union Telecommunication Standardization Sector)에서 에서는 아래와 같은 파장변화를 허용하고 있다. 200GHz 주파수 간격에서는 표준으로 규정된 중심파장에서 +/-300pm의 파장 변화만이, 100GHz 주파수 간격에서는 표준으로 규정된 중심 파장에서 +/-100pm의 파장 변화만이, 50GHz 주파수 간격에서는 표준으로 규정된 중심 파장에서 +/-20pm의 파장 변화만이 허용된다. The stability of the wavelength of the laser diode is more important in DWDM where the wavelength interval is narrowed, that is, the frequency interval is narrowed. The International Telecommunication Union Telecommunication Standardization Sector (ITU-T), which defines the communication standard, permits the following wavelength changes. At a frequency interval of 200 GHz, only a wavelength change of +/- 300 pm at the center wavelength specified by the standard, only a wavelength change of +/- 100 pm at the central wavelength defined by the standard at the 100 GHz frequency interval, Only wavelength variations of +/- 20 pm at the center wavelength are allowed.
또한, 최근에 광통신은 고속화되며, 장거리화가 요구되고 있다. 송신장치가 반도체 DFB-LD(Distributed Feedback laser diode)를 직접 변조하여 10Gbps급 이상의 고속 신호를 전송할 경우, 반도체 레이저 다이오드의 직접 변조시에 발생하는 chirp 현상이 광섬유의 분산(dispersion)과 맞물려 장거리 전송을 어렵게 한다. In addition, recently, optical communication has been speeding up, and long distance has been demanded. When a transmitting device directly modulates a DFB-LD (Distributed Feedback Laser diode) and transmits a high-speed signal of 10 Gbps or higher, chirp phenomenon generated when a semiconductor laser diode is directly modulated is combined with the dispersion of the optical fiber, It is difficult.
이러한 문제점을 해결하고자, 본 출원인은 US 9,515,454에서 광학적 필터를 TO-can형 광소자 패키지 내부에 장착하는 방법을 제시하였다. 도 1은 상기 발명에서 제시한 고속에서 장거리 전송이 가능한 레이저의 특성을 구현해 내는 TO-can형 레이저의 모습을 도시한다. In order to solve this problem, Applicant has proposed a method of mounting an optical filter in a TO-can type optical device package in US 9,515,454. FIG. 1 shows a TO-can type laser which realizes the characteristics of a laser capable of long-distance transmission at high speed as described in the above-mentioned invention.
또한, 도 2에 도시된 바와 같이, 상기 발명은 광학 소자를 열전달율이 좋은 Silicon 등의 지지대 상에 부착하여 45도 반사거울의 상부에 배치하는 방법을 제시하고 있다. 이러한 방법으로 제작된 광소자는 10Gbps급의 고속 전송속도로 100Km이상을 전송할 수 있음이 실증되었다. Also, as shown in FIG. 2, the present invention proposes a method in which an optical element is mounted on a support such as a silicon or the like having a good heat conductivity and disposed on a 45-degree reflection mirror. It has been demonstrated that optical devices fabricated in this way can transmit more than 100Km at a high-speed transmission rate of 10Gbps.
그러나 상기 발명에서 언급된 방법에 의해서는 앞서 말한 파장의 안정화에 문제가 있다. 상기 발명에서 언급된 파장 안정화는 에탈론의 특성을 가지는 광필터와 레이저 다이오드의 파장의 상대적인 파장 안정화일뿐이다. However, there is a problem in the above-mentioned stabilization of the wavelength by the method mentioned in the above-mentioned invention. The wavelength stabilization mentioned in the above-mentioned invention is only a relative wavelength stabilization of the wavelength of the optical filter and the laser diode having the characteristics of the etalon.
본 출원인의 추가적인 연구에 의하면 열전소자가 일정한 온도에 있음에도 불구하고, 광필터의 온도가 외부 환경 온도에 따라 변화한다. 도 2에 도시된 스탠드 구조에서 에탈론을 포함하는 광필터의 재질로는 온도에 따라 굴절률 변화가 작은 물질이 Glass 또는 Quartz가 사용되는데, 이러한 재질들은 열전도율이 매우 낮다.According to a further study by the present applicant, the temperature of the optical filter changes with the temperature of the external environment although the thermoelectric element is at a constant temperature. As the material of the optical filter including the etalon in the stand structure shown in FIG. 2, glass or quartz is used as the material having a small refractive index change depending on the temperature, and these materials have a very low thermal conductivity.
TEC의 온도 조절은 TEC 상판 부위의 온도 조절을 주목적으로 하며, 이 열전소자와 열적으로 접촉하는 스탠드가 열을 전달하여 에탈론 필터의 온도를 조절하게 된다. 그러나 도 3에 도시된 바와 같이, 열전소자가 일정한 온도에 있을 때 외부 환경 온도가 변화하게 되면, 패키지의 캡(50)으로부터 열선(Thermal Radiation, 60)에 의한 conduction이 발생한다. 에탈론 필터는 패키지의 캡(50)으로부터의 conduction과 스탠드(10)에 의한 열 전달의 중간 지점에서 열 평형을 이루게 되다. The temperature control of the TEC is the main purpose of temperature control of the TEC top plate, and the thermally contacted stand with the thermoelectric device controls the temperature of the etalon filter by transmitting heat. However, as shown in FIG. 3, when the temperature of the external environment changes when the thermoelectric element is at a constant temperature, conduction by the thermal radiation 60 occurs from the cap 50 of the package. The etalon filter is thermally balanced between the conduction from the cap 50 of the package and the heat transfer by the stand 10.
본 출원인의 실험에 의하면 도 4와 같은 방법으로 열전소자에 열적으로 결합된 스탠드(10)에 에탈론 필터(30)가 부착된 상태에서 열전소자가 일정 온도로 고정된 채로 외부 온도가 변화하는 경우, 에탈론 필터의 온도는 외부 온도 변화의 거의 절반에 해당하는 온도 변화를 겪는 것으로 나타났다. According to the experiment of the present applicant, when the external temperature changes while the thermoelectric element is fixed at a predetermined temperature in a state where the etalon filter 30 is attached to the stand 10 thermally coupled to the thermoelectric element by the method as shown in FIG. 4 , The temperature of the etalon filter was found to undergo a temperature change corresponding to almost half of the external temperature change.
이러한 에탈론 필터의 온도 변화는 열전소자를 일정한 온도로 유지하여도, 예를 들어, 외부 환경 온도의 변화가 40℃가 발생하면, 에탈론 필터의 온도는 실질적으로 20℃ 정도 변화함을 의미한다. 유리 또는 Quartz 등 온도에 따라 굴절률 변화율이 작은 물질이라 하더라도, 대략 에탈론 필터의 온도 변화 1℃ 당 약 12pm의 온도 변화를 갖는다. 그러므로 열전소자를 일정한 온도에 유지시킨다 하더라도 도 4의 구조에서는 에탈론 피크(에탈론 필터의 파장) 자체가 외부의 온도 변화 1℃당 약 6.25pm의 파장 변화를 보인다. The temperature change of the etalon filter means that the temperature of the etalon filter changes by about 20 ° C, for example, when a change in the external environment temperature of 40 ° C occurs even when the thermoelectric element is maintained at a constant temperature . Even if the refractive index change rate is low depending on the temperature such as glass or Quartz, the temperature change of the etalon filter has a temperature change of about 12 pm per degree centigrade. Therefore, even if the thermoelectric element is maintained at a constant temperature, the etalon peak (wavelength of the etalon filter) itself shows a wavelength change of about 6.25 pm per 1 deg.
효율적인 장거리 전송을 위해서는 레이저의 온도를 변화시켜 레이저 발진 파장이 에탈론 피크와 일정한 상대적 위치를 가지도록 조절되어야 한다. 이때, 40℃의 외부 환경 온도 변화는 에탈론 피크의 투과 파장을 약 240pm 정도 변화시키기 때문에, 레이저 파장 자체가 240pm 정도 바뀌어야 장거리 전송이 가능해진다. 그러므로 종래의 방법은 200GHz 또는 그 이상의 파장 간격의 DWDM에서만 적용될 수 있다. For effective long-distance transmission, the laser oscillation wavelength should be adjusted to have a certain relative position with the etalon peak by changing the laser temperature. At this time, the temperature change of the external environment at 40 ° C changes the transmission wavelength of the etalon peak by about 240 pm, so that the laser wavelength itself needs to be changed by about 240 pm to enable long distance transmission. Therefore, the conventional method can be applied only to DWDM with a wavelength interval of 200 GHz or more.
본 발명은 상기한 문제점을 해결하기 위해 초소형이며 발진 선폭이 줄어든 레이저 빛을 방출하는, 저가형인 TO형 레이저 장치를 제공하며, 또한, 장거리 전송에 최적화된 레이저의 특성을 유지하면서 외부 환경 온도의 변화에 대해 레이저 파장의 변화가 최소화되어 100GHz, 더 나아가 50GHz 파장 간격의 DWDM에서도 적용이 가능한 광소자의 제공에 일 목적이 있다. The present invention provides a low-cost TO type laser device that emits a laser beam having a small size and a small oscillation line width in order to solve the above problems. And to provide optical devices that can be applied to DWDM with a wavelength interval of 100 GHz and further with a wavelength of 50 GHz.
상기 목적을 달성하기 위한 본 발명에 따른 레이저 장치는, 레이저 빛을 발산하는 레이저 다이오드 칩과; FP(Fabry-Perot)형의 에탈론 필터 또는 thin film filter등 파당 선택성 필터 와; 상기 파장 선택성 필터의 외주면을 감싸는 열 전달률이 좋은 방열판과, 상기 레이저 다이오드 칩과 상기 파장 선택성 필터 사이의 광 경로 상에 설치되어, 레이저 다이오드 칩으로부터 발산된 빛을 시준화시키는 시준화 렌즈와 패키지 바닥면에 대해 수평으로 진행하는 레이저 빛을 패키지 바닥면에 대해 수직으로 진행하는 레이저 빛으로 방향을 전환하는 45도 부분반사거울; 레이저 다이오드 칩에서 발산된 후 파장 선택성 필터에서 반사하는 레이저 빛이 45도 부분반사거울을 투과하는 광경로상에 배치된 광파장 감시용 포토다이오드;를 포함하여 이루어진다. According to an aspect of the present invention, there is provided a laser device comprising: a laser diode chip for emitting laser light; An FP (Fabry-Perot) type etalon filter or a thin film filter; A heat sink having a good heat transfer coefficient to surround an outer circumferential surface of the wavelength selective filter; a collimating lens provided on an optical path between the laser diode chip and the wavelength selective filter for collimating light emitted from the laser diode chip; A 45-degree partial reflective mirror that deflects laser light traveling horizontally to a laser beam that travels perpendicular to the package's bottom surface; And a photodiode monitoring photodiode disposed on the optical path through which the laser beam reflected by the wavelength selective filter after being emitted from the laser diode chip passes through the 45 degree partial reflecting mirror.
또한 상기 45도 부분반사 거울의 일 측면에 레이저 다이오드 칩에서 발산되어 45도 부분반사거울을 투과하는 광경로상에 배치된 광세기 감시용 포토다이오드가 더 배치 될 수 있다.Further, a photodiode for monitoring the light intensity may be further disposed on one side of the 45-degree partial reflection mirror and disposed on an optical path that is diverged from the laser diode chip and transmits the 45-degree partial reflection mirror.
한편, 상기 레이저 다이오드 칩과 시준화 렌즈, 파장 선택성 필터, 45도 부분반사거울, 광파장 감시용 포토다이오드는 열전소자 상부에 고정 부착되어, TO(transistor outline)형 패키지 내부에 배치되는 것이 바람직하다. It is preferable that the laser diode chip, the collimating lens, the wavelength selective filter, the 45-degree partial reflection mirror, and the photodiode for monitoring the wavelength are fixed on the thermoelectric element and disposed inside the TO (transistor outline) package.
또한 상기 파장 선택성 필터를 감싸는 열전도율이 좋은 물질은 실리콘 또는 AlN 또는 금속으로 이루어지되 열전도율이 좋은 실버 에폭시등의 열전도성 접착제로 파장 선택성 필터와 스탠드에 동시에 열 접촉되어 있는 것이 바람직하다. 특히 파장 선택성 필터를 감싸는 열전도율이 좋은 방열판은 파장 선택성 필터가 매몰되도록 돌출되는 것이 바람직하고 이러한 돌출의 크기는 200um 이상이 바람직하다. In addition, the material having a high thermal conductivity to surround the wavelength selective filter is preferably a thermal conductive adhesive such as silver epoxy or silicone or AlN or a metal having high thermal conductivity, and is simultaneously in thermal contact with the wavelength selective filter and the stand. In particular, it is preferable that the heat sink having a good thermal conductivity to surround the wavelength selective filter is protruded so that the wavelength selective filter is buried, and the size of the protrusion is preferably 200 μm or more.
또한 이러한 돌출 형태를 가지는 방열판의 상부 부위를 글라스의 window cover로 덮는 방법도 가능하다.It is also possible to cover the upper part of the heat sink having such protruding shape with a window cover of a glass.
이러한 방법을 통하여서도 파장 선택성 필터의 온도가 고정된 열전소자의 온도와는 무관하게 외부 환경 온도에 의해 영향을 받을 경우에는 열전소자의 온도를 외부 환경 온도의 변화 효과를 상쇄시키는 온도로 재설정하고, 레이저 다이오드 칩에서 발산되는 레이저 빛의 파장은 반도체 레이저를 통과하는 전류를 조절하여, 열전소자와 무관하게 레이저 파장을 조절함으로써 파장 선택성 필터의 투과 커브의 미리 정해진 투과/반사율을 가지는 파장으로 조정하는 방법을 사용한다. When the temperature of the wavelength selective filter is affected by the external environment temperature regardless of the temperature of the thermoelectric element, the temperature of the thermoelectric element is reset to a temperature that cancels the change of the external environment temperature. The wavelength of the laser light emitted from the laser diode chip is adjusted by adjusting the current passing through the semiconductor laser to adjust the wavelength of the laser irrespective of the thermoelectric element so that the transmission curve of the wavelength selective filter has a predetermined transmission / Lt; / RTI >
상기 45도 부분반사거울의 반사율은 80% 내지 98%로 형성되는 것이 바람직하다.The reflectance of the 45-degree partial reflection mirror is preferably 80% to 98%.
또한, 상기 레이저 다이오드 칩, 시준화 렌즈, 파장 선택성 필터, 45도 부분반사거울, 광세기감시용 포토다이오드, 광파장감시용 포토다이오드 및 열전소자가 배치되는 패키지 하우징은 내부가 0.2 기압 이하의 진공상태로 유지되는 것이 바람직하다.In addition, the package housing in which the laser diode chip, the collimating lens, the wavelength selective filter, the 45-degree partial reflection mirror, the photodiode for optical intensity monitoring, the photodiode for optical wavelength monitoring and the thermoelectric element are disposed, .
이상에서 설명한 바와 같이 본 실시예에 의하면, 본 발명은 DFB-LD를 사용하여 직접 변조하는 광소자에 있어서, 광소자 패키지 내부에 에탈론 필터 등의 파장 선택성 필터를 장착하여, 레이저 빛의 “1”신호와 “0”신호의 파장 차이로부터 파장 선택성 필터를 통과하는 투과율이 다르도록 파장 선택성 필터와 레이저 파장의 상대적 파장을 조절할 수 있다. 이에, 본 발명의 일 실시예에 따른 광소자는 고속동작시에 장거리 전송을 용이하게 하며, 외부 환경 온도의 변화에 의해 파장 선택성 필터의 온도가 변화함에 따라 결과적으로 발생하는 레이저 발진 파장의 변화를 억제할 수 있다. 본 발명의 일 실시예에 따른 광소자는 파장 선택성 필터의 전체가 열전소자와 더 쉽게 열교환을 할 수 있도록, 파장 선택성 필터 외부에 방열판, 돌출 형태의 방열판 및 돌출 형태의 방열판을 덮는 window glass를 더 붙임으로써 파장 선택성 필터가 외부 환경 온도의 영향에 최소한으로 반응하도록 한다. 그러므로써 레이저 파장이 결과적으로 외부 환경 온도 변화에 최소한으로 변화하게 하여, 광소자가 100GHz, 50GHz등의 더 조밀한 DWDM의 방식에도 사용될 수 있도록 한다. As described above, according to the present embodiment, in the optical device directly modulating using the DFB-LD, a wavelength selective filter such as an etalon filter is mounted inside the optical device package, Quot; signal and the " 0 " signal, the relative wavelengths of the wavelength selective filter and the laser wavelength can be adjusted so that the transmittance passing through the wavelength selective filter is different. Therefore, the optical device according to an embodiment of the present invention facilitates long-distance transmission in high-speed operation and suppresses the change in the laser oscillation wavelength as a result of temperature change of the wavelength selective filter due to a change in the external environmental temperature can do. The optical device according to an embodiment of the present invention further includes a window glass covering a heat radiating plate, a protruding heat radiating plate and a protruding heat radiating plate outside the wavelength selective filter so that the entire wavelength selective filter can more easily exchange heat with the thermoelectric element. Such that the wavelength selective filter responds to the effect of ambient temperature at a minimum. As a result, the laser wavelength changes to a minimum extent to the external environmental temperature change, allowing the optical device to be used for the denser DWDM methods such as 100 GHz and 50 GHz.
도 1은 종래의 고속 장거리 전송용 TO-can형 광소자의 모습1 shows a conventional TO-can type optical device for high-speed long distance transmission
도 2는 종래의 고속 장거리 전송용 TO-can형 광소자에서 파장 선택성 필터가 장착되는 스탠드의 모습Fig. 2 is a view of a stand on which a wavelength selective filter is mounted in a conventional TO-can optical device for high-speed long distance transmission
도 3은 종래의 고속 장거리 전송용 TO-can형 광소자에서 열복사에 의해 파장 선택성 필터가 열전소자와는 다른 온도를 가지게 되는 것을 도시한 모습3 is a view showing that a wavelength selective filter has a temperature different from that of a thermoelectric element by thermal radiation in a conventional TO-can type optical element for high-speed long distance transmission
도 4는 종래의 고속 장거리 전송용 TO-can형 광소자에서 스탠드에 장착된 파장 선택성 필터가 광소자 패키지로부터의 열복사에 노출되는 모습 4 is a view showing a wavelength selective filter mounted on a stand in a conventional TO-can type optical device for high-speed long distance transmission exposed to thermal radiation from an optical device package
도 5는 종래의 직접 변조 DFB-LD가 고속 장거리 통신용으로 사용되기 위해 파장 선택성 필터가 장착되었을 경우 파장 선택성 필터와 레이저 파장과의 관계를 보여주는 모식도5 is a schematic diagram showing a relationship between a wavelength selective filter and a laser wavelength when a wavelength selective filter is mounted so that a conventional direct modulation DFB-LD can be used for high-speed long-
도 6은 본 발명에 의한 파장 선택성 필터 주위에 방열판이 덧대어진 파장 선택성 필터의 모습 6 is a view of a wavelength selective filter in which a heat sink is paved around the wavelength selective filter according to the present invention
도 7은 본 발명에 의한 파장 선택성 필터 주위에 돌출 형태의 방열판이 덧대어진 파장 선택성 필터의 모습Fig. 7 is a view of a wavelength selective filter in which a heat sink is protruded around the wavelength selective filter according to the present invention
도 8은 본 발명에 의한 파장 선택성 필터 주위에 돌출 형태의 방열판에 window가 장착된 형태의 파장 선택성 필터의 모습8 is a view of a wavelength selective filter in which a window is mounted on a heat sink having a protruding shape around the wavelength selective filter according to the present invention
도 9는 본 발명에 의한 도4, 도6, 도 7 구조에 있어서 외부 환경 온도가 파장 선택성 필터의 온도에 미치는 영향 Fig. 9 is a graph showing the influence of the external environment temperature on the temperature of the wavelength selective filter in the structures of Figs. 4, 6, and 7 according to the present invention
도 10은 도7의 C-구조를 사용할 경우 외부 환경 온도가 변함에 따라 레이저의 파장이 변화하는 모습을 설명한 그림FIG. 10 is a graph illustrating a change in the wavelength of the laser when the external environment temperature changes when the C-structure of FIG. 7 is used
도 11은 외부 환경 온도의 변화가 파장 선택성 필터의 온도를 실질적으로 변화시키는 것을 상쇄하기 위해 열전소자의 온도를 변화시켜 파장선택성 필터의 투과 파장을 미리 정해진 파장으로 고정시키고, 레이저의 파장은 레이저로 흐르는 전류를 변화시켜 파장 선택성 필터의 미리 정해진 투과 대역을 가지는 파장으로 이동시키는 과정을 설명하는 모식도Fig. 11 is a graph showing the relationship between the temperature of the thermoelectric element and the wavelength of the laser, in order to compensate for the fact that the change in the external environment temperature substantially changes the temperature of the wavelength selective filter. A schematic diagram for explaining the process of shifting the current flowing to a wavelength having a predetermined transmission band of the wavelength selective filter
도 12는 모니터링 포토다이오드를 이용해서, 파장을 안정화 시키는 모식도12 is a schematic diagram for stabilizing a wavelength using a monitoring photodiode
도 13은 본 발명을 이용하여 파장을 안정화 시키는 방법에 대한 순서도13 is a flowchart of a method for stabilizing a wavelength using the present invention
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. It should be noted that, in adding reference numerals to the constituent elements of the drawings, the same constituent elements are denoted by the same reference numerals even though they are shown in different drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함', '구비'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 '…부', '모듈' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements. Throughout the specification, when an element is referred to as being "comprising" or "comprising", it means that it can include other elements as well, without excluding other elements unless specifically stated otherwise . In addition, '... Quot ;, " module ", and " module " refer to a unit that processes at least one function or operation, and may be implemented by hardware or software or a combination of hardware and software.
도 1은 종래의 1.55um 장파장 대역에서 DFB-LD를 10Gbps급으로 직접 변조하여 20Km의 전송 거리를 가지게 하는 파장 선택성 필터가 내장된 TO-can형의 광소자의 모습을 도시한다.FIG. 1 shows a TO-can type optical device having a wavelength selective filter having a transmission distance of 20 Km by directly modulating a DFB-LD at a 10 Gbps level in a conventional 1.55-μm long wavelength band.
도 2는 종래의 고속 장거리 전송용 파장 선택성 필터가 내장된 TO-can형 광소자에서 파장 선택성 필터가 장착되는 스탠드의 모습을 도시한다. 스탠드(10)에 hole이 형성되어 있으며, hole에는 레이저 빛을 분할하는 45도 부분 반사거울이 장착된다. 스탠드는 통상적으로 열전도율이 좋은 silicon 등으로 제작될 수 있다.FIG. 2 shows a stand in which a wavelength selective filter is mounted in a conventional TO-can type optical device having a wavelength selective filter for high-speed long-distance transmission. A hole is formed in the stand 10, and a 45-degree partial reflecting mirror for dividing the laser beam is mounted in the hole. The stand can usually be made of silicon with good thermal conductivity.
도 3은 종래의 고속 장거리 전송용 파장 선택성 필터가 내장된 TO-can형 광소자에서 TO-can형 광소자의 외곽을 형성하는 캡(50)으로부터 열복사(60)에의한 radiation이 파장 선택성 필터에 열을 전달하는 과정을 모식한 모사도이다. 도 1을 참조하면, 파장 선택성 필터로 진행하는 레이저 빛은 파장 선택성 필터의 중심부를 지나는 것이 바람직한데, 파장 선택성 필터는 통상적으로 열전도율이 매우 낮은 glass, quartz등의 세라믹 계열의 재료에 굴절률이 서로 다른 반사층이 코팅되어 사용된다. 열복사에 의해 열이 직접 파장 선택성 필터의 전면에 전달되므로, 파장 선택성 필터가 열전도율이 높아 열전소자의 온도와 근접한 스탠드와 열적으로 결합되어 있다하더라도, 파장 선택성 필터의 중심부의 온도는 열전소자의 온도와 달리 외부 환경 온도 변화에 따라 달라질 수 있다.FIG. 3 is a graph showing the relationship between the wavelength of the radiation from the cap 50 forming the outer periphery of the TO-can type optical device in the TO-can type optical device having the wavelength selective filter for high-speed long- And the like. Referring to FIG. 1, it is preferable that the laser light proceeding to the wavelength selective filter passes through the center of the wavelength selective filter. The wavelength selective filter typically has a very low thermal conductivity and has a refractive index different from that of a ceramic material such as glass or quartz Reflective layer is used coated. Since the heat is directly transferred to the front surface of the wavelength selective filter by thermal radiation, even if the wavelength selective filter is thermally coupled to the stand close to the temperature of the thermoelectric element due to its high thermal conductivity, the temperature of the central part of the wavelength selective filter becomes Otherwise, it may vary depending on the temperature change of the external environment.
도 4는 스탠드에 장착된 파장 선택성 필터에 열복사에 의해 열이 전달되는 과정을 좀 더 상세하게 도시한 도면이고, 도 5는 파장 선택성 필터가 있는 경우에 DFB-LD를 직접 고속 변조하여도 장거리 광전송이 가능함을 보여주는 그래프이다. FIG. 4 is a view showing in detail a process of heat transfer to a wavelength selective filter mounted on a stand by heat radiation. FIG. 5 shows a case in which a DFB-LD is directly subjected to high- This is a graph showing that this is possible.
도 5(a)를 참조하면, 레이저에서 방출되는 광신호는 신호 세기가 큰 “1”신호와 신호세기가 약한“0”신호로 구성된다. 광전송의 chirp 현상은 반도체 레이저에 주입되는 전류 밀도에 따라 파장이 달라지는 현상이다, “1”신호 및 “0”신호의 주입 전류 크기가 크게 달라지면 큰 chirp 특성이 발생하고, 전류의 차이가 작아지면 작은 chirp 특성이 발생한다. 그러므로 chirp 특성을 최소하하기 위한 측면에서는 "1" 신호와 “0”신호의 전류 크기 차이가 작은게 바람직하다. 그러나 신호를 판별하는 입장에서보면 “1”신호와 “0”신호의 신호 크기가 차이가 크지 않으면 신호 판별이 불리해진다. 그러므로 “1”신호와 “0”신호의 전류 크기 차이를 키우면 chirp 특성이 나빠져 전송이 어려워지며, “1”신호와 “0”신호의 차이가 작으면 신호 판별이 어려워지는 단점이 발생한다. 도 5를 참조하면, A-CASE 의 구조에서 레이저 다이오드 칩에서 발생한 레이저 빛의 “1”신호를 파장 선택성 필터의 투과율이 가장 큰 영역에 일치시키면, "0"신호는 파장 선택성 필터의 상대적으로 투과율이 떨어지는 영역에 배치된다. 이에 따라, “1”신호에 비해 “0”신호의 감쇄가 커지므로, “1”신호와 “0”신호의 전류 크기 차이를 줄여 chirp을 줄여도 신호 세기차이는 크게 만들 수 있어 고속 장거리 전송에 유리하다. Referring to FIG. 5 (a), the optical signal emitted from the laser is composed of a "1" signal having a large signal intensity and a "0" signal having a weak signal intensity. The chirp phenomenon of the optical transmission is a phenomenon in which the wavelength varies depending on the current density injected into the semiconductor laser. When the magnitude of the injection current of the "1" signal and the "0" signal largely changes, a large chirp characteristic occurs. chirp property occurs. Therefore, in order to minimize the chirp characteristic, it is preferable that the difference in the current magnitude between the " 1 " signal and the " 0 " However, from the viewpoint of signal discrimination, if the signal magnitudes of the "1" signal and the "0" signal do not differ greatly, the signal discrimination becomes disadvantageous. Therefore, if the difference in the current magnitude between the "1" signal and the "0" signal is increased, chirp characteristics become worse and transmission becomes difficult. If the difference between the "1" signal and the "0" signal is small, the signal discrimination becomes difficult. Referring to FIG. 5, when the " 1 " signal of the laser light generated in the laser diode chip in the structure of A-CASE is matched to the region having the greatest transmittance of the wavelength selective filter, the " 0 " Is disposed in the falling area. Accordingly, since the attenuation of the " 0 " signal becomes larger than that of the signal " 1 ", the signal intensity difference between the " 1 " Do.
그러나 B-CASE의 구조에서 레이저의 “0”신호가 파장 선택성 필터의 가장 투과율이 높은 파장 영역에 맞을 경우 “1”신호는 상대적으로 투과율이 나쁜 영역에 놓이게 된다. 이에 따라, “1”신호는 상대적으로 많이 감쇄되고, “0”신호는 감쇄가 덜 되므로, “1” 신호와 “0”신호의 신호 세기차이가 오히려 줄어든다. 그러므로 B-CASE 의 형태로 레이저에서 나온 신호의 파장이 파장 선택성 필터와 결합되면 오히려 전송특성이 나빠지는 특성을 가지게 된다. 이에 따라, 레이저에서 방출되는 레이저 빛의 파장을 조절하여, “1”신호가 파장 선택성 필터의 최대 투과율 파장 대역으로 매칭시키는 것이 매우 중요하다. However, in the structure of B-CASE, when the laser's "0" signal is fitted to the wavelength region of the highest transmittance of the wavelength selective filter, the "1" signal lies in a region with a relatively low transmittance. As a result, the "1" signal is relatively much attenuated and the "0" signal is less attenuated, so the signal intensity difference between the "1" signal and the "0" signal is rather reduced. Therefore, when the wavelength of the signal from the laser is combined with the wavelength-selective filter in the form of B-CASE, the transmission characteristics are deteriorated. Accordingly, it is very important to adjust the wavelength of the laser light emitted from the laser to match the " 1 " signal to the maximum transmittance wavelength band of the wavelength selective filter.
레이저의 파장과 파장 선택성 필터와 상대 위치는 통상적으로 특정한 전류 조건에서 열전소자의 온도 변화에 의해 조절된다. 즉, 반도체 레이저는 약 90pm/℃정도의 온도에 따fms 파장 변화율을 가지며, 글라스등의 파장 선택성 필터는 통상적으로 약 12pm/℃정도의 온도에 따른 파장 변화율을 보인다. 그러므로 열전소자의 온도를 조절하여 “1”신호가 파장 선택성 필터의 원하는 위치에 오도록 레이저의 파장이 조정되어야 한다. 파장 선택성 필터는 온도에 따른 파장 변화가 크지 않으므로, 레이저의 파장을 바꾸어 좋은 전송 품질을 가지는 파장으로 레이저 파장이 조절되어야 한다. 다만, 파장 선택성 필터의 투과 peak이 정해진 채널에서 멀리 벗어나면, 전송 특성을 좋게하기 위해서는 레이저 빛의 파장 자체가 정해진 채널에서 멀리 벗어나는 문제가 발생한다. The wavelength of the laser and the wavelength selective filter and the relative position are usually controlled by the temperature change of the thermoelectric element at a specific current condition. That is, the semiconductor laser has a wavelength change rate of about 90 pm / ° C., and the wavelength selective filter such as a glass typically shows a wavelength change rate according to a temperature of about 12 pm / ° C. Therefore, the wavelength of the laser should be adjusted so that the temperature of the thermoelectric element is adjusted so that the "1" signal is at the desired position of the wavelength selective filter. Since the wavelength selective filter does not change the wavelength depending on the temperature, the wavelength of the laser should be adjusted to a wavelength having a good transmission quality by changing the wavelength of the laser. However, when the transmission peak of the wavelength selective filter is far away from the predetermined channel, the wavelength of the laser light itself deviates far from the predetermined channel in order to improve the transmission characteristic.
도 6은 열전소자의 온도를 40℃로 고정시키고 외부 환경 온도를 20~80℃로 변화시켰을 때 파장 선택성 필터 중심부의 온도를 측정한 그래프이다. 도 6을 참조하면 A-구조는 도 4에 도시된 구조에서 측정한 파장 선택성 필터의 중심부에서의 온도이며, B-구조 및 C-구조는 후술할 도 7 및 8의 본 발명에 의한 방열판(120)이 덧대어진 구조에서의 파장 선택성 필터의 중심부에서의 온도이다. A-구조에서 외부 온도가 40℃ 변화하는 경우, 파장 선택성 필터의 중심부의 온도는 열전소자를 일정한 온도에 유지하였음에도 불구하고 약 20℃의 온도 변화를 보인다. 6 is a graph of the temperature of the center of the wavelength selective filter when the temperature of the thermoelectric element is fixed at 40 ° C and the external environment temperature is changed from 20 to 80 ° C. Referring to FIG. 6, the A-structure is the temperature at the center of the wavelength selective filter measured in the structure shown in FIG. 4, and the B-structure and the C-structure are the same as those of the heat sink 120 ) Is the temperature at the center of the wavelength selective filter in the padded structure. When the external temperature changes by 40 ° C in the A-structure, the temperature of the central part of the wavelength selective filter shows a temperature change of about 20 ° C even though the thermoelectric element is maintained at a constant temperature.
파장 선택성 필터의 20℃의 온도 변화는 파장 선택성 필터의 투과 파장을 대략 240pm 변화시키며, 레이저 빛의 파장은 이 파장에 맞게 열전소자의 온도를 조절하여 맞추어 갈 수 있다. 즉, 레이저 다이오드 칩의 파장은 90pm/℃정도 변화하므로, 열전소자의 온도가 대략 2.5℃정도 상승하면, “1" 신호는 파장 선택성 필터의 적정 영역에 배치될수 있다. 열전소자의 온도가 2.5℃정도 상승하면 파장 선택성 필터의 투과파장이 다시 30pm 정도 상승하는데, 이는 약 0.3℃ 정도 열전소자 온도의 상승으로 상쇄될 수 있다. 이러한 과정의 반복으로, 외부 환경 온도가 변화하여도 열전소자의 온도를 조절하여 레이저의 파장이 파장 선택성 필터의 적정 영역에 배치되도록 조절할 수 있다. 도 1에서 2 개의 Monitor Photo Didoe는 파장 선택성 필터에서 반사되는 반사율을 측정하여 레이저 빛을 파장 선택성 필터의 적정 영역에 파장을 배치시키기 위하여 사용된다. 이러한 과정에서 레이저의 파장은 파장 선택성 필터의 투과 파장에 의해 결정된다. The temperature change of the wavelength selective filter at 20 캜 changes the transmission wavelength of the wavelength selective filter by about 240 pm and the wavelength of the laser light can be adjusted by adjusting the temperature of the thermoelectric device to the wavelength. That is, since the wavelength of the laser diode chip varies by about 90 pm / C, when the temperature of the thermoelectric element rises by about 2.5 ° C, the "1" signal can be placed in the appropriate region of the wavelength selective filter. The transmission wavelength of the wavelength selective filter increases again by about 30 pm, which can be canceled by the increase of the temperature of the thermoelectric element by about 0.3 ° C. By repeating this process, the temperature of the thermoelectric element In FIG. 1, the two monitor photodiodes measure the reflectance of the wavelength selective filter to adjust the wavelength of the laser light in the appropriate region of the wavelength selective filter. In this process, the wavelength of the laser is determined by the transmission wavelength of the wavelength selective filter.
그러나 도 4의 종래의 기술에서는 파장 선택성 필터가 외부 환경온도 변화에 민감하게 반응하므로 100GHz, 더 나아가 50GHz의 파장 간격을 가지는 파장 DWDM에는 적용이 곤란한 단점이 있디. However, in the conventional technique of FIG. 4, since the wavelength selective filter is sensitive to changes in the external environment temperature, it is difficult to apply it to wavelength DWDM having a wavelength interval of 100 GHz, further, 50 GHz.
도 4의 구조에서 파장 선택성 필터(30)가 열전소자의 온도와의 차이가 심한 것은 파장 선택성 필터(30)의 특성이 열전도율이 나쁜데 비해, 외부 환경 온도의 변화는 열복사를 통하여 직접 파장 선택성 필터의 중심부까지 영향을 미치기 때문이다. In the structure of FIG. 4, the difference between the temperature of the wavelength selective filter 30 and the temperature of the thermoelectric element is significant because the characteristic of the wavelength selective filter 30 is poor in thermal conductivity, Because it affects the center of the image.
이러한 문제점을 해결하기 위해서 본 발명은 도 7 내지 9에 도시된 바와 같이 파장 선택성 필터(130) 주위로 열전도율이 좋은 방열판(120)을 부착하였다. 방열판(120)은 스탠드(110)로부터 멀리 떨어진 영역에서의 열도 손쉽게 열전소자와 열교환 할 수 있게 함으로써, 파장 선택성 필터의 중심부의 온도를 열전소자의 온도에 더 접근하게 한다. In order to solve such a problem, the present invention attaches a heat sink 120 having a good thermal conductivity around the wavelength selective filter 130 as shown in FIGS. The heat sink 120 facilitates the heat exchange with the thermoelectric element even in a region remote from the stand 110, thereby making the temperature of the central portion of the wavelength selective filter closer to the temperature of the thermoelectric element.
도 7은 B-구조에 대한 실시예이다. 스탠드(110)의 적어도 일측에는 파장 선택성 필터(130)를 포함할 수 있고, 파장 선택성 필터(130)는 스탠드(110)에 외팔보 형식으로 결합될 수 있다. 파장 선택성 필터(130)는 스탠드(110)와 일면만으로 결합될 수도 있고, 복수의 스탠드(110)와 복수의 면으로 결합될 수도 있다. 파장 선택성 필터(130)가 결합되는 면은 파장 선택성 필터(130)의 측외면이 되는 것이 바람직하다. 또한, 파장 선택성 필터(130)가 결합되는 형상은 스탠드(110)의 하면과 수평으로 결합될 수 있고(도 7은 수평인 상태로 결합한 실시예이다), 하면과 상대적으로 소정의 각도를 가지고 결합될 수 있다. Figure 7 is an embodiment of a B-structure. At least one side of the stand 110 may include a wavelength selective filter 130 and the wavelength selective filter 130 may be coupled to the stand 110 in a cantilever fashion. The wavelength selective filter 130 may be coupled to the stand 110 only on one side or may be coupled to the plurality of stands 110 on a plurality of sides. The surface to which the wavelength selective filter 130 is bonded is preferably a side surface of the wavelength selective filter 130. In addition, the shape to which the wavelength selective filter 130 is coupled can be coupled horizontally with the lower surface of the stand 110 (FIG. 7 is an embodiment combined horizontally) .
또한, 파장 선택성 필터(130) 중 스탠드(110)와 결합되지 않는 측외면은 방열판(120)과 결합될 수 있다. 방열판(120)의 폭은 파장 선택성 필터(130)의 두께와 거의 같도록 형성될 수 있다. 방열판(120)은 파장 선택성 필터(130)의 측외면 외에도, 상면과 하면 중 빛이 통과하지 않는 일부분에 설치될 수 있다.In addition, a side surface of the wavelength selective filter 130 that is not coupled to the stand 110 may be coupled to the heat sink 120. The width of the heat sink 120 may be approximately equal to the thickness of the wavelength selective filter 130. The heat sink 120 may be installed on the side surface of the wavelength selective filter 130, or on a portion of the top surface and the bottom surface through which light does not pass.
또한, 도 8에 개시된 것과 같이, 방열판(120)의 폭이 파장 선택성 필터(130)의 두께보다 커서, 방열판(120)이 파장 선택성 필터의 영역을 벗어나 파장 선택성 필터(130)의 상면 및/또는 하면의 방향으로 돌출된 형태로 형성될 수 있다. 돌출된 방열판(120)은 직선 형태로 전달되는 열복사선이 파장 선택성 필터(130)에 직접 도달하는 것을 방지하여 파장 선택성 필터(130)의 온도를 열전소자에 보다 근접하게 한다. 8, the width of the heat sink 120 is larger than the thickness of the wavelength selective filter 130 so that the heat sink 120 is out of the region of the wavelength selective filter and the upper surface of the wavelength selective filter 130 and / And may be formed in a protruding shape in a bottom direction. The protruding heat sink 120 prevents the thermal radiation line, which is transmitted in a linear form, from reaching the wavelength selective filter 130 directly, thereby bringing the temperature of the wavelength selective filter 130 closer to the thermoelectric element.
방열판(120)은 파장 선택성 필터의 두께보다 100um 이상 돌출될 수 있고, 바람직하게는 200~500um 정도 돌출될 수 있다.The heat sink 120 may protrude more than 100 袖 m, preferably 200 to 500 袖 m, more than the thickness of the wavelength selective filter.
또한, 방열판(120)은 열전소자의 돌출된 방열판에 열을 흡수하는 커버부(140)를 더 포함할 수 있다. 커버부(140)는 돌출된 방열판(120)과 유사하게 열복사를 차단하고, 빛은 통과하는 특징을 포함한다. 커버부(140)는 파장 선택성 필터로 도달할 수 있는 복사열(60)을 차단함으로써, 파장 선택성 필터의 온도가 열전소자의 온도에 보다 근접하도록 할 수 있다.In addition, the heat sink 120 may further include a cover 140 that absorbs heat to the protruded heat sink of the thermoelectric element. The cover portion 140 includes a feature that blocks heat radiation similarly to the protruding heat sink 120, and light passes therethrough. The cover portion 140 may block the radiant heat 60 that can reach the wavelength selective filter so that the temperature of the wavelength selective filter is closer to the temperature of the thermoelectric element.
커버부(140)는 빛이 통과하는 면에 무반사 코팅이 되어 있는 것이 바람직하다. 파장 선택성 필터(130)에 부착되는 방열판(120)은 열전도율이 좋은 재료로 구현될 수 있으며, 이런 재료로는 Cu, Al, CuW등의 금속 재질과, AlN, Silicon등의 세라믹 계열의 재질일 수 있다. 방열판(120)은 열전도성이 좋은 접착제로 파장 선택성 필터와 결합되는 것이 바람직하며, 방열판의 한쪽은 스탠드와 접착제로 열접촉하는 것이 바람직하다. It is preferable that the cover portion 140 is coated with an anti-reflective coating on the surface through which the light passes. The heat sink 120 attached to the wavelength selective filter 130 may be formed of a material having a good thermal conductivity. Such a material may be a metal material such as Cu, Al, or CuW, or a ceramic material such as AlN or Silicon have. Preferably, the heat sink 120 is coupled to the wavelength selective filter with a thermally conductive adhesive, and one of the heat sinks is preferably in thermal contact with the stand with an adhesive.
따라서, 도 7 내지 9에 도시된 바와 같은 구조로 배치되면, 파장 선택성 필터(130)는 외부 환경 온도의 변화에 따른 영향을 적게 받을 수 있다. 이에 따라, 외부 환경 온도가 변화하더라도, 파장 선택성 필터(130)를 투과하는 레이저의 파장은 종래에 비해 상대적으로 안정된다. 이러한 과정은 도 10에 도시된 그래프에 의해 뒷받침된다.7 to 9, the wavelength selective filter 130 can be less affected by changes in the external environmental temperature. Accordingly, even if the external environmental temperature changes, the wavelength of the laser beam passing through the wavelength selective filter 130 is relatively stable as compared with the conventional one. This process is supported by the graph shown in FIG.
도 10은 도 8의 C-구조를 사용할 경우 외부 환경 온도가 변함에 따라 레이저의 파장이 변화하는 모습을 도시한 그래프이다.FIG. 10 is a graph showing a change in the wavelength of the laser as the external environment temperature changes when the C-structure of FIG. 8 is used.
도 10에서는 도8(C-구조)의 구조를 예로 들어 설명한다. 외부 환경 온도가 40℃상승할 때, 파장 선택성 필터의 중심부의 온도는 약 2℃의 온도 상승을 보인다. 그러므로 도 10(a)에서의 실선으로 표시된 바와 같이, 외부 환경 온도가 40℃ 일 때, 파장 선택성 필터의 투과 파장 대역을 ITU-T에서 설정한 채널에 맞추었을 경우를 가정하자. 외부 환경 온도가 80℃로 상승하게 되면, 파장 선택성 필터의 온도는 약 2℃정도 상승하게 된다. 이때, 파장 선택성 필터는 약 12pm/℃파장의 온도 의존성을 가지므로, 도 10(a)의 점선으로 표시된 바와 같이 파장 선택성 필터의 중심 파장은 ITU-T 설정 채널에서 24pm 정도 벗어나게 된다. 전송 품질을 좋게하기 위해서는 레이저 빛의 "1"신호가 파장 선택성 필터의 투과 파장 peak으로 이동하여야 하므로, 도 10(b)에 도시된 바와 같이 열전소자를 약 0.3℃ 정도 상승시켜야 한다. 이는 레이저의 파장이 ITU-T에서 설정한 채널에서 20pm 이상 벗어나게 되어, 이런 구조는 100GHz DWDM에 적용될 수 있지만, 20pm이내의 파장 안정 범위를 요구하는 50GHz DWDM에 적용되기는 어렵다. Fig. 10 illustrates the structure of Fig. 8 (C-structure) as an example. When the ambient temperature rises by 40 ° C, the temperature of the center of the wavelength selective filter shows a temperature rise of about 2 ° C. Therefore, it is assumed that the transmission wavelength band of the wavelength selective filter is set to the channel set by the ITU-T when the external environment temperature is 40 ° C, as indicated by the solid line in FIG. 10 (a). When the ambient temperature rises to 80 ° C, the temperature of the wavelength selective filter rises by about 2 ° C. At this time, since the wavelength selective filter has a temperature dependence of about 12 pm / C wavelength, the center wavelength of the wavelength selective filter is deviated by about 24 pm from the ITU-T setting channel as indicated by the dotted line in Fig. 10 (a). In order to improve the transmission quality, the " 1 " signal of the laser light must shift to the transmission wavelength peak of the wavelength selective filter, and therefore, the thermoelectric element should be raised by about 0.3 DEG C as shown in FIG. This is because the wavelength of the laser deviates more than 20 pm from the channel set by the ITU-T, and this structure can be applied to 100 GHz DWDM, but it is difficult to apply to 50 GHz DWDM requiring a wavelength stability range of 20 pm or less.
본 발명의 또 다른 실시예는 완벽히 제거하기 힘든 파장 선택성 필터의 외부 환경 온도에의 의존성을 제거하여, 파장 선택성 필터를 투과하는 레이저의 파장이 항상 일정한 값을 가질수 있도록 하는데 있다. Another embodiment of the present invention is to eliminate the dependence of the wavelength selective filter on the external environmental temperature, which is difficult to completely remove, so that the wavelength of the laser passing through the wavelength selective filter can always have a constant value.
도 11은 외부 환경 온도의 변화가 파장 선택성 필터의 온도를 실질적으로 변화시키는 것을 상쇄하기 위해 열전소자의 온도를 변화시켜 파장선택성 필터의 투과 파장을 미리 정해진 파장으로 고정시키고, 레이저의 파장은 레이저로 흐르는 전류를 변화시켜 파장 선택성 필터의 미리 정해진 투과 대역을 가지는 파장으로 이동시키는 과정을 설명하는 그래프이다.Fig. 11 is a graph showing the relationship between the temperature of the thermoelectric element and the wavelength of the laser, in order to compensate for the fact that the change in the external environment temperature substantially changes the temperature of the wavelength selective filter. And the current is changed to a wavelength having a predetermined transmission band of the wavelength selective filter.
도 11(a)에서의 실선은 외부 온도 40℃/TEC setting 온도 40℃일 때의 파장 선택성 필터의 투과 peak이 ITU-T 채널과 일치하는 경우를 보여준다. 도 11(a)의 점선은 외부 온도 80℃/TEC setting 온도 40℃일 때의 파장 선택성 필터의 투과 peak을 보여준다. 점선의 경우에는 파장 선택성 필터가 외부 온도의 영향을 받아 이미 파장이 이동하였음을 보여준다. 도 11(a)의 파선은 외부 온도 80℃/TEC setting 온도 38℃일 때의 파장 선택성 필터의 투과 peak을 보여준다. 이는 레이저 장치가 외부 온도의 변화가 파장 선택성 필터에 미치는 영향을 보상하는 형태로 열전소자의 온도를 조절하면, 파장 선택성 필터의 투과 파장을 원래의 ITU-T 설정 채널과 일치시킬 수 있음을 보여준다(도면 상에서는 실선과 파선이 일치하지는 않지만 이는 파선을 나타나게 하기 위함이고, 실제로는 실선과 파선을 거의 동일하게 맞춰주도록 한다). 레이저 장치는 이러한 외부 온도 변화를 상쇄하기 위한 열전소자의 setting 온도는 미리 정하여 메모리에 저장해둘 수 있고, 외부온도에 따라 TEC setting 온도를 적절히 설정할 수 있다. The solid line in FIG. 11 (a) shows a case where the transmission peak of the wavelength-selective filter matches the ITU-T channel at an external temperature of 40 ° C / TEC setting temperature of 40 ° C. The dotted line in FIG. 11 (a) shows the transmission peak of the wavelength selective filter at an external temperature of 80 ° C / TEC setting temperature of 40 ° C. In the case of the dotted line, the wavelength selective filter is affected by the external temperature and shows that the wavelength has already shifted. The broken line in FIG. 11 (a) shows the transmission peak of the wavelength selective filter when the external temperature is 80 ° C / TEC setting temperature 38 ° C. This shows that the transmission wavelength of the wavelength selective filter can be matched to the original ITU-T setting channel by adjusting the temperature of the thermoelectric device in such a way that the laser device compensates for the influence of the external temperature change on the wavelength selective filter In the drawing, the solid line and the dashed line do not coincide with each other, but this is to make a dashed line appear. The setting temperature of the thermoelectric element for canceling the change in the external temperature of the laser device can be predetermined and stored in the memory, and the TEC setting temperature can be appropriately set according to the external temperature.
그러나 도 11(b)에서 도시된 바와 같이, TEC 설정온도가 40℃에서 38℃로 변화하게 되면, 레이저의 발진 파장은 180pm 이상 ITU-T 채널에서 벗어나게 된다. 이때, 열전소자의 온도를 다시 조절하면, 열전소자의 온도가 변화함으로써 파장 선택성 필터의 투과 파장이 ITU-T 채널에서 벗어나게 된다. 그러므로 이러한 상황에서는 열전소자의 온도 변화없이, 레이저 파장만의 변화로 파장 선택성 필터의 투과 피크의 적절 영역에 레이저 파장을 일치시킬수 있는 방법이 필요하다. However, as shown in FIG. 11 (b), when the TEC set temperature changes from 40 ° C to 38 ° C, the oscillation wavelength of the laser deviates from the ITU-T channel by 180 pm or more. At this time, if the temperature of the thermoelectric device is adjusted again, the temperature of the thermoelectric device changes so that the transmission wavelength of the wavelength selective filter deviates from the ITU-T channel. Therefore, in such a situation, there is a need for a method capable of matching the laser wavelength to the appropriate region of the transmission peak of the wavelength selective filter by changing only the laser wavelength without changing the temperature of the thermoelectric element.
전류가 주입되는 경우, 반도체 레이저는자체 발열등에 의해 파장을 가변할 수 있다. 일반적인 반도체 레이저의 경우, 10~20pm/mA의 파장 변화가 발생한다. 15pm/mA의 파장 변화를 예로 들면, 180pm의 파장 변화는 레이저 다이오드 칩으로 약 12mA의 전류를 주입함으로써 발생할 수 있다. 레이저로 흐르는 전류에 의한 발열은 열전소자에 흡수되고, 열전소자는 레이저 다이오드 칩에 흐르는 전류와 관계없이 일정한 온도에 있으므로, 열전소자의 온도에만 의존하는 파장 선택성 필터의 투과 피크는 레이저 다이오드 칩을 흐르는 전류와 무관하게 된다. 즉, 전류가 레이저 다이오드 칩으로 주입됨으로써, 레이저 다이오드 칩에서 발진하는 파장이 파장 선택성 필터의 적절 영역에 매칭될 수 있다. 외부 환경 온도의 영향을 상쇄시키는 방법으로 열전소자의 온도가 재설정되므로, 파장 선택성 필터의 투과 파장은 ITU-T에서 설정한 채널과 일치할수 있다. 레이저 다이오드 칩으로 흐르는 전류에 의해, 레이저 발진 파장이 파장 선택성 필터의 적절 영역에 배치됨으로써, 고속 장거리 전송이 가능하면서도, 외부 환경 변화에 따라 레이저 파장이 설정된 파장으로부터 벗어나지 않는, 50GHz급 DWDM에도 적용가능한 광소자가 제작될 수 있다.When a current is injected, the wavelength of the semiconductor laser can be varied by self-heating or the like. In the case of a general semiconductor laser, a wavelength change of 10 to 20 pm / mA occurs. Taking the wavelength change of 15 pm / mA as an example, a wavelength change of 180 pm can be generated by injecting a current of about 12 mA into the laser diode chip. Since the heat generated by the current flowing through the laser is absorbed by the thermoelectric element and the thermoelectric element is at a constant temperature regardless of the current flowing through the laser diode chip, the transmission peak of the wavelength selective filter, which depends only on the temperature of the thermoelectric element, It becomes irrelevant to the current. That is, by injecting a current into the laser diode chip, the wavelength oscillated in the laser diode chip can be matched to the appropriate region of the wavelength selective filter. Since the temperature of the thermoelectric device is reset by the method of canceling the influence of the external environmental temperature, the transmission wavelength of the wavelength selective filter can coincide with the channel set by ITU-T. The laser oscillation wavelength is placed in the appropriate region of the wavelength selective filter by the current flowing to the laser diode chip, so that it can be applied to 50 GHz DWDM which does not deviate from the wavelength set by the external environment change while enabling high speed long distance transmission. Optical devices can be made.
도 12는 본 발명의 레이저의 파장을 안정시키기 위한 레이저 장치의 구성을 도시한 도면이다. 12 is a diagram showing a configuration of a laser device for stabilizing the wavelength of the laser of the present invention.
레이저 장치에는 레이저의 및 파장 선택성 필터의 온도를 제어하기 위한 열전소자가 더 배치 될 수 있고, 레이저 빛을 시준화 시킬수 있는 렌즈가 더 배치 될 수 있다. 레이저 장치에는 렌즈를 통과한 레이저 빛을 분할하기 위한 45도 부분 반사 거울(230), 45도 부분 반사거울을 투과한 광 경로상에 레이저 빛의 세기를 감시하기 위한 제1모니터링 포토다이오드(210) 및 45도 부분 반사거울에서 반사한 광 경로상에 파장 선택성 필터(130)가 배치될 수 있다. 또한, 레이저 장치에는 파장 선택성 필터에서 반사된 빛이 45도 부분반사거울을 투과하는 광 경로상에 레이저빛의 파장 선택성 필터에서의 반사광 세기를 감시하기 위한 제2모니터링 포토다이오드(220)가 더 배치 될 수 있다. The laser device may further include a thermoelectric element for controlling the temperature of the laser and the wavelength selective filter, and a further lens capable of collimating the laser light. The laser apparatus includes a 45-degree partial reflection mirror 230 for dividing the laser light passing through the lens, a first monitoring photodiode 210 for monitoring the intensity of laser light on the optical path passing through the 45-degree partial reflection mirror, And the wavelength selective filter 130 may be disposed on the optical path reflected from the 45-degree partial reflection mirror. The laser device further includes a second monitoring photodiode 220 for monitoring the intensity of the reflected light in the wavelength selective filter of the laser light on the optical path through which the light reflected by the wavelength selective filter passes through the 45- .
종래의 레이저 장치에서 파장 선택성 필터는 스탠드 등에 의해 열전도율이 높은 스탠드등으로 열전소자의 상부판과 열적으로 접촉하고 있다고는 하나, 열전소자의 상부판과는 이격되어 있으며, 상대적으로 패키지의 외벽과 근접한 거리에 있었다. 이에, 열전소자 상부판의 온도와 파장선택성 필터와의 사이에는 상당한 온도차이가 발생할 수 있어, 열전소자의 온도가 일정하게 유지된다고 하여, 외부 환경 온도의 변화에 무관하게 파장 선택성 필터의 온도가 일정하게 유지되기 어려웠다. 그러므로 본 발명은 종래의 레이저 장치를 보완하는 특성을 가진다. In the conventional laser apparatus, the wavelength selective filter is in contact with the upper plate of the thermoelectric element by a stand or the like having a high thermal conductivity by a stand or the like, but is spaced apart from the upper plate of the thermoelectric element and relatively close to the outer wall of the package I was on the street. Therefore, a considerable temperature difference can be generated between the temperature of the thermoelectric device upper plate and the wavelength selective filter, so that the temperature of the thermoelectric device is kept constant, and the temperature of the wavelength selective filter is constant . Therefore, the present invention has the characteristic of complementing the conventional laser device.
본 발명의 패키지 형태에는 제한이 없으나, 물론, 본 발명은 TO-can형 패키지를 사용하여 구현될수 있으며, 45도 부분 반사거울과 파장 선택성 필터가 부착되는 스탠드는 Silicon등의 열전도율이 좋은 물질이 사용 될 수 있다. 파장 선택성 필터는 글라스, 쿼츠등의 세라믹 계열의 재료의 양면에 굴절률이 높고 낮은 층을 적층하여 구성되는 에탈론 필터 및 어느 한면에 반사막을 형성하는 single pass filter의 형태의 파장 선택성 필터 중 어느 것으로도 구현될 수 있다.Of course, the present invention can be implemented by using a TO-can type package, and a stand having a 45-degree partial reflection mirror and a wavelength selective filter is made of a material having a high thermal conductivity such as Silicon . The wavelength selective filter may be any one of an etalon filter having a high refractive index and a low refractive index on both surfaces of a ceramic material such as glass or quartz and a wavelength selective filter in the form of a single pass filter for forming a reflective film on one surface Can be implemented.
제1모니터링 포토다이오드(210)는 투과율이 A인 부분반사거울(230)을 통과한 레이저의 출력(P(t))을 모니터링 한다. 모니터링 되는 파워(사정에 따라서 전류 또는 전압이 될 수 도 있다)는 P1=A*P(t)이다. 45도 부분반사거울(230)에 반사된 레이저의 출력은 (1-A)P(t)가 되고, 파장 선택성 필터(130)에서 반사되는 세기는 (1-A)P(t)F(t)가 된다. 여기서, F(t)는 파장 선택성 필터(130)의 온도에 따른 파장변화에 따른 함수이다. 이때, 투과파장이 정확히 맞으면, F(t)는 굉장히 작을 것이고, 투과파장이 외부영향에 의해서 변화하면, F(t)가 커질 것이다. The first monitoring photodiode 210 monitors the output P (t) of the laser beam passing through the partial reflection mirror 230 having the transmittance A. The monitored power (which may be current or voltage depending on the situation) is P1 = A * P (t). (1-A) P (t), the intensity of the laser beam reflected by the 45-degree partial reflection mirror 230 becomes (1-A) P ). Here, F (t) is a function of the wavelength change depending on the temperature of the wavelength selective filter 130. At this time, if the transmission wavelength is exactly matched, F (t) will be very small, and if the transmission wavelength is changed by external influence, F (t) will become large.
반사되는 출력은 다시 45도 부분반사거울(230)을 통과해서 제2모니터링 포토다이오드(220)에 수광되며, 그 출력(P2)은 (1-A)A*P(t)F(t)이 된다. 따라서, 제1 및 제2 모니터링 포토다이오드의 출력(파워, 전류, 전압 중 어느 하나)의 비(P1/P2)는 (1-A)F(t)가 되며, 결과적으로 두 모니터링 포토다이오드의 출력의 비는 파장 선택성 필터(130)의 온도에 따른 파장변화의 함수로만 귀결된다. The reflected output is again received by the second monitoring photodiode 220 through the 45-degree partial reflecting mirror 230 and its output P2 is (1-A) A * P (t) F (t) do. Accordingly, the ratio (P1 / P2) of the output (any one of power, current, and voltage) of the first and second monitoring photodiodes becomes (1-A) F (t) Is only a function of the wavelength change with the temperature of the wavelength selective filter 130.
본 발명은 제1 및 제2 모니터링 포토다이오드의 모니터링되는 파워의 비를 이용하여 출력하는 파장의 정확한 값을 확인할 수 있고, 이 비율 값을 이용하여 파장을 안정화 시킬 수 있다.The present invention can confirm the correct value of the wavelength output using the ratio of the monitored power of the first and second monitoring photodiodes and can stabilize the wavelength using the ratio value.
파장을 안정화시키는 과정은 다음과 같다.The process of stabilizing the wavelength is as follows.
먼저, 레이저 장치는 열전소자(TEC)의 온도를 설정한 후, 외부 환경온도를 모니터링하여 외부 환경온도에 대응하는 열전소자의 온도를 소정의 온도(소정의 온도는 미리 시스템의 메모리 값에 적용이 되어 있음)로 가변시킨다. 그 다음, 레이저 장치는 열전소자의 온도 가변에 따라 제1 및 제2 모니터링 포토다이오드의 출력의 비가 소정의 값을 갖도록 레이저의 인가되는 전류의 양을 조절하여 레이저의 발진 파장을 가변시킨다. First, after the temperature of the thermoelectric element (TEC) is set, the laser apparatus monitors the temperature of the external environment and controls the temperature of the thermoelectric element corresponding to the external environment temperature to a predetermined temperature (predetermined temperature is applied to the memory value of the system in advance . Then, the laser device adjusts the oscillation wavelength of the laser by adjusting the amount of current applied to the laser so that the ratio of the output of the first and second monitoring photodiodes to a predetermined value is varied according to the temperature of the thermoelectric element.
그 후, 레이저 장치는 제1 및 제2 모니터링 포토다이오드의 출력의 값을 실시간 또는 소정의 주기를 갖고 모니터링 하여, 레이저의 발진파장을 레이저에 인가되는 전류를 조절함으로써. 시스템 성능을 위한 최적의 파장이 되도록 레이저의 발진 파장을 미세하게 조절할 수 있다.Thereafter, the laser apparatus monitors the values of the outputs of the first and second monitoring photodiodes in real time or with a predetermined period, and adjusts the oscillation wavelength of the laser by adjusting the current applied to the laser. The oscillation wavelength of the laser can be finely adjusted so that the optimum wavelength for the system performance can be obtained.
따라서, 본 발명에서 외부 환경 온도가 파장 선택성 필터에 미치는 영향을 제거하기 위해 외부환경온도에 따라 미리 설정된 열전소자의 온도를 설정하여 사용하는 경우 레이저로 인가되는 전류는 제1 및 제2 모니터링 포토다이오드의 흐르는 전류(전압, 전력)의 비율이 미리 설정된 값이 되도록 조절하는 방법을 사용 할 수 있다. Accordingly, in the present invention, in order to eliminate the influence of the external environmental temperature on the wavelength selective filter, when the preset temperature of the thermoelectric element is set according to the external environment temperature, the current applied to the laser is applied to the first and second monitoring photodiodes A method of adjusting the ratio of the flowing current (voltage, electric power) of the battery pack to a predetermined value can be used.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present embodiment, and various modifications and changes may be made to those skilled in the art without departing from the essential characteristics of the embodiments. Therefore, the present embodiments are to be construed as illustrative rather than restrictive, and the scope of the technical idea of the present embodiment is not limited by these embodiments. The scope of protection of the present embodiment should be construed according to the following claims, and all technical ideas within the scope of equivalents thereof should be construed as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2017년 06월 22일 한국에 출원한 특허출원번호 제10-2017-0078949호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority to U.S. Patent Application Serial No. 119 (a) (35 USC § 119 (a)) to U.S. Patent Application No. 10-2017-0078949, filed on June 22, 2017, All content is incorporated herein by reference. In addition, the present patent application is also incorporated in the present patent application as a reference, if the priority is given to the countries other than the US for the same reason as above.

Claims (9)

  1. 온도의 변화에 따라 투과되는 빛의 파장이 선택되는 파장 선택형 필터에 있어서,A wavelength selective filter in which a wavelength of transmitted light is selected in accordance with a change in temperature,
    상기 파장 선택형 필터의 적어도 일면과 결합되는 스탠드;A stand coupled to at least one side of the wavelength selective filter;
    상기 스탠드와 결합되지 않은 상기 파장 선택형 필터의 타면에 열적으로 결합되는 방열판;A heat sink coupled thermally to the other surface of the wavelength selective filter not associated with the stand;
    상기 파장 선택형 필터의 빛이 통과하는 영역에는 상기 방열판이 형성되어 있지 않은 것을 특징으로 하는 파장 선택형 필터.Wherein the heat dissipation plate is not formed in a region through which the light of the wavelength selective filter passes.
  2. 제1항에 있어서,The method according to claim 1,
    상기 파장 선택형 필터는 상기 스탠드에 외팔보 형상으로 결합되고,Wherein the wavelength selective filter is cantilevered to the stand,
    상기 결합되는 일면 외의 면에, 적어도 일면에 상기 방열판이 결합되는 것을 특징으로 하는 파장 선택형 필터.Wherein the heat dissipating plate is coupled to at least one surface of the one surface of the coupling surface.
  3. 제2항에 있어서, 3. The method of claim 2,
    상기 방열판의 폭은 상기 파장 선택형 필터의 두께와 같거나 더 큰 것을 특징으로 하는 파장 선택형 필터.Wherein the width of the heat sink is equal to or greater than the thickness of the wavelength selective filter.
  4. 제3항에 있어서,The method of claim 3,
    상기 방열판의 폭이 상기 파장 선택형 필터의 두께보다 더 큰 경우, 상기 방열판의 상측으로 빛이 통과하는 특성을 가지는 커버부를 더 포함하는 것을 특징으로 하는 파장 선택형 필터.Further comprising a cover portion having a characteristic that light passes through an upper side of the heat dissipation plate when the width of the heat dissipation plate is larger than the thickness of the wavelength selection type filter.
  5. 데이터 신호가 변조되어 발진하는 레이저 장치에 있어서,In a laser device in which a data signal is modulated and oscillated,
    상기 레이저 장치가 운용되는 외부의 온도를 보상하는 열전소자;A thermoelectric element for compensating an external temperature at which the laser device is operated;
    상기 열전소자의 온도변화에 의해서 투과되는 파장을 선택할 수 있는 파장 선택형 필터;A wavelength selective filter capable of selecting a wavelength transmitted by a temperature change of the thermoelectric element;
    상기 열전소자의 온도변화에 의해서 발진되는 파장이 변화되고, 데이터 신호가 직접 변조되는 레이저 다이오드를 포함하는 것을 특징으로 하는 레이저 장치.And a laser diode whose wavelength is changed by a temperature change of the thermoelectric element and whose data signal is directly modulated.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 레이저 다이오드는 소정의 전류를 공급받아서 발진되는 빛의 파장이 가변되는 것을 특징으로 하는 레이저 장치. Wherein a wavelength of light oscillated by receiving a predetermined current is varied in the laser diode.
  7. 열전소자에 의해서 투과되는 파장이 선택적으로 가변되는 필터를 포함하고, 데이터 신호가 직접 변조되며 상기 열전소자의 온도에 의해서 발진되는 파장이 가변 되는 레이저 다이오드를 포함하는 레이저 장치를 운용하는 방법에 있어서,1. A method of operating a laser device including a filter whose wavelength transmitted by a thermoelectric element is selectively variable, a laser diode whose data signal is directly modulated and whose wavelength is oscillated by the temperature of the thermoelectric element,
    상기 열전소자의 온도를 설정하는 단계;Setting a temperature of the thermoelectric element;
    상기 레이저 장치의 외부 온도 변화를 측정하는 단계;Measuring an external temperature change of the laser device;
    상기 측정한 외부 온도가 변화하는 경우, 이에따라 상기 열전소자의 설정온도를 가변하는 단계를 포함하는 레이저 장치 운용방법.And varying a set temperature of the thermoelectric device when the measured external temperature changes.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 열전소자의 온도의 가변에 의해서 야기되는 발진되는 파장의 변화를 보상하는 단계를 포함하는 레이저 장치 운용방법.And compensating for a change in an oscillated wavelength caused by a temperature variation of the thermoelectric element.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 보상하는 단계는 제1 및 제2 모니터링 포토다이오드의 출력의 비율이 일정한 비율이 되도록 레이저 다이오드로 인가되는 전류를 조절하는 단계 더 포함하는 것을 특징으로 하는 레이저 장치 운용방법.Wherein the step of compensating further comprises adjusting a current applied to the laser diode such that the ratio of the output of the first and second monitoring photodiodes is a constant ratio.
PCT/KR2018/007041 2017-06-22 2018-06-21 Laser device including filter and operation method therefor WO2018236167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0078949 2017-06-22
KR1020170078949A KR20190000078A (en) 2017-06-22 2017-06-22 Laser with optical filter and operating method thereof

Publications (1)

Publication Number Publication Date
WO2018236167A1 true WO2018236167A1 (en) 2018-12-27

Family

ID=64737297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007041 WO2018236167A1 (en) 2017-06-22 2018-06-21 Laser device including filter and operation method therefor

Country Status (2)

Country Link
KR (1) KR20190000078A (en)
WO (1) WO2018236167A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200084099A (en) 2019-01-02 2020-07-10 삼성전자주식회사 Neural network optimizing device and neural network optimizing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308444A (en) * 2000-04-21 2001-11-02 Fujitsu Quantum Devices Ltd Optical semiconductor device
JP2003218446A (en) * 2001-11-15 2003-07-31 Sumitomo Electric Ind Ltd Optical modules and optical components
JP2011090154A (en) * 2009-10-22 2011-05-06 Nippon Telegr & Teleph Corp <Ntt> Wavelength locker
KR20140117045A (en) * 2013-03-26 2014-10-07 주식회사 포벨 Compact Tunable Laser Device
KR20140144131A (en) * 2013-06-10 2014-12-18 주식회사 포벨 Laser Device with wavelength stabilizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308444A (en) * 2000-04-21 2001-11-02 Fujitsu Quantum Devices Ltd Optical semiconductor device
JP2003218446A (en) * 2001-11-15 2003-07-31 Sumitomo Electric Ind Ltd Optical modules and optical components
JP2011090154A (en) * 2009-10-22 2011-05-06 Nippon Telegr & Teleph Corp <Ntt> Wavelength locker
KR20140117045A (en) * 2013-03-26 2014-10-07 주식회사 포벨 Compact Tunable Laser Device
KR20140144131A (en) * 2013-06-10 2014-12-18 주식회사 포벨 Laser Device with wavelength stabilizer

Also Published As

Publication number Publication date
KR20190000078A (en) 2019-01-02

Similar Documents

Publication Publication Date Title
US8089995B2 (en) Structures and methods for adjusting the wavelengths of lasers via temperature control
JP6490005B2 (en) Variable optical filter, variable optical component, and multi-wavelength passive optical network system
US9083468B2 (en) Heated laser package with increased efficiency for optical transmitter systems
US8995484B2 (en) Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
KR100927594B1 (en) Plate-type optical waveguide (PLC) element, wavelength variable light source including the element, and WDM-POON using the light source
US7403679B2 (en) Thermally tunable optical dispersion compensation devices
WO2010143763A1 (en) External cavity tunable laser module
US20050138934A1 (en) Optoelectronic component with a peltier cooler
KR100637930B1 (en) Tunable Variable Light Source Module for Wavelength Division Multiplexer
WO2014200189A1 (en) Laser device having wavelength stabilizer
Meng et al. Full C-band tunable V-cavity-laser based TOSA and SFP transceiver modules
WO2014157916A1 (en) Variable wavelength laser apparatus made to be small
WO2018084541A2 (en) Variable wavelength filter, and light receiver and light receiving method using variable wavelength filter
CN115712179A (en) Optical module
WO2020122491A1 (en) Active optical cable
CN213780449U (en) Optical module
CN213903874U (en) Optical module
CN218728198U (en) Optical module
WO2018236167A1 (en) Laser device including filter and operation method therefor
US7616847B2 (en) Thermally tunable optical dispersion compensation devices
WO2013137592A1 (en) External oscillator-type laser apparatus capable of being manufactured so as to be ultra-small
KR20190058442A (en) Laser with optical filter and operating method thereof
CN213903873U (en) Optical module
Yun et al. Optical subassembly modules using light sources butt-coupled with silica-based PLC
Gatto et al. Long-Wavelength InP VCSEL Exploitation for Innovative Sustainable High-Capacity Transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18819751

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载