WO2018221692A1 - 機能性構造体及び機能性構造体の製造方法 - Google Patents
機能性構造体及び機能性構造体の製造方法 Download PDFInfo
- Publication number
- WO2018221692A1 WO2018221692A1 PCT/JP2018/021080 JP2018021080W WO2018221692A1 WO 2018221692 A1 WO2018221692 A1 WO 2018221692A1 JP 2018021080 W JP2018021080 W JP 2018021080W WO 2018221692 A1 WO2018221692 A1 WO 2018221692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- functional structure
- metal oxide
- oxide fine
- fine particles
- skeleton
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8668—Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/08—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/60—Platinum group metals with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/644—Arsenic, antimony or bismuth
- B01J23/6447—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/825—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/83—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8871—Rare earth metals or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8872—Alkali or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8873—Zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8874—Gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8876—Arsenic, antimony or bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8877—Vanadium, tantalum, niobium or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8878—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/894—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8946—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8953—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/896—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8986—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8993—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
- B01J29/0352—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
- B01J29/0352—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
- B01J29/0356—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/03—Catalysts comprising molecular sieves not having base-exchange properties
- B01J29/035—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
- B01J29/0358—Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/068—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/076—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/085—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/12—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/10—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
- B01J29/14—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/16—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/405—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/44—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/48—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/655—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/66—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
- B01J29/67—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/66—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
- B01J29/68—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
- B01J29/69—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7007—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7049—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7049—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
- B01J29/7084—MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7669—MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/78—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J29/7869—MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/89—Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/643—Pore diameter less than 2 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0211—Impregnation using a colloidal suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B37/00—Compounds having molecular sieve properties but not having base-exchange properties
- C01B37/02—Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2063—Lanthanum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/2073—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20746—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/402—Perovskites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
- B01D2255/9202—Linear dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/14—After treatment, characterised by the effect to be obtained to alter the inside of the molecular sieve channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present invention relates to a functional structure comprising a skeleton having a porous structure composed of a zeolite-type compound and metal oxide fine particles containing a perovskite oxide, and a method for producing the functional structure.
- an environmental catalyst for removing exhaust gas such as nitrogen oxide (NO x ) and volatile organic substances (VOC) discharged from power plants and automobiles for example, perovskite oxides (for example, Non-patent document 1).
- Patent Document 1 discloses that at least one composition of metal complex oxides which are active components of a nitrogen oxide decomposition catalyst has a general formula AB 1-x M x O. 3 + -z (where A is one metal selected from alkaline earth elements, B is one metal selected from titanium group elements, and M is selected from iron group, platinum group or copper group elements) 1 type of metal, 0 ⁇ x ⁇ 1, z is represented by the number of oxygen defects or the excess number of oxygen of the metal oxide at room temperature and atmospheric pressure), and at least one of the metal composite oxides that are catalytically active components is Describes a decomposition catalyst having a SrTiO 3 perovskite crystal structure, and Patent Document 2 discloses that a metal composite oxide having such a perovskite crystal structure is used as a support for a basic metal oxide (such as MgO). Nitrogen oxide supported A cracking catalyst is described.
- perovskite type oxides tend to agglomerate due to the heat during firing (about 600-1000 ° C), so the pores are blocked by this aggregation, reducing the specific surface area of the catalyst, and adsorption and decomposition performance Tends to decrease.
- a catalyst containing a perovskite oxide has a high temperature for activating the catalyst, and exhibits a relatively high catalytic performance at a temperature of 800 ° C. or higher, but hardly shows a catalytic performance at a temperature of 650 ° C. or lower.
- the catalyst performance refers to, for example, nitrogen oxide adsorption performance.
- Patent Document 3 discloses a conventional technique that has made it possible to suppress aggregation of perovskite-type oxides that tend to occur due to the influence of heat generated during firing or high-temperature use.
- the catalyst is composed of a perovskite complex oxide, a complex oxide spacer, and a noble metal, and by containing the complex oxide spacer, the perovskite complex oxide is aggregated or aggregated.
- the specific surface area calculated by the BET method can be increased, and the catalyst is produced in the form of powder. When such a powdered catalyst (catalyst fine particles) is used, the specific surface area of the catalyst is increased. It can be made to.
- the catalyst described in Patent Document 3 does not disclose any use mode in which catalyst fine particles are held (supported) on a skeleton (support), and has a structure in which catalyst fine particles having the above configuration are held in a skeleton.
- it is difficult to contain the catalyst fine particles inside the skeleton body, and it can only be configured to hold (adhere) the catalyst particles on the outer surface of the skeleton body.
- aggregation (sintering) is likely to occur due to the influence (action) of the force (pressure) and heat received from exhaust gas (fluid) such as nitrogen oxides.
- An object of the present invention is to employ a configuration in which metal oxide fine particles having a function (for example, a catalyst function) are appropriately present by being contained inside a porous structure having a zeolite-type compound. Accordingly, an object of the present invention is to provide a functional structure capable of suppressing aggregation of metal oxide fine particles and preventing a decrease in function of metal oxide fine particles and exhibiting a stable function over a long period of time.
- a function for example, a catalyst function
- the present inventors have a porous structure skeleton body composed of a zeolite-type compound and at least one metal oxide fine particle inherent in the skeleton body.
- the skeleton has passages communicating with each other, and the metal oxide fine particles are present in at least the passages of the skeleton, thereby suppressing a decrease in the function of the metal oxide fine particles (for example, a catalyst function). It has been found that a functional structure capable of realizing a long life can be obtained, and the present invention has been completed based on such knowledge.
- the gist configuration of the present invention is as follows.
- the passage includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite-type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
- the functional structure according to [1] above which has a diameter-expanded portion different from any of the above, and wherein the metal oxide fine particles are present at least in the diameter-expanded portion.
- [3] The above-mentioned [2], wherein the enlarged diameter part communicates a plurality of holes constituting any one of the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
- the functional structure described in 1. [4] The above-mentioned [2] or [3], wherein the average particle diameter of the metal oxide fine particles is larger than the average inner diameter of the passage and not more than the inner diameter of the expanded portion. Functional structure.
- the metal elements (M) of the metal oxide fine particles are contained in an amount of 0.5 to 2.5% by mass with respect to the functional structure.
- the functional structure according to any one of [1] to [6] above, wherein the average particle diameter of the metal oxide fine particles is 0.1 to 50 nm.
- the metal oxide fine particles have an average particle size of 0.5 nm to 14.0 nm.
- the precursor material (A) for obtaining a porous structure skeleton composed of a zeolite-type compound is selected from at least one element selected from rare earth elements and alkaline earth metals, and transition metals
- the manufacturing method of the functional structure characterized by having.
- the precursor material (A) is impregnated with the metal-containing solution by adding the metal-containing solution to the precursor material (A) in a plurality of times.
- the amount of the metal-containing solution added to the precursor material (A) is set to the amount of the precursor material.
- agglomeration between metal oxide fine particles can be suppressed, a decrease in the function of the metal oxide fine particles (for example, a catalyst function, etc.) can be suppressed, and a long life can be realized. Therefore, it is possible to provide a functional structure that can save resources.
- FIG. 1 schematically shows the internal structure of a functional structure according to an embodiment of the present invention
- FIG. 1A is a perspective view (a part thereof is shown in cross section).
- FIG. 1B is a partially enlarged sectional view.
- 2 is a partially enlarged cross-sectional view for explaining an example of the function of the functional structure of FIG. 1
- FIG. 2 (a) is a diagram illustrating a sieve function
- FIG. 2 (b) is a diagram illustrating a catalyst function.
- FIG. 3 is a flowchart showing an example of a method for manufacturing the functional structure of FIG.
- FIG. 4 is a schematic diagram showing a modification of the functional structure of FIG.
- FIG. 1 is a diagram schematically showing a configuration of a functional structure according to an embodiment of the present invention, in which (a) is a perspective view (a part is shown in cross section), and (b) is a partially enlarged cross section.
- FIG. The functional structure in FIG. 1 shows an example, and the shape, size, etc. of each component according to the present invention are not limited to those in FIG.
- the functional structure 1 includes a porous skeleton 10 composed of a zeolite-type compound and at least one perovskite oxide contained in the skeleton 10. Two metal oxide fine particles 20.
- the metal oxide fine particles 20 are substances having one or a plurality of functions by themselves or in cooperation with the skeleton body 10. Specific examples of the function include a catalyst function, a light emission (or fluorescence) function, a light absorption function, and an identification function.
- the metal oxide fine particles 20 are preferably a catalyst material having a catalytic function, for example.
- the skeleton 10 is a carrier that supports at least one catalyst material.
- the metal oxide fine particles 20 are preferably metal oxide fine particles containing one or more perovskite oxides. Details of the perovskite oxide will be described later.
- the skeleton body 10 has a porous structure and, as shown in FIG. 1B, preferably has a plurality of holes 11a, 11a,.
- the metal oxide fine particles 20 are present in at least the passage 11 of the skeleton body 10, and are preferably held in at least the passage 11 of the skeleton body 10.
- the movement of the metal oxide fine particles 20 in the skeleton 10 is restricted, and aggregation of the metal oxide fine particles 20 and 20 is effectively prevented.
- a reduction in the effective surface area of the metal oxide fine particles 20 can be effectively suppressed, and the function of the metal oxide fine particles 20 lasts for a long time. That is, according to the functional structure 1, it is possible to suppress a decrease in function due to the aggregation of the metal oxide fine particles 20, and to extend the life of the functional structure 1. Further, by extending the lifetime of the functional structure 1, the frequency of replacement of the functional structure 1 can be reduced, the amount of used functional structure 1 discarded can be greatly reduced, and resource saving can be achieved. be able to.
- a functional structure when a functional structure is used in a fluid (for example, nitrogen oxide (NOx) or volatile organic substance (VOC)), there is a possibility of receiving an external force from the fluid.
- a fluid for example, nitrogen oxide (NOx) or volatile organic substance (VOC)
- the metal oxide fine particles 20 are only held in the attached state on the outer surface of the skeleton body 10, there is a problem that the metal oxide fine particles 20 are easily detached from the outer surface of the skeleton body 10 due to the external force from the fluid.
- the metal oxide fine particles 20 are present in at least the passage 11 of the skeleton body 10 and are preferably retained.
- the metal oxide fine particles 20 are difficult to be separated from That is, when the functional structure 1 is in the fluid, the fluid flows into the passage 11 from the hole 11a of the skeleton body 10, and therefore the speed of the fluid flowing in the passage 11 is determined by the flow resistance (friction force). This is considered to be slower than the speed of the fluid flowing on the outer surface of the skeleton body 10. Due to the influence of the flow path resistance, the pressure that the metal oxide fine particles 20 existing in the passage 11 receive from the fluid is lower than the pressure that the metal oxide fine particles receive from the fluid outside the skeleton 10. Therefore, it is possible to effectively suppress the separation of the metal oxide fine particles 20 existing in the skeleton body 11, and the function of the metal oxide fine particles 20 can be stably maintained for a long period of time.
- the flow path resistance as described above is such that the passage 11 of the skeleton body 10 has a plurality of curved portions and branch portions, and the inside of the skeleton body 10 has a more complicated and three-dimensional structure. It is thought to grow.
- the passage 11 includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
- the metal oxide fine particles 20 are present at least in the diameter-enlarged portion 12 and include at least the diameter-enlarged portion 12. More preferably.
- a one-dimensional hole means a tunnel-type or cage-type hole forming a one-dimensional channel, or a plurality of tunnel-type or cage-type holes forming a plurality of one-dimensional channels (a plurality of one-dimensional holes). Channel).
- a two-dimensional hole refers to a two-dimensional channel in which a plurality of one-dimensional channels are two-dimensionally connected.
- a three-dimensional hole refers to a three-dimensional channel in which a plurality of one-dimensional channels are three-dimensionally connected. Point to.
- inclusion refers to a state in which the metal oxide fine particles 20 are included in the skeleton 10. At this time, the metal oxide fine particles 20 and the skeleton 10 do not necessarily need to be in direct contact with each other, and another substance (for example, a surfactant) is interposed between the metal oxide fine particles 20 and the skeleton 10. Etc.), the metal oxide fine particles 20 may be indirectly held by the skeleton 10.
- FIG. 1B shows a case where the metal oxide fine particles 20 are enclosed by the enlarged diameter portion 12, but the present invention is not limited to this configuration, and the metal oxide fine particles 20 are partially expanded. You may hold
- the metal oxide fine particles 20 may be partially embedded in a portion of the passage 11 other than the enlarged diameter portion 12 (for example, an inner wall portion of the passage 11), or may be held by fixing or the like.
- the enlarged-diameter portion 12 communicates a plurality of holes 11a, 11a constituting any one of the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
- the function of the metal oxide fine particles 20 can be exhibited more.
- the passage 11 is three-dimensionally formed inside the skeleton body 10 including a branching part or a joining part, and the enlarged diameter part 12 is provided in the branching part or the joining part of the passage 11. preferable.
- the average inner diameter DF of the passage 11 formed in the skeleton 10 is calculated from the average value of the short diameter and the long diameter of the hole 11a constituting any one of the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole,
- the thickness is 0.1 to 1.5 nm, preferably 0.5 to 0.8 nm.
- the inner diameter DE of the enlarged diameter portion 12 is, for example, 0.5 to 50 nm, preferably 1.1 to 40 nm, and more preferably 1.1 to 3.3 nm.
- the inner diameter D E of the enlarged diameter section 12 depends on for example the pore size of which will be described later precursor material (A), and the average particle diameter D C of the metal oxide particles 20 to be inclusion.
- the inner diameter DE of the enlarged diameter portion 12 is a size that can enclose the metal oxide fine particles 20.
- the skeleton 10 is composed of a zeolite type compound.
- Zeolite type compounds include, for example, zeolites (aluminosilicates), cation exchange zeolites, silicate compounds such as silicalite, zeolite related compounds such as aluminoborate, aluminoarsenate, germanate, molybdenum phosphate, etc. And phosphate-based zeolite-like substances.
- the zeolite type compound is preferably a silicate compound.
- the framework structure of zeolite type compounds is FAU type (Y type or X type), MTW type, MFI type (ZSM-5), FER type (ferrierite), LTA type (A type), MWW type (MCM-22) , MOR type (mordenite), LTL type (L type), BEA type (beta type), etc., preferably MFI type, more preferably ZSM-5.
- a plurality of pores having a pore size corresponding to each skeleton structure are formed.
- the maximum pore size of the MFI type is 0.636 nm (6.36 mm), and the average pore size is 0.560 nm (5.60 mm). is there.
- the average particle diameter D C of the metal oxide fine particles 20 are preferably passage 11 Is larger than the average inner diameter D F and not more than the inner diameter D E of the enlarged diameter portion 12 (D F ⁇ D C ⁇ D E ).
- Such metal oxide fine particles 20 are preferably enclosed in the enlarged diameter portion 12 in the passage 11, and movement of the metal oxide fine particles 20 in the skeleton 10 is restricted. Therefore, even when the metal oxide fine particles 20 receive an external force from the fluid, the movement of the metal oxide fine particles 20 in the skeleton body 10 is suppressed, and the expanded diameters dispersedly arranged in the passages 11 of the skeleton body 10. It is possible to effectively prevent the metal oxide fine particles 20, 20,... Included in each of the portions 12, 12,.
- the average particle diameter D C of the metal oxide particles 20, in either case of the primary particles and the secondary particles is preferably 0.1 ⁇ 50 nm, more preferably less than 30nm over 0.1 nm, more preferably
- the thickness is 0.5 nm to 14.0 nm, particularly preferably 1.0 to 3.3 nm.
- the ratio of the average particle diameter D C of the metal oxide fine particles 20 to the average inner diameter D F of the passage 11 (D C / D F) is preferably from 0.06 to 500, more preferably from 0.1 to 45 More preferably, it is 1.1 to 45, and particularly preferably 1.7 to 4.5.
- the metal element (M) of the metal oxide fine particles is preferably contained in an amount of 0.5 to 2.5% by mass with respect to the functional structure 1, and is preferably added in an amount of 0.1 to More preferably, the content is 5 to 1.5% by mass.
- “metal element (M)” refers to all of the metals contained in the oxide in a perovskite oxide containing a plurality of types of metals as described later, and the content is the total amount of these metals. Point to. For example, when the metal element (M) is La and Mn, the content (mass%) of the metal element is ⁇ (mass of La element + mass of Mn element) / (mass of all elements of the functional structure 1). ⁇ ⁇ 100.
- Perovskite oxide is an ABO made of a metal ion (A ion) having a large ionic radius (> 0.90 >) and a metal ion (B ion) having a small ionic radius (> 0.51 ⁇ ), such as rare earth alkaline earths.
- Perovskite which is a type 3 compound and important as a catalyst, is a compound based on a combination of a rare earth element (A site) and a transition metal (B site), and its catalytic properties mainly depend on the properties of the B site transition metal. Dependent.
- the metal oxide fine particles 20 only need to contain a perovskite oxide, and may be composed of, for example, a single perovskite oxide or may be composed of two or more perovskite oxides. It may be composed of a complex oxide or a complex oxide composed of a perovskite oxide and another oxide.
- the ratio of Si constituting the skeleton 10 to the metal M constituting the metal oxide fine particles 20 is preferably 10 to 1000. If the abundance ratio is greater than 1000, the activity may be low and sufficient catalytic action may not be obtained.
- the metal oxide fine particles 20 referred to here are fine particles that exist inside the skeleton 10 and are preferably held or supported, and do not include fine particles attached to the outer surface of the skeleton 10.
- Examples of other oxides include cobalt oxide (CoOx), nickel oxide (NiOx), iron oxide (FeOx), copper oxide (CuOx), zirconium oxide (ZrOx), cerium oxide (CeOx), and aluminum oxide (AlOx). , Niobium oxide (NbOx), titanium oxide (TiOx), bismuth oxide (BiOx), molybdenum oxide (MoOx), vanadium oxide (VOx), or chromium oxide (CrOx) as a main component.
- a composite metal oxide is mentioned.
- the functional structure 1 includes a skeleton 10 having a porous structure and at least one metal oxide fine particle 20 inherent in the skeleton.
- the functional structure 1 exhibits a function corresponding to the metal oxide fine particles 20 when the metal oxide fine particles 20 existing in the skeleton come into contact with a fluid.
- the fluid that has contacted the outer surface 10 a of the functional structure 1 flows into the skeleton body 10 through the holes 11 a formed in the outer surface 10 a, is guided into the passage 11, and passes through the passage 11. It moves and goes out of the functional structure 1 through the other hole 11a.
- a reaction for example, a catalytic reaction
- the functional structure 1 has molecular sieving ability because the skeleton body has a porous structure.
- an exhaust gas component for example, a nitrogen oxide (NOx) component
- NOx nitrogen oxide
- FIG. 2 (a) an exhaust gas component composed of molecules having a size smaller than the hole diameter of the hole 11a, in other words, smaller than the inner diameter of the passage 11, is a skeleton. It can penetrate into the body 10.
- the exhaust gas component 15 composed of molecules having a size exceeding the hole diameter of the hole 11 a cannot enter the skeleton body 10.
- the reaction of the exhaust gas component 15 that cannot enter the skeleton body 10 is restricted, and the exhaust gas that can enter the skeleton body 10 is controlled.
- a gas component for example, a nitrogen oxide (NOx) component
- NOx nitrogen oxide
- the metal oxide fine particles 20 are preferably present in the diameter-expanded portion 12 of the passage 11, and more preferably are included.
- the metal A small passage 13 is formed between the oxide fine particles 20 and the enlarged diameter portion 12. Therefore, as indicated by the arrow in FIG. 2B, the fluid (for example, NOx component) that has entered the small passage 13 comes into contact with the metal oxide fine particles 20. Since each metal oxide fine particle 20 is enclosed by the enlarged diameter portion 12, movement within the skeleton body 10 is limited, and a contact area with a fluid containing NOx components and the like that have entered the passage 11 is maintained. Can do.
- the metal oxide fine particles 20 can also be removed by decomposing the VOC component (C y H z ) into carbon dioxide and water as shown below by an oxidation reaction.
- FIG. 3 is a flowchart showing a method for manufacturing the functional structure 1 of FIG.
- an example of a method for producing a functional structure will be described.
- Step S1 Preparation process
- a precursor material (A) for obtaining a porous skeleton composed of a zeolite-type compound is prepared.
- the precursor material (A) is preferably a regular mesoporous material, and can be appropriately selected according to the type (composition) of the zeolite-type compound constituting the skeleton of the functional structure.
- the regular mesoporous material has pores having a pore diameter of 1 to 50 nm in one dimension, two dimensions or A compound composed of a Si—O skeleton that is three-dimensionally uniform and regularly developed is preferable.
- Such regular mesoporous materials can be obtained as various composites depending on the synthesis conditions. Specific examples of the composites include, for example, SBA-1, SBA-15, SBA-16, KIT-6, FSM- 16, MCM-41, etc., among which MCM-41 is preferable.
- the pore diameter of SBA-1 is 10 to 30 nm
- the pore diameter of SBA-15 is 6 to 10 nm
- the pore diameter of SBA-16 is 6 nm
- the pore diameter of KIT-6 is 9 nm
- the pore diameter of FSM-16 is 3
- the pore diameter of MCM-41 is 1 to 10 nm.
- regular mesoporous materials include mesoporous silica, mesoporous aluminosilicate, and mesoporous metallosilicate.
- the precursor material (A) may be a commercially available product or a synthetic product.
- the precursor material (A) can be performed by a known method for synthesizing regular mesoporous materials. For example, a mixed solution containing a raw material containing the constituent elements of the precursor material (A) and a templating agent for defining the structure of the precursor material (A) is prepared, and the pH is adjusted as necessary. Hydrothermal treatment (hydrothermal synthesis) is performed. Thereafter, the precipitate (product) obtained by hydrothermal treatment is recovered (for example, filtered), washed and dried as necessary, and further calcined to form a regular mesoporous material in powder form. A precursor material (A) is obtained.
- a solvent of the mixed solution for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
- a raw material is selected according to the kind of frame
- TEOS tetraethoxysilane
- quartz sand etc.
- various surfactants, block copolymers and the like can be used, and it is preferable to select according to the kind of the compound of the regular mesoporous material.
- a surfactant such as hexadecyltrimethylammonium bromide is preferred.
- the hydrothermal treatment can be performed, for example, in a sealed container at 80 to 800 ° C., 5 hours to 240 hours, and treatment conditions of 0 to 2000 kPa.
- the baking treatment can be performed, for example, in air at 350 to 850 ° C. for 2 hours to 30 hours.
- Step 2 impregnation process
- the prepared precursor material (A) is impregnated with the metal-containing solution to obtain the precursor material (B).
- the metal-containing solution may be a solution containing at least one element selected from rare earth elements and alkaline earth metals and at least one element selected from transition metals as a metal element (M). It can be prepared by dissolving a metal salt containing the metal element (M). Examples of such metal salts include metal salts such as chlorides, hydroxides, oxides, sulfates, nitrates, etc. Among them, nitrates are preferable.
- the solvent for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
- the method for impregnating the precursor material (A) with the metal-containing solution is not particularly limited.
- a plurality of metal-containing solutions are mixed while stirring the powdery precursor material (A) before the firing step described later. It is preferable to add in small portions in portions.
- a surfactant as an additive is added in advance to the precursor material (A) before adding the metal-containing solution. It is preferable to add it.
- Such an additive has a function of coating the outer surface of the precursor material (A), suppresses the metal-containing solution added thereafter from adhering to the outer surface of the precursor material (A), and the metal It is considered that the contained solution is more likely to enter the pores of the precursor material (A).
- nonionic surfactants such as polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether. Since these surfactants have a large molecular size and cannot penetrate into the pores of the precursor material (A), they do not adhere to the inside of the pores, and the metal-containing solution penetrates into the pores. It is thought not to interfere.
- a method for adding the nonionic surfactant for example, it is preferable to add 50 to 500% by mass of the nonionic surfactant with respect to the precursor material (A) before the baking step described later.
- the addition amount of the nonionic surfactant to the precursor material (A) is less than 50% by mass, the above-described inhibitory action is hardly exhibited, and the nonionic surfactant is added to the precursor material (A) at 500. Addition of more than% by mass is not preferable because the viscosity increases excessively. Therefore, the addition amount of the nonionic surfactant with respect to the precursor material (A) is set to a value within the above range.
- the amount of the metal-containing solution added to the precursor material (A) is the amount of the metal element (M) contained in the metal-containing solution impregnated in the precursor material (A) (that is, the precursor material (B It is preferable to adjust appropriately in consideration of the amount of the metal element (M) contained in ().
- the addition amount of the metal-containing solution added to the precursor material (A) is the metal element (M) contained in the metal-containing solution added to the precursor material (A)
- the ratio of silicon (Si) constituting the precursor material (A) atomic ratio Si / M
- it is preferably adjusted to be 10 to 1000, and adjusted to be 50 to 200. It is more preferable.
- the addition of the metal-containing solution to be added to the precursor material (A) By converting the amount to 50 to 200 in terms of atomic ratio Si / M, the metal element (M) of the metal oxide fine particles is 0.5 to 2.5 mass% with respect to the functional structure. It can be included.
- the amount of the metal element (M) present in the pores is the same as the metal concentration of the metal-containing solution, the presence or absence of the additive, and other conditions such as temperature and pressure. If so, it is roughly proportional to the amount of the metal-containing solution added to the precursor material (A).
- the amount of the metal element (M) inherent in the precursor material (B) is proportional to the amount of the metal element constituting the metal oxide fine particles inherent in the skeleton of the functional structure. Therefore, by controlling the amount of the metal-containing solution added to the precursor material (A) within the above range, the metal-containing solution can be sufficiently impregnated inside the pores of the precursor material (A), and thus The amount of the metal oxide fine particles incorporated in the skeleton of the functional structure can be adjusted.
- a cleaning treatment may be performed as necessary.
- the cleaning solution water, an organic solvent such as alcohol, or a mixed solution thereof can be used.
- the drying treatment include natural drying overnight or high temperature drying at 150 ° C. or lower.
- the regular mesopores of the precursor material (A) are obtained by performing the baking treatment described later in a state where a large amount of moisture contained in the metal-containing solution and the moisture of the cleaning solution remain in the precursor material (A). Since the skeletal structure as a substance may be broken, it is preferable to dry it sufficiently.
- Step S3 Firing step
- the precursor material (B) obtained by impregnating the precursor material (A) for obtaining a porous structure composed of a zeolite-type compound with the metal-containing solution is fired, and the precursor material (C )
- the calcination treatment is preferably performed, for example, in air at 350 to 850 ° C. for 2 hours to 30 hours.
- the metal component impregnated in the pores of the regular mesoporous material grows in crystal, and metal oxide fine particles are formed in the pores.
- Step S4 Hydrothermal treatment process
- a mixed solution in which the precursor material (C) and the structure-directing agent are mixed is prepared, and the precursor material (C) obtained by firing the precursor material (B) is hydrothermally treated to provide functionality. Get a structure.
- the structure directing agent is a templating agent for defining the skeletal structure of the skeleton of the functional structure.
- a surfactant can be used.
- the structure directing agent is preferably selected according to the skeleton structure of the skeleton of the functional structure, for example, an interface such as tetramethylammonium bromide (TMABr), tetraethylammonium bromide (TEABr), tetrapropylammonium bromide (TPABr), etc.
- An activator is preferred.
- the mixing of the precursor material (C) and the structure directing agent may be performed during the hydrothermal treatment step or before the hydrothermal treatment step.
- the preparation method of the said mixed solution is not specifically limited, A precursor material (C), a structure directing agent, and a solvent may be mixed simultaneously, or precursor material (C) and structure prescription
- each agent is dispersed in each solution, each dispersion solution may be mixed.
- the solvent for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
- the pH of the mixed solution is preferably adjusted using an acid or a base before hydrothermal treatment.
- the hydrothermal treatment can be performed by a known method.
- the hydrothermal treatment is preferably performed in a sealed container at 80 to 800 ° C., 5 hours to 240 hours, and 0 to 2000 kPa.
- the hydrothermal treatment is preferably performed in a basic atmosphere.
- the reaction mechanism here is not necessarily clear, by performing hydrothermal treatment using the precursor material (C) as a raw material, the skeleton structure of the precursor material (C) as a regular mesoporous material gradually collapses. While maintaining the position of the metal oxide fine particles inside the pores of the precursor material (C) in general, a new skeleton structure (porous structure) as a skeleton of the functional structure by the action of the structure-directing agent Is formed.
- the functional structure thus obtained includes a skeleton having a porous structure and metal oxide fine particles inherent in the skeleton, and the skeleton has a passage in which a plurality of pores communicate with each other due to the porous structure. At least a part of the metal oxide fine particles is present in the passage of the skeleton and is preferably retained.
- a mixed solution in which the precursor material (C) and the structure directing agent are mixed is prepared, and the precursor material (C) is hydrothermally treated.
- the precursor material (C) may be hydrothermally treated without mixing the precursor material (C) and the structure directing agent.
- the precipitate (functional structure) obtained after the hydrothermal treatment is preferably recovered (for example, filtered), and then washed, dried and fired as necessary.
- the cleaning solution water, an organic solvent such as alcohol, or a mixed solution thereof can be used.
- the drying treatment include natural drying overnight or high temperature drying at 150 ° C. or lower.
- the baking treatment is performed in a state where a large amount of moisture remains in the precipitate, the skeleton structure as the skeleton of the functional structure may be broken.
- the firing treatment can be performed, for example, in air at 350 to 850 ° C. for 2 hours to 30 hours. By such baking treatment, the structure directing agent attached to the functional structure is burned out.
- a functional structure can also be used as it is, without carrying out the baking process of the deposit after collection
- the environment in which the functional structure is used is a high-temperature environment in an oxidizing atmosphere
- the structure-directing agent will be burned down by exposure to the environment for a certain period of time, and the functional structure will be the same as when fired. Since the body is obtained, it can be used as it is.
- FIG. 4 is a schematic diagram showing a modification of the functional structure 1 of FIG.
- the functional structure 1 in FIG. 1 shows a case where the skeleton body 10 and the metal oxide fine particles 20 included in the skeleton body 10 are provided.
- the functional structure body 1 is not limited to this configuration.
- the functional structure 2 may further include at least one other metal oxide fine particle 30 held on the outer surface 10 a of the skeleton body 10.
- the other metal oxide fine particles 30 are substances that exhibit one or more functions.
- the functions of the other metal oxide fine particles 30 may be the same as or different from the functions of the metal oxide fine particles 20.
- Specific examples of the functions of the other metal oxide fine particles 30 are the same as those described for the metal oxide fine particles 20, and preferably have a catalytic function.
- the metal oxide fine particles 30 are a catalyst substance.
- the material of the other metal oxide fine particles 30 may be the same as or different from the material of the metal oxide fine particles 20. It may be. According to this configuration, the content of the metal oxide fine particles held in the functional structure 2 can be increased, and the function of the metal oxide fine particles can be further promoted.
- the content of at least one metal oxide fine particle 20 inherent in the skeleton 10 is greater than the content of at least one other metal oxide fine particle 30 held on the outer surface 10a of the skeleton 10. Is preferred. Thereby, the function of the metal oxide fine particles 20 held inside the skeleton 10 becomes dominant, and the function of the metal oxide fine particles is stably exhibited.
- type of precursor material (A) (“type of precursor material (A): surfactant”).
- CTL-41 hexadecyltrimethylammonium bromide (CTAB) (manufactured by Wako Pure Chemical Industries, Ltd.)
- SBA-1 Pluronic P123 (BASF)
- metal element (M) constituting the type of metal oxide fine particles shown in Tables 1 to 8
- metal salt containing the metal element (M) is dissolved in water to obtain a metal-containing aqueous solution.
- the following metal salts were used according to the type of metal oxide fine particles (“metal oxide fine particles: metal salt”).
- LaMnO 3 La-Mn nitrate (La (NO 3) 3 ⁇ 6H 2 O (99%) and Mn (NO 3) using 2 ⁇ 9H 2 O (99% ), both manufactured by Wako Pure Chemical Industries, Ltd.)
- BaMnO 3 Ba-Mn nitrate (Ba (NO 3) 2 ( 99%) and Mn (NO 3) using 2 ⁇ 9H 2 O (99% ), both manufactured by Wako Pure Chemical Industries, Ltd.)
- LaAlO 3 La-Al nitrate (La (NO 3) 3 ⁇ 6H 2 O (99%) and Al (NO 3) 3 ⁇ 9H 2 using O (99%), both manufactured by Wako Pure Chemical Industries, Ltd.)
- LaCoO 3 La-Co nitrate (La (NO 3 ) 3 ⁇ 6H 2 O (99%) and Co (NO 3 ) 2 ⁇ 6H 2 O (99%) are used, both manufactured by Wako Pure Chemical Industries, Ltd.)
- the metal-containing aqueous solution is added to the powdery precursor material (A) in small portions in small portions, and dried at room temperature (20 ° C. ⁇ 10 ° C.) for 12 hours or more to obtain the precursor material (B).
- the addition amount of the metal-containing aqueous solution added to the precursor material (A) is the ratio of silicon (Si) constituting the precursor material (A) to the metal element (M) contained in the metal-containing aqueous solution (
- the numerical values when converted to the atomic ratio (Si / M) were adjusted to the values shown in Tables 1-8.
- precursor material (B) impregnated with the metal-containing aqueous solution obtained as described above was fired in the air at 600 ° C. for 24 hours to obtain a precursor material (C).
- Comparative Example 1 In Comparative Example 1, the starting material for the hydroxide perovskite precursor was the same as in the example. A 0.1 mol / l La-Mn nitrate mixed aqueous solution was added dropwise to 19% aqueous ammonia under stirring. After dropping, the mixture was filtered and dried at 110 ° C. overnight to obtain a hydroxide perovskite precursor. The obtained perovskite hydroxide precursor and MFI-type silicalite were added to pure water so that the Si / M ratio was 100, dispersed with ultrasonic waves, evaporated to dryness, and fired. Silicalite carrying LaMnO 3 on the outer surface was obtained. MFI type silicalite was synthesized in the same manner as in Examples 52 to 57 except for the step of adding metal.
- Comparative Example 2 MFI type silicalite was synthesized by the same method as Comparative Example 1 except that the step of supporting LaMnO 3 on the outer surface of the skeleton was omitted.
- M Co, Ni, Fe, Cu
- Quantification of the amount of metal was performed using ICP (high frequency inductively coupled plasma) alone or a combination of ICP and XRF (fluorescence X-ray analysis).
- XRF energy dispersive X-ray fluorescence spectrometer “SEA1200VX”, manufactured by SSI Nanotechnology Co., Ltd.
- SEA1200VX energy dispersive X-ray fluorescence spectrometer “SEA1200VX”, manufactured by SSI Nanotechnology Co., Ltd.
- the catalytic activity was evaluated under the following conditions. First, 0.2 g of the functional structure is charged into an atmospheric pressure flow reactor, nitrogen gas (N 2 ) is used as a carrier gas (5 ml / min), and butylbenzene (of heavy oil) at 400 ° C. for 2 hours. The model substance was decomposed. After completion of the reaction, the collected product gas and product liquid were subjected to component analysis by gas chromatography mass spectrometry (GC / MS). Note that TRACE 1310GC (manufactured by Thermo Fisher Scientific Co., Ltd., detector: thermal conductivity detector) was used as the product gas analyzer, and TRACE DSQ (Thermo Fisher Scientific) was used as the product liquid analyzer.
- GC / MS gas chromatography mass spectrometry
- the yield of the above compound is expressed as a percentage (mol%) of the total amount (mol) of a compound having a molecular weight smaller than that of butylbenzene contained in the product solution with respect to the amount (mol) of butylbenzene before the start of the reaction. Calculated.
- the yield of the compound having a molecular weight smaller than that of butylbenzene contained in the product solution is 40 mol% or more, it is determined that the catalytic activity (resolution) is excellent, and “ ⁇ ”, 25 mol%
- the catalyst activity is good, the catalyst activity is good when it is less than 40 mol%, and when the catalyst activity is not good when it is 10 mol% or more and less than 25 mol%, it is judged as acceptable level.
- “ ⁇ ” and less than 10 mol% the catalyst activity was judged to be inferior (impossible), and “x” was assigned.
- the yield obtained in the evaluation (1) compared to the yield of the compound by the functional structure before heating (the yield obtained in the evaluation (1) above), how much the yield of the compound by the functional structure after heating is maintained. It has been compared. Specifically, the yield of the compound by the functional structure after the heating (the present evaluation (the present evaluation)) with respect to the yield of the compound by the functional structure before the heating (the yield obtained in the evaluation (1)). The percentage (%) of the yield obtained in 2) was calculated.
- the yield of the compound by the functional structure after heating was the yield of the compound by the functional structure before heating (the above evaluation (1 )), The case where it is maintained at 80% or more is judged as having excellent durability (heat resistance), and “ ⁇ ”, the case where it is maintained at 60% or more and less than 80%. Judgment that the durability (heat resistance) is good and "Good”, and the case where it is maintained at 40% or more and less than 60% is judged to be acceptable (possible) although the durability (heat resistance) is not good. In the case of “ ⁇ ” and lower than 40%, the durability (heat resistance) was judged to be inferior (impossible), and “X” was assigned.
- Comparative Example 2 is a skeleton itself and does not have metal oxide fine particles. Therefore, in the performance evaluation, only the skeleton body of Comparative Example 2 was filled in place of the functional structure. The results are shown in Table 8.
- the evaluation method was the same as the evaluation method performed in “(1) Catalytic activity” in [D] “Performance evaluation”.
- the content of the metal element (M) in the metal oxide fine particles is 0.5 to 2.5 mass%)
- the yield of the compound having a molecular weight smaller than that of butylbenzene contained in the product liquid is 32 mol%. From the above, it was found that the catalytic activity in the decomposition reaction of butylbenzene was above the acceptable level.
- Comparative Example 1 in which the metal oxide fine particles are attached only to the outer surface of the skeleton has a butyl structure as compared with the skeleton itself of Comparative Example 2 that does not have any metal oxide fine particles.
- the catalytic activity in the decomposition reaction of benzene was improved, the durability as a catalyst was inferior compared with the functional structures of Examples 1 to 384.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
[1]ゼオライト型化合物で構成される多孔質構造の骨格体と、前記骨格体に内在する、ペロブスカイト型酸化物を含有する少なくとも1つの金属酸化物微粒子とを備え、前記骨格体が、互いに連通する通路を有し、前記金属酸化物微粒子が、前記骨格体の少なくとも前記通路に存在していることを特徴とする機能性構造体。
[2]前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部を有し、かつ、前記金属酸化物微粒子が少なくとも前記拡径部に存在していることを特徴とする、上記[1]に記載の機能性構造体。
[3]前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通していることを特徴とする、上記[2]に記載の機能性構造体。
[4]前記金属酸化物微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下であることを特徴とする、上記[2]又は[3]に記載の機能性構造体。
[5]前記金属酸化物微粒子は、触媒物質であり、前記骨格体は、前記少なくとも1つの触媒物質を担持する担体であることを特徴とする、上記[1]~[4]のいずれか1項に記載の機能性構造体。
[6]前記金属酸化物微粒子の金属元素(M)が、前記機能性構造体に対して0.5~2.5質量%で含有されていることを特徴とする、上記[1]~[5]のいずれか1項に記載の機能性構造体。
[7]前記金属酸化物微粒子の平均粒径が、0.1~50nmであることを特徴とする、上記[1]~[6]のいずれか1項に記載の機能性構造体。
[8]前記金属酸化物微粒子の平均粒径が、0.5nm~14.0nmであることを特徴とする、上記[7]に記載の機能性構造体。
[9]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.06~500であることを特徴とする、上記[1]~[8]のいずれか1項に記載の機能性構造体。
[10]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.1~45であることを特徴とする、上記[9]に記載の機能性構造体。
[11]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、1.7~4.5であることを特徴とする、上記[10]に記載の機能性構造体。
[12]前記通路の平均内径は、0.1~1.5nmであり、前記拡径部の内径は、0.5~50nmであることを特徴とする、上記[1]~[11]のいずれか1項に記載の機能性構造体。
[13]前記骨格体の外表面に保持された少なくとも1つの他の金属酸化物微粒子を更に備えることを特徴とする、上記[1]~[12]のいずれか1項に記載の機能性構造体。
[14]前記骨格体に内在する前記少なくとも1つの金属酸化物微粒子の含有量が、前記骨格体の外表面に保持された前記少なくとも1つの他の金属酸化物微粒子の含有量よりも多いことを特徴とする、上記[13]に記載の機能性構造体。
[15]前記ゼオライト型化合物は、ケイ酸塩化合物であることを特徴とする、上記[1]~[14]のいずれか1項に記載の機能性構造体。
[16]ゼオライト型化合物で構成される多孔質構造の骨格体を得るための前駆体材料(A)に、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素、及び、遷移金属から選ばれる少なくとも1種の元素を金属元素(M)として含む金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理する水熱処理工程と、
を有することを特徴とする機能性構造体の製造方法。
[17]前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加することを特徴とする、上記[16]に記載の機能性構造体の製造方法。
[18]前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させることを特徴とする、上記[16]又は[17]記載の機能性構造体の製造方法。
[19]前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することを特徴とする、上記[16]~[18]のいずれか1項に記載の機能性構造体の製造方法。
[20]前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合することを特徴とする、上記[16]に記載の機能性構造体の製造方法。
[21]前記水熱処理工程が塩基性雰囲気下で行われることを特徴とする、上記[16]に記載の機能性構造体の製造方法。
図1は、本発明の実施形態に係る機能性構造体の構成を概略的に示す図であり、(a)は斜視図(一部を横断面で示す。)、(b)は部分拡大断面図である。なお、図1における機能性構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
機能性構造体1は、上記のとおり、多孔質構造の骨格体10と、骨格体に内在する少なくとも1つの金属酸化物微粒子20とを備える。機能性構造体1は、骨格体に内在する金属酸化物微粒子20が流体と接触することにより、金属酸化物微粒子20に応じた機能を発揮する。具体的に、機能性構造体1の外表面10aに接触した流体は、外表面10aに形成された孔11aから骨格体10内部に流入して通路11内に誘導され、通路11内を通って移動し、他の孔11aを通じて機能性構造体1の外部へ出る。流体が通路11内を通って移動する経路において、通路11に存在する金属酸化物微粒子20と接触することによって、金属酸化物微粒子20の機能に応じた反応(例えば、触媒反応)が生じる。また、機能性構造体1は、骨格体が多孔質構造であることにより、分子篩能を有する。
2NO+2Vo+4e → 2Nad+2OL 2-
2Nad → N2
2OL 2- → O2+2Vo+4e
(OL 2-は格子酸素、Voは酸素欠陥)
CyHz+(y+z/4)O2 → yCO2+z/2H2O
図3は、図1の機能性構造体1の製造方法を示すフローチャートである。以下、機能性構造体の製造方法の一例を説明する。
図3に示すように、先ず、ゼオライト型化合物で構成される多孔質構造の骨格体を得るための前駆体材料(A)を準備する。前駆体材料(A)は、好ましくは規則性メソ細孔物質であり、機能性構造体の骨格体を構成するゼオライト型化合物の種類(組成)に応じて適宜選択できる。
次に、準備した前駆体材料(A)に、金属含有溶液を含浸させ、前駆体材料(B)を得る。
次に、ゼオライト型化合物で構成される多孔質構造の骨格体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成して、前駆体材料(C)を得る。
次いで、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製し、前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理して、機能性構造体を得る。
ここでの反応メカニズムは必ずしも明らかではないが、前駆体材料(C)を原料として水熱処理を行うことにより、前駆体材料(C)の規則性メソ細孔物質としての骨格構造は次第に崩れるが、前駆体材料(C)の細孔内部での金属酸化物微粒子の位置は概ね維持されたまま、構造規定剤の作用により、機能性構造体の骨格体としての新たな骨格構造(多孔質構造)が形成される。このようにして得られた機能性構造体は、多孔質構造の骨格体と、骨格体に内在する金属酸化物微粒子を備え、さらに骨格体はその多孔質構造により複数の孔が互いに連通した通路を有し、金属酸化物微粒子はその少なくとも一部分が骨格体の通路に存在し、好ましくは保持されている。
図4は、図1の機能性構造体1の変形例を示す模式図である。
図1の機能性構造体1は、骨格体10と、骨格体10に内在する、金属酸化物微粒子20とを備える場合を示しているが、この構成だけには限定されず、例えば、図4に示すように、機能性構造体2が、骨格体10の外表面10aに保持された少なくとも1つの他の金属酸化物微粒子30を更に備えていてもよい。
[前駆体材料(A)の合成]
シリカ剤(テトラエトキシシラン(TEOS)、和光純薬工業株式会社製)と、鋳型剤としての界面活性剤とを混合した混合水溶液を作製し、適宜pH調整を行い、密閉容器内で、80~350℃、100時間、水熱処理を行った。その後、生成した沈殿物をろ別し、水およびエタノールで洗浄し、さらに600℃、24時間、空気中で焼成して、表1~8に示される種類および孔径(nm)の前駆体材料(A)を得た。なお、界面活性剤は、前駆体材料(A)の種類に応じて(「前駆体材料(A)の種類:界面活性剤」)以下のものを用いた。
・MCM-41:ヘキサデシルトリメチルアンモニウムブロミド(CTAB)(和光純薬工業株式会社製)
・SBA-1:Pluronic P123(BASF社製)
次に、表1~8に示される種類の金属酸化物微粒子を構成する金属元素(M)に応じて、該金属元素(M)を含有する金属塩を、水に溶解させて、金属含有水溶液を調製した。なお、金属塩は、金属酸化物微粒子の種類に応じて(「金属酸化物微粒子:金属塩」)以下のものを用いた。
・LaMnO3:La-Mn硝酸塩(La(NO3)3・6H2O(99%)およびMn(NO3)2・9H2O(99%)を使用、ともに和光純薬工業株式会社製)
・BaMnO3:Ba-Mn硝酸塩(Ba(NO3)2(99%)およびMn(NO3)2・9H2O(99%)を使用、ともに和光純薬工業株式会社製)
・LaAlO3:La-Al硝酸塩(La(NO3)3・6H2O(99%)およびAl(NO3)3・9H2O(99%)を使用、ともに和光純薬工業株式会社製)
・LaCoO3:La-Co硝酸塩(La(NO3)3・6H2O(99%)およびCo(NO3)2・6H2O(99%)を使用、ともに和光純薬工業株式会社製)
上記のようにして得られた前駆体材料(C)と、表1~8に示す構造規定剤とを混合して混合水溶液を作製し、密閉容器内で、80~350℃、表1~8に示すpHおよび時間の条件で、水熱処理を行った。その後、生成した沈殿物をろ別し、水洗し、100℃で12時間以上乾燥させ、さらに600℃、24時間、空気中で焼成して、表1~8に示す骨格体と触媒物質としての金属酸化物微粒子とを有する機能性構造体を得た(実施例1~384)。
比較例1では、水酸化物ペロブスカイト前駆体の出発原料は実施例と同様のものを用いた。0.1mol/lのLa-Mn硝酸塩混合水溶液を撹拌下の19%アンモニア水に滴下した。滴下後ろ過し、110℃で一晩乾燥させ、水酸化物ペロブスカイト前駆体を得た。得られたペロブスカイト水酸化物前駆体とMFI型のシリカライトをSi/M比=100になる様に純水中に加え,超音波にて分散させ蒸発乾固し焼成することにより、骨格体の外表面にLaMnO3を担持したシリカライトを得た。MFI型シリカライトは、金属を添加する工程以外は、実施例52~57と同様の方法で合成した。
比較例2では、骨格体の外表面にLaMnO3を担持させる工程を省略したこと以外は、比較例1と同様の方法にてMFI型シリカライトを合成した。
上記実施例の機能性構造体および比較例のシリカライトについて、以下に示す条件で、各種特性評価を行った。
上記実施例の機能性構造体および比較例1の金属酸化物微粒子担持シリカライトについて、粉砕法にて観察試料を作製し、透過電子顕微鏡(TEM)(TITAN G2、FEI社製)を用いて、断面観察を行った。
その結果、上記実施例の機能性構造体では、シリカライトまたはゼオライトからなる骨格体の内部に金属酸化物微粒子が内在し、保持されていることが確認された。一方、比較例1のシリカライトでは、金属酸化物微粒子が骨格体の外表面に付着しているのみで、骨格体の内部には存在していなかった。
上記評価[A]で行った断面観察により撮影したTEM画像にて、骨格体の通路を、任意に500個選択し、それぞれの長径および短径を測定し、その平均値からそれぞれの内径を算出し(N=500)、さらに内径の平均値を求めて、骨格体の通路の平均内径DFとした。また、金属酸化物微粒子についても同様に、上記TEM画像から、金属酸化物微粒子を、任意に500個選択し、それぞれの粒径を測定して(N=500)、その平均値を求めて、金属酸化物微粒子の平均粒径DCとした。結果を表1~8に示す。
原子数比Si/M=50,100,200,1000(M=Co、Ni、Fe、Cu)の添加量で、金属酸化物微粒子を骨格体内部に包接させた機能性構造体を作製し、その後、上記添加量で作製された機能性構造体の骨格体内部に包接された金属量(質量%)を測定した。尚、本測定において原子数比Si/M=100,200,1000の機能性構造体は、それぞれ実施例1~384のうちの原子数比Si/M=100,200,1000の機能性構造体と同様の方法で金属含有溶液の添加量を調整して作製し、原子数比Si/M=50の機能性構造体は、金属含有溶液の添加量を異ならせたこと以外は、原子数比Si/M=100,200,1000の機能性構造体と同様の方法で作製した。
この結果、少なくとも原子数比Si/Mが50~1000の範囲内で、金属含有溶液の添加量の増加に伴って、機能性構造体に包接された金属量が増大していることが確認された。
上記実施例の機能性構造体および比較例のシリカライトについて、金属酸化物微粒子(触媒物質)がもつ触媒能(性能)を評価した。結果を表1~8に示す。
触媒活性は、以下の条件で評価した。
まず、機能性構造体を、常圧流通式反応装置に0.2g充填し、窒素ガス(N2)をキャリアガス(5ml/min)とし、400℃、2時間、ブチルベンゼン(重質油のモデル物質)の分解反応を行った。反応終了後に、回収した生成ガスおよび生成液を、ガスクロマトグラフィー質量分析法(GC/MS)により成分分析した。なお、生成ガスの分析装置には、TRACE 1310GC(サーモフィッシャーサイエンティフィック株式会社製、検出器:熱伝導度検出器)を用い、生成液の分析装置には、TRACE DSQ(サーモフィッシャーサイエンティフィック株式会社製、検出器:質量検出器、イオン化方法:EI(イオン源温度250℃、MSトランスファーライン温度320℃、検出器:熱伝導度検出器))を用いた。
さらに、上記成分分析の結果に基づき、ブチルベンゼンよりも分子量が小さい化合物(具体的には、ベンゼン、トルエン、エチルベンゼン、スチレン、クメン、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、ブテン等)の収率(mol%)を求めた。上記化合物の収率は、反応開始前のブチルベンゼンの物質量(mol)に対する、生成液中に含まれるブチルベンゼンよりも分子量が小さい化合物の物質量の総量(mol)の百分率(mol%)として算出した。
本実施例では、生成液中に含まれるブチルベンゼンよりも分子量が小さい化合物の収率が、40mol%以上である場合を触媒活性(分解能)が優れていると判定して「◎」、25mol%以上40mol%未満である場合を触媒活性が良好であると判定して「○」、10mol%以上25mol%未満である場合を触媒活性が良好ではないものの合格レベル(可)であると判定して「△」、そして10mol%未満である場合を触媒活性が劣る(不可)と判定して「×」とした。
耐久性は、以下の条件で評価した。
まず、上記評価(1)で使用した機能性構造体を回収し、650℃で、12時間加熱して、加熱後の機能性構造体を得た。次に、得られた加熱後の機能性構造体を用いて、上記評価(1)と同様の方法により、ブチルベンゼン(重質油のモデル物質)の分解反応を行い、さらに上記評価(1)と同様の方法で、生成ガスおよび生成液の成分分析を行った。得られた分析結果に基づき、上記評価(1)と同様の方法で、ブチルベンゼンよりも分子量が小さい化合物の収率(mol%)を求めた。さらに、加熱前の機能性構造体による上記化合物の収率(上記評価(1)で求めた収率)と比較して、加熱後の機能性構造体による上記化合物の収率が、どの程度維持されているかを比較した。具体的には、加熱前の機能性構造体による上記化合物の収率(上記評価(1)で求めた収率)に対する、上記加熱後の機能性構造体による上記化合物の収率(本評価(2)で求めた収率)の百分率(%)を算出した。本実施例では、加熱後の機能性構造体による上記化合物の収率(本評価(2)で求めた収率)が、加熱前の機能性構造体による上記化合物の収率(上記評価(1)で求めた収率)に比べて、80%以上維持されている場合を耐久性(耐熱性)が優れていると判定して「◎」、60%以上80%未満維持されている場合を耐久性(耐熱性)が良好であると判定して「○」、40%以上60%未満維持されている場合を耐久性(耐熱性)が良好ではないものの合格レベル(可)であると判定して「△」、そして40%未満に低下している場合を耐久性(耐熱性)が劣る(不可)と判定して「×」とした。比較例1~2についても、上記評価(1)および(2)と同様の性能評価を行った。なお、比較例2は、骨格体そのものであり、金属酸化物微粒子は有していない。そのため、上記性能評価では、機能性構造体に替えて、比較例2の骨格体のみを充填した。結果を表8に示す。
10 骨格体
10a 外表面
11 骨格体の通路
11a 孔
12 通路の拡径部
20 金属酸化物微粒子
30 金属酸化物微粒子
DC 金属酸化物微粒子の平均粒径
DF 通路の平均内径
DE 拡径部の内径
Claims (21)
- ゼオライト型化合物で構成される多孔質構造の骨格体と、
前記骨格体に内在する、ペロブスカイト型酸化物を含有する少なくとも1つの金属酸化物微粒子と、
を備え、
前記骨格体が、互いに連通する通路を有し、
前記金属酸化物微粒子が、前記骨格体の少なくとも前記通路に存在していることを特徴とする機能性構造体。 - 前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部を有し、かつ、前記金属酸化物微粒子が少なくとも前記拡径部に存在していることを特徴とする、請求項1に記載の機能性構造体。
- 前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通していることを特徴とする、請求項2に記載の機能性構造体。
- 前記金属酸化物微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下であることを特徴とする、請求項2又は3に記載の機能性構造体。
- 前記金属酸化物微粒子は、触媒物質であり、
前記骨格体は、前記少なくとも1つの触媒物質を担持する担体であることを特徴とする、請求項1~4のいずれか1項に記載の機能性構造体。 - 前記金属酸化物微粒子の金属元素(M)が、前記機能性構造体に対して0.5~2.5質量%で含有されていることを特徴とする、請求項1~5のいずれか1項に記載の機能性構造体。
- 前記金属酸化物微粒子の平均粒径が、0.1~50nmであることを特徴とする、請求項1~6のいずれか1項に記載の機能性構造体。
- 前記金属酸化物微粒子の平均粒径が、0.5nm~14.0nmであることを特徴とする、請求項7に記載の機能性構造体。
- 前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.06~500であることを特徴とする、請求項1~8のいずれか1項に記載の機能性構造体。
- 前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.1~45であることを特徴とする、請求項9に記載の機能性構造体。
- 前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、1.7~4.5であることを特徴とする、請求項10に記載の機能性構造体。
- 前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部を有し、
前記通路の平均内径は、0.1~1.5nmであり、
前記拡径部の内径は、0.5~50nmであることを特徴とする、請求項1~11のいずれか1項に記載の機能性構造体。 - 前記骨格体の外表面に保持された少なくとも1つの他の金属酸化物微粒子を更に備えることを特徴とする、請求項1~12のいずれか1項に記載の機能性構造体。
- 前記骨格体に内在する前記少なくとも1つの金属酸化物微粒子の含有量が、前記骨格体の外表面に保持された前記少なくとも1つの他の金属酸化物微粒子の含有量よりも多いことを特徴とする、請求項13に記載の機能性構造体。
- 前記ゼオライト型化合物は、ケイ酸塩化合物であることを特徴とする、請求項1~14のいずれか1項に記載の機能性構造体。
- ゼオライト型化合物で構成される多孔質構造の骨格体を得るための前駆体材料(A)に、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素、及び、遷移金属から選ばれる少なくとも1種の元素を金属元素(M)として含む金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理する水熱処理工程と、
を有することを特徴とする機能性構造体の製造方法。 - 前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加することを特徴とする、請求項16に記載の機能性構造体の製造方法。
- 前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させることを特徴とする、請求項16又は17記載の機能性構造体の製造方法。
- 前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することを特徴とする、請求項16~18のいずれか1項に記載の機能性構造体の製造方法。
- 前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合することを特徴とする、請求項16に記載の機能性構造体の製造方法。
- 前記水熱処理工程が塩基性雰囲気下で行われることを特徴とする、請求項16に記載の機能性構造体の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019521320A JP7352909B2 (ja) | 2017-05-31 | 2018-05-31 | 機能性構造体及び機能性構造体の製造方法 |
CN201880035017.7A CN110691645A (zh) | 2017-05-31 | 2018-05-31 | 功能性结构体以及功能性结构体的制造方法 |
EP18810207.3A EP3632548A4 (en) | 2017-05-31 | 2018-05-31 | Functional structure and production method for functional structure |
AU2018276618A AU2018276618B2 (en) | 2017-05-31 | 2018-05-31 | Functional structure and production method for functional structure |
US16/698,650 US11648543B2 (en) | 2017-05-31 | 2019-11-27 | Functional structural body and method for making functional structural body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017108589 | 2017-05-31 | ||
JP2017-108589 | 2017-05-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/698,650 Continuation US11648543B2 (en) | 2017-05-31 | 2019-11-27 | Functional structural body and method for making functional structural body |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221692A1 true WO2018221692A1 (ja) | 2018-12-06 |
Family
ID=64454817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/021080 WO2018221692A1 (ja) | 2017-05-31 | 2018-05-31 | 機能性構造体及び機能性構造体の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11648543B2 (ja) |
EP (1) | EP3632548A4 (ja) |
JP (1) | JP7352909B2 (ja) |
CN (1) | CN110691645A (ja) |
AU (1) | AU2018276618B2 (ja) |
SA (1) | SA519410663B1 (ja) |
WO (1) | WO2018221692A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3632554A4 (en) | 2017-05-31 | 2021-04-21 | Furukawa Electric Co., Ltd. | EXHAUST GAS PURIFICATION OXIDATION CATALYST STRUCTURE AND PRODUCTION PROCESS, VEHICLE EXHAUST GAS TREATMENT DEVICE, CATALYST MOLDED BODY AND GAS PURIFICATION PROCESS. |
CN110709166A (zh) | 2017-05-31 | 2020-01-17 | 古河电气工业株式会社 | 甲醇重整催化剂结构体、甲醇重整用装置、甲醇重整催化剂结构体的制造方法以及烯烃或芳香族烃中的至少一种的制造方法 |
WO2018221707A1 (ja) | 2017-05-31 | 2018-12-06 | 古河電気工業株式会社 | 水蒸気改質用触媒構造体、該水蒸気改質用触媒構造体を備える改質装置、及び水蒸気改質用触媒構造体の製造方法 |
JP7316934B2 (ja) | 2017-05-31 | 2023-07-28 | 古河電気工業株式会社 | 水素化脱硫用触媒構造体、該触媒構造体を備える水素化脱硫装置及び水素化脱硫用触媒構造体の製造方法 |
JP7352910B2 (ja) | 2017-05-31 | 2023-09-29 | 国立大学法人北海道大学 | 機能性構造体及び機能性構造体の製造方法 |
WO2018221690A1 (ja) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | 機能性構造体及び機能性構造体の製造方法 |
JP7316935B2 (ja) | 2017-05-31 | 2023-07-28 | 古河電気工業株式会社 | 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法 |
WO2018221698A1 (ja) | 2017-05-31 | 2018-12-06 | 古河電気工業株式会社 | Coシフトもしくは逆シフト触媒構造体及びその製造方法、coシフトまたは逆シフト反応装置、二酸化炭素と水素の製造方法、並びに一酸化炭素と水の製造方法 |
AU2018276617B2 (en) | 2017-05-31 | 2021-03-25 | Furukawa Electric Co., Ltd. | Functional structure and production method for functional structure |
CN113164942A (zh) | 2018-12-03 | 2021-07-23 | 国立大学法人北海道大学 | 功能性结构体 |
CN113304603B (zh) * | 2021-04-27 | 2023-03-24 | 紫科装备股份有限公司 | 一种多孔MOFs型金属氧化物及其在净化大气中的应用 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06142456A (ja) * | 1992-11-08 | 1994-05-24 | Sekiyu Sangyo Kasseika Center | 排ガス中の窒素酸化物の除去方法 |
JPH0796195A (ja) * | 1993-09-29 | 1995-04-11 | Hino Motors Ltd | 排ガス浄化触媒 |
JPH08155303A (ja) * | 1994-12-01 | 1996-06-18 | Toyota Central Res & Dev Lab Inc | 排ガス浄化用触媒担体と排ガス浄化用触媒及び排ガス浄化用触媒担体の製造方法ならびに排ガス浄化方法 |
JPH11151440A (ja) | 1997-07-18 | 1999-06-08 | Tokyo Gas Co Ltd | 窒素酸化物の分解除去用触媒及び窒素酸化物の分解除去方法 |
JP2000197822A (ja) | 1999-01-08 | 2000-07-18 | Tokyo Gas Co Ltd | 窒素酸化物の分解除去用触媒及び窒素酸化物の分解除去方法 |
JP2004528158A (ja) * | 2001-01-18 | 2004-09-16 | ロディア・シミ | ナノメートル寸法の粒子を組み込んだメソ構造触媒 |
JP2008012382A (ja) * | 2006-07-03 | 2008-01-24 | Toyota Motor Corp | 排ガス浄化触媒 |
JP2008542177A (ja) * | 2005-06-02 | 2008-11-27 | アンスティテュ フランセ デュ ペトロール | メソ構造化マトリクス中に捕捉された金属ナノ粒子を有する無機材料 |
JP2010099638A (ja) | 2008-10-27 | 2010-05-06 | Nissan Motor Co Ltd | 触媒、排ガス浄化用触媒及び触媒の製造方法 |
WO2010097108A1 (en) * | 2009-02-27 | 2010-09-02 | Haldor Topsøe A/S | Process for the preparation of hybrid zeolite or zeolite-like materials |
JP2011517439A (ja) * | 2008-03-31 | 2011-06-09 | イエフペ エネルジ ヌヴェル | 特定のサイズの球状粒子から作られ、金属ナノ粒子をメソ構造化マトリクス中に捕捉されて有する無機材料 |
JP2014534902A (ja) * | 2011-10-21 | 2014-12-25 | アイジーティエル・テクノロジー・リミテッドIGTL Technology Ltd | 担持活性金属触媒および前駆体を製造および形成する方法 |
CN106362787A (zh) * | 2016-08-06 | 2017-02-01 | 浙江大学 | 一种沸石固载光催化剂的制备方法 |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3898180A (en) | 1970-07-23 | 1975-08-05 | Ici Ltd | Catalyst pellet |
JPS5746925A (en) | 1980-09-03 | 1982-03-17 | Res Assoc Petroleum Alternat Dev<Rapad> | Preparation of hydrocarbon |
US4552855A (en) * | 1982-12-30 | 1985-11-12 | Ozin Geoffrey A | Metal zeolite catalyst preparation |
US5026673A (en) * | 1989-06-23 | 1991-06-25 | University Of Delaware | Stable zeolite-supported transition metal catalysts, methods for making them, and uses thereof |
JP2771321B2 (ja) | 1990-11-09 | 1998-07-02 | 日本碍子株式会社 | 排気ガス浄化用触媒組成物、排気ガス浄化用触媒及びその製造方法 |
US5275720A (en) | 1990-11-30 | 1994-01-04 | Union Oil Company Of California | Gasoline hydrocracking catalyst and process |
US5236575A (en) | 1991-06-19 | 1993-08-17 | Mobil Oil Corp. | Synthetic porous crystalline mcm-49, its synthesis and use |
JPH0549943A (ja) * | 1991-08-20 | 1993-03-02 | Sakai Chem Ind Co Ltd | 酸化触媒 |
JP2006021994A (ja) | 1993-12-28 | 2006-01-26 | Toto Ltd | 光触媒機能を有する多機能材の製造方法 |
US5849652A (en) * | 1994-03-14 | 1998-12-15 | Northeastern University | Metal containing catalysts and methods for making same |
CA2256515A1 (en) | 1996-05-29 | 1997-12-04 | Gary D. Mohr | Metal-containing zeolite catalyst, preparation thereof and use for hydrocarbon conversion |
CA2255873A1 (en) | 1996-05-29 | 1997-12-04 | Robert S. Smith | Methylation of toluene to para-xylene |
CN1223602A (zh) | 1996-05-29 | 1999-07-21 | 埃克森化学专利公司 | 含金属的沸石催化剂,其制备方法及其在烃转化中的应用 |
JPH1133412A (ja) | 1997-07-23 | 1999-02-09 | Unitika Ltd | 金属担持触媒の製造方法 |
JP3897143B2 (ja) | 1999-05-11 | 2007-03-22 | 富士電機ホールディングス株式会社 | 改質装置とその起動方法及び燃料電池発電装置 |
US6930219B2 (en) | 1999-09-07 | 2005-08-16 | Abb Lummus Global Inc. | Mesoporous material with active metals |
US7074373B1 (en) | 2000-11-13 | 2006-07-11 | Harvest Energy Technology, Inc. | Thermally-integrated low temperature water-gas shift reactor apparatus and process |
JP2002255537A (ja) | 2001-02-22 | 2002-09-11 | National Institute Of Advanced Industrial & Technology | 固体酸触媒 |
JP2002336704A (ja) | 2001-05-18 | 2002-11-26 | Masaru Ichikawa | メタンの芳香族化反応触媒およびその調製方法 |
US6881703B2 (en) | 2001-08-08 | 2005-04-19 | Corning Incorporated | Thermally conductive honeycombs for chemical reactors |
JP2003230838A (ja) | 2001-12-06 | 2003-08-19 | Denso Corp | セラミック触媒体 |
US7270798B2 (en) | 2002-12-20 | 2007-09-18 | Honda Giken Kogyo Kabushiki Kaisha | Noble metal-free nickel catalyst formulations for hydrogen generation |
JP2005170903A (ja) | 2003-12-15 | 2005-06-30 | Idemitsu Kosan Co Ltd | ビシクロ[2.2.1]ヘプタン誘導体の製造方法 |
JP4334336B2 (ja) | 2003-12-26 | 2009-09-30 | 株式会社フジクラ | 光スイッチ |
WO2005083013A1 (en) | 2004-01-30 | 2005-09-09 | Millennium Chemicals | Coating composition having surface depolluting properties |
JP4469975B2 (ja) | 2004-03-23 | 2010-06-02 | 国立大学法人広島大学 | 光触媒複合体およびこれを用いた有機物質変換方法 |
JP5194249B2 (ja) | 2004-03-29 | 2013-05-08 | 国立大学法人広島大学 | 複合多孔体およびその製造方法、並びにこれを用いた有機物質変換方法 |
US20090325790A1 (en) | 2004-06-17 | 2009-12-31 | Yale University | Size-controllable transition metal clusters in mcm-41 for improving chemical catalysis |
CN103059899A (zh) | 2005-03-16 | 2013-04-24 | 弗尔科有限责任公司 | 用于生产合成烃化合物的系统、方法及组合物 |
CN101180125B (zh) | 2005-03-24 | 2014-09-10 | 里贾纳大学 | 用于生产氢的催化剂 |
CN100392047C (zh) * | 2005-06-09 | 2008-06-04 | 中国科学院大连化学物理研究所 | 一种石油烃类催化氧化裂解制烯烃的方法 |
WO2007000847A1 (ja) * | 2005-06-29 | 2007-01-04 | Ibiden Co., Ltd. | ハニカム構造体 |
WO2007023558A1 (ja) | 2005-08-26 | 2007-03-01 | Suminoe Textile Co., Ltd. | 酸化タングステン系光触媒及びその製造方法並びに消臭・防汚機能を有する繊維布帛 |
MXPA05009283A (es) | 2005-08-31 | 2007-02-27 | Mexicano Inst Petrol | Procedimiento para la preparacion de una composicion catalitica para el hidroprocesamiento de fracciones del petroleo. |
US7893311B2 (en) | 2005-09-16 | 2011-02-22 | Asahi Kasei Chemicals Corporation | Method for producing ethylene and propylene |
JP4879574B2 (ja) | 2005-09-16 | 2012-02-22 | 旭化成ケミカルズ株式会社 | エチレン及びプロピレンの製造方法 |
JP2007130525A (ja) | 2005-11-08 | 2007-05-31 | Nissan Motor Co Ltd | 包接触媒及びその製造方法 |
US7879749B2 (en) | 2006-08-15 | 2011-02-01 | Battelle Energy Alliance, Llc | Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons |
US7592291B2 (en) | 2006-08-15 | 2009-09-22 | Batelle Energy Alliance, Llc | Method of fabricating a catalytic structure |
CN101130466B (zh) | 2006-08-23 | 2011-05-04 | 中国科学院大连化学物理研究所 | 制取低碳烯烃流态化催化反应装置的开工方法 |
US8993468B2 (en) | 2007-05-24 | 2015-03-31 | Saudi Basic Industries Corporation | Catalyst for conversion of hydrocarbons, process of making and process of using thereof—Ge zeolites |
CN101362959B (zh) | 2007-08-09 | 2012-09-05 | 中国石油化工股份有限公司 | 一种制取丙烯和高辛烷值汽油的催化转化方法 |
JP4943516B2 (ja) | 2008-02-01 | 2012-05-30 | 島津システムソリューションズ株式会社 | 銀−酸化チタン−ゼオライト吸着分解素材 |
JP2009255014A (ja) | 2008-04-21 | 2009-11-05 | Mitsubishi Chemicals Corp | メタノールからオレフィンを製造するための触媒 |
US8273932B2 (en) | 2008-06-10 | 2012-09-25 | Mitsui Chemicals, Inc. | Process for producing alkylated aromatic compounds and process for producing phenol |
JP4639247B2 (ja) | 2008-07-23 | 2011-02-23 | 石油資源開発株式会社 | 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法 |
US9187702B2 (en) | 2009-07-01 | 2015-11-17 | Chevron U.S.A. Inc. | Hydroprocessing catalyst and method of making the same |
EP2460784B1 (en) | 2009-07-30 | 2020-06-17 | Mitsubishi Chemical Corporation | Method for producing propylene and catalyst for producing propylene |
JP2012250133A (ja) | 2009-09-30 | 2012-12-20 | Toto Ltd | 光触媒塗装体およびそのための光触媒コーティング液 |
CN102665896A (zh) | 2009-11-27 | 2012-09-12 | 株式会社村田制作所 | 逆转移反应用催化剂和使用其的合成气体的制造方法 |
WO2011128968A1 (ja) | 2010-04-12 | 2011-10-20 | 株式会社メタルテック | 光触媒塗料 |
EP2581133A4 (en) | 2010-06-10 | 2014-04-30 | Ube Industries | ALKYLATING CATALYST AND METHOD FOR PRODUCING AN ALKYLAROMATIC HYDROCARBON CONNECTION THROUGH THE CATALYST |
US20120042631A1 (en) | 2010-08-20 | 2012-02-23 | Gm Global Technology Operations, Inc. | Catalyst materials for ammonia oxidation in lean-burn engine exhaust |
US8539760B2 (en) | 2010-09-14 | 2013-09-24 | GM Global Technology Operations LLC | Catalyst materials for NOx oxidation in an exhaust aftertreatment system that uses passive ammonia SCR |
FR2969513B1 (fr) | 2010-12-22 | 2013-04-12 | IFP Energies Nouvelles | Procede de preparation d'un materiau spherique a porosite hierarchisee comprenant des particules metalliques piegees dans une matrice mesostructuree |
BR112012030796A2 (pt) | 2011-01-26 | 2016-11-01 | Sumitomo Rubber Iindustries Ltd | sistema de síntese, substância química de borracha para pneus, borracha sintética para pneus, e pneumático |
JP5552067B2 (ja) | 2011-01-26 | 2014-07-16 | 住友ゴム工業株式会社 | 合成システム、タイヤ用ゴム薬品、タイヤ用合成ゴム及び空気入りタイヤ |
JP2012160394A (ja) | 2011-02-02 | 2012-08-23 | Sony Corp | 酸化物半導体層の製造方法 |
JP2012170951A (ja) | 2011-02-24 | 2012-09-10 | Kyushu Univ | 光触媒−吸着材複合粉体 |
JP2012210557A (ja) | 2011-03-30 | 2012-11-01 | Panasonic Corp | 撥水性光触媒組成物及び撥水性光触媒塗膜 |
CN102247887B (zh) | 2011-05-20 | 2013-03-06 | 汕头大学 | 一种高效低载量甲烷芳构化催化剂的制备方法 |
WO2012170421A1 (en) | 2011-06-05 | 2012-12-13 | Johnson Matthey Public Limited Company | Platinum group metal (pgm) catalyst for treating exhaust gas |
GB201118228D0 (en) * | 2011-10-21 | 2011-12-07 | Ingen Gtl Ltd | Methods of preparation and forming supported active metal catalysts and precursors |
WO2013115213A1 (ja) | 2012-01-31 | 2013-08-08 | 国立大学法人大阪大学 | 酸化チタンメソ結晶 |
US20160017238A1 (en) | 2012-02-17 | 2016-01-21 | Kior, Inc. | Mesoporous Zeolite-Containing Catalysts For The Thermoconversion Of Biomass And For Upgrading Bio-Oils |
JP5972678B2 (ja) | 2012-06-14 | 2016-08-17 | 三菱化学株式会社 | 合成ガス製造用触媒および合成ガスの製造方法 |
CN103663490B (zh) | 2012-09-26 | 2016-04-20 | 中国科学院大连化学物理研究所 | 一种sapo-34分子筛及其合成方法 |
US9573121B2 (en) | 2012-11-08 | 2017-02-21 | Rive Technology, Inc. | Mesoporous zeolite catalyst supports |
JP5762386B2 (ja) | 2012-11-28 | 2015-08-12 | 株式会社日立製作所 | シフト触媒、石炭ガス化プラントのガス精製方法及びガス精製設備 |
WO2014083772A1 (ja) | 2012-11-30 | 2014-06-05 | 国立大学法人広島大学 | 金属ナノ粒子複合体の製造方法およびその方法により製造された金属ナノ粒子複合体 |
US10137438B2 (en) * | 2013-02-09 | 2018-11-27 | Indian Oil Corporation Limited | Hydroprocessing catalyst composition and process thereof |
KR102202084B1 (ko) | 2013-02-21 | 2021-01-13 | 에네오스 가부시키가이샤 | 단환 방향족 탄화수소의 제조 방법 |
WO2014132367A1 (ja) | 2013-02-27 | 2014-09-04 | 三菱重工業株式会社 | Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法 |
KR102221550B1 (ko) | 2013-03-22 | 2021-03-02 | 삼성전자주식회사 | 탄화수소 개질용 촉매 및 그 제조 방법 |
EP2992984B1 (en) | 2013-05-01 | 2020-08-05 | University of Yamanashi | Production method for fine metal particles |
WO2015001123A1 (en) | 2013-07-05 | 2015-01-08 | Danmarks Tekniske Universitet | Method for producing zeolites and zeotypes |
CN104650291B (zh) | 2013-11-19 | 2018-02-02 | 中国石油天然气股份有限公司 | 采用烯烃复分解催化剂制备补强丁苯橡胶的方法 |
CN104774639A (zh) | 2014-01-13 | 2015-07-15 | 通用电气公司 | 烃类裂解方法和装置 |
JP6234297B2 (ja) | 2014-03-27 | 2017-11-22 | 株式会社タカギ | ゼオライト成形体およびその製造方法 |
US20170036197A1 (en) * | 2014-04-10 | 2017-02-09 | Danmarks Tekniske Universitet | General method to incorporate metal nanoparticles in zeolites and zeotypes |
JP6303850B2 (ja) | 2014-06-18 | 2018-04-04 | 株式会社Ihi | 触媒の製造方法 |
US9938157B2 (en) | 2014-07-23 | 2018-04-10 | Chevron U.S.A. Inc. | Interzeolite transformation and metal encapsulation in the absence of an SDA |
JP6604501B2 (ja) | 2014-09-16 | 2019-11-13 | 国立大学法人山梨大学 | アンモニア分解触媒とその製造方法および、これを用いた装置 |
JP6344764B2 (ja) | 2014-09-30 | 2018-06-20 | 国立大学法人山口大学 | イソプロピルアルコールの保管方法および充填体 |
US9682367B2 (en) | 2014-10-22 | 2017-06-20 | King Fahd University Of Petroleum And Minerals | Monolith structure loaded with metal promoted nanozeolites for enhanced propylene selectivity in methanol conversion |
JP6427387B2 (ja) | 2014-10-31 | 2018-11-21 | 地方独立行政法人東京都立産業技術研究センター | 量子ドット複合光触媒 |
JP2015165138A (ja) | 2015-04-30 | 2015-09-17 | 日野自動車株式会社 | 排ガス浄化装置 |
JP6467502B2 (ja) | 2015-05-12 | 2019-02-13 | 日本曹達株式会社 | 光触媒含有塗布液及び光触媒担持構造体 |
EP3318327A4 (en) | 2015-07-02 | 2019-02-27 | Dalian Institute Of Chemical Physics Chinese Academy of Sciences | CATALYST AND METHOD FOR THE PRODUCTION OF LIGHT OLEFINS DIRECTLY FROM SYNTHESEGAS BY A UNIVERSAL PROCESS |
JP6598576B2 (ja) | 2015-08-17 | 2019-10-30 | 学校法人東京理科大学 | 積層体及び積層体の製造方法 |
JP6489990B2 (ja) | 2015-09-30 | 2019-03-27 | Jxtgエネルギー株式会社 | 炭化水素油の水素化脱硫触媒およびその製造方法 |
WO2017072698A1 (en) | 2015-10-30 | 2017-05-04 | Sabic Global Technologies B.V. | Use of hollow zeolites doped with bimetallic or trimetallic particles for hydrocarbon reforming reactions |
CN105347359B (zh) | 2015-11-27 | 2017-10-03 | 中国石油大学(北京) | 一种孔道内含固体酸的沸石分子筛的合成及其应用 |
JP6651362B2 (ja) | 2016-01-20 | 2020-02-19 | 日揮触媒化成株式会社 | 金属粒子を内包したゼオライト |
WO2018221690A1 (ja) | 2017-05-31 | 2018-12-06 | 国立大学法人北海道大学 | 機能性構造体及び機能性構造体の製造方法 |
WO2018221702A1 (ja) | 2017-05-31 | 2018-12-06 | 古河電気工業株式会社 | 光触媒構造体、光触媒構造体組成物、光触媒被覆材、光触媒構造体の製造方法及びアルデヒド類の分解方法 |
JP7316934B2 (ja) | 2017-05-31 | 2023-07-28 | 古河電気工業株式会社 | 水素化脱硫用触媒構造体、該触媒構造体を備える水素化脱硫装置及び水素化脱硫用触媒構造体の製造方法 |
WO2018221707A1 (ja) | 2017-05-31 | 2018-12-06 | 古河電気工業株式会社 | 水蒸気改質用触媒構造体、該水蒸気改質用触媒構造体を備える改質装置、及び水蒸気改質用触媒構造体の製造方法 |
JP7352910B2 (ja) | 2017-05-31 | 2023-09-29 | 国立大学法人北海道大学 | 機能性構造体及び機能性構造体の製造方法 |
CN110709166A (zh) | 2017-05-31 | 2020-01-17 | 古河电气工业株式会社 | 甲醇重整催化剂结构体、甲醇重整用装置、甲醇重整催化剂结构体的制造方法以及烯烃或芳香族烃中的至少一种的制造方法 |
JP7316935B2 (ja) | 2017-05-31 | 2023-07-28 | 古河電気工業株式会社 | 接触分解用又は水素化脱硫用触媒構造体、該触媒構造体を有する接触分解装置及び水素化脱硫装置、並びに接触分解用又は水素化脱硫用触媒構造体の製造方法 |
WO2018221698A1 (ja) | 2017-05-31 | 2018-12-06 | 古河電気工業株式会社 | Coシフトもしくは逆シフト触媒構造体及びその製造方法、coシフトまたは逆シフト反応装置、二酸化炭素と水素の製造方法、並びに一酸化炭素と水の製造方法 |
EP3632554A4 (en) | 2017-05-31 | 2021-04-21 | Furukawa Electric Co., Ltd. | EXHAUST GAS PURIFICATION OXIDATION CATALYST STRUCTURE AND PRODUCTION PROCESS, VEHICLE EXHAUST GAS TREATMENT DEVICE, CATALYST MOLDED BODY AND GAS PURIFICATION PROCESS. |
JPWO2018221704A1 (ja) | 2017-05-31 | 2020-03-26 | 古河電気工業株式会社 | 芳香族炭化水素製造用触媒構造体、その芳香族炭化水素製造用触媒構造体を備える芳香族炭化水素製造装置、芳香族炭化水素製造用触媒構造体の製造方法及び芳香族炭化水素の製造方法 |
AU2018276617B2 (en) | 2017-05-31 | 2021-03-25 | Furukawa Electric Co., Ltd. | Functional structure and production method for functional structure |
US11161101B2 (en) | 2017-05-31 | 2021-11-02 | Furukawa Electric Co., Ltd. | Catalyst structure and method for producing the catalyst structure |
EP3687681A4 (en) * | 2017-09-29 | 2021-07-07 | President and Fellows of Harvard College | ENHANCED CATALYTIC MATERIALS CONTAINING PARTLY INCORPORATED CATALYTIC NANOPARTICLES |
-
2018
- 2018-05-31 WO PCT/JP2018/021080 patent/WO2018221692A1/ja unknown
- 2018-05-31 EP EP18810207.3A patent/EP3632548A4/en active Pending
- 2018-05-31 JP JP2019521320A patent/JP7352909B2/ja active Active
- 2018-05-31 CN CN201880035017.7A patent/CN110691645A/zh active Pending
- 2018-05-31 AU AU2018276618A patent/AU2018276618B2/en active Active
-
2019
- 2019-11-27 US US16/698,650 patent/US11648543B2/en active Active
- 2019-11-28 SA SA519410663A patent/SA519410663B1/ar unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06142456A (ja) * | 1992-11-08 | 1994-05-24 | Sekiyu Sangyo Kasseika Center | 排ガス中の窒素酸化物の除去方法 |
JPH0796195A (ja) * | 1993-09-29 | 1995-04-11 | Hino Motors Ltd | 排ガス浄化触媒 |
JPH08155303A (ja) * | 1994-12-01 | 1996-06-18 | Toyota Central Res & Dev Lab Inc | 排ガス浄化用触媒担体と排ガス浄化用触媒及び排ガス浄化用触媒担体の製造方法ならびに排ガス浄化方法 |
JPH11151440A (ja) | 1997-07-18 | 1999-06-08 | Tokyo Gas Co Ltd | 窒素酸化物の分解除去用触媒及び窒素酸化物の分解除去方法 |
JP2000197822A (ja) | 1999-01-08 | 2000-07-18 | Tokyo Gas Co Ltd | 窒素酸化物の分解除去用触媒及び窒素酸化物の分解除去方法 |
JP2004528158A (ja) * | 2001-01-18 | 2004-09-16 | ロディア・シミ | ナノメートル寸法の粒子を組み込んだメソ構造触媒 |
JP2008542177A (ja) * | 2005-06-02 | 2008-11-27 | アンスティテュ フランセ デュ ペトロール | メソ構造化マトリクス中に捕捉された金属ナノ粒子を有する無機材料 |
JP2008012382A (ja) * | 2006-07-03 | 2008-01-24 | Toyota Motor Corp | 排ガス浄化触媒 |
JP2011517439A (ja) * | 2008-03-31 | 2011-06-09 | イエフペ エネルジ ヌヴェル | 特定のサイズの球状粒子から作られ、金属ナノ粒子をメソ構造化マトリクス中に捕捉されて有する無機材料 |
JP2010099638A (ja) | 2008-10-27 | 2010-05-06 | Nissan Motor Co Ltd | 触媒、排ガス浄化用触媒及び触媒の製造方法 |
WO2010097108A1 (en) * | 2009-02-27 | 2010-09-02 | Haldor Topsøe A/S | Process for the preparation of hybrid zeolite or zeolite-like materials |
JP2014534902A (ja) * | 2011-10-21 | 2014-12-25 | アイジーティエル・テクノロジー・リミテッドIGTL Technology Ltd | 担持活性金属触媒および前駆体を製造および形成する方法 |
CN106362787A (zh) * | 2016-08-06 | 2017-02-01 | 浙江大学 | 一种沸石固载光催化剂的制备方法 |
Non-Patent Citations (1)
Title |
---|
TATSUMI ISHIHARA: "Engineering Materials", vol. 65, January 2017, THE NIKKAN KOGYO SHINBUN LTD., article "<Special Feature> Current Status of Evolving Catalytic Technology, and Current Status and Prospects of Promising Environmental Catalysts -Smoke Deodorization, VOC, NO Cracking Catalysts", pages: 71 - 76 |
Also Published As
Publication number | Publication date |
---|---|
US20200108378A1 (en) | 2020-04-09 |
US11648543B2 (en) | 2023-05-16 |
EP3632548A1 (en) | 2020-04-08 |
JP7352909B2 (ja) | 2023-09-29 |
SA519410663B1 (ar) | 2023-11-09 |
AU2018276618B2 (en) | 2021-05-27 |
EP3632548A4 (en) | 2021-03-03 |
CN110691645A (zh) | 2020-01-14 |
JPWO2018221692A1 (ja) | 2020-05-28 |
AU2018276618A1 (en) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11648543B2 (en) | Functional structural body and method for making functional structural body | |
US11666894B2 (en) | Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water | |
US20230009052A1 (en) | Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method | |
US20200114337A1 (en) | Structured catalyst for aromatic hydrocarbon production, aromatic hydrocarbon producing device including the structured catalyst for aromatic hydrocarbon production, method for producing structured catalyst for aromatic hydrocarbon production, and method for producing aromatic hydrocarbon | |
WO2018221690A1 (ja) | 機能性構造体及び機能性構造体の製造方法 | |
WO2018221701A1 (ja) | アンモニア分解触媒構造体及び燃料電池 | |
WO2018221697A1 (ja) | 合成ガス製造用触媒構造体、該合成ガス製造用触媒構造体を備える合成ガス製造装置及び合成ガス製造用触媒構造体の製造方法 | |
JPWO2018221706A1 (ja) | メタノール改質触媒構造体、メタノール改質用装置、メタノール改質触媒構造体の製造方法及びオレフィンまたは芳香族炭化水素の少なくとも一方の製造方法 | |
JP7295615B2 (ja) | 揮発性有機物質用触媒構造体及びその製造方法ならびに揮発性有機物質除去装置 | |
JP7316766B2 (ja) | N2o分解用触媒構造体及びその製造方法、並びに該n2o分解用触媒構造体を有するn2o除去装置 | |
JP2018202408A (ja) | NOx分解触媒構造体及びその製造方法、ならびに、NOx処理装置及び触媒成形体 | |
JP2018202396A (ja) | アルカンの脱水素化触媒構造体及びその製造方法、並びに該脱水素化触媒構造体を有するアルケン製造装置 | |
JP2018202406A (ja) | Voc酸化触媒構造体及びその製造方法、ならびに、voc処理装置及び触媒成形体 | |
JP7295616B2 (ja) | 揮発性有機物質用触媒構造体及びその製造方法ならびに揮発性有機物質除去装置 | |
JP7327910B2 (ja) | Co処理用触媒構造体及びその製造方法、並びに該co処理用触媒構造体を有するco処理装置 | |
JP2018202402A (ja) | 自動車用還元触媒構造体及びその製造方法、ならびに、自動車用排気ガス処理装置及び触媒成形体 | |
JP7327909B2 (ja) | No分解触媒構造体、no分解処理装置及びno分解触媒構造体の製造方法 | |
JP2018202387A (ja) | 機能性構造体およびその製造方法 | |
WO2018221705A1 (ja) | 水素化分解用触媒構造体、その水素化分解用触媒構造体を備える水素化分解装置及び水素化分解用触媒構造体の製造方法 | |
JP2018202400A (ja) | 自動車用還元触媒構造体及びその製造方法ならびに自動車の排気ガス処理装置 | |
JP2018202412A (ja) | 有機ハイドライドの脱水素化触媒構造体及びその製造方法、並びに該脱水素化触媒構造体を有する水素製造装置 | |
JP2018202386A (ja) | 機能性構造体及び機能性構造体の製造方法 | |
JP2020089810A (ja) | 機能性構造体及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18810207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019521320 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018810207 Country of ref document: EP Effective date: 20200102 |
|
ENP | Entry into the national phase |
Ref document number: 2018276618 Country of ref document: AU Date of ref document: 20180531 Kind code of ref document: A |