+

WO2018134972A1 - Photocatalyst coating set - Google Patents

Photocatalyst coating set Download PDF

Info

Publication number
WO2018134972A1
WO2018134972A1 PCT/JP2017/001956 JP2017001956W WO2018134972A1 WO 2018134972 A1 WO2018134972 A1 WO 2018134972A1 JP 2017001956 W JP2017001956 W JP 2017001956W WO 2018134972 A1 WO2018134972 A1 WO 2018134972A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
compound
group
protective layer
coating
Prior art date
Application number
PCT/JP2017/001956
Other languages
French (fr)
Japanese (ja)
Inventor
正比呂 伊藤
Original Assignee
サンスター技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンスター技研株式会社 filed Critical サンスター技研株式会社
Priority to PCT/JP2017/001956 priority Critical patent/WO2018134972A1/en
Priority to CN201780082653.0A priority patent/CN110168033B/en
Publication of WO2018134972A1 publication Critical patent/WO2018134972A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy

Definitions

  • the present invention relates to a photocatalyst coating set for supporting a photocatalytic substance on a substrate, a photocatalyst coating film, and a photocatalyst carrier.
  • Photocatalytic substances such as zinc oxide (ZnO) and cadmium sulfide (CdS) are known.
  • titanium oxide is a cheap and safe material that is widely used as a white pigment and ultraviolet absorber as a raw material for paints, cosmetics, etc., and is also recognized as a food additive.
  • the coating film containing the photocatalytic substance has functions such as antifouling, antibacterial, antifungal, deodorizing, and air purification.
  • the coating film can be obtained by directly applying a photocatalyst coating containing an inorganic binder such as titanium dioxide sol or alkali silicate to the substrate and then heat-treating it.
  • an adhesive layer or a protective layer between the substrate and the coating film containing the photocatalytic substance.
  • Patent Documents 1 to 4, etc. Techniques for forming an organic layer to protect a substrate from photocatalytic activity are known (Patent Documents 1 to 4, etc.). Generally, a silicon compound, colloidal silica, or the like is used for the photocatalyst paint and the adhesive layer or the protective layer.
  • the photocatalyst coating surface is touched with a finger
  • the photocatalytic substance adheres to the finger, or even if the photocatalyst material does not peel off with the finger touch
  • the adhesive tape is attached to the photocatalyst coating surface and then peeled off. Since there were cases where a large amount of photocatalytic substance adhered to the adhesive layer of the tape and peeled off, it was found that the photocatalyst coating technology does not necessarily provide sufficient adhesion of the photocatalyst to the substrate.
  • the adhesive is coated around the photocatalyst, reducing the hydrophilization phenomenon and antibacterial performance. There is a problem that the antiviral performance is significantly reduced.
  • an object of the present invention is to provide a set capable of performing coating of a photocatalytic substance exhibiting excellent adhesion to various substrates. Another object of the present invention is to provide a set that can be coated with a photocatalytic substance excellent in antibacterial performance and antiviral properties in addition to the adhesiveness. Another object of the present invention is to provide a photocatalyst laminate coating film formed using the set, a photocatalyst carrier excellent in adhesion to a substrate, a photocatalyst laminate coating film formed using the set, And the photocatalyst carrier excellent in the adhesiveness to a base material is provided.
  • the gist of the present invention is as follows.
  • a set for photocatalyst coating comprising a photocatalyst layer forming composition containing a titanium oxide photocatalyst and an organic titanium compound, and a protective layer forming composition containing a hydrolyzable group-containing compound or a polymer thereof.
  • the protective layer forming composition contains an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or a reaction product of the acrylic polymer and a hydrolyzable group-containing compound
  • the organic titanium compound comprises an alkoxy titanate compound, a titanium chelate compound, or the alkoxy titanate compound and the titanium chelate compound having a phosphate group, a phosphate ester group, an amino group, an amide group, a lactic acid group or a stearyl group.
  • the isocyanate-modified alkoxysilane compound is one or more compounds selected from the group consisting of a reaction product of isocyanate and mercaptoalkoxysilane or aminoalkoxysilane and a polymer thereof.
  • a set for photocatalyst coating according to the above. [10] The photocatalyst coating set according to any one of [1] to [9], wherein the protective layer forming composition contains a hydrophilic or non-hydrophilic organic solvent.
  • the total solid content of the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and the reaction product of the acrylic polymer and the hydrolyzable group-containing compound in the protective layer forming composition is 3 to 40% by weight. %,
  • a protective layer is formed on the surface of a substrate using the protective layer-forming composition, and the photocatalyst layer-forming composition is formed on the surface of the protective layer. Since the layer is formed, the surface of the base material can be protected from the photocatalytic ability as compared with the case where the photocatalytic layer is directly formed on the surface of the base material. Moreover, by using a specific resin for each of the protective layer and the photocatalyst layer, the adhesiveness between the protective layer and the photocatalyst layer in the photocatalyst coating film formed is remarkably improved.
  • the photocatalytic substance does not easily peel off even if it is touched with a finger or is peeled off with an adhesive tape.
  • the present invention facilitates the movement of electrons by bonding photocatalytic substance particles (hereinafter also referred to as photocatalyst particles) using an organic titanium compound having high electrical conductivity.
  • photocatalyst particles By using a material that does not hinder movement, the balance between film-forming properties (adhesiveness), antibacterial properties, antiviral properties, and hydrophilic properties is excellent. Therefore, using the photocatalyst coating set according to the present invention, a photocatalyst carrier formed by forming a photocatalyst coating film on the surface of various members such as a member used in a living environment has no harmful substances on these substrates.
  • the photocatalyst carrier can be used in a wide range of applications by being bonded to various members with an adhesive, a pressure-sensitive adhesive, or heat lamination as required, as well as being used alone.
  • a set for photocatalyst coating according to the present invention contains a composition for forming a photocatalyst layer containing a titanium oxide photocatalyst and an organic titanium compound, and a hydrolyzable group-containing compound or a polymer thereof. And a composition for forming a protective layer.
  • the composition for forming a photocatalyst layer is a composition for forming a layer containing a photocatalyst (photocatalyst layer) on the surface of the protective layer.
  • the titanium oxide photocatalyst contained in the photocatalyst layer forming composition may be any titanium oxide photocatalyst having ultraviolet responsiveness or visible light responsiveness.
  • the titanium oxide of the titanium oxide photocatalyst may be completely crystalline or may contain imperfect crystalline, that is, amorphous.
  • the crystal form of titanium oxide may be a single phase of anatase, rutile, or brookite, and two or more of these may be mixed.
  • it is preferable that a titanium oxide is an anatase single phase, a rutile single phase, or these mixed phases.
  • titanium oxide-based photocatalyst examples include anatase-type and rutile-type crystalline titanium dioxide, crystalline titanium dioxide carrying a metal such as platinum, copper, and iron, peroxotitanium, peroxotitanic acid, and titanate metal. Salt.
  • a metal such as platinum, copper, and iron
  • peroxotitanium peroxotitanic acid
  • titanate metal. Salt can be used in the form of a powder or a dispersion of powder, particularly a dispersion using water or ethanol as a dispersion medium.
  • the powder those having a primary particle diameter determined by an electron microscope (SEM, TEM) in the range of 10 to 500 nm are preferably used.
  • titanium oxide photocatalyst powder or dispersion Commercially available materials for the titanium oxide photocatalyst powder or dispersion include ST-21, ST-41, STS-21, MPT-623 (all trade names) manufactured by Ishihara Sangyo Co., Ltd., Showa Denko FP6 , Lumiresh (registered trademark) series and the like.
  • the content of the titanium oxide photocatalyst in the composition for forming a photocatalyst layer is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight, from the viewpoint of efficiently exhibiting photocatalytic activity.
  • the organic titanium compound contained in the photocatalyst layer forming composition refers to a titanium compound containing an organic group, and examples thereof include a titanium alkoxide compound, a titanium chelate compound, a titanium acylate compound, and a titanium oligomer compound.
  • titanium alkoxide compound examples include: General formula (1): Ti (OR 1 ) 4 (1) [Wherein, R 1 independently represents the same or different alkyl group. ] The thing represented by is mentioned.
  • Examples of the alkyl group represented by R 1 in the general formula (1) include those having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl. Group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group and the like.
  • titanium alkoxide compound represented by the general formula (1) examples include tetramethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, tetraisopropyl titanate, tetrabutoxy titanate, tetranormal butyl titanate, and tetraoctyl titanate. It can.
  • "Orgatics" series by Matsumoto Fine Chemical Co., Ltd., etc. are mentioned.
  • the titanium alkoxide compound may be an alkoxy titanate compound having a phosphate group, a phosphate ester group, an amino group, an amide group, a lactic acid group or a stearic acid group.
  • examples of commercially available titanium alkoxide compounds having such groups include titanate coupling agents “Plenact” series manufactured by Ajinomoto Fine Techno Co., Ltd., and the like.
  • the titanium chelate compound may be a titanium compound containing a chelating agent capable of coordinating with a titanium atom.
  • a chelating agent capable of coordinating with a titanium atom.
  • phthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid Hydroxy polyvalent carboxylic acids such as polyvalent carboxylic acid, malic acid, citric acid, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethyliminodipropionic acid, diethylenetriaminopentaacetic acid, triethylenetetraminohexaacetic acid, imino
  • Nitrogen-containing polyvalent carboxylic acids such as diacetic acid, iminodipropionic acid, hydroxyethyliminodiacetic acid, hydroxyethyliminodipropionic acid, and methoxyethyliminodiacetic acid.
  • the titanium acylate compound is a titanium compound whose substituent is an acylate group.
  • acylate groups include tetraacylate groups such as lactate and stearate, phthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacine Polycarboxylic acid compounds such as acid, maleic acid, fumaric acid, cyclohexanedicarboxylic acid or their anhydrides, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethyliminodipropionic acid, diethylenetriaminopentaacetic acid And nitrogen-containing polycarboxylic acids such as triethylenetetraminohexaacetic acid, iminodiacetic acid, iminodipropionic acid, hydroxyethyliminodiac
  • amino group examples include aniline, phenylamine, diphenylamine, and the like. At least one selected from these compounds is preferable, and any one or two is more preferable. Further, diisopropoxybisacetylacetone and triethanolaminate isopropoxide containing two kinds of these substituents may be mentioned.
  • the alkoxy group and acylate group are preferably aliphatic from the viewpoint of polymerization activity.
  • titanium acylate compound examples include titanium isostearate.
  • the "Orga Tix" series by Matsumoto Fine Chemical Co., Ltd., etc. are mentioned.
  • the organic titanium compound may be one obtained by oligomerizing one or more compounds selected from the group consisting of the titanium alkoxide compound, the alkoxy titanate compound, and the titanium acylate compound. Specifically, an oligomer formed by reacting the one or more compounds may be used.
  • organic titanium compounds can be used alone or in admixture of two or more.
  • the content of the organic titanium compound in the composition for forming a photocatalyst layer is preferably 0.01 to 30% by weight, and preferably 0.01 to 10% by weight, from the viewpoint of hydrophilicity and antibacterial / antiviral performance.
  • Examples of the solvent for the photocatalyst layer forming composition include water, an organic solvent, and a water-containing organic solvent.
  • Examples of the organic solvent include methanol, ethanol, isopropyl alcohol, and the like.
  • the ratio of water to the organic solvent in the water-containing organic solvent is not particularly limited. Among these, water is preferable as the solvent from the viewpoint of improving the dispersibility of the photocatalyst.
  • the content of the solvent in the composition for forming a photocatalyst layer is preferably 50 to 95% by weight, more preferably 70 to 95% by weight from the viewpoints of improving the dispersibility of the photocatalyst and drying properties. .
  • composition for forming a photocatalyst layer contains optional components such as a silicon compound, a reactive silicon compound, colloidal silica, aluminum, a zirconium alkoxysilane compound, a filler, an adhesive, and a dispersant, as necessary. Also good.
  • the composition for forming a photocatalyst layer can be prepared by mixing the titanium oxide photocatalyst, the organic titanium compound, a solvent, and optionally the optional components.
  • the photocatalyst layer forming composition is heated at a predetermined temperature to react with the titanium alkoxide compound, the alkoxy titanate compound, the titanium acylate compound, etc. contained as an organic titanium compound to oligomerize. You may let them.
  • the composition for forming a protective layer is a composition that is adhered to a photocatalyst layer and forms a protective layer between the photocatalyst layer and the base material to prevent deterioration of the base material due to photocatalytic activity.
  • the protective layer-forming composition contains a hydrolyzable group-containing compound or a polymer thereof.
  • hydrolyzable group in the hydrolyzable group-containing compound examples include an alkoxy group, a ketoxime group, an alkenyloxy group, an aryloxy group, a mercapto group, an acyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen.
  • alkoxy groups, alkenyloxy groups, acyloxy groups, and halogens are preferable because of their high activity, and alkoxy groups such as methoxy groups and ethoxy groups are more preferable because they are mildly hydrolyzable and easy to handle. .
  • hydrolyzable group-containing compound examples include an isocyanate-modified alkoxysilane compound, an amino-modified alkoxysilane compound, and a mercapto-modified alkoxysilane compound.
  • isocyanate-modified alkoxysilane compounds are preferred from the viewpoint of mild hydrolyzability and easy handling.
  • the isocyanate-modified alkoxysilane compound refers to a reaction product of isocyanate and alkoxysilane.
  • the isocyanate is not particularly limited as long as it is a crosslinking agent containing an isocyanate group, and examples thereof include non-yellowing or non-yellowing polyisocyanate, aliphatic isocyanate, and alicyclic isocyanate.
  • non-yellowing or non-yellowing polyisocyanate include aromatic polyisocyanates such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and tolidine diisocyanate, and commercially available products include Mitsui Chemicals, Inc. “XDI system”, “IPDI system”, “HDI system” and the like manufactured by the company can be mentioned.
  • Aliphatic isocyanates include trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, 2-methyl- 1,5-pentamethylene diisocyanate (MPDI) and the like, and commercially available products include “Takenate” series manufactured by Mitsui Chemicals, Inc.
  • Cycloaliphatic isocyanates include isophorone diisocyanate (IPDI), hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane.
  • IPDI isophorone diisocyanate
  • hydrogenated tolylene diisocyanate hydrogenated tolylene diisocyanate
  • xylylene diisocyanate hydrogenated diphenylmethane diisocyanate
  • 1,3-cyclopentane diisocyanate 1,4-cyclohexane diisocyanate
  • 1,3-cyclohexane 1,3-cyclohexane.
  • Examples thereof include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexan
  • alkoxysilane used in the isocyanate-modified alkoxysilane compound examples include mercaptoalkoxylanes having a mercapto group, such as ⁇ -mercaptopropylmethyldiethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -Mercaptopropyltriethoxysilane and the like; aminoalkoxysilanes having primary and secondary amino groups, such as ⁇ -aminopropylmethyldiethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ - Aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl) -N ′-( ⁇ -trimethoxysilylpropyl) -ethylenediamine, N- ( ⁇ -aminoe
  • the degree of polymerization of the polymer of the isocyanate-modified alkoxysilane compounds is not particularly limited.
  • the isocyanate-modified alkoxysilane compound or polymer thereof is one or more selected from the group consisting of a reaction product of isocyanate and mercaptoalkoxysilane or aminoalkoxysilane and a polymer thereof from the viewpoint of weather resistance and radical resistance.
  • a compound is preferred.
  • the protective layer-forming composition may further contain an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or a reaction product of the acrylic polymer and a hydrolyzable group-containing compound.
  • an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or a reaction product of the acrylic polymer and a hydrolyzable group-containing compound By containing these compounds, there is an advantage that weather resistance, radical resistance and the like are improved.
  • the acrylic polymer is a polymer of acrylic acid ester or methacrylic acid ester, and may be any one used for a coating agent.
  • the number average molecular weight of the acrylic polymer is from 20,000 to 5,000,000, preferably from 20,000 to 500,000, more preferably from 50,000 to 300,000 from the viewpoints of workability and film formability.
  • acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 a commercially available product can be used.
  • “Dianar BR” series manufactured by Mitsubishi Rayon Co., Ltd. can be used.
  • the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and an alkoxy group-containing silane coupling agent are reacted in an organic solvent. Things.
  • the alkoxy group-containing silane coupling agent include acrylic silanes, aminosilanes, epoxy silanes, isocyanate silanes, and mercaptosilanes.
  • the degree of the reaction is not particularly limited as long as it is a partial reaction.
  • the hydrolyzable group-containing compound, the polymer thereof, the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000, and the reaction product of the acrylic polymer and the hydrolyzable group-containing compound in the protective layer forming composition The total solid content is preferably 3 to 40% by weight, more preferably 3 to 20% by weight from the viewpoint of antibacterial / antiviral properties and film-forming properties.
  • Examples of the solvent for the protective layer forming composition include hydrophilic or non-hydrophilic organic solvents.
  • Examples of the hydrophilic organic solvent include alcohol-based organic solvents.
  • Examples of the non-hydrophilic organic solvent include ethyl acetate and butyl acetate.
  • the content of the solvent in the protective layer forming composition is preferably 70 to 95% by weight from the viewpoint of workability.
  • the protective layer forming composition may contain optional components such as a silane coupling agent and a dispersing agent, if necessary.
  • the protective layer-forming composition comprises the hydrolyzable group-containing compound or polymer thereof, and, if necessary, an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or hydrolyzable with the acrylic polymer. It can be prepared by mixing a reaction product with a group-containing compound and further the optional component in the solvent. Among these, from the viewpoint of workability, the photocatalyst layer forming composition is preferably a dispersion.
  • the amounts of the photocatalyst layer forming composition and the protective layer forming composition in the set of the present invention are appropriately determined according to the surface area of the substrate for forming the coating film and the desired thickness of each layer. There is no particular limitation.
  • the photocatalyst laminated coating film according to the present invention is a coating film formed using the photocatalyst coating set, and is formed on the protective layer formed of the protective layer forming composition and the protective layer. And a photocatalyst layer comprising the photocatalyst layer forming composition.
  • the photocatalyst layer forming composition As a method of forming the photocatalyst multilayer coating film, after forming the protective layer forming composition contained in the set into a thin film, the photocatalyst layer forming composition is applied to the surface, dried and reacted. Thus, an integral coating film having a protective layer and a photocatalyst layer can be formed.
  • the protective layer forming composition When the protective layer forming composition is formed into a thin film, for example, the protective layer forming composition may be applied to the surface of the substrate until a predetermined thickness is reached.
  • a base material what consists of a synthetic resin film, a synthetic resin sheet, glass, a woven fabric, a nonwoven fabric, paper, a plastic, a stone, a metal, a ceramic tile, a gypsum board, wood etc. can be employ
  • a known method such as air spray, brush, or roll can be used.
  • the photocatalyst composition in the photocatalyst layer and the protective layer composition in the protective layer are preferably cured.
  • the curing reaction may be carried out at 20 to 80 ° C., preferably 20 to 40 ° C., for 0.1 to 24 hours, preferably 0.5 to 24 hours.
  • the photocatalyst carrier according to the present invention is a photocatalyst carrier on which the photocatalyst laminated coating film is formed on the surface of a substrate.
  • a photocatalyst carrier obtained by coating a photocatalyst on the surface of a substrate using the photocatalyst coating set, The protective layer-forming composition is attached to the surface of the base material, and the photocatalyst layer-forming composition is attached to the surface of the protective layer-forming composition, followed by a curing reaction. It is a photocatalyst carrier.
  • a material made of synthetic resin film, synthetic resin sheet, glass, woven fabric, non-woven fabric, paper, plastic, stone, metal, ceramic tile, gypsum board, wood, etc. can be suitably employed.
  • a known method such as air spray, brush, roll, or the like can be used.
  • the protective layer-forming composition adhered to the substrate surface as described above can be dried to form a protective layer.
  • drying conditions it is sufficient that the solvent disappears to such an extent that the composition for forming a protective layer does not flow.
  • the drying may be performed at 20 to 40 ° C.
  • a known method such as an air spray, a brush, or a roll can be used.
  • Examples of methods for curing the photocatalyst-forming composition include moisture curing and wet heat curing.
  • the photocatalyst carrier obtained as described above is not only used alone, but can be developed for a wide range of applications by being bonded to various members by an adhesive, a pressure-sensitive adhesive, heat lamination, or the like as required.
  • the present invention will be described in more detail with reference to the following examples. However, the examples do not define the scope of the present invention.
  • Example 1 Ultraviolet light type 1
  • a titanate coupling agent “Plenact 44” was added to 200 g (concentration 10%) of an aqueous dispersion of ultraviolet light titanium oxide “ST-21” (primary particle diameter 20 nm as measured by electron microscope (SEM, TEM), manufactured by Ishihara Sangyo Co., Ltd.). 1 g (manufactured by Ajinomoto Fine Techno Co., Ltd.) was added and mixed uniformly.
  • 0.5 g of a titanium chelate compound “Orgatics TC-310” titanium lactate, manufactured by Matsumoto Fine Chemical Co., Ltd.
  • the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a portion of the alkoxy titanate was reacted and partially oligomerized to prepare a photocatalyst dispersion (photocatalyst layer forming composition).
  • a protective agent was prepared by the following procedure.
  • Mercaptoalkoxysilane “KBM803” (3-mercaptopropyltrimethoxysilane, Shin-Etsu Chemical) to 10 g of trimethylolpropane hydrogenated XDI compound (“Takenate (registered trademark) D-120N” manufactured by Mitsui Chemicals, Inc.), which is an aliphatic isocyanate compound 8 g of Kogyo Co., Ltd. was reacted in a 200 g solution of ethyl acetate at 80 ° C. for 24 hours. The reaction was completed when the NCO% disappeared.
  • epoxy silane “KBM402” (3-glycidoxypropylmethyldiethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the reaction solution.
  • a 10% ethyl acetate solution and an acrylic alkoxy partial reactant solution (acrylic silane “KBM503”) of an acrylic resin “Dyanal (registered trademark) BR80” (manufactured by Mitsubishi Rayon Co., Ltd., weight average molecular weight 95,000) previously dissolved and partially reacted.
  • a test body on which a coating film containing a photocatalyst was formed was prepared by the following procedure.
  • a protective agent was applied uniformly with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid was applied on the air spray gun.
  • the film was applied uniformly at 50 ° C. and dried and reacted for 24 hours to form a film.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the performance evaluation of the photocatalytic ability of the obtained specimen under ultraviolet irradiation was performed according to the following procedure. Ultraviolet irradiation was performed for 4 hours with a metal halide lamp of 80 mw / cm 2 , and the contact angle after 10 seconds was measured with a contact angle tester manufactured by Kyowa Interface Science. As a result of the test, it was found that the contact angle was 10 ° or less, which was applicable to antifouling properties and antifogging properties and was at a practical level.
  • finger touch and tape peeling were performed.
  • finger touch when the photocatalyst coating surface of the test body was pressed with the whole hand, the photocatalyst particles were not attached to the hand.
  • a test was performed to peel the tape so that the tape angle was 90 ° or more. Was not recognized, and it was found that the adhesive strength was at a practical level.
  • Example 2 Ultraviolet light type 2
  • 0.5 g of titanate coupling agent “Plenact 46B” manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • titanium chelate compound “Orgatyx TC-401” triethanol
  • the obtained dispersion was left in an oven at 50 ° C. for 3 days, and a part of alkoxytitanate was reacted to be oligomerized to prepare a photocatalyst dispersion.
  • a protective agent was prepared by the following procedure.
  • Mercaptoalkoxysilane “KBM802” (3-mercaptopropylmethyldimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 8 g is added to 10 g of trimethylolpropane hydrogenated XDI compound, which is an aliphatic isocyanate compound, at 80 ° C. for 24 hours, 200 g of ethyl acetate solution Reacted in.
  • epoxy silane “KBM403” (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) was added.
  • a test body on which a coating film containing a photocatalyst was formed was prepared by the following procedure. Apply a protective agent on a 100 ⁇ m thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun.
  • the film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
  • the contact angle was 10 ° or less, which was a practical level applicable to antifouling properties and antifogging properties.
  • film formability when the photocatalyst particles are not attached to the hand and a transparent cellophane tape is attached to the surface and then peeled so that the tape has an angle of 90 ° or more, a tape adhesion is performed. It was found that the photocatalyst particles were not noticeably adhered to the surface (which could be visually confirmed), and the adhesive strength was at a practical level.
  • Example 3 Ultraviolet light type 3
  • TiO 2 titanium chelate compound
  • ST-21 aqueous dispersion of UV light titanium oxide
  • TiO 2 titanium chelate compound
  • dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to prepare a photocatalyst dispersion.
  • a protective agent was prepared by the following procedure. 10 g of a trimethylolpropane IPDI compound (“Takenate (registered trademark) D140N” manufactured by Mitsui Chemicals), which is an aliphatic isocyanate compound, was reacted with 8 g of mercaptoalkoxysilane “KBM803” at 80 ° C. for 24 hours in a 200 g solution of ethyl acetate. Further, 1 g of epoxy silane “KBM403” was added.
  • a test body on which a coating film containing a photocatalyst was formed was prepared by the following procedure. Apply a protective agent on a 100 ⁇ m thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun.
  • the film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
  • the contact angle was 10 ° or less, which was a practical level applicable to antifouling properties and antifogging properties.
  • the photocatalyst particles are not attached to the hand, and in a test where the transparent cellophane tape is attached to the surface and then peeled so that the tape angle is 90 ° or more, the photocatalyst is applied to the tape adhesive surface. No noticeable particle adhesion (which can be visually confirmed) was observed, and it was found that the adhesion strength was at a practical level.
  • the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures. Apply a protective agent on a 100 ⁇ m thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun.
  • the film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1. As a test result, it was confirmed that the contact angle was 60 °, which was not applicable to antifouling properties and antifogging properties, and was not at a practical level. On the other hand, with regard to film formability, photocatalyst particles are not attached to the hand, and in a test in which a transparent cellophane tape is attached to the surface and peeled at 90 ° or more, the photocatalyst particles are noticeable on the tape adhesive surface (confirmed visually). It was found that it was at a practical level.
  • the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 2 was produced in the following procedures. Apply a protective agent on a 100 ⁇ m thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun.
  • the film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
  • the contact angle was 30 °, which was not applicable to antifouling properties and antifogging properties and was not at a practical level.
  • the photocatalyst particles were attached to the hand in terms of finger touch.
  • the adhesion of the photocatalyst particles (which can be visually confirmed) was recognized on the tape adhesive surface, and it was confirmed that the adhesive strength was not at a practical level.
  • Example 3 Ultraviolet light type 6
  • An aqueous dispersion 200 g of ultraviolet light titanium oxide “ST-21” was prepared.
  • the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures. Apply a protective agent on a 100 ⁇ m thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion liquid uniform with an air spray gun. It was applied, dried at 50 ° C. for 24 hours, and cured to form a film.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m
  • the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • Table 1 shows the results relating to contact angles, tape peelability, and finger touch in Examples 1 to 3 and Comparative Examples 1 to 3.
  • the evaluation criteria for tape peelability and finger touch are as follows.
  • the adhesion rate is less than 50% of the release tape surface.
  • X The photocatalytic material can be visually confirmed on the tape peeling surface. Adhesion rate is 50% or more of the release tape surface.
  • Finger touch A: Almost no photocatalytic material can be visually confirmed on the finger.
  • the adhesion area is 70% or more.
  • the coating films prepared in Examples 1 to 3 all exhibited excellent photocatalytic activity because the contact angle was 10 ° or less, and the coating surface was pointed to the surface. It does not peel off only by touching with, and even when an adhesive tape is attached, the photocatalyst cannot be visually confirmed to peel off, which indicates that the adhesive strength of the photocatalyst is high.
  • Example 4 Visible light type 1
  • 1 g of titanate compound “Plenact 44” was added to 200 g of an aqueous dispersion of copper-supported visible light responsive photocatalyst “Lumiresh (registered trademark)” (manufactured by Showa Denko KK), and then mixed with titanium chelate compound “OrgaTix TC”. -310 "0.5 g was dispersed. Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to obtain a photocatalyst dispersion.
  • a protective agent was prepared by the following procedure. Trimethylolpropane hydrogenated XDI compound “Takenate (registered trademark) D-120N” was reacted with 10 g of mercaptoalkoxysilane “KBM803” 8 g at 80 ° C. for 24 hours in a 200 g ethyl acetate solution. The reaction was completed when the NCO% disappeared. Next, 0.5 g of epoxy silane “KBM402” was added to the reaction solution.
  • the test body which formed the coating film containing a photocatalyst using the said protective agent was produced in the following procedures.
  • a protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 ⁇ m so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun.
  • a uniform coating was applied, followed by drying and curing reaction at 50 ° C. for 24 hours to form a film.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • Antibacterial and antiviral performance was evaluated for the photocatalytic ability of the obtained specimen under visible light irradiation.
  • the antibacterial / antiviral performance was evaluated according to JIS R 1702, 1756. Specifically, the fluorescent lamp illuminance was 1000 LUX (sharp cut of 400 nm or less), the bacteria were irradiated for 8 hours, and the viruses were 4 hours.
  • Multidrug-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRP) were used as test bacteria, and bacterial phage QB and bacterial phage ⁇ 6 were used as test viruses.
  • the measured antibacterial activity value and antiviral activity value both indicate that the higher the value, the stronger the activity.
  • the antibacterial activity value is 3 to 4 and the antiviral activity value is 4 to 5, exceeding the normally required “2” (99% bacteria, killing the virus) and having high antibacterial and antibacterial properties.
  • the virus performance was confirmed to be at a practical level.
  • the adhesive strength of the photocatalyst in the obtained test body was evaluated in the same manner as in Example 1, the photocatalyst particles were not attached to the hand in terms of finger touch, and a transparent cellophane tape was attached to the surface and peeled at 90 ° or more. In the test, the photocatalyst particles were not noticeably adhered (which can be visually confirmed) on the tape adhesive surface, and the adhesive strength was found to be at a practical level.
  • Example 5 Visible light type 2
  • aqueous dispersion of a copper-supported visible light responsive photocatalyst “Lumireche (registered trademark) 0.5 g of a titanate coupling agent “Plenact 46B” and 0.5 g of a titanium chelate compound “Orgatyx TC-410” were added. Uniformly mixed into a dispersion. Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to prepare a photocatalyst dispersion.
  • a protective agent was prepared by the following procedure. 10 g of trimethylolpropane hydrogenated XDI compound “Takenate (registered trademark) D-120N” was reacted with 8 g of mercaptoalkoxysilane “KBM802” at 80 ° C. for 24 hours in a solution of 200 g of ethyl acetate. Furthermore, 10% ethyl acetate solution and acrylic alkoxy partial reactant solution (acrylic silane “KBM503” 0.5 g) of acrylic resin “Dyanal (registered trademark) BR85” in which 0.5 g of epoxy silane “KBM403” was previously dissolved and partially reacted. 40 g of each was reacted with a 10% ethyl acetate acrylic resin solution at 50 ° C. for 24 hours to complete the protective agent.
  • the test body which formed the coating film containing a photocatalyst using the said protective agent was produced in the following procedures.
  • a protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 ⁇ m so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun.
  • a uniform coating was applied, followed by drying and curing reaction at 50 ° C. for 24 hours to form a film.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the antibacterial activity value is 3 to 4 and the antiviral activity value is 4 to 5, exceeding the normally required “2” (99% of bacteria and viruses are killed), and high antibacterial and antiviral performance It was confirmed that it was a practical level.
  • the photocatalyst particles are not attached to the hand, and in the test in which a transparent cellophane tape is attached to the surface and peeled at 90 ° or more, the photocatalyst particles are noticeably adhered (which can be visually confirmed) to the tape adhesive surface. In other words, it was found that the adhesive strength was at a practical level.
  • Example 6 visible light type 3
  • a copper-supported visible light responsive photocatalyst “Lumireche (registered trademark)”
  • a titanate compound titanate compound “Plenact 44” was added and mixed uniformly, and then a titanium chelate compound “Orgatics TC-310” 0.5 g was added to form a dispersion.
  • the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to prepare a photocatalyst dispersion.
  • a protective agent was prepared by the following procedure. 10 g of trimethylolpropane IPDI compound “Takenate (registered trademark) D140N” was reacted with 8 g of mercaptoalkoxysilane “KBM803” at 80 ° C. for 24 hours in a solution of 200 g of ethyl acetate. Further, 1 g of epoxy silane “KBM403” was added. 10% ethyl acetate solution of acrylic resin “Dyanal (registered trademark) BR85” previously dissolved and partially reacted and 0.5 g of acrylic alkoxy partial reaction product (acrylic silane “KBM503”) in 10% ethyl acetate acrylic resin solution at 50 ° C. For 24 hours) 40 g of each solution was added to the reaction solution to complete the protective agent.
  • the test body which formed the coating film containing a photocatalyst using the said protective agent was produced in the following procedures.
  • a protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 ⁇ m so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun. It was applied so as to be uniform, and dried and cured at 50 ° C. for 24 hours.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the antibacterial activity value is 3-4, and the antiviral activity value is 4-5, which exceeds 2 (99% of bacteria and viruses are killed) which is normally required, and has high antibacterial and antiviral performance. Confirmed that the level.
  • the photocatalyst particles are not attached to the hand, and in the test in which a transparent cellophane tape is attached to the surface and peeled at 90 ° or more, the photocatalyst particles are noticeably adhered (which can be visually confirmed) to the tape adhesive surface. It was found that the adhesive strength was at a practical level.
  • the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures. Apply a protective agent on a 100 ⁇ m thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun.
  • the film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m, and the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • Example 6 visible light type 6
  • An aqueous dispersion 200 g of Showa Denko copper-supported visible light responsive photocatalyst “Lumiresh (registered trademark)” was prepared.
  • the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures.
  • a protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 ⁇ m so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun.
  • a uniform coating was applied, followed by drying and curing reaction at 50 ° C. for 24 hours to form a film.
  • the thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 ⁇ m
  • the thickness of the photocatalyst layer formed on the protective layer was about 1 ⁇ m.
  • the photocatalytic ability and adhesive strength of the photocatalyst under visible light irradiation of the obtained specimen were evaluated in the same manner as in Example 4. As a result, it was found that the antibacterial / antiviral performance was high in antibacterial activity, but the film forming property was not at a practical level in terms of tape peeling and finger touch.
  • Table 2 shows the evaluation results regarding antibacterial activity, antiviral activity, tape peelability, and finger touch in Examples 4 to 6 and Comparative Examples 4, 5, and 6.
  • the coating films prepared in Examples 4 to 6 have high antibacterial activity and antiviral activity, and the photocatalyst does not peel off even when touched with a finger or attached with an adhesive tape. Therefore, it turns out that it is the thing excellent in the adhesive strength of a photocatalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

This photocatalyst coating set comprises: a photocatalyst layer forming composition that includes a titanium oxide photocatalyst and an organic titanium compound; and a protective layer forming composition that includes a hydrolyzable group-containing compound or a polymer thereof. The present invention enables coating of a photocatalytic substance that exhibits excellent adhesiveness to various substrates. Moreover, the present invention enables coating of a photocatalytic substance that has excellent antibacterial and antiviral properties in addition to adhesiveness.

Description

光触媒コーティング用セットPhotocatalyst coating set

 本発明は、光触媒物質を基材に担持させる光触媒コーティング用のセット、光触媒塗膜及び光触媒担持体に関する。 The present invention relates to a photocatalyst coating set for supporting a photocatalytic substance on a substrate, a photocatalyst coating film, and a photocatalyst carrier.

 光を照射することで触媒として機能して、有害物質の除去、空気浄化、脱臭、浄水、殺菌、抗菌、防汚、防曇などの作用を奏する、酸化チタン(TiO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)などの光触媒物質が知られている。中でも、酸化チタンは白色顔料や紫外線吸収料としてペンキ、化粧品などの原料に広く使われ、食品添加物としても認められている安価で安全な材料である。 Titanium oxide (TiO 2 ), tungsten oxide (WO) that functions as a catalyst by irradiating light, and has effects such as removal of harmful substances, air purification, deodorization, water purification, sterilization, antibacterial, antifouling, and antifogging 3 ) Photocatalytic substances such as zinc oxide (ZnO) and cadmium sulfide (CdS) are known. Among them, titanium oxide is a cheap and safe material that is widely used as a white pigment and ultraviolet absorber as a raw material for paints, cosmetics, etc., and is also recognized as a food additive.

 前記光触媒物質を含んだ塗膜は、防汚、抗菌、防カビ、脱臭、大気浄化などの機能を有している。前記塗膜は、二酸化チタンゾルやアルカリシリケートなどの無機バインダーを含有した光触媒塗料を、基材に対して直接塗布した後、熱処理することによって得ることができる。しかしながら、前記塗膜が有する光触媒能は、塗膜の全方向に対して働くため、塗膜自身だけでなく塗膜が形成されている基材も影響を受け、劣化することがある。そこで、光触媒能から基材を保護すること、また、光触媒物質の接着性を向上することを目的として、基材と、光触媒物質を含んだ塗膜との間に、接着層又は保護層と呼ばれる有機層を形成して、光触媒能から基材を保護する技術が知られている(特許文献1~4など)。
 前記光触媒塗料及び接着層又は保護層には、一般的に、シリコン化合物やコロイダルシリカなどが使用されている。
The coating film containing the photocatalytic substance has functions such as antifouling, antibacterial, antifungal, deodorizing, and air purification. The coating film can be obtained by directly applying a photocatalyst coating containing an inorganic binder such as titanium dioxide sol or alkali silicate to the substrate and then heat-treating it. However, since the photocatalytic ability of the coating film works in all directions of the coating film, not only the coating film itself but also the substrate on which the coating film is formed may be affected and deteriorate. Therefore, for the purpose of protecting the substrate from the photocatalytic activity and improving the adhesiveness of the photocatalytic substance, it is called an adhesive layer or a protective layer between the substrate and the coating film containing the photocatalytic substance. Techniques for forming an organic layer to protect a substrate from photocatalytic activity are known (Patent Documents 1 to 4, etc.).
Generally, a silicon compound, colloidal silica, or the like is used for the photocatalyst paint and the adhesive layer or the protective layer.

特開2002-137322号公報JP 2002-137322 A 特開2001-323189号公報JP 2001-323189 A 特開2001-205102号公報JP 2001-205102 A 特開2000-280397号公報JP 2000-280397 A

 しかしながら、本発明者が検討したところ、例えば、光触媒のコーティング面を指触すると光触媒物質が指に付着したり、指触では剥離しない場合でも粘着テープを光触媒コーティング面に付着させた後に剥がすと、テープの粘着層に大量の光触媒物質が付着したまま剥離したりするケースがあったことから、従来の光触媒コーティング技術では光触媒の基材への接着性が必ずしも十分とはいえないことを見出した。また、光触媒物質の基材への接着性を強化するため、従来技術として公知の密着剤を多量に使用すると、光触媒周辺に密着剤がコートされるため、親水化現象が低減したり、抗菌性能や抗ウィルス性能が著しく低下してしまったりする課題があった。 However, when the present inventors examined, for example, when the photocatalyst coating surface is touched with a finger, the photocatalytic substance adheres to the finger, or even if the photocatalyst material does not peel off with the finger touch, the adhesive tape is attached to the photocatalyst coating surface and then peeled off. Since there were cases where a large amount of photocatalytic substance adhered to the adhesive layer of the tape and peeled off, it was found that the photocatalyst coating technology does not necessarily provide sufficient adhesion of the photocatalyst to the substrate. In addition, in order to enhance the adhesion of the photocatalytic substance to the base material, if a large amount of a known adhesive is used as the prior art, the adhesive is coated around the photocatalyst, reducing the hydrophilization phenomenon and antibacterial performance. There is a problem that the antiviral performance is significantly reduced.

 そこで、本発明の目的は、各種基材に対して優れた接着性を示す光触媒物質のコーティングを実施できるセットを提供することである。
 また、本発明の別の目的としては、前記接着性に加えて、抗菌性能や抗ウィルス性にも優れた光触媒物質のコーティングを実施できるセットを提供することである。
 また、本発明の別の目的は、前記セットを用いて形成される光触媒積層塗膜、及び基材への接着性に優れた光触媒担持体、前記セットを用いて形成される光触媒積層塗膜、及び基材への接着性に優れた光触媒担持体を提供することである。
Accordingly, an object of the present invention is to provide a set capable of performing coating of a photocatalytic substance exhibiting excellent adhesion to various substrates.
Another object of the present invention is to provide a set that can be coated with a photocatalytic substance excellent in antibacterial performance and antiviral properties in addition to the adhesiveness.
Another object of the present invention is to provide a photocatalyst laminate coating film formed using the set, a photocatalyst carrier excellent in adhesion to a substrate, a photocatalyst laminate coating film formed using the set, And the photocatalyst carrier excellent in the adhesiveness to a base material is provided.

 本発明の要旨は、以下のとおりである。
[1]酸化チタン系光触媒及び有機チタン化合物を含有する光触媒層形成用組成物と、加水分解性基含有化合物またはその重合体を含有する保護層形成用組成物とを含む光触媒コーティング用セット。
[2]さらに、前記保護層形成用組成物が数平均分子量2万~500万のアクリル重合体および/または前記アクリル重合体と加水分解性基含有化合物との反応物を含有する前記[1]に記載の光触媒コーティング用セット。
[3]前記有機チタン化合物がリン酸基、リン酸エステル基、アミノ基、アミド基、乳酸基もしくはステアリル基を有するアルコキシチタネート化合物、チタンキレート化合物、又は前記アルコキシチタネート化合物及び前記チタンキレート化合物からなる群より選ばれる1種以上の化合物をオリゴマー化したものである前記[1]または[2]に記載の光触媒コーティング用セット。
[4]前記加水分解性基含有化合物の加水分解性基がアルコキシ基である前記[1]~[3]のいずれかに記載の光触媒コーティング用セット。
[5]前記加水分解性基含有化合物がイソシアネート変性アルコキシシラン化合物である前記[1]~[4]のいずれかに記載の光触媒コーティング用セット。
[6]前記光触媒層形成用組成物が分散液である前記[1]~[5]のいずれかに記載の光触媒コーティング用セット。
[7]前記分散液が水又は有機溶媒を含有する前記[6]に記載の光触媒コーティング用セット。
[8]前記分散液中に前記有機チタン化合物が0.01~30重量%配合されている前記[6]または[7]に記載の光触媒コーティング用セット。
[9]前記イソシアネート変性アルコキシシラン化合物がイソシアネートとメルカプトアルコキシシラン又はアミノアルコキシシランとの反応物及びその重合体からなる群より選ばれる1種以上の化合物である前記[5]~[8]のいずれかに記載の光触媒コーティング用セット。
[10]前記保護層形成用組成物が親水性又は非親水性の有機溶媒を含有する前記[1]~[9]のいずれかに記載の光触媒コーティング用セット。
[11]前記保護層形成用組成物中の数平均分子量2万~500万のアクリル重合体および前記アクリル重合体と加水分解性基含有化合物との反応物の固形分の合計が3~40重量%である前記[10]に記載の光触媒コーティング用セット。
[12]前記酸化チタン系光触媒が一次粒子径10~500nmのアナターゼ型酸化チタン又はルチル型酸化チタンである前記[1]~[11]のいずれかに記載の光触媒コーティング用セット。
[13]前記[1]~[12]のいずれかに記載の光触媒コーティング用セットを用いて形成された塗膜であって、前記保護層形成用組成物からなる保護層、並びに、前記保護層上に形成された、前記光触媒層形成用組成物からなる光触媒層を備えていることを特徴とする光触媒積層塗膜。
[14]前記光触媒層中の前記光触媒形成用組成物と保護層中の前記保護層形成用組成物とが硬化されている前記[13]に記載の光触媒積層塗膜。  
[15]前記[13]または[14]に記載の光触媒積層塗膜が基材表面に形成された光触媒担持体。
The gist of the present invention is as follows.
[1] A set for photocatalyst coating comprising a photocatalyst layer forming composition containing a titanium oxide photocatalyst and an organic titanium compound, and a protective layer forming composition containing a hydrolyzable group-containing compound or a polymer thereof.
[2] Further, the protective layer forming composition contains an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or a reaction product of the acrylic polymer and a hydrolyzable group-containing compound [1] A set for photocatalyst coating described in 1.
[3] The organic titanium compound comprises an alkoxy titanate compound, a titanium chelate compound, or the alkoxy titanate compound and the titanium chelate compound having a phosphate group, a phosphate ester group, an amino group, an amide group, a lactic acid group or a stearyl group. The set for photocatalyst coating according to the above [1] or [2], wherein one or more compounds selected from the group are oligomerized.
[4] The photocatalyst coating set according to any one of [1] to [3], wherein the hydrolyzable group of the hydrolyzable group-containing compound is an alkoxy group.
[5] The photocatalyst coating set according to any one of [1] to [4], wherein the hydrolyzable group-containing compound is an isocyanate-modified alkoxysilane compound.
[6] The photocatalyst coating set according to any one of [1] to [5], wherein the photocatalyst layer forming composition is a dispersion.
[7] The set for photocatalyst coating according to [6], wherein the dispersion contains water or an organic solvent.
[8] The photocatalyst coating set according to [6] or [7], wherein the organic titanium compound is blended in an amount of 0.01 to 30% by weight in the dispersion.
[9] Any of [5] to [8], wherein the isocyanate-modified alkoxysilane compound is one or more compounds selected from the group consisting of a reaction product of isocyanate and mercaptoalkoxysilane or aminoalkoxysilane and a polymer thereof. A set for photocatalyst coating according to the above.
[10] The photocatalyst coating set according to any one of [1] to [9], wherein the protective layer forming composition contains a hydrophilic or non-hydrophilic organic solvent.
[11] The total solid content of the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and the reaction product of the acrylic polymer and the hydrolyzable group-containing compound in the protective layer forming composition is 3 to 40% by weight. %, The set for photocatalyst coating according to [10] above.
[12] The photocatalyst coating set according to any one of [1] to [11], wherein the titanium oxide photocatalyst is anatase titanium oxide or rutile titanium oxide having a primary particle diameter of 10 to 500 nm.
[13] A coating film formed using the photocatalyst coating set according to any one of [1] to [12], wherein the protective layer comprises the protective layer-forming composition, and the protective layer A photocatalyst layered coating film comprising the photocatalyst layer formed on the photocatalyst layer forming composition.
[14] The photocatalyst multilayer coating film according to [13], wherein the photocatalyst forming composition in the photocatalyst layer and the protective layer forming composition in the protective layer are cured.
[15] A photocatalyst carrier on which the photocatalyst multilayer coating film according to [13] or [14] is formed on a substrate surface.

 本発明に係る光触媒コーティング用セットによれば、基材の表面に前記保護層形成用組成物を用いて保護層を形成し、この保護層の表面に前記光触媒層形成用組成物を用いて光触媒層を形成しているので、基材の表面に直接的に光触媒層を形成する場合と比較して、基材の表面を光触媒能から保護することができる。しかも、前記保護層及び光触媒層にはそれぞれ特定の樹脂を使用することで、形成される光触媒塗膜における保護層と光触媒層との接着性を顕著に向上させているため、例えば、光触媒層を指触したり、さらには粘着テープを張って剥がしたりしても、光触媒物質が容易に剥離しない。
 また、本発明は電気伝導性の高い有機チタン化合物を用いて、光触媒物質の粒子(以下、光触媒粒子ともいう)を接合させることで、電子の移動を容易にし、さらに保護層にはその電子の移動を妨げない材料を用いることで、成膜性(接着性)と、抗菌性や抗ウィルス性とまたは親水性とのバランスが優れたものとなる。
 したがって、本発明に係る光触媒コーティング用セットを用いて、住環境に使用する部材などの様々な部材の表面に光触媒塗膜を形成させて得られる光触媒担持体は、これらの基材に有害物質の除去、空気浄化、脱臭、浄水、殺菌、抗菌、防汚、防曇などの作用を付与することができる。また、光触媒担持体は単体で使用するだけでなく、必要に応じて接着剤、粘着剤あるいはヒートラミネーションなどにより様々な部材に貼り合わせることで広範囲の用途に展開できる。
According to the photocatalyst coating set according to the present invention, a protective layer is formed on the surface of a substrate using the protective layer-forming composition, and the photocatalyst layer-forming composition is formed on the surface of the protective layer. Since the layer is formed, the surface of the base material can be protected from the photocatalytic ability as compared with the case where the photocatalytic layer is directly formed on the surface of the base material. Moreover, by using a specific resin for each of the protective layer and the photocatalyst layer, the adhesiveness between the protective layer and the photocatalyst layer in the photocatalyst coating film formed is remarkably improved. The photocatalytic substance does not easily peel off even if it is touched with a finger or is peeled off with an adhesive tape.
In addition, the present invention facilitates the movement of electrons by bonding photocatalytic substance particles (hereinafter also referred to as photocatalyst particles) using an organic titanium compound having high electrical conductivity. By using a material that does not hinder movement, the balance between film-forming properties (adhesiveness), antibacterial properties, antiviral properties, and hydrophilic properties is excellent.
Therefore, using the photocatalyst coating set according to the present invention, a photocatalyst carrier formed by forming a photocatalyst coating film on the surface of various members such as a member used in a living environment has no harmful substances on these substrates. Actions such as removal, air purification, deodorization, water purification, sterilization, antibacterial, antifouling, and antifogging can be imparted. Further, the photocatalyst carrier can be used in a wide range of applications by being bonded to various members with an adhesive, a pressure-sensitive adhesive, or heat lamination as required, as well as being used alone.

(光触媒コーティング用セット)
 本発明に係る光触媒コーティング用セット(以下、本発明のセット)は、酸化チタン系光触媒及び有機チタン化合物を含有する光触媒層形成用組成物と、加水分解性基含有化合物またはその重合体を含有する保護層形成用組成物とを含むことを特徴とする。
(Photocatalyst coating set)
A set for photocatalyst coating according to the present invention (hereinafter referred to as a set of the present invention) contains a composition for forming a photocatalyst layer containing a titanium oxide photocatalyst and an organic titanium compound, and a hydrolyzable group-containing compound or a polymer thereof. And a composition for forming a protective layer.

 本発明において、光触媒層形成用組成物とは、保護層の表面に光触媒を含む層(光触媒層)を形成するための組成物である。 In the present invention, the composition for forming a photocatalyst layer is a composition for forming a layer containing a photocatalyst (photocatalyst layer) on the surface of the protective layer.

 前記光触媒層形成用組成物に含有される酸化チタン系光触媒としては、紫外線応答性又は可視光応答性を有する酸化チタン系光触媒であればよい。前記酸化チタン系光触媒の酸化チタンは、完全に結晶質でもよく、不完全な結晶質、すなわち、非晶質を含んでいてもよい。酸化チタンの結晶型は、アナターゼ、ルチル、ブルッカイトのいずれかの単相でもよく、これらの2種以上が混ざっていてもよい。また、高い光触媒能を発現させるには、酸化チタンがアナターゼ単相、ルチル単相又はこれらの混合相であるのが好ましい。 The titanium oxide photocatalyst contained in the photocatalyst layer forming composition may be any titanium oxide photocatalyst having ultraviolet responsiveness or visible light responsiveness. The titanium oxide of the titanium oxide photocatalyst may be completely crystalline or may contain imperfect crystalline, that is, amorphous. The crystal form of titanium oxide may be a single phase of anatase, rutile, or brookite, and two or more of these may be mixed. Moreover, in order to express a high photocatalytic ability, it is preferable that a titanium oxide is an anatase single phase, a rutile single phase, or these mixed phases.

 前記酸化チタン系光触媒としては、具体的には、アナターゼ型、ルチル型結晶質の二酸化チタン、白金、銅、鉄などの金属を担持した結晶質二酸化チタン、ペルオキソチタン、ペルオキソチタン酸、チタン酸金属塩が挙げられる。これらは粉末又は粉末の分散液、特に水やエタノールなどを分散媒とする分散液の形態で使用することができる。前記粉末は、電子顕微鏡(SEM、TEM)により求められた一次粒子径が10~500nmの範囲にあるものが好適に使用される。 Specific examples of the titanium oxide-based photocatalyst include anatase-type and rutile-type crystalline titanium dioxide, crystalline titanium dioxide carrying a metal such as platinum, copper, and iron, peroxotitanium, peroxotitanic acid, and titanate metal. Salt. These can be used in the form of a powder or a dispersion of powder, particularly a dispersion using water or ethanol as a dispersion medium. As the powder, those having a primary particle diameter determined by an electron microscope (SEM, TEM) in the range of 10 to 500 nm are preferably used.

 前記酸化チタン系光触媒の粉末又は分散液の市販の材料としては、石原産業株式会社製のST-21、ST-41、STS-21、MPT-623(いずれも商品名)、昭和電工株式会社FP6、ルミレッシュ(登録商標)シリーズなどが挙げられる。 Commercially available materials for the titanium oxide photocatalyst powder or dispersion include ST-21, ST-41, STS-21, MPT-623 (all trade names) manufactured by Ishihara Sangyo Co., Ltd., Showa Denko FP6 , Lumiresh (registered trademark) series and the like.

 前記光触媒層形成用組成物中における酸化チタン系光触媒の含有量としては、光触媒能を効率よく発揮する観点から、0.1~30重量%が好ましく、1~10重量%がより好ましい。 The content of the titanium oxide photocatalyst in the composition for forming a photocatalyst layer is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight, from the viewpoint of efficiently exhibiting photocatalytic activity.

 前記光触媒層形成用組成物に含有される有機チタン化合物とは、有機基を含むチタン化合物をいい、チタンアルコキシド化合物、チタンキレート化合物、チタンアシレート化合物及びチタンオリゴマー化合物などが挙げられる。 The organic titanium compound contained in the photocatalyst layer forming composition refers to a titanium compound containing an organic group, and examples thereof include a titanium alkoxide compound, a titanium chelate compound, a titanium acylate compound, and a titanium oligomer compound.

 前記チタンアルコキシド化合物としては、例えば、
一般式(1):
Ti(OR    (1)
〔式中、Rは独立に同種又は異種のアルキル基を示す。〕
で表されるものが挙げられる。
Examples of the titanium alkoxide compound include:
General formula (1):
Ti (OR 1 ) 4 (1)
[Wherein, R 1 independently represents the same or different alkyl group. ]
The thing represented by is mentioned.

 前記一般式(1)中のRで表されるアルキル基としては、炭素原子数1~8のもの、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基などがある。 Examples of the alkyl group represented by R 1 in the general formula (1) include those having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl. Group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group and the like.

 前記一般式(1)で表されるチタンアルコキシド化合物として、例えば、テトラメトキシチタネート、テトラエトキシチタネート、テトラプロポキシチタネート、テトライソプロピルチタネート、テトラブトキシチタネート、テトラノルマルブチルチタネート、テトラオクチルチタネートなどを用いることができる。
 前記チタンアルコキシド化合物の市販品としては、マツモトファインケミカル株式会社製の「オルガチックス」シリーズなどが挙げられる。
Examples of the titanium alkoxide compound represented by the general formula (1) include tetramethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, tetraisopropyl titanate, tetrabutoxy titanate, tetranormal butyl titanate, and tetraoctyl titanate. it can.
As a commercial item of the said titanium alkoxide compound, "Orgatics" series by Matsumoto Fine Chemical Co., Ltd., etc. are mentioned.

 また、前記チタンアルコキシド化合物としては、リン酸基、リン酸エステル基、アミノ基、アミド基、乳酸基もしくはステアリン酸基を有するアルコキシチタネート化合物でもよい。前記のような基を有するチタンアルコキシド化合物の市販品としては、味の素ファインテクノ株式会社製のチタネート系カップリング剤「プレンアクト」シリーズなどが挙げられる。 Further, the titanium alkoxide compound may be an alkoxy titanate compound having a phosphate group, a phosphate ester group, an amino group, an amide group, a lactic acid group or a stearic acid group. Examples of commercially available titanium alkoxide compounds having such groups include titanate coupling agents “Plenact” series manufactured by Ajinomoto Fine Techno Co., Ltd., and the like.

 前記チタンキレート化合物は、チタン原子に配位する能力を持ったキレート剤を含有するチタン化合物であればよく、例えば、フタル酸、トリメリット酸、トリメシン酸、ヘミメリット酸、ピロメリット酸などの多価カルボン酸、リンゴ酸、クエン酸などのヒドロキシ多価カルボン酸、エチレンジアミン四酢酸、ニトリロ三プロピオン酸、カルボキシイミノ二酢酸、カルボキシメチルイミノ二プロピオン酸、ジエチレントリアミノ五酢酸、トリエチレンテトラミノ六酢酸、イミノ二酢酸、イミノ二プロピオン酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシエチルイミノ二プロピオン酸、メトキシエチルイミノ二酢酸などの含窒素多価カルボン酸が挙げられる。
 前記チタンキレート化合物の市販品としては、マツモトファインケミカル株式会社製の「オルガチックス」シリーズなどが挙げられる。
The titanium chelate compound may be a titanium compound containing a chelating agent capable of coordinating with a titanium atom. For example, phthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid Hydroxy polyvalent carboxylic acids such as polyvalent carboxylic acid, malic acid, citric acid, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethyliminodipropionic acid, diethylenetriaminopentaacetic acid, triethylenetetraminohexaacetic acid, imino Nitrogen-containing polyvalent carboxylic acids such as diacetic acid, iminodipropionic acid, hydroxyethyliminodiacetic acid, hydroxyethyliminodipropionic acid, and methoxyethyliminodiacetic acid.
As a commercial item of the said titanium chelate compound, the "Orga Tix" series by Matsumoto Fine Chemical Co., Ltd., etc. are mentioned.

 前記チタンアシレート化合物とは、置換基がアシレート基であるチタン化合物である。アシレート基としては、ラクテート、ステアレートなどのテトラアシレート基、フタル酸、トリメリット酸、トリメシン酸、ヘミメリット酸、ピロメリット酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、シクロヘキサンジカルボン酸又はそれらの無水物などの多価カルボン酸系化合物、エチレンジアミン四酢酸、ニトリロ三プロピオン酸、カルボキシイミノ二酢酸、カルボキシメチルイミノ二プロピオン酸、ジエチレントリアミノ五酢酸、トリエチレンテトラミノ六酢酸、イミノ二酢酸、イミノ二プロピオン酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシエチルイミノ二プロピオン酸、メトキシエチルイミノ二酢酸などの含窒素多価カルボン酸などが挙げられる。また、アミノ基には、アニリン、フェニルアミン、ジフェニルアミンなどが挙げられ、これらの化合物から選ばれる少なくとも1種であることが好ましく、いずれか1種又は2種であることがより好ましい。また、これらの置換基を2種含んでなるジイソプロポキシビスアセチルアセトンやトリエタノールアミネートイソプロポキシドなどが挙げられる。また、アルコキシ基及びアシレート基は重合活性の観点から脂肪族であることが好ましい。 The titanium acylate compound is a titanium compound whose substituent is an acylate group. Examples of acylate groups include tetraacylate groups such as lactate and stearate, phthalic acid, trimellitic acid, trimesic acid, hemimellitic acid, pyromellitic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacine Polycarboxylic acid compounds such as acid, maleic acid, fumaric acid, cyclohexanedicarboxylic acid or their anhydrides, ethylenediaminetetraacetic acid, nitrilotripropionic acid, carboxyiminodiacetic acid, carboxymethyliminodipropionic acid, diethylenetriaminopentaacetic acid And nitrogen-containing polycarboxylic acids such as triethylenetetraminohexaacetic acid, iminodiacetic acid, iminodipropionic acid, hydroxyethyliminodiacetic acid, hydroxyethyliminodipropionic acid, and methoxyethyliminodiacetic acid. Examples of the amino group include aniline, phenylamine, diphenylamine, and the like. At least one selected from these compounds is preferable, and any one or two is more preferable. Further, diisopropoxybisacetylacetone and triethanolaminate isopropoxide containing two kinds of these substituents may be mentioned. The alkoxy group and acylate group are preferably aliphatic from the viewpoint of polymerization activity.

 前記チタンアシレート化合物としては、例えば、チタンイソステアレートなどが挙げられる。
 前記チタンキレート化合物の市販品としては、マツモトファインケミカル株式会社製の「オルガチックス」シリーズなどが挙げられる。
Examples of the titanium acylate compound include titanium isostearate.
As a commercial item of the said titanium chelate compound, the "Orga Tix" series by Matsumoto Fine Chemical Co., Ltd., etc. are mentioned.

 また、前記有機チタン化合物としては、前記チタンアルコキシド化合物、前記アルコキシチタネート化合物及び前記チタンアシレート化合物からなる群より選ばれる1種以上の化合物をオリゴマー化したものであってもよい。具体的には、前記1種以上の化合物を反応させてなるオリゴマーであればよい。 In addition, the organic titanium compound may be one obtained by oligomerizing one or more compounds selected from the group consisting of the titanium alkoxide compound, the alkoxy titanate compound, and the titanium acylate compound. Specifically, an oligomer formed by reacting the one or more compounds may be used.

 これらの有機チタン化合物は、単独で又は2種以上を混合して使用することができる。 These organic titanium compounds can be used alone or in admixture of two or more.

 前記光触媒層形成用組成物中における有機チタン化合物の含有量としては、親水性や抗菌・抗ウィルス性能の観点から、0.01~30重量%が好ましく、0.01~10重量%が好ましい。 The content of the organic titanium compound in the composition for forming a photocatalyst layer is preferably 0.01 to 30% by weight, and preferably 0.01 to 10% by weight, from the viewpoint of hydrophilicity and antibacterial / antiviral performance.

 前記光触媒層形成用組成物の溶媒としては、水、有機溶媒、含水有機溶媒などが挙げられる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコールなどが挙げられる。また、含水有機溶媒中の水と有機溶媒との比率は特に限定はない。中でも、光触媒の分散性が良好になる観点から、溶媒としては、水が好ましい。
 前記光触媒層形成用組成物中における溶媒の含有量としては、光触媒の分散性を良好にする観点、及び乾燥性などの観点から、50~95重量%が好ましく、70~95重量%がより好ましい。
Examples of the solvent for the photocatalyst layer forming composition include water, an organic solvent, and a water-containing organic solvent. Examples of the organic solvent include methanol, ethanol, isopropyl alcohol, and the like. Further, the ratio of water to the organic solvent in the water-containing organic solvent is not particularly limited. Among these, water is preferable as the solvent from the viewpoint of improving the dispersibility of the photocatalyst.
The content of the solvent in the composition for forming a photocatalyst layer is preferably 50 to 95% by weight, more preferably 70 to 95% by weight from the viewpoints of improving the dispersibility of the photocatalyst and drying properties. .

 前記光触媒層形成用組成物中には、必要に応じて、シリコン化合物、反応性シリコン化合物、コロイダルシリカ、アルミニウム、ジルコニウムアルコキシシラン化合物、充填材、密着剤、分散剤などの任意成分を含有してもよい。 The composition for forming a photocatalyst layer contains optional components such as a silicon compound, a reactive silicon compound, colloidal silica, aluminum, a zirconium alkoxysilane compound, a filler, an adhesive, and a dispersant, as necessary. Also good.

 前記光触媒層形成用組成物は、前記酸化チタン系光触媒、前記有機チタン化合物、溶媒、必要に応じて前記任意成分を混合して作製することができる。
 また、前記光触媒層形成用組成物を、所定の温度で加熱することで、有機チタン化合物として含有している前記チタンアルコキシド化合物、前記アルコキシチタネート化合物、前記チタンアシレート化合物などを反応させてオリゴマー化させてもよい。
The composition for forming a photocatalyst layer can be prepared by mixing the titanium oxide photocatalyst, the organic titanium compound, a solvent, and optionally the optional components.
In addition, the photocatalyst layer forming composition is heated at a predetermined temperature to react with the titanium alkoxide compound, the alkoxy titanate compound, the titanium acylate compound, etc. contained as an organic titanium compound to oligomerize. You may let them.

 本発明において、保護層形成用組成物とは、光触媒層と接着させ、前記光触媒層と基材との間に、光触媒能による基材の劣化を防ぐための保護層を形成させる組成物である。 In the present invention, the composition for forming a protective layer is a composition that is adhered to a photocatalyst layer and forms a protective layer between the photocatalyst layer and the base material to prevent deterioration of the base material due to photocatalytic activity. .

 前記保護層形成用組成物は、加水分解性基含有化合物またはその重合体を含有する。 The protective layer-forming composition contains a hydrolyzable group-containing compound or a polymer thereof.

 前記加水分解性基含有化合物における加水分解性基としては、アルコキシ基、ケトオキシム基、アルケニルオキシ基、アリールオキシ基、メルカプト基、アシルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲンなどが挙げられる。これらの加水分解性基の中では、アルコキシ基、アルケニルオキシ基、アシルオキシ基、ハロゲンが活性が高いため好ましく、加水分解性が穏やかで取り扱い易いことからメトキシ基、エトキシ基などのアルコキシ基がより好ましい。 Examples of the hydrolyzable group in the hydrolyzable group-containing compound include an alkoxy group, a ketoxime group, an alkenyloxy group, an aryloxy group, a mercapto group, an acyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen. Can be mentioned. Among these hydrolyzable groups, alkoxy groups, alkenyloxy groups, acyloxy groups, and halogens are preferable because of their high activity, and alkoxy groups such as methoxy groups and ethoxy groups are more preferable because they are mildly hydrolyzable and easy to handle. .

 前記加水分解性基含有化合物としては、イソシアネート変性アルコキシシラン化合物、アミノ変性アルコキシシラン化合物、メルカプト変性アルコキシシラン化合物などが挙げられる。 Examples of the hydrolyzable group-containing compound include an isocyanate-modified alkoxysilane compound, an amino-modified alkoxysilane compound, and a mercapto-modified alkoxysilane compound.

 中でも、加水分解性が穏やかで取扱い易い観点から、イソシアネート変性アルコキシシラン化合物が好ましい。前記イソシアネート変性アルコキシシラン化合物とは、イソシアネートとアルコキシシランとの反応物をいう。 Of these, isocyanate-modified alkoxysilane compounds are preferred from the viewpoint of mild hydrolyzability and easy handling. The isocyanate-modified alkoxysilane compound refers to a reaction product of isocyanate and alkoxysilane.

 前記イソシアネートとしては、イソシアネート基を含有する架橋剤であればよく、特に限定はないが、無黄変性または難黄変性のポリイソシアネート、脂肪族イソシアネート、脂環式イソシアネートなどが挙げられる。
 前記無黄変性または難黄変性のポリイソシアネートとしては、トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、トリジンジイソシアネートなどの芳香族ポリイソシアネートが挙げられ、市販品としては、三井化学株式会社製の「XDI系」、「IPDI系」、「HDI系」などが挙げられる。
 脂肪族イソシアネートとしては、トリメチレンジイソシアネート、テトラメチレンジイソシアネ-ト、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、2,2,4-トリメチルヘキサメチレンジイソシアネート、プロピレンジイソシアネート、ブチレンジイソシアネート、2-メチル-1,5-ペンタメチレンジイソシアネート(MPDI)などが挙げられ、市販品としては、三井化学株式会社製の「タケネート」シリーズなどが挙げられる。
 脂環式イソシアネートとしては、イソホロンジイソシアネート(IPDI)、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、1,3-シクロペンタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、ノルボルナンジイソシアネート等が挙げられる。
The isocyanate is not particularly limited as long as it is a crosslinking agent containing an isocyanate group, and examples thereof include non-yellowing or non-yellowing polyisocyanate, aliphatic isocyanate, and alicyclic isocyanate.
Examples of the non-yellowing or non-yellowing polyisocyanate include aromatic polyisocyanates such as tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, and tolidine diisocyanate, and commercially available products include Mitsui Chemicals, Inc. “XDI system”, “IPDI system”, “HDI system” and the like manufactured by the company can be mentioned.
Aliphatic isocyanates include trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, 2-methyl- 1,5-pentamethylene diisocyanate (MPDI) and the like, and commercially available products include “Takenate” series manufactured by Mitsui Chemicals, Inc.
Cycloaliphatic isocyanates include isophorone diisocyanate (IPDI), hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,3-cyclopentane diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane. Examples thereof include diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, norbornane diisocyanate and the like.

 前記イソシアネート変性アルコキシシラン化合物に用いられるアルコキシシランとしては、メルカプト基を有するメルカプトアルコキシラン、例えば、γ-メルカプトプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシランなど;第1,2級アミノ基を有するアミノアルコキシシラン、例えば、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-N'-(γ-トリメトキシシリルプロピル)-エチレンジアミン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、1,3-ジアミノイソプロピルトリメトキシシラン、γ-N-フェニルアミノプロピルトリメトキシシラン、γ-N-フェニルアミノプロピルトリエトキシシラン、ビス(トリメトキシシリルプロピル)アミンなど;エポキシ基を有するアルコキシシラン、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、3,4-エポキシシクロヘキシルエチルトリメトキシシラン、3,4-エポキシシクロヘキシルエチルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシランなど;イソシアネート基を有するアルコキシシラン、例えば、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシランなどが挙げられる。 Examples of the alkoxysilane used in the isocyanate-modified alkoxysilane compound include mercaptoalkoxylanes having a mercapto group, such as γ-mercaptopropylmethyldiethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ -Mercaptopropyltriethoxysilane and the like; aminoalkoxysilanes having primary and secondary amino groups, such as γ-aminopropylmethyldiethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, γ- Aminopropyltriethoxysilane, N- (β-aminoethyl) -N ′-(γ-trimethoxysilylpropyl) -ethylenediamine, N- (β-aminoethyl) -γ-aminopropyltrimethoxy Sisilane, N- (β-aminoethyl) -γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyl Triethoxysilane, 1,3-diaminoisopropyltrimethoxysilane, γ-N-phenylaminopropyltrimethoxysilane, γ-N-phenylaminopropyltriethoxysilane, bis (trimethoxysilylpropyl) amine, etc .; having an epoxy group Alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, 3,4-epoxycyclohexylethylmethyldimethoxysilane, γ-glycidoxyp Propylmethyldiisopropenoxysilane and the like; alkoxysilane having an isocyanate group, such as γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxy Silane etc. are mentioned.

 また、前記イソシアネート変性アルコキシシラン化合物どうしの重合物の重合度としては、特に限定はない。 Further, the degree of polymerization of the polymer of the isocyanate-modified alkoxysilane compounds is not particularly limited.

 前記イソシアネート変性アルコキシシラン化合物又はその重合物としては、耐候性、耐ラジカル性の観点から、イソシアネートとメルカプトアルコキシシランまたはアミノアルコキシシランとの反応物及びその重合体からなる群より選ばれる1種以上の化合物であることが好ましい。 The isocyanate-modified alkoxysilane compound or polymer thereof is one or more selected from the group consisting of a reaction product of isocyanate and mercaptoalkoxysilane or aminoalkoxysilane and a polymer thereof from the viewpoint of weather resistance and radical resistance. A compound is preferred.

 また、前記保護層形成用組成物は、さらに数平均分子量2万~500万のアクリル重合体および/または前記アクリル重合体と加水分解性基含有化合物との反応物を含有してもよい。これらの化合物を含有することで、耐候性・耐ラジカル性等が良化するという利点がある。 The protective layer-forming composition may further contain an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or a reaction product of the acrylic polymer and a hydrolyzable group-containing compound. By containing these compounds, there is an advantage that weather resistance, radical resistance and the like are improved.

 前記アクリル重合体とは、アクリル酸エステル又はメタクリル酸エステルの重合体であり、コーティング剤に使用されるものであればよい。
 前記アクリル重合体の数平均分子量は、2万~500万であり、作業性及び成膜性の観点から、2万~50万が好ましく、5万~30万がより好ましい。
The acrylic polymer is a polymer of acrylic acid ester or methacrylic acid ester, and may be any one used for a coating agent.
The number average molecular weight of the acrylic polymer is from 20,000 to 5,000,000, preferably from 20,000 to 500,000, more preferably from 50,000 to 300,000 from the viewpoints of workability and film formability.

 前記数平均分子量2万~500万のアクリル重合体としては、市販品を使用することができる。例えば、三菱レイヨン株式会社製の「ダイヤナールBR」シリーズなどを使用することができる。 As the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000, a commercially available product can be used. For example, “Dianar BR” series manufactured by Mitsubishi Rayon Co., Ltd. can be used.

 前記アクリル重合体の加水分解性基含有化合物との反応物としては、例えば、前記数平均分子量2万~500万のアクリル重合体とアルコキシ基含有シランカップリング剤とを有機溶媒中で反応させたものが挙げられる。
 前記アルコキシ基含有シランカップリング剤としては、アクリルシラン類、アミノシラン類、エポキシシラン類、イソシアネートシラン類、メルカプトシラン類などが挙げられる。前記反応の程度としては、部分反応であればよく、特に限定はない。
As a reaction product of the acrylic polymer with a hydrolyzable group-containing compound, for example, the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and an alkoxy group-containing silane coupling agent are reacted in an organic solvent. Things.
Examples of the alkoxy group-containing silane coupling agent include acrylic silanes, aminosilanes, epoxy silanes, isocyanate silanes, and mercaptosilanes. The degree of the reaction is not particularly limited as long as it is a partial reaction.

 前記保護層形成用組成物中の前記加水分解性基含有化合物、その重合体、数平均分子量2万~500万のアクリル重合体および前記アクリル重合体と加水分解性基含有化合物との反応物の固形分の合計は、抗菌・抗ウィルス性と成膜性の観点から、3~40重量%が好ましく、3~20重量%であることがより好ましい。 The hydrolyzable group-containing compound, the polymer thereof, the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000, and the reaction product of the acrylic polymer and the hydrolyzable group-containing compound in the protective layer forming composition The total solid content is preferably 3 to 40% by weight, more preferably 3 to 20% by weight from the viewpoint of antibacterial / antiviral properties and film-forming properties.

 前記保護層形成用組成物の溶媒としては、親水性又は非親水性の有機溶媒などが挙げられる。親水性の有機溶媒としては、アルコール系有機溶媒が挙げられる。非親水性の有機溶媒としては、酢酸エチル、酢酸ブチルなどが挙げられる。 Examples of the solvent for the protective layer forming composition include hydrophilic or non-hydrophilic organic solvents. Examples of the hydrophilic organic solvent include alcohol-based organic solvents. Examples of the non-hydrophilic organic solvent include ethyl acetate and butyl acetate.

 前記保護層形成用組成物中における溶媒の含有量としては、作業性などの観点から、70~95重量%が好ましい。 The content of the solvent in the protective layer forming composition is preferably 70 to 95% by weight from the viewpoint of workability.

 前記保護層形成用組成物中には、必要に応じて、シランカップリング剤、分散剤などの任意成分を含有してもよい。 The protective layer forming composition may contain optional components such as a silane coupling agent and a dispersing agent, if necessary.

 前記保護層形成用組成物は、前記加水分解性基含有化合物またはその重合体、および必要に応じて、数平均分子量2万~500万のアクリル重合体および/または前記アクリル重合体と加水分解性基含有化合物との反応物、さらには前記任意成分を前記溶媒中で混合することで作製することができる。
 中でも、作業性の観点から、前記光触媒層形成用組成物が分散液であることが好ましい。
The protective layer-forming composition comprises the hydrolyzable group-containing compound or polymer thereof, and, if necessary, an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or hydrolyzable with the acrylic polymer. It can be prepared by mixing a reaction product with a group-containing compound and further the optional component in the solvent.
Among these, from the viewpoint of workability, the photocatalyst layer forming composition is preferably a dispersion.

 本発明のセットにおける前記光触媒層形成用組成物と、前記保護層形成用組成物との量については、塗膜を形成するための基材の表面積及び所望の各層の厚みに応じて適宜決定すればよく、特に限定はない。 The amounts of the photocatalyst layer forming composition and the protective layer forming composition in the set of the present invention are appropriately determined according to the surface area of the substrate for forming the coating film and the desired thickness of each layer. There is no particular limitation.

(光触媒積層塗膜)
 本発明に係る光触媒積層塗膜は、前記光触媒コーティング用のセットを用いて形成される塗膜であって、前記保護層形成用組成物からなる保護層、並びに、前記保護層上に形成された、前記光触媒層形成用組成物からなる光触媒層を備えていることを特徴とする。
(Photocatalyst laminated coating)
The photocatalyst laminated coating film according to the present invention is a coating film formed using the photocatalyst coating set, and is formed on the protective layer formed of the protective layer forming composition and the protective layer. And a photocatalyst layer comprising the photocatalyst layer forming composition.

 前記光触媒積層塗膜を形成させる方法としては、前記セットに含まれる前記保護層形成用組成物を薄膜状に成形した後、その表面に前記光触媒層形成用組成物を塗布し、乾燥・反応させて保護層及び光触媒層を有する一体の塗膜を成膜させることができる。 As a method of forming the photocatalyst multilayer coating film, after forming the protective layer forming composition contained in the set into a thin film, the photocatalyst layer forming composition is applied to the surface, dried and reacted. Thus, an integral coating film having a protective layer and a photocatalyst layer can be formed.

 前記保護層形成用組成物を薄膜状に成形する場合、例えば、基材表面に前記保護層形成用組成物を所定の厚みとなるまで塗布すればよい。基材としては、合成樹脂フィルム、合成樹脂シート、ガラス、織布、不織布、紙、プラスチック、石材、金属、セラミックタイル、石膏ボード、木材などからなるものを好適に採用できる。 When the protective layer forming composition is formed into a thin film, for example, the protective layer forming composition may be applied to the surface of the substrate until a predetermined thickness is reached. As a base material, what consists of a synthetic resin film, a synthetic resin sheet, glass, a woven fabric, a nonwoven fabric, paper, a plastic, a stone, a metal, a ceramic tile, a gypsum board, wood etc. can be employ | adopted suitably.

 前記塗布には、エアースプレイ、刷毛、ロールなど公知の手法を用いることができる。 For the application, a known method such as air spray, brush, or roll can be used.

 また、前記光触媒層中の前記光触媒用組成物と保護層中の前記保護層用組成物とは硬化反応されていることが好ましい。
 硬化反応は、例えば、20~80℃、好ましくは20~40℃で、0.1~24時間、好ましくは0.5~24時間の環境下で行うことが挙げられる。
The photocatalyst composition in the photocatalyst layer and the protective layer composition in the protective layer are preferably cured.
The curing reaction may be carried out at 20 to 80 ° C., preferably 20 to 40 ° C., for 0.1 to 24 hours, preferably 0.5 to 24 hours.

(光触媒担持体)
 本発明に係る光触媒担持体とは、前記光触媒積層塗膜が基材表面に形成された光触媒担持体である。
 具体的には、前記光触媒コーティング用のセットを用いて基材の表面に光触媒をコーティングさせて得られる光触媒担持体であって、
 前記基材の表面に前記保護層形成用組成物を付着させて、前記保護層形成用組成物の表面に前記光触媒層形成用組成物を付着させ、硬化反応させて得られることを特徴とする光触媒担持体である。
(Photocatalyst carrier)
The photocatalyst carrier according to the present invention is a photocatalyst carrier on which the photocatalyst laminated coating film is formed on the surface of a substrate.
Specifically, a photocatalyst carrier obtained by coating a photocatalyst on the surface of a substrate using the photocatalyst coating set,
The protective layer-forming composition is attached to the surface of the base material, and the photocatalyst layer-forming composition is attached to the surface of the protective layer-forming composition, followed by a curing reaction. It is a photocatalyst carrier.

 前記基材としては、合成樹脂フィルム、合成樹脂シート、ガラス、織布、不織布、紙、プラスチック、石材、金属、セラミックタイル、石膏ボード、木材などからなるものを好適に採用できる。 As the substrate, a material made of synthetic resin film, synthetic resin sheet, glass, woven fabric, non-woven fabric, paper, plastic, stone, metal, ceramic tile, gypsum board, wood, etc. can be suitably employed.

 前記基材の表面に前記保護層形成用組成物を付着させる方法としては、エアースプレイ、刷毛、ロールなど公知の手法を用いることができる。 As a method for attaching the protective layer forming composition to the surface of the substrate, a known method such as air spray, brush, roll, or the like can be used.

 前記のように基材表面に付着させた保護層形成用組成物は、乾燥させることで、保護層を形成させることができる。乾燥条件としては、保護層形成用組成物が流動しない程度にまで溶媒がなくなればよく、例えば、20~40℃で行えばよい。 The protective layer-forming composition adhered to the substrate surface as described above can be dried to form a protective layer. As drying conditions, it is sufficient that the solvent disappears to such an extent that the composition for forming a protective layer does not flow. For example, the drying may be performed at 20 to 40 ° C.

 前記保護層形成用組成物の表面に前記光触媒層形成用組成物を付着させる方法としては、エアースプレイ、刷毛、ロールなど公知の手法を用いることができる。 As a method for attaching the photocatalyst layer forming composition to the surface of the protective layer forming composition, a known method such as an air spray, a brush, or a roll can be used.

 前記光触媒形成用組成物を硬化反応させる方法としては、湿気硬化、湿熱硬化などが挙げられる。 Examples of methods for curing the photocatalyst-forming composition include moisture curing and wet heat curing.

 前記のようにして得られる光触媒担持体は、単体で使用するだけでなく、必要に応じて接着剤、粘着剤あるいはヒートラミネーションなどにより様々な部材に貼り合わせることで広範囲の用途に展開できる。
 以下に本発明を、実施例を挙げてさらに詳しく説明するが、実施例は本発明の範囲を規定するものではない。 
The photocatalyst carrier obtained as described above is not only used alone, but can be developed for a wide range of applications by being bonded to various members by an adhesive, a pressure-sensitive adhesive, heat lamination, or the like as required.
The present invention will be described in more detail with reference to the following examples. However, the examples do not define the scope of the present invention.

(実施例1:紫外光型1)
 紫外光酸化チタン「ST-21」(電子顕微鏡(SEM、TEM)測定による一次粒子径20nm、石原産業株式会社製)の水分散体200g(濃度10%)に、チタネート系カップリング剤「プレンアクト44」(味の素ファインテクノ株式会社製)を1g添加し均一混合した。
 次いで、チタンキレート化合物「オルガチックスTC-310」(チタンラクテート、マツモトファインケミカル株式会社製)0.5gを配合し、分散させた。
 次いで、上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシチタネートを反応させ、部分オリゴマー化させて光触媒分散液(光触媒層形成用組成物)を作製した。
(Example 1: Ultraviolet light type 1)
A titanate coupling agent “Plenact 44” was added to 200 g (concentration 10%) of an aqueous dispersion of ultraviolet light titanium oxide “ST-21” (primary particle diameter 20 nm as measured by electron microscope (SEM, TEM), manufactured by Ishihara Sangyo Co., Ltd.). 1 g (manufactured by Ajinomoto Fine Techno Co., Ltd.) was added and mixed uniformly.
Next, 0.5 g of a titanium chelate compound “Orgatics TC-310” (titanium lactate, manufactured by Matsumoto Fine Chemical Co., Ltd.) was blended and dispersed.
Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a portion of the alkoxy titanate was reacted and partially oligomerized to prepare a photocatalyst dispersion (photocatalyst layer forming composition).

 次に、保護剤を以下の手順で作製した。
 脂肪族系イソシアネート化合物であるトリメチロールプロパン水添XDI化合物(三井化学株式会社製「タケネート(登録商標)D-120N」)10gにメルカプトアルコキシシラン「KBM803」(3-メルカプトプロピルトリメトキシシラン、信越化学工業株式会社製)8gを80℃で24時間、酢酸エチル200g溶液中で反応させた。反応完了はNCO%の消失をもって反応終了とした。
 次に、エポキシシラン「KBM402」(3-グリシドキシプロピルメチルジエトキシシラン、信越化学工業株式会社製)0.5gを上記反応溶液中に添加した。
 また予め溶解・部分反応させたアクリル樹脂「ダイヤナール(登録商標)BR80」(三菱レイヨン株式会社製、重量平均分子量95000)の10%酢酸エチル溶液及びアクリルアルコキシ部分反応物溶液(アクリルシラン「KBM503」(3-メタクリロキシプロピルトリメトキシシラン、信越化学工業株式会社製)0.5gを10%酢酸エチルアクリル樹脂溶液に50℃で24時間反応させたもの)おのおの40gを上記反応溶液中に添加し保護剤(保護層形成用組成物)を完成させた。
Next, a protective agent was prepared by the following procedure.
Mercaptoalkoxysilane “KBM803” (3-mercaptopropyltrimethoxysilane, Shin-Etsu Chemical) to 10 g of trimethylolpropane hydrogenated XDI compound (“Takenate (registered trademark) D-120N” manufactured by Mitsui Chemicals, Inc.), which is an aliphatic isocyanate compound 8 g of Kogyo Co., Ltd. was reacted in a 200 g solution of ethyl acetate at 80 ° C. for 24 hours. The reaction was completed when the NCO% disappeared.
Next, 0.5 g of epoxy silane “KBM402” (3-glycidoxypropylmethyldiethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the reaction solution.
In addition, a 10% ethyl acetate solution and an acrylic alkoxy partial reactant solution (acrylic silane “KBM503”) of an acrylic resin “Dyanal (registered trademark) BR80” (manufactured by Mitsubishi Rayon Co., Ltd., weight average molecular weight 95,000) previously dissolved and partially reacted. (3-methacryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 g reacted with 10% ethyl acetate acrylic resin solution at 50 ° C. for 24 hours) 40 g of each was added to the above reaction solution for protection An agent (composition for forming a protective layer) was completed.

 次いで、得られた光触媒分散液及び保護剤を使用して、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥した後、その上に上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Next, using the obtained photocatalyst dispersion liquid and the protective agent, a test body on which a coating film containing a photocatalyst was formed was prepared by the following procedure.
On a 100 μm thick PET film (Toyobo Co., Ltd.), a protective agent was applied uniformly with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid was applied on the air spray gun. The film was applied uniformly at 50 ° C. and dried and reacted for 24 hours to form a film.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の紫外線照射下での光触媒能の性能評価を以下の手順で行った。
 紫外線照射はメタルハライドランプ80mw/cmで4時間行い、協和界面科学製接触角試験機にて、水滴接触下10秒後の接触角の角度を測定した。
 試験結果として接触角は10°以下で防汚性、防曇性に適用出来る、実用化レベルであることがわかった。
The performance evaluation of the photocatalytic ability of the obtained specimen under ultraviolet irradiation was performed according to the following procedure.
Ultraviolet irradiation was performed for 4 hours with a metal halide lamp of 80 mw / cm 2 , and the contact angle after 10 seconds was measured with a contact angle tester manufactured by Kyowa Interface Science.
As a result of the test, it was found that the contact angle was 10 ° or less, which was applicable to antifouling properties and antifogging properties and was at a practical level.

 また、試験体における光触媒の接着強度を評価するために、指触とテープ剥離とを行った。
 指触性については、試験体の光触媒コーティング表面を手全体で押したところ、光触媒粒子が手に付かなかった。また、光触媒コーティング表面に透明セロファンテープを付着させた後、テープの角度が90°以上となるように剥離する試験を行ったところ、テープ粘着面に光触媒粒子の顕著な(目視で確認出来る)付着は認められず、実用レベルの接着強度であることがわかった。
Moreover, in order to evaluate the adhesive strength of the photocatalyst in a test body, finger touch and tape peeling were performed.
Regarding finger touch, when the photocatalyst coating surface of the test body was pressed with the whole hand, the photocatalyst particles were not attached to the hand. In addition, after a transparent cellophane tape was attached to the photocatalyst coating surface, a test was performed to peel the tape so that the tape angle was 90 ° or more. Was not recognized, and it was found that the adhesive strength was at a practical level.

(実施例2:紫外光型2)
 紫外光酸化チタン「ST-21」の水分散体200gに、チタネート系カップリング剤「プレンアクト46B」(味の素ファインテクノ株式会社製)0.5g及びチタンキレート化合物「オルガチックスTC-401」(トリエタノールアミネート、マツモトファインケミカル株式会社製)0.5gを添加し均一混合し分散させた。
 次いで得られた分散体を50℃のオーブン内に3日間放置し、一部アルコキシチタネートを反応させオリゴマー化させて、光触媒分散液を作製した。
(Example 2: Ultraviolet light type 2)
200 g of an aqueous dispersion of ultraviolet light titanium oxide “ST-21”, 0.5 g of titanate coupling agent “Plenact 46B” (manufactured by Ajinomoto Fine-Techno Co., Ltd.) and titanium chelate compound “Orgatyx TC-401” (triethanol) 0.5 g (aminate, manufactured by Matsumoto Fine Chemical Co., Ltd.) was added and uniformly mixed and dispersed.
Next, the obtained dispersion was left in an oven at 50 ° C. for 3 days, and a part of alkoxytitanate was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次に、保護剤を以下の手順で作製した。
 脂肪族系イソシアネート化合物であるトリメチロールプロパン水添XDI化合物10gにメルカプトアルコキシシラン「KBM802」(3-メルカプトプロピルメチルジメトキシシラン、信越化学工業株式会社製)8gを80℃で24時間、酢酸エチル200g溶液中で反応させた。更にエポキシシラン「KBM403」(3-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製)0.5gを添加した。予め溶解・部分反応させたアクリル樹脂「ダイヤナール(登録商標)BR85」(三菱レイヨン株式会社製、重量平均分子量280000)の10%酢酸エチル溶液及びアクリルアルコキシ部分反応物溶液(アクリルシラン「KBM503」0.5gを10%酢酸エチルアクリル樹脂溶液に50℃で24時間反応させたもの)おのおの40gを上記反応溶液中に添加し保護剤を完成させた。
Next, a protective agent was prepared by the following procedure.
Mercaptoalkoxysilane “KBM802” (3-mercaptopropylmethyldimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) 8 g is added to 10 g of trimethylolpropane hydrogenated XDI compound, which is an aliphatic isocyanate compound, at 80 ° C. for 24 hours, 200 g of ethyl acetate solution Reacted in. Further, 0.5 g of epoxy silane “KBM403” (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) was added. 10% ethyl acetate solution and acrylic alkoxy partial reactant solution (acrylic silane “KBM503”) 0 of acrylic resin “Dyanal (registered trademark) BR85” (Mitsubishi Rayon Co., Ltd., weight average molecular weight 280000) previously dissolved and partially reacted 0.5 g was reacted with a 10% ethyl acetate acrylic resin solution at 50 ° C. for 24 hours) 40 g of each was added to the reaction solution to complete the protective agent.

 次いで、得られた光触媒分散液及び保護剤を使用して、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Next, using the obtained photocatalyst dispersion liquid and the protective agent, a test body on which a coating film containing a photocatalyst was formed was prepared by the following procedure.
Apply a protective agent on a 100 μm thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun. The film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の紫外線照射下での光触媒能の性能評価及び試験体における光触媒の接着強度を実施例1と同様な方法で評価した。
 試験結果として、接触角は10°以下で防汚性、防曇性に適用できる実用化レベルであることがわかった。
 また、成膜性について指触性では光触媒粒子が手に付かず、表面に透明セロファンテープを付着させた後、テープの角度が90°以上となるように剥離する試験を行ったところ、テープ粘着面に光触媒粒子の顕著な(目視で確認出来る)付着は認められず、実用レベルの接着強度であることがわかった。
The performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
As a result of the test, it was found that the contact angle was 10 ° or less, which was a practical level applicable to antifouling properties and antifogging properties.
As for film formability, when the photocatalyst particles are not attached to the hand and a transparent cellophane tape is attached to the surface and then peeled so that the tape has an angle of 90 ° or more, a tape adhesion is performed. It was found that the photocatalyst particles were not noticeably adhered to the surface (which could be visually confirmed), and the adhesive strength was at a practical level.

(実施例3:紫外光型3)
 紫外光酸化チタン「ST-21」の水分散体200gに、チタネートカップリング剤「プレンアクト44」0.5gを添加し均一混合した、ついでチタンキレート化合物「オルガチックスTC-310」0.5gを配合し、分散させた。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシチタネートを反応させオリゴマー化させて、光触媒分散液を作製した。
(Example 3: Ultraviolet light type 3)
Add 200g of titanate coupling agent "Plenact 44" to 200g aqueous dispersion of UV light titanium oxide "ST-21" and mix uniformly, then blend 0.5g of titanium chelate compound "Orgatyx TC-310" And dispersed. Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次に、保護剤を以下の手順で作製した。
 脂肪族系イソシアネート化合物であるトリメチロールプロパンIPDI化合物(三井化学製「タケネート(登録商標)D140N」)10gにメルカプトアルコキシシラン「KBM803」8gを80℃で24時間酢酸エチル200g溶液中で反応させた。更にエポキシシラン「KBM403」1gを添加した。予め溶解・部分反応させたアクリル樹脂「ダイヤナール(登録商標)BR85」の10%酢酸エチル溶液及びアクリルアルコキシ部分反応物溶液(アクリルシラン「KBM503」0.5gを10%酢酸エチルアクリル樹脂溶液に50℃で24時間反応させたもの)おのおの40gを上記反応溶液中に添加し保護剤を完成させた。
Next, a protective agent was prepared by the following procedure.
10 g of a trimethylolpropane IPDI compound (“Takenate (registered trademark) D140N” manufactured by Mitsui Chemicals), which is an aliphatic isocyanate compound, was reacted with 8 g of mercaptoalkoxysilane “KBM803” at 80 ° C. for 24 hours in a 200 g solution of ethyl acetate. Further, 1 g of epoxy silane “KBM403” was added. 50% of 10% ethyl acetate solution of acrylic resin “Dyanal (registered trademark) BR85” and acrylic alkoxy partial reactant solution (0.5 g of acrylic silane “KBM503”) dissolved in advance and partially reacted in 10% ethyl acetate acrylic resin solution 40 g each was reacted at 24 ° C.) was added to the reaction solution to complete the protective agent.

 次いで、得られた光触媒分散液及び保護剤を使用して、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Next, using the obtained photocatalyst dispersion liquid and the protective agent, a test body on which a coating film containing a photocatalyst was formed was prepared by the following procedure.
Apply a protective agent on a 100 μm thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun. The film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の紫外線照射下での光触媒能の性能評価及び試験体における光触媒の接着強度を実施例1と同様な方法で評価した。
 試験結果として接触角は10°以下で防汚性、防曇性に適用できる実用化レベルであることがわかった。また成膜性について指触性では光触媒粒子が手に付かず、表面に透明セロファンテープを付着させた後、テープの角度が90°以上になるように剥離する試験においても、テープ粘着面に光触媒粒子の顕著な(目視で確認出来る)付着は認められず、実用レベルの接着強度であることがわかった。
The performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
As a result of the test, it was found that the contact angle was 10 ° or less, which was a practical level applicable to antifouling properties and antifogging properties. As for film formability, the photocatalyst particles are not attached to the hand, and in a test where the transparent cellophane tape is attached to the surface and then peeled so that the tape angle is 90 ° or more, the photocatalyst is applied to the tape adhesive surface. No noticeable particle adhesion (which can be visually confirmed) was observed, and it was found that the adhesion strength was at a practical level.

(比較例1:紫外光型4)
 紫外光酸化チタン「ST-21」の水分散体200gに、メチル系シリコーンレジンエマルジョン「SILRES(登録商標)BS45」(旭化成ワッカーシリコーン株式会社製)を1g添加し均一混合した、ついでアミノシラン「KBM603」(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、信越化学工業株式会社製)、アクリルシラン「KBM503」各0.5gを配合し、分散させ分散体を作製した。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシシランを反応させオリゴマー化させて、光触媒分散液を作製した。
(Comparative Example 1: Ultraviolet light type 4)
1 g of methyl-based silicone resin emulsion “SILRES (registered trademark) BS45” (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) was added to 200 g of an aqueous dispersion of ultraviolet light titanium oxide “ST-21” and mixed uniformly, and then aminosilane “KBM603” 0.5 g each of (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) and acrylic silane “KBM503” were blended and dispersed to prepare a dispersion. Next, the dispersion was left in an oven at 50 ° C. for 3 days, and a part of alkoxysilane was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次いで実施例1で作製した保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Subsequently, the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures.
Apply a protective agent on a 100 μm thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun. The film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の紫外線照射下での光触媒能の性能評価及び試験体における光触媒の接着強度を実施例1と同様な方法で評価した。
 試験結果として接触角は60°で防汚性、防曇性に適用できず、実用化レベルでないことを確認した。
 一方、成膜性については指触性では光触媒粒子が手に付かず、表面に透明セロファンテープを付着させ90°以上で剥離する試験においても、テープ粘着面に光触媒粒子の顕著な(目視で確認出来る)付着は認められず、実用レベルであることがわかった。
The performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
As a test result, it was confirmed that the contact angle was 60 °, which was not applicable to antifouling properties and antifogging properties, and was not at a practical level.
On the other hand, with regard to film formability, photocatalyst particles are not attached to the hand, and in a test in which a transparent cellophane tape is attached to the surface and peeled at 90 ° or more, the photocatalyst particles are noticeable on the tape adhesive surface (confirmed visually). It was found that it was at a practical level.

(比較例2:紫外光型5)
 紫外光酸化チタン「ST-21」の水分散体200gに、シリコンエマルジョン「IE-7170」(東レ・ダウコーニング株式会社製)1gを添加し均一混合した、ついでエポキシシラン「KBM403」、メルカプトアルコキシシラン「KBM803」0.5gを添加し、分散させた。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシシランを反応させオリゴマー化させて、光触媒分散液を作製した。
(Comparative Example 2: Ultraviolet light type 5)
1 g of silicon emulsion “IE-7170” (manufactured by Toray Dow Corning Co., Ltd.) was added to 200 g of an aqueous dispersion of ultraviolet light titanium oxide “ST-21” and mixed uniformly, then epoxy silane “KBM403”, mercaptoalkoxysilane 0.5 g of “KBM803” was added and dispersed. Next, the dispersion was left in an oven at 50 ° C. for 3 days, and a part of alkoxysilane was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次いで実施例2で作製した保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Subsequently, the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 2 was produced in the following procedures.
Apply a protective agent on a 100 μm thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun. The film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の紫外線照射下での光触媒能の性能評価及び試験体における光触媒の接着強度を実施例1と同様な方法で評価した。
 試験結果として接触角は30°で防汚性、防曇性に適用できない、実用化レベルでないことを確認した。
 指触性では光触媒粒子が手に付く事を確認した。また、表面に透明セロファンテープを付着させ90°以上で剥離する試験においても、テープ粘着面に光触媒粒子の(目視で確認できる)付着が認められ、接着強度が実用レベルでないことを確認した。
The performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
As a result of the test, it was confirmed that the contact angle was 30 °, which was not applicable to antifouling properties and antifogging properties and was not at a practical level.
It was confirmed that the photocatalyst particles were attached to the hand in terms of finger touch. Moreover, also in the test which adheres a transparent cellophane tape to the surface and peels at 90 ° or more, the adhesion of the photocatalyst particles (which can be visually confirmed) was recognized on the tape adhesive surface, and it was confirmed that the adhesive strength was not at a practical level.

(比較例3:紫外光型6)
 紫外光酸化チタン「ST-21」の水分散体200gを準備した。
 次いで実施例1で作製した保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
(Comparative Example 3: Ultraviolet light type 6)
An aqueous dispersion 200 g of ultraviolet light titanium oxide “ST-21” was prepared.
Subsequently, the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures.
Apply a protective agent on a 100 μm thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion liquid uniform with an air spray gun. It was applied, dried at 50 ° C. for 24 hours, and cured to form a film.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の紫外線照射下での光触媒能の性能評価及び試験体における光触媒の接着強度を実施例1と同様な方法で評価した。
 試験結果として接触角は10°以下で防汚性、防曇性に適用できる実用化レベルであることを見出した。
 一方、指触性では光触媒粒子が手に付き、透明セロファンテープ付着試験でも顕著に付着し、接着強度が実用化レベルでないことを確認した。
The performance evaluation of the photocatalytic activity of the obtained test specimen under ultraviolet irradiation and the adhesive strength of the photocatalyst in the test specimen were evaluated in the same manner as in Example 1.
As a result of the test, it was found that the contact angle is 10 ° or less, which is a practical level applicable to antifouling properties and antifogging properties.
On the other hand, in terms of finger touch, photocatalyst particles were attached to the hand, and were noticeably adhered in the transparent cellophane tape adhesion test, confirming that the adhesive strength was not at a practical level.

 実施例1~3、比較例1~3における接触角、テープ剥離性、指触性に関する結果を表1に示す。
 なお、テープ剥離性、指触性についての評価基準は以下のとおり。
〔テープ剥離性〕
○:テープ剥離面に光触媒材料が目視でほとんど確認出来ない。
△:テープ剥離面に光触媒材料が目視で確認出来る。付着率は剥離テープ面の50%未満。
×:テープ剥離面に光触媒材料が目視で確認出来る。付着率は剥離テープ面の50%以上。
〔指触性〕
○:指に光触媒材料が目視でほとんど確認出来ない。
△:指に光触媒材料が目視で確認出来る。付着面積は70%未満。
×:指に光触媒材料が目視で確認出来る。付着面積は70%以上。
Table 1 shows the results relating to contact angles, tape peelability, and finger touch in Examples 1 to 3 and Comparative Examples 1 to 3.
The evaluation criteria for tape peelability and finger touch are as follows.
[Tape peelability]
○: The photocatalytic material is hardly visually confirmed on the tape peeling surface.
Δ: The photocatalytic material can be visually confirmed on the tape peeling surface. The adhesion rate is less than 50% of the release tape surface.
X: The photocatalytic material can be visually confirmed on the tape peeling surface. Adhesion rate is 50% or more of the release tape surface.
(Finger touch)
A: Almost no photocatalytic material can be visually confirmed on the finger.
Δ: The photocatalytic material can be visually confirmed on the finger. Adhesion area is less than 70%.
X: The photocatalytic material can be visually confirmed on the finger. The adhesion area is 70% or more.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 表1に示す結果から、実施例1~3で作製した塗膜は、いずれも接触角が10°以下であることから、優れた光触媒能を発揮しており、また、塗膜の表面を指で触っただけでは剥離せず、さらには粘着テープを張り付けた場合でも光触媒が剥離は目視で確認できないことから、光触媒の接着強度が高いものであることがわかる。 From the results shown in Table 1, the coating films prepared in Examples 1 to 3 all exhibited excellent photocatalytic activity because the contact angle was 10 ° or less, and the coating surface was pointed to the surface. It does not peel off only by touching with, and even when an adhesive tape is attached, the photocatalyst cannot be visually confirmed to peel off, which indicates that the adhesive strength of the photocatalyst is high.

(実施例4:可視光型1)
 銅担持可視光応答型光触媒「ルミレッシュ(登録商標)」(昭和電工株式会社製)の水分散体200gに、チタネート化合物「プレンアクト44」1gを添加し均一混合した、ついでチタンキレート化合物「オルガチックスTC-310」0.5gを分散させた。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシチタネートを反応させオリゴマー化させて光触媒分散液を得た。
(Example 4: Visible light type 1)
1 g of titanate compound “Plenact 44” was added to 200 g of an aqueous dispersion of copper-supported visible light responsive photocatalyst “Lumiresh (registered trademark)” (manufactured by Showa Denko KK), and then mixed with titanium chelate compound “OrgaTix TC”. -310 "0.5 g was dispersed. Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to obtain a photocatalyst dispersion.

 次いで、保護剤を以下の手順で作製した。
 トリメチロールプロパン水添XDI化合物「タケネート(登録商標)D-120N」に10gにメルカプトアルコキシシラン「KBM803」8gを80℃で24時間、酢酸エチル200g溶液中で反応させた。反応完了はNCO%の消失をもって反応終了とした。
 次にエポキシシラン「KBM402」0.5gを上記反応溶液中に添加した。また予め溶解・部分反応させた、アクリル樹脂「ダイヤナール(登録商標)BR80」の10%酢酸エチル溶液及びアクリルアルコキシ部分反応物溶液(アクリルシラン「KBM503」0.5gを10%酢酸エチルアクリル樹脂溶液に50℃で24時間反応させたもの)おのおの40gを上記反応溶液中に添加し保護剤を完成させた。
Next, a protective agent was prepared by the following procedure.
Trimethylolpropane hydrogenated XDI compound “Takenate (registered trademark) D-120N” was reacted with 10 g of mercaptoalkoxysilane “KBM803” 8 g at 80 ° C. for 24 hours in a 200 g ethyl acetate solution. The reaction was completed when the NCO% disappeared.
Next, 0.5 g of epoxy silane “KBM402” was added to the reaction solution. In addition, 10% ethyl acetate solution of acrylic resin “Dianal (registered trademark) BR80” and acrylic alkoxy partial reactant solution (0.5 g of acrylic silane “KBM503”) dissolved in advance and partially reacted (10% ethyl acetate acrylic resin solution) 40 g of each was added to the above reaction solution to complete the protective agent.

 次いで上記保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後、その上に上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Subsequently, the test body which formed the coating film containing a photocatalyst using the said protective agent was produced in the following procedures.
A protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 μm so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun. A uniform coating was applied, followed by drying and curing reaction at 50 ° C. for 24 hours to form a film.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の可視光照射下での光触媒能について、抗菌・抗ウィルス性能を評価した。
 前記抗菌・抗ウィルス性能は、JIS R 1702,1756を準拠して評価した。具体的には蛍光灯照度1000LUX(シャープカット400nm以下)で菌は照射時間8時間、ウィルスは4時間とした。試験菌としては多剤耐性黄色ぶどう球菌(MRSA)、多剤耐性緑膿菌(MDRP)、また、試験ウィルスはバクテリアファージQB、バクテリアファージφ6用いた。測定した抗菌活性値、抗ウィルス活性値はいずれも数値が高いほど活性が強いことを示す。
 試験結果として抗菌活性値は3~4、抗ウィルス活性値は4~5となっており、通常要求される「2」(99%の菌、ウィルスを死滅化)を超えており高い抗菌・抗ウィルス性能を有し実用レベルであることを確認した。
Antibacterial and antiviral performance was evaluated for the photocatalytic ability of the obtained specimen under visible light irradiation.
The antibacterial / antiviral performance was evaluated according to JIS R 1702, 1756. Specifically, the fluorescent lamp illuminance was 1000 LUX (sharp cut of 400 nm or less), the bacteria were irradiated for 8 hours, and the viruses were 4 hours. Multidrug-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRP) were used as test bacteria, and bacterial phage QB and bacterial phage φ6 were used as test viruses. The measured antibacterial activity value and antiviral activity value both indicate that the higher the value, the stronger the activity.
As a result of the test, the antibacterial activity value is 3 to 4 and the antiviral activity value is 4 to 5, exceeding the normally required “2” (99% bacteria, killing the virus) and having high antibacterial and antibacterial properties. The virus performance was confirmed to be at a practical level.

 また、得られた試験体における光触媒の接着強度を実施例1と同様な方法で評価したところ、指触性では光触媒粒子が手に付かず、表面に透明セロファンテープを付着させ90°以上で剥離する試験においても、テープ粘着面に光触媒粒子の顕著な(目視で確認できる)付着は認められず、接着強度が実用レベルであることを見出した。 Moreover, when the adhesive strength of the photocatalyst in the obtained test body was evaluated in the same manner as in Example 1, the photocatalyst particles were not attached to the hand in terms of finger touch, and a transparent cellophane tape was attached to the surface and peeled at 90 ° or more. In the test, the photocatalyst particles were not noticeably adhered (which can be visually confirmed) on the tape adhesive surface, and the adhesive strength was found to be at a practical level.

(実施例5:可視光型2)
 銅担持可視光応答型光触媒「ルミレッシュ(登録商標)」の水分散体200gに、チタネート系カップリング剤「プレンアクト46B」0.5g及びチタンキレート化合物「オルガチックスTC-410」0.5gを添加し均一混合して分散体にした。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシチタネートを反応させオリゴマー化させて、光触媒分散液を作製した。
(Example 5: Visible light type 2)
To 200 g of an aqueous dispersion of a copper-supported visible light responsive photocatalyst “Lumireche (registered trademark)”, 0.5 g of a titanate coupling agent “Plenact 46B” and 0.5 g of a titanium chelate compound “Orgatyx TC-410” were added. Uniformly mixed into a dispersion. Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次いで保護剤を以下の手順で作製した。
 トリメチロールプロパン水添XDI化合物「タケネート(登録商標)D-120N」10gにメルカプトアルコキシシラン「KBM802」8gを80℃で24時間、酢酸エチル200g溶液中で反応させた。更にエポキシシラン「KBM403」0.5gを予め溶解・部分反応させたアクリル樹脂「ダイヤナール(登録商標)BR85」の10%酢酸エチル溶液及びアクリルアルコキシ部分反応物溶液(アクリルシラン「KBM503」0.5gを10%酢酸エチルアクリル樹脂溶液に50℃で24時間反応させたもの)おのおの40gを上記反応溶液中に添加し保護剤を完成させた。
Next, a protective agent was prepared by the following procedure.
10 g of trimethylolpropane hydrogenated XDI compound “Takenate (registered trademark) D-120N” was reacted with 8 g of mercaptoalkoxysilane “KBM802” at 80 ° C. for 24 hours in a solution of 200 g of ethyl acetate. Furthermore, 10% ethyl acetate solution and acrylic alkoxy partial reactant solution (acrylic silane “KBM503” 0.5 g) of acrylic resin “Dyanal (registered trademark) BR85” in which 0.5 g of epoxy silane “KBM403” was previously dissolved and partially reacted. 40 g of each was reacted with a 10% ethyl acetate acrylic resin solution at 50 ° C. for 24 hours to complete the protective agent.

 次いで上記保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後、その上に上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Subsequently, the test body which formed the coating film containing a photocatalyst using the said protective agent was produced in the following procedures.
A protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 μm so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun. A uniform coating was applied, followed by drying and curing reaction at 50 ° C. for 24 hours to form a film.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の可視光照射下での光触媒能及び光触媒の接着強度について、実施例4と同様な方法で評価した。 The photocatalytic ability and photocatalytic adhesive strength of the obtained test specimen under visible light irradiation were evaluated in the same manner as in Example 4.

 試験結果として抗菌活性値は3~4、抗ウィルス活性値は4~5となり、通常要求される「2」(99%の菌、ウィルスを死滅化)を超えており、高い抗菌・抗ウィルス性能を有し、実用レベルであることを確認した。
 また、指触性では光触媒粒子が手に付かず、表面に透明セロファンテープを付着させ90°以上で剥離する試験においても、テープ粘着面に光触媒粒子の顕著な(目視で確認できる)付着は認められず、接着強度も実用レベルであることを見出した。
As a result of the test, the antibacterial activity value is 3 to 4 and the antiviral activity value is 4 to 5, exceeding the normally required “2” (99% of bacteria and viruses are killed), and high antibacterial and antiviral performance It was confirmed that it was a practical level.
In addition, in the finger touch, the photocatalyst particles are not attached to the hand, and in the test in which a transparent cellophane tape is attached to the surface and peeled at 90 ° or more, the photocatalyst particles are noticeably adhered (which can be visually confirmed) to the tape adhesive surface. In other words, it was found that the adhesive strength was at a practical level.

(実施例6:可視光型3)
 銅担持可視光応答型光触媒「ルミレッシュ(登録商標)」の水分散体200gに、チタネート化合物チタネート化合物「プレンアクト44」0.5gを添加し均一混合し、ついでチタンキレート化合物「オルガチックスTC-310」0.5gを添加して分散体とした。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシチタネートを反応させオリゴマー化させて、光触媒分散液を作製した。
(Example 6: visible light type 3)
To 200 g of an aqueous dispersion of a copper-supported visible light responsive photocatalyst “Lumireche (registered trademark)” 0.5 g of a titanate compound titanate compound “Plenact 44” was added and mixed uniformly, and then a titanium chelate compound “Orgatics TC-310” 0.5 g was added to form a dispersion. Next, the dispersion was allowed to stand in an oven at 50 ° C. for 3 days, and a part of the alkoxy titanate was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次いで保護剤を以下の手順で作製した。
 トリメチロールプロパンIPDI化合物「タケネート(登録商標)D140N」10gにメルカプトアルコキシシラン「KBM803」8gを80℃で24時間酢酸エチル200g溶液中で反応させた。更にエポキシシラン「KBM403」1gを添加した。予め溶解・部分反応させたアクリル樹脂「ダイヤナール(登録商標)BR85」の10%酢酸エチル溶液及びアクリルアルコキシ部分反応物(アクリルシラン「KBM503」0.5gを10%酢酸エチルアクリル樹脂溶液に50℃で24時間反応させたもの)
溶液おのおの40gを上記反応溶液中に添加し保護剤を完成させた。
Next, a protective agent was prepared by the following procedure.
10 g of trimethylolpropane IPDI compound “Takenate (registered trademark) D140N” was reacted with 8 g of mercaptoalkoxysilane “KBM803” at 80 ° C. for 24 hours in a solution of 200 g of ethyl acetate. Further, 1 g of epoxy silane “KBM403” was added. 10% ethyl acetate solution of acrylic resin “Dyanal (registered trademark) BR85” previously dissolved and partially reacted and 0.5 g of acrylic alkoxy partial reaction product (acrylic silane “KBM503”) in 10% ethyl acetate acrylic resin solution at 50 ° C. For 24 hours)
40 g of each solution was added to the reaction solution to complete the protective agent.

 次いで上記保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後、その上に上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Subsequently, the test body which formed the coating film containing a photocatalyst using the said protective agent was produced in the following procedures.
A protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 μm so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun. It was applied so as to be uniform, and dried and cured at 50 ° C. for 24 hours.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の可視光照射下での光触媒能及び光触媒の接着強度について、実施例4と同様な方法で評価した。 The photocatalytic ability and photocatalytic adhesive strength of the obtained test specimen under visible light irradiation were evaluated in the same manner as in Example 4.

 試験結果として抗菌活性値は3~4、抗ウィルス活性値は4~5と通常要求される2(99%の菌、ウィルスを死滅化)を超えており高い抗菌・抗ウィルス性能を有し実用レベルであることを確認した。
 また、指触性では光触媒粒子が手に付かず、表面に透明セロファンテープを付着させ90°以上で剥離する試験においても、テープ粘着面に光触媒粒子の顕著な(目視で確認できる)付着は認められず、接着強度が実用レベルであることがわかった。
As a result of the test, the antibacterial activity value is 3-4, and the antiviral activity value is 4-5, which exceeds 2 (99% of bacteria and viruses are killed) which is normally required, and has high antibacterial and antiviral performance. Confirmed that the level.
In addition, in the finger touch, the photocatalyst particles are not attached to the hand, and in the test in which a transparent cellophane tape is attached to the surface and peeled at 90 ° or more, the photocatalyst particles are noticeably adhered (which can be visually confirmed) to the tape adhesive surface. It was found that the adhesive strength was at a practical level.

(比較例4:可視光型4)
 銅担持可視光応答型光触媒「ルミレッシュ(登録商標)」の水分散体200gに、メチル系シリコーンレジンエマルジョン「SILRES(登録商標)BS45」1gを添加し均一混合した、ついでアミノシラン「KBM603」、アクリルシラン「KBM503」、各0.5gを配合し、分散させた。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシシランを反応させオリゴマー化させて、光触媒分散液を作製した。
(Comparative Example 4: Visible light type 4)
1 g of a methyl silicone resin emulsion “SILRES (registered trademark) BS45” was added to 200 g of an aqueous dispersion of a copper-supported visible light responsive photocatalyst “Lumiresh (registered trademark)”, and then mixed uniformly. Then, aminosilane “KBM603”, acrylic silane “KBM503” and 0.5 g of each were blended and dispersed. Next, the dispersion was left in an oven at 50 ° C. for 3 days, and a part of alkoxysilane was reacted to be oligomerized to prepare a photocatalyst dispersion.

 次いで実施例1で作製した保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
Subsequently, the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures.
Apply a protective agent on a 100 μm thick PET film (Toyobo Co., Ltd.) with an air spray gun so that it is uniform, and after drying at room temperature for 30 minutes, make the photocatalyst dispersion uniform with an air spray gun. The film was formed into a film by drying and curing reaction at 50 ° C. for 24 hours.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の可視光照射下での光触媒能及び光触媒の接着強度について、実施例4と同様な方法で評価した。
 その結果、成膜性についてはテープ剥離、指触性とも実用化レベルではあるが、抗菌・抗ウィルス性能は値が低く、実用レベルではないことがわかった。
The photocatalytic ability and adhesive strength of the photocatalyst under visible light irradiation of the obtained specimen were evaluated in the same manner as in Example 4.
As a result, it was found that the film-forming property was at a practical level for both tape peeling and finger touch, but the antibacterial and antiviral properties were low and not at a practical level.

(比較例5:可視光型5)
 昭和電工銅担持可視光応答型光触媒「ルミレッシュ(登録商標)」の水分散体200gに、シリコンエマルジョン「IE-7170」1gを添加し均一混合した、ついでエポキシシラン「KBM403」、メルカプトアルコキシシラン「KBM803」各0.5gを配合し、分散させた。次いで上記分散体を50℃のオーブン内に3日間放置し、一部アルコキシシランを反応させオリゴマー化させて光触媒分散液を作製した。
 次いで実施例2で作製した保護剤を使用し、試験体を作製した。
 厚さ100μのPETフィルム(東洋坊)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。抗菌・抗ウィルスの評価及びテープ剥離、指触性は実施例1と同様な方法で評価した。測定した結果抗菌・抗ウィルス性能は低抗活性値であり、成膜性についてはテープ剥離は光触媒粒子の付着が見られ、指触性は手に光触媒粒子が手に付き、両性能とも実用化レベルでは無い事が判明した。
(Comparative Example 5: Visible light type 5)
1 g of silicon emulsion “IE-7170” was added to 200 g of an aqueous dispersion of Showa Denko copper-supported visible light responsive photocatalyst “Lumireche (registered trademark)” and mixed uniformly, then epoxy silane “KBM403”, mercaptoalkoxysilane “KBM803” “0.5 g of each was blended and dispersed. Next, the dispersion was left in an oven at 50 ° C. for 3 days, and a part of alkoxysilane was reacted to be oligomerized to prepare a photocatalyst dispersion.
Subsequently, the test body was produced using the protective agent produced in Example 2.
Apply a protective agent on a PET film (Toyobo) with a thickness of 100μ so that it is uniform with an air spray gun, and after drying at room temperature for 30 minutes, apply the photocatalyst dispersion liquid so that it is uniform with an air spray gun. Then, the film was dried and cured at 50 ° C. for 24 hours to form a film. Antibacterial / antiviral evaluation, tape peeling, and finger touch were evaluated in the same manner as in Example 1. As a result of the measurement, antibacterial and antiviral performance is low anti-activity value, and as for film formability, photocatalyst particles are attached to the tape when peeling, and photocatalyst particles are in hand, and both performances are put to practical use. It turns out that it is not a level.

(比較例6:可視光型6)
 昭和電工銅担持可視光応答型光触媒「ルミレッシュ(登録商標)」の水分散体200gを準備した。
 次いで実施例1で作製した保護剤を使用し、光触媒を含有する塗膜を形成した試験体を以下の手順で作製した。
 厚さ100μmのPETフィルム(東洋紡株式会社製)の上に、エアースプレイガンで均一になるように保護剤を塗布し、30分常温で乾燥後、その上に上記光触媒分散液をエアースプレイガンで均一になるように塗布し、50℃×24時間乾燥、硬化反応させ成膜化をさせた。
 前記PETフィルム上に形成された塗膜における保護層の厚みは約1~10μm、この保護層上に形成された光触媒層の厚みは約1μmであった。
(Comparative Example 6: visible light type 6)
An aqueous dispersion 200 g of Showa Denko copper-supported visible light responsive photocatalyst “Lumiresh (registered trademark)” was prepared.
Subsequently, the test body which formed the coating film containing a photocatalyst using the protective agent produced in Example 1 was produced in the following procedures.
A protective agent is applied on a PET film (made by Toyobo Co., Ltd.) with a thickness of 100 μm so as to be uniform with an air spray gun, dried at room temperature for 30 minutes, and then the photocatalyst dispersion liquid is applied thereon with an air spray gun. A uniform coating was applied, followed by drying and curing reaction at 50 ° C. for 24 hours to form a film.
The thickness of the protective layer in the coating film formed on the PET film was about 1 to 10 μm, and the thickness of the photocatalyst layer formed on the protective layer was about 1 μm.

 得られた試験体の可視光照射下での光触媒能及び光触媒の接着強度について、実施例4と同様な方法で評価した。
 その結果、測定した結果抗菌・抗ウィルス性能は高抗活性値を得たが、成膜性についてはテープ剥離、指触性とも実用化レベルではないことがわかった。
The photocatalytic ability and adhesive strength of the photocatalyst under visible light irradiation of the obtained specimen were evaluated in the same manner as in Example 4.
As a result, it was found that the antibacterial / antiviral performance was high in antibacterial activity, but the film forming property was not at a practical level in terms of tape peeling and finger touch.

 実施例4~6、比較例4、5、6における抗菌活性、抗ウィルス活性、テープ剥離性、指触性に関する評価結果を表2に示す。 Table 2 shows the evaluation results regarding antibacterial activity, antiviral activity, tape peelability, and finger touch in Examples 4 to 6 and Comparative Examples 4, 5, and 6.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2に示す結果から、実施例4~6で作製した塗膜は、いずれも抗菌活性及び抗ウィルス活性が高く、また、指で触ったり、さらには粘着テープを張り付けた場合でも光触媒が剥離しないため、光触媒の接着強度に優れたものであることがわかる。
 
From the results shown in Table 2, the coating films prepared in Examples 4 to 6 have high antibacterial activity and antiviral activity, and the photocatalyst does not peel off even when touched with a finger or attached with an adhesive tape. Therefore, it turns out that it is the thing excellent in the adhesive strength of a photocatalyst.

Claims (15)

 酸化チタン系光触媒及び有機チタン化合物を含有する光触媒層形成用組成物と、加水分解性基含有化合物またはその重合体を含有する保護層形成用組成物とを含む光触媒コーティング用セット。 A set for photocatalyst coating comprising a photocatalyst layer forming composition containing a titanium oxide photocatalyst and an organic titanium compound, and a protective layer forming composition containing a hydrolyzable group-containing compound or a polymer thereof.  さらに、前記保護層形成用組成物が数平均分子量2万~500万のアクリル重合体および/または前記アクリル重合体と加水分解性基含有化合物との反応物を含有する請求項1に記載の光触媒コーティング用セット。 The photocatalyst according to claim 1, wherein the protective layer-forming composition further comprises an acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and / or a reaction product of the acrylic polymer and a hydrolyzable group-containing compound. Set for coating.  前記有機チタン化合物がリン酸基、リン酸エステル基、アミノ基、アミド基、乳酸基もしくはステアリル基を有するアルコキシチタネート化合物、チタンキレート化合物、又は前記アルコキシチタネート化合物及び前記チタンキレート化合物からなる群より選ばれる1種以上の化合物をオリゴマー化したものである請求項1または2に記載の光触媒コーティング用セット。 The organic titanium compound is selected from the group consisting of an alkoxy titanate compound having a phosphate group, a phosphate ester group, an amino group, an amide group, a lactic acid group or a stearyl group, a titanium chelate compound, or the alkoxy titanate compound and the titanium chelate compound. The set for photocatalyst coating of Claim 1 or 2 which is what oligomerized 1 or more types of compounds which are obtained.  前記加水分解性基含有化合物の加水分解性基がアルコキシ基である請求項1~3のいずれかに記載の光触媒コーティング用セット。 The set for photocatalyst coating according to any one of claims 1 to 3, wherein the hydrolyzable group of the hydrolyzable group-containing compound is an alkoxy group.  前記加水分解性基含有化合物がイソシアネート変性アルコキシシラン化合物である請求項1~4のいずれかに記載の光触媒コーティング用セット。 The set for photocatalyst coating according to any one of claims 1 to 4, wherein the hydrolyzable group-containing compound is an isocyanate-modified alkoxysilane compound.  前記光触媒層形成用組成物が分散液である請求項1~5のいずれかに記載の光触媒コーティング用セット。 The photocatalyst coating set according to any one of claims 1 to 5, wherein the photocatalyst layer forming composition is a dispersion.  前記分散液が水又は有機溶媒を含有する請求項6に記載の光触媒コーティング用セット。 The set for photocatalyst coating according to claim 6, wherein the dispersion contains water or an organic solvent.  前記分散液中に前記有機チタン化合物が0.01~30重量%配合されている請求項6または7に記載の光触媒コーティング用セット。 The set for photocatalyst coating according to claim 6 or 7, wherein the organic titanium compound is blended in an amount of 0.01 to 30% by weight in the dispersion.  前記イソシアネート変性アルコキシシラン化合物がイソシアネートとメルカプトアルコキシシラン又はアミノアルコキシシランとの反応物及びその重合体からなる群より選ばれる1種以上の化合物である請求項5~8のいずれかに記載の光触媒コーティング用セット。 9. The photocatalytic coating according to claim 5, wherein the isocyanate-modified alkoxysilane compound is at least one compound selected from the group consisting of a reaction product of isocyanate and mercaptoalkoxysilane or aminoalkoxysilane and a polymer thereof. Set.  前記保護層形成用組成物が親水性又は非親水性の有機溶媒を含有する請求項1~9のいずれかに記載の光触媒コーティング用セット。 The photocatalyst coating set according to any one of claims 1 to 9, wherein the protective layer-forming composition contains a hydrophilic or non-hydrophilic organic solvent.  前記保護層形成用組成物中の数平均分子量2万~500万のアクリル重合体および前記アクリル重合体と加水分解性基含有化合物との反応物の固形分の合計が3~40重量%である請求項10に記載の光触媒コーティング用セット。 The total solid content of the acrylic polymer having a number average molecular weight of 20,000 to 5,000,000 and the reaction product of the acrylic polymer and the hydrolyzable group-containing compound in the protective layer forming composition is 3 to 40% by weight. The set for photocatalyst coatings of Claim 10.  前記酸化チタン系光触媒が一次粒子径10~500nmのアナターゼ型酸化チタン又はルチル型酸化チタンである請求項1~11のいずれかに記載の光触媒コーティング用セット。 The photocatalyst coating set according to any one of claims 1 to 11, wherein the titanium oxide photocatalyst is anatase type titanium oxide or rutile type titanium oxide having a primary particle diameter of 10 to 500 nm.  請求項1~12のいずれかに記載の光触媒コーティング用セットを用いて形成された塗膜であって、前記保護層形成用組成物からなる保護層、並びに、前記保護層上に形成された、前記光触媒層形成用組成物からなる光触媒層を備えていることを特徴とする光触媒積層塗膜。 A coating film formed using the photocatalyst coating set according to any one of claims 1 to 12, wherein the protective layer is formed of the protective layer forming composition, and is formed on the protective layer. A photocatalyst layered coating film comprising a photocatalyst layer comprising the composition for forming a photocatalyst layer.  前記光触媒層中の前記光触媒形成用組成物と保護層中の前記保護層形成用組成物とが硬化されている請求項13に記載の光触媒積層塗膜。 The photocatalyst multilayer coating film according to claim 13, wherein the photocatalyst forming composition in the photocatalyst layer and the protective layer forming composition in the protective layer are cured.  請求項13または14に記載の光触媒積層塗膜が基材表面に形成された光触媒担持体。 A photocatalyst carrier on which the photocatalyst multilayer coating film according to claim 13 or 14 is formed on a substrate surface.
PCT/JP2017/001956 2017-01-20 2017-01-20 Photocatalyst coating set WO2018134972A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/001956 WO2018134972A1 (en) 2017-01-20 2017-01-20 Photocatalyst coating set
CN201780082653.0A CN110168033B (en) 2017-01-20 2017-01-20 Photocatalyst coating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001956 WO2018134972A1 (en) 2017-01-20 2017-01-20 Photocatalyst coating set

Publications (1)

Publication Number Publication Date
WO2018134972A1 true WO2018134972A1 (en) 2018-07-26

Family

ID=62909092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001956 WO2018134972A1 (en) 2017-01-20 2017-01-20 Photocatalyst coating set

Country Status (2)

Country Link
CN (1) CN110168033B (en)
WO (1) WO2018134972A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210283A (en) * 2021-03-26 2021-08-06 应鹏 Sand removal detection device for metal tiles made of color stone sand corrugated steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273355A (en) * 1999-03-25 2000-10-03 Mitsubishi Materials Corp Photocatalytic coating, its preparation and its use
JP2005113029A (en) * 2003-10-08 2005-04-28 Jsr Corp Coating composition for undercoating of coating film containing photocatalyst and structure
JP2006068685A (en) * 2004-09-03 2006-03-16 Jsr Corp Laminated body having visible light-active photocatalyst layer and coating film of visible light-active photocatalyst
JP2006111680A (en) * 2004-10-13 2006-04-27 Ube Nitto Kasei Co Ltd Film forming coating composition for snow sliding, snow coating film and snow sliding member
JP2007245709A (en) * 2006-02-17 2007-09-27 Idemitsu Kosan Co Ltd Resin laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989651B2 (en) * 2007-03-09 2011-08-02 Momentive Performance Materials Inc. Epoxysilanes, processes for their manufacture and curable compositions containing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273355A (en) * 1999-03-25 2000-10-03 Mitsubishi Materials Corp Photocatalytic coating, its preparation and its use
JP2005113029A (en) * 2003-10-08 2005-04-28 Jsr Corp Coating composition for undercoating of coating film containing photocatalyst and structure
JP2006068685A (en) * 2004-09-03 2006-03-16 Jsr Corp Laminated body having visible light-active photocatalyst layer and coating film of visible light-active photocatalyst
JP2006111680A (en) * 2004-10-13 2006-04-27 Ube Nitto Kasei Co Ltd Film forming coating composition for snow sliding, snow coating film and snow sliding member
JP2007245709A (en) * 2006-02-17 2007-09-27 Idemitsu Kosan Co Ltd Resin laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113210283A (en) * 2021-03-26 2021-08-06 应鹏 Sand removal detection device for metal tiles made of color stone sand corrugated steel plate

Also Published As

Publication number Publication date
CN110168033B (en) 2022-03-29
CN110168033A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
EP2050798B1 (en) Photocatalyst-containing water-based curable coating compositions and process for production thereof
US6787236B2 (en) Hard coat film
JPWO2010095756A1 (en) Surface-treated pre-coated metal sheet, method for producing the same, and surface-treating liquid
KR20100079749A (en) Article wih self-cleaning effect and method of preparation thereof
JP7414997B2 (en) Coating composition for electrogalvanized steel sheets with excellent heat resistance and tape adhesion, steel sheets surface-treated using the same, and manufacturing method thereof
JP6701695B2 (en) Photocatalyst coating set
JP4066097B1 (en) Photocatalyst-containing aqueous curable coating composition and method for producing the same
JP2008095069A (en) Photocatalyst-containing aqueous curable coating composition and method for producing the same
KR102727357B1 (en) Laminate and its manufacturing method
WO2018134972A1 (en) Photocatalyst coating set
JP4526859B2 (en) COMPOSITE, SUBSTRATE COATED WITH COATING COMPRISING THE COMPOSITE, AND METHOD FOR PRODUCING SUBSTRATE WITH COATING
JP4236226B2 (en) Coated polycarbonate plate
JP2020045454A (en) Curable composition, cured coat, article including cured coat and antibacterial method
JP4223138B2 (en) Precoated steel sheet excellent in workability, weather resistance and photocatalytic activity, and method for producing the same
JP4580263B2 (en) Photocatalyst hard coat film
JP6635329B2 (en) Organic base material with photocatalyst layer
JP3914609B2 (en) Silicate-containing sheet
JPWO2002088268A1 (en) Hard coat composition and resin product provided with hard coat
EP3636800B1 (en) Corrosion resistant surface treatment and primer system for aluminum aircraft using chromium-free inhibitors
JP2015160892A (en) Antifouling composite coat with biofilm forming ability suppressed
JP5721753B2 (en) Hydrophilic paint and hydrophilic coated body
JP2023043393A (en) Resin composition, coating agent, and article
JP6155600B2 (en) Transparent resin laminate, method for producing the same, and primer layer forming primer layer having a heat ray shielding function
KR101755757B1 (en) Method for preventing a photocatalyst from decreasing in hydrophilicity
JP2003025479A (en) Hard coating film having photocatalytic function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载