+

WO2018134940A1 - Laser à semiconducteur intégré à un modulateur optique - Google Patents

Laser à semiconducteur intégré à un modulateur optique Download PDF

Info

Publication number
WO2018134940A1
WO2018134940A1 PCT/JP2017/001699 JP2017001699W WO2018134940A1 WO 2018134940 A1 WO2018134940 A1 WO 2018134940A1 JP 2017001699 W JP2017001699 W JP 2017001699W WO 2018134940 A1 WO2018134940 A1 WO 2018134940A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide core
core layer
layer
optical waveguide
optical modulator
Prior art date
Application number
PCT/JP2017/001699
Other languages
English (en)
Japanese (ja)
Inventor
和久 高木
崇 柳楽
斎藤 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/001699 priority Critical patent/WO2018134940A1/fr
Priority to JP2017514368A priority patent/JP6146554B1/ja
Publication of WO2018134940A1 publication Critical patent/WO2018134940A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an optical modulator integrated semiconductor laser.
  • An optical modulator integrated semiconductor laser is used as a light source for transmission in an optical fiber communication device (see, for example, Patent Documents 1 to 4).
  • an optical modulator integrated semiconductor laser in which a light beam diameter of the emitted light, that is, a spot size converter (SSC) for expanding the spot size is integrated. It has been proposed (see Non-Patent Document 1, for example).
  • a transparent waveguide core layer having a spot size conversion function is connected to the emission end of the core layer of the optical modulator by a butt joint.
  • Japanese Unexamined Patent Publication No. 10-308556 Japanese Unexamined Patent Publication No. 2005-234319 Japanese Unexamined Patent Publication No. 2016-156928 Japanese Unexamined Patent Publication No. 2015-045789
  • the value of the imaginary part of the effective refractive index of the optical waveguide does not match at the connection between the optical modulator and the spot size converter. For this reason, reflected return light to the semiconductor laser is generated, and transmission characteristics are deteriorated.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain an optical modulator integrated semiconductor laser capable of improving transmission quality.
  • An optical modulator integrated semiconductor laser comprises: a semiconductor laser that emits laser light; and an electroabsorption optical modulator that is integrated with the semiconductor laser and modulates the laser light, the electroabsorption optical modulation And a first conductive semiconductor layer, an optical waveguide core layer and a second conductive semiconductor layer, a first electrode formed under the first conductive semiconductor layer, and the optical waveguide core.
  • a second electrode formed on the second conductive type semiconductor layer immediately above the layer, and the optical waveguide core is applied with a voltage applied between the first electrode and the second electrode.
  • the optical absorption coefficient of the layer changes, and the width of the optical waveguide core layer gradually decreases toward the light exit end of the electroabsorption optical modulator.
  • the width of the optical waveguide core layer of the electroabsorption optical modulator gradually decreases toward the output end of the electroabsorption optical modulator.
  • the electroabsorption optical modulator operates as a spot size converter that modulates light and simultaneously enlarges the spot size.
  • reflected return light caused by the difference in the imaginary part of the refractive index does not occur, so that transmission quality can be improved.
  • FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • FIG. 4 is a cross-sectional view taken along the line III-IV in FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line V-VI in FIG. 1.
  • FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on a comparative example.
  • FIG. 7 is a cross-sectional view taken along line V-VI in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on Embodiment 2 of this invention.
  • FIG. 10 is a sectional view taken along line V-VI in FIG. 9.
  • FIG. 10 is a sectional view taken along line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on Embodiment 3 of this invention.
  • FIG. 13 is a sectional view taken along line V-VI in FIG. 12.
  • FIG. 13 is a cross-sectional view taken along the line VII-VIII in FIG.
  • FIG. 1 is a plan view showing a semiconductor device according to Embodiment 1 of the present invention.
  • a semiconductor laser 1 and an electroabsorption optical modulator 2 are integrated.
  • the semiconductor laser 1 emits laser light, and the electroabsorption optical modulator 2 modulates the laser light.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • an n-InP clad layer 4 an active layer 5, a p-InP clad layer 6, and a p-InGaAsP contact layer 7 are sequentially stacked on an n-InP substrate 3.
  • the active layer 5 is, for example, InGaAsP-MQW or AlGaInAs-MQW and includes a diffraction grating layer.
  • a cathode electrode 8 is formed under the n-InP substrate 3.
  • An anode electrode 9 is formed on the p-InGaAsP contact layer 7 immediately above the active layer 5.
  • FIG. 3 is a cross-sectional view taken along the line III-IV in FIG.
  • FIG. 4 is a cross-sectional view taken along the line V-VI in FIG.
  • FIG. 5 is a sectional view taken along line VII-VIII in FIG.
  • the optical waveguide core layer 10 is, for example, AlGaInAs-MQW or InGaAsP-MQW.
  • An anode 11 is formed on the p-InGaAsP contact layer 7 directly above the optical waveguide core layer 10. Except for the anode electrodes 9 and 11, the p-InGaAsP contact layer 7 is covered with a SiO 2 insulating film 12. A semi-insulating InP layer 13 and an n-InP current blocking layer 14 embed both sides of the active layer 5 and the optical waveguide core layer 10.
  • the light absorption coefficient of the optical waveguide core layer 10 changes depending on the voltage applied between the cathode electrode 8 and the anode electrode 11.
  • the electroabsorption optical modulator 2 has a portion where the width of the optical waveguide core layer 10 is constant, and a portion where the width of the optical waveguide core layer 10 gradually decreases toward the light emitting end of the electroabsorption optical modulator 2. .
  • the anode electrode 11 is also formed immediately above the portion where the width gradually decreases.
  • the same modulation signal is applied to both the constant width portion and the gradually decreasing portion via the common anode electrode 11 to operate as an optical modulator.
  • the portion where the width of the optical waveguide core layer 10 gradually decreases along the propagation direction of the laser light operates not only as an optical modulator but also as a spot size converter portion.
  • FIG. 6 is a plan view showing a semiconductor device according to a comparative example.
  • FIG. 7 is a sectional view taken along line V-VI in FIG.
  • FIG. 8 is a sectional view taken along line VII-VIII in FIG. 6 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 6 is the same as FIG.
  • the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 is constant, and the transparent waveguide core layer 16 of the spot size converter 15 having a spot size conversion function is formed at the emission end thereof.
  • the extinction ratio is Ext
  • the absorption coefficient of the electroabsorption optical modulator 2 is ⁇
  • the modulator length is L
  • the optical wavelength is ⁇
  • the imaginary part of the refractive index of the optical waveguide core layer 10 is k
  • the real part of the refractive index is n.
  • the modulator length L is 180 ⁇ m
  • the oscillation wavelength ⁇ of the semiconductor laser 1 is 1.55 ⁇ m
  • the fluctuation of the imaginary part k of the refractive index is 7.5E-4.
  • the effective refractive index n of the real part of both the optical waveguide core layer 10 and the transparent waveguide core layer 16 is 3.2
  • the fluctuation R of the reflectance due to the fluctuation of the imaginary part of the refractive index is 1.9E-16%. It becomes.
  • the value of the imaginary part of the effective refractive index does not match at the connection part between the electroabsorption optical modulator 2 and the spot size converter 15. For this reason, the light whose intensity is changed by the semiconductor laser 1 returns, disturbs the light intensity inside the active layer 5, and deteriorates the transmission characteristics.
  • the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 gradually decreases toward the emission end of the electroabsorption optical modulator 2.
  • the electroabsorption optical modulator 2 operates as a spot size converter that modulates light and simultaneously enlarges the spot size.
  • the reflected return light caused by the difference in the imaginary part of the refractive index as in the comparative example does not occur, so that the transmission quality can be improved.
  • the return light becomes large due to the extremely large difference in refractive index between the optical waveguide core layer 10 of the electroabsorption optical modulator 2 and the buried layer of the window structure. The effect of cannot be obtained. Therefore, in order to reduce light reflection at the light emitting end, it is preferable that the optical waveguide core layer 10 extends to the light emitting end.
  • FIG. 9 is a plan view showing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 10 is a sectional view taken along line V-VI in FIG.
  • FIG. 11 is a sectional view taken along line VII-VIII in FIG. 9 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 9 is the same as FIG.
  • a transparent waveguide core layer 16 is formed around the optical waveguide core layer 10 and is in contact with the optical waveguide core layer 10.
  • the transparent waveguide core layer 16 is, for example, InGaAsP or AlGaInAs.
  • the anode electrode 11 is not formed immediately above the transparent waveguide core layer 16 or is not in contact with the p-InGaAsP contact layer 7 by being formed on the SiO 2 insulating film 12.
  • the refractive index of the transparent waveguide core layer 16 is a value between the refractive index of the semi-insulating InP layer 13 and the n-InP current blocking layer 14 and the refractive index of the optical waveguide core layer 10.
  • the band gap energy of the transparent waveguide core layer 16 is larger than the band gap energy of the optical waveguide core layer 10.
  • the extinction characteristic and the spot size of the electroabsorption optical modulator 2 can be designed independently.
  • Other configurations and effects are the same as those of the first embodiment.
  • FIG. 12 is a plan view showing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 13 is a sectional view taken along line V-VI in FIG.
  • FIG. 14 is a sectional view taken along the line VII-VIII in FIG. 12 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 12 is the same as FIG.
  • the total width of the optical waveguide core layer 10 and the transparent waveguide core layer 16 gradually decreases toward the emission end of the electroabsorption optical modulator 2. Thereby, the spot size can be enlarged as compared with the second embodiment.
  • Other configurations and effects are the same as those of the first and second embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Un laser à semiconducteur (1) et un modulateur optique à électroabsorption (2) sont intégrés l'un à l'autre. Le laser à semiconducteur (1) émet une lumière laser. Le modulateur optique à électroabsorption (2) module la lumière laser. Dans le modulateur optique à électroabsorption (2), une couche semiconductrice de premier type de conductivité (4), une couche centrale de guide d'ondes optique (10) et une couche semiconductrice de second type de conductivité sont stratifiées dans cet ordre. Une première électrode (8) est formée en dessous de la couche semiconductrice de premier type de conductivité (4). Juste au-dessus de la couche centrale de guide d'ondes optique (10), une seconde électrode (11) est formée sur la couche semiconductrice de second type de conductivité (6). Le coefficient d'absorption optique de la couche centrale de guide d'ondes optique (10) change en raison d'une tension appliquée entre la première électrode (8) et la seconde électrode (11). La largeur de la couche centrale de guide d'ondes optique (10) est progressivement réduite vers l'extrémité de sortie de lumière du modulateur optique à électroabsorption (2).
PCT/JP2017/001699 2017-01-19 2017-01-19 Laser à semiconducteur intégré à un modulateur optique WO2018134940A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/001699 WO2018134940A1 (fr) 2017-01-19 2017-01-19 Laser à semiconducteur intégré à un modulateur optique
JP2017514368A JP6146554B1 (ja) 2017-01-19 2017-01-19 光変調器集積半導体レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001699 WO2018134940A1 (fr) 2017-01-19 2017-01-19 Laser à semiconducteur intégré à un modulateur optique

Publications (1)

Publication Number Publication Date
WO2018134940A1 true WO2018134940A1 (fr) 2018-07-26

Family

ID=59061190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001699 WO2018134940A1 (fr) 2017-01-19 2017-01-19 Laser à semiconducteur intégré à un modulateur optique

Country Status (2)

Country Link
JP (1) JP6146554B1 (fr)
WO (1) WO2018134940A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501819B1 (ja) 2023-04-26 2024-06-18 三菱電機株式会社 半導体光集積素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308556A (ja) * 1997-05-02 1998-11-17 Nec Corp 半導体光素子およびその製造方法
JP2000193921A (ja) * 1998-12-28 2000-07-14 Nec Corp 変調器集積化レ―ザモジュ―ル
JP2004177728A (ja) * 2002-11-28 2004-06-24 Opnext Japan Inc 電界吸収型変調器
JP2009510505A (ja) * 2005-09-27 2009-03-12 ブッカム・テクノロジー・ピーエルシー 光導波路工程で損失を低減するテーパー部を備える光学素子
JP2011039262A (ja) * 2009-08-11 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 光変調器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308556A (ja) * 1997-05-02 1998-11-17 Nec Corp 半導体光素子およびその製造方法
JP2000193921A (ja) * 1998-12-28 2000-07-14 Nec Corp 変調器集積化レ―ザモジュ―ル
JP2004177728A (ja) * 2002-11-28 2004-06-24 Opnext Japan Inc 電界吸収型変調器
JP2009510505A (ja) * 2005-09-27 2009-03-12 ブッカム・テクノロジー・ピーエルシー 光導波路工程で損失を低減するテーパー部を備える光学素子
JP2011039262A (ja) * 2009-08-11 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 光変調器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501819B1 (ja) 2023-04-26 2024-06-18 三菱電機株式会社 半導体光集積素子
WO2024224495A1 (fr) * 2023-04-26 2024-10-31 三菱電機株式会社 Élément intégré optique à semi-conducteur

Also Published As

Publication number Publication date
JPWO2018134940A1 (ja) 2019-01-31
JP6146554B1 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
KR100333482B1 (ko) 초고속 반도체 광변조기 및 그 제조방법
JP5823920B2 (ja) 半導体光集積素子
KR102021278B1 (ko) 반사형 파장무의존 광원
JP2016072608A (ja) 半導体レーザおよびこれを備える光集積光源
JP2009198881A (ja) 光半導体装置
JP5461046B2 (ja) 光半導体装置
JP4421951B2 (ja) 光送信モジュール
JP2014085501A (ja) 半導体光変調器
JP2019008179A (ja) 半導体光素子
JP4762834B2 (ja) 光集積回路
JP2013137360A (ja) 光合分波素子およびマッハツェンダ型光変調器
JP6146554B1 (ja) 光変調器集積半導体レーザ
JP2012002929A (ja) 半導体光素子の製造方法、レーザモジュール、光伝送装置
JP6761390B2 (ja) 半導体光集積素子
JP2015065406A (ja) 波長可変光源および波長可変光源モジュール
JP4629346B2 (ja) 光集積デバイス
JP4411938B2 (ja) 変調器集積半導体レーザ、光変調システムおよび光変調方法
WO2020144752A1 (fr) Élément intégré à semi-conducteur optique
JP2011181789A (ja) 半導体光源
US20220360038A1 (en) Systems and methods for external modulation of a laser
US20170194766A1 (en) Optical device and optical module
US20240266799A1 (en) Semiconductor Laser and Optical Transmitter
US7548574B2 (en) Integrated modulator/laser assembly and a method of producing same
JP2013251424A (ja) 光集積素子
JP5086141B2 (ja) 電界吸収型変調器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017514368

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892966

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载