WO2018134940A1 - Laser à semiconducteur intégré à un modulateur optique - Google Patents
Laser à semiconducteur intégré à un modulateur optique Download PDFInfo
- Publication number
- WO2018134940A1 WO2018134940A1 PCT/JP2017/001699 JP2017001699W WO2018134940A1 WO 2018134940 A1 WO2018134940 A1 WO 2018134940A1 JP 2017001699 W JP2017001699 W JP 2017001699W WO 2018134940 A1 WO2018134940 A1 WO 2018134940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- waveguide core
- core layer
- layer
- optical waveguide
- optical modulator
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 89
- 239000004065 semiconductor Substances 0.000 title claims abstract description 48
- 239000012792 core layer Substances 0.000 claims abstract description 55
- 239000010410 layer Substances 0.000 claims abstract description 46
- 230000007423 decrease Effects 0.000 claims description 8
- 230000031700 light absorption Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 101150014352 mtb12 gene Proteins 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present invention relates to an optical modulator integrated semiconductor laser.
- An optical modulator integrated semiconductor laser is used as a light source for transmission in an optical fiber communication device (see, for example, Patent Documents 1 to 4).
- an optical modulator integrated semiconductor laser in which a light beam diameter of the emitted light, that is, a spot size converter (SSC) for expanding the spot size is integrated. It has been proposed (see Non-Patent Document 1, for example).
- a transparent waveguide core layer having a spot size conversion function is connected to the emission end of the core layer of the optical modulator by a butt joint.
- Japanese Unexamined Patent Publication No. 10-308556 Japanese Unexamined Patent Publication No. 2005-234319 Japanese Unexamined Patent Publication No. 2016-156928 Japanese Unexamined Patent Publication No. 2015-045789
- the value of the imaginary part of the effective refractive index of the optical waveguide does not match at the connection between the optical modulator and the spot size converter. For this reason, reflected return light to the semiconductor laser is generated, and transmission characteristics are deteriorated.
- the present invention has been made to solve the above-described problems, and an object thereof is to obtain an optical modulator integrated semiconductor laser capable of improving transmission quality.
- An optical modulator integrated semiconductor laser comprises: a semiconductor laser that emits laser light; and an electroabsorption optical modulator that is integrated with the semiconductor laser and modulates the laser light, the electroabsorption optical modulation And a first conductive semiconductor layer, an optical waveguide core layer and a second conductive semiconductor layer, a first electrode formed under the first conductive semiconductor layer, and the optical waveguide core.
- a second electrode formed on the second conductive type semiconductor layer immediately above the layer, and the optical waveguide core is applied with a voltage applied between the first electrode and the second electrode.
- the optical absorption coefficient of the layer changes, and the width of the optical waveguide core layer gradually decreases toward the light exit end of the electroabsorption optical modulator.
- the width of the optical waveguide core layer of the electroabsorption optical modulator gradually decreases toward the output end of the electroabsorption optical modulator.
- the electroabsorption optical modulator operates as a spot size converter that modulates light and simultaneously enlarges the spot size.
- reflected return light caused by the difference in the imaginary part of the refractive index does not occur, so that transmission quality can be improved.
- FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line II of FIG.
- FIG. 4 is a cross-sectional view taken along the line III-IV in FIG. 1.
- FIG. 5 is a cross-sectional view taken along line V-VI in FIG. 1.
- FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on a comparative example.
- FIG. 7 is a cross-sectional view taken along line V-VI in FIG. 6.
- FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on Embodiment 2 of this invention.
- FIG. 10 is a sectional view taken along line V-VI in FIG. 9.
- FIG. 10 is a sectional view taken along line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on Embodiment 3 of this invention.
- FIG. 13 is a sectional view taken along line V-VI in FIG. 12.
- FIG. 13 is a cross-sectional view taken along the line VII-VIII in FIG.
- FIG. 1 is a plan view showing a semiconductor device according to Embodiment 1 of the present invention.
- a semiconductor laser 1 and an electroabsorption optical modulator 2 are integrated.
- the semiconductor laser 1 emits laser light, and the electroabsorption optical modulator 2 modulates the laser light.
- FIG. 2 is a cross-sectional view taken along the line II of FIG.
- an n-InP clad layer 4 an active layer 5, a p-InP clad layer 6, and a p-InGaAsP contact layer 7 are sequentially stacked on an n-InP substrate 3.
- the active layer 5 is, for example, InGaAsP-MQW or AlGaInAs-MQW and includes a diffraction grating layer.
- a cathode electrode 8 is formed under the n-InP substrate 3.
- An anode electrode 9 is formed on the p-InGaAsP contact layer 7 immediately above the active layer 5.
- FIG. 3 is a cross-sectional view taken along the line III-IV in FIG.
- FIG. 4 is a cross-sectional view taken along the line V-VI in FIG.
- FIG. 5 is a sectional view taken along line VII-VIII in FIG.
- the optical waveguide core layer 10 is, for example, AlGaInAs-MQW or InGaAsP-MQW.
- An anode 11 is formed on the p-InGaAsP contact layer 7 directly above the optical waveguide core layer 10. Except for the anode electrodes 9 and 11, the p-InGaAsP contact layer 7 is covered with a SiO 2 insulating film 12. A semi-insulating InP layer 13 and an n-InP current blocking layer 14 embed both sides of the active layer 5 and the optical waveguide core layer 10.
- the light absorption coefficient of the optical waveguide core layer 10 changes depending on the voltage applied between the cathode electrode 8 and the anode electrode 11.
- the electroabsorption optical modulator 2 has a portion where the width of the optical waveguide core layer 10 is constant, and a portion where the width of the optical waveguide core layer 10 gradually decreases toward the light emitting end of the electroabsorption optical modulator 2. .
- the anode electrode 11 is also formed immediately above the portion where the width gradually decreases.
- the same modulation signal is applied to both the constant width portion and the gradually decreasing portion via the common anode electrode 11 to operate as an optical modulator.
- the portion where the width of the optical waveguide core layer 10 gradually decreases along the propagation direction of the laser light operates not only as an optical modulator but also as a spot size converter portion.
- FIG. 6 is a plan view showing a semiconductor device according to a comparative example.
- FIG. 7 is a sectional view taken along line V-VI in FIG.
- FIG. 8 is a sectional view taken along line VII-VIII in FIG. 6 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 6 is the same as FIG.
- the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 is constant, and the transparent waveguide core layer 16 of the spot size converter 15 having a spot size conversion function is formed at the emission end thereof.
- the extinction ratio is Ext
- the absorption coefficient of the electroabsorption optical modulator 2 is ⁇
- the modulator length is L
- the optical wavelength is ⁇
- the imaginary part of the refractive index of the optical waveguide core layer 10 is k
- the real part of the refractive index is n.
- the modulator length L is 180 ⁇ m
- the oscillation wavelength ⁇ of the semiconductor laser 1 is 1.55 ⁇ m
- the fluctuation of the imaginary part k of the refractive index is 7.5E-4.
- the effective refractive index n of the real part of both the optical waveguide core layer 10 and the transparent waveguide core layer 16 is 3.2
- the fluctuation R of the reflectance due to the fluctuation of the imaginary part of the refractive index is 1.9E-16%. It becomes.
- the value of the imaginary part of the effective refractive index does not match at the connection part between the electroabsorption optical modulator 2 and the spot size converter 15. For this reason, the light whose intensity is changed by the semiconductor laser 1 returns, disturbs the light intensity inside the active layer 5, and deteriorates the transmission characteristics.
- the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 gradually decreases toward the emission end of the electroabsorption optical modulator 2.
- the electroabsorption optical modulator 2 operates as a spot size converter that modulates light and simultaneously enlarges the spot size.
- the reflected return light caused by the difference in the imaginary part of the refractive index as in the comparative example does not occur, so that the transmission quality can be improved.
- the return light becomes large due to the extremely large difference in refractive index between the optical waveguide core layer 10 of the electroabsorption optical modulator 2 and the buried layer of the window structure. The effect of cannot be obtained. Therefore, in order to reduce light reflection at the light emitting end, it is preferable that the optical waveguide core layer 10 extends to the light emitting end.
- FIG. 9 is a plan view showing a semiconductor device according to the second embodiment of the present invention.
- FIG. 10 is a sectional view taken along line V-VI in FIG.
- FIG. 11 is a sectional view taken along line VII-VIII in FIG. 9 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 9 is the same as FIG.
- a transparent waveguide core layer 16 is formed around the optical waveguide core layer 10 and is in contact with the optical waveguide core layer 10.
- the transparent waveguide core layer 16 is, for example, InGaAsP or AlGaInAs.
- the anode electrode 11 is not formed immediately above the transparent waveguide core layer 16 or is not in contact with the p-InGaAsP contact layer 7 by being formed on the SiO 2 insulating film 12.
- the refractive index of the transparent waveguide core layer 16 is a value between the refractive index of the semi-insulating InP layer 13 and the n-InP current blocking layer 14 and the refractive index of the optical waveguide core layer 10.
- the band gap energy of the transparent waveguide core layer 16 is larger than the band gap energy of the optical waveguide core layer 10.
- the extinction characteristic and the spot size of the electroabsorption optical modulator 2 can be designed independently.
- Other configurations and effects are the same as those of the first embodiment.
- FIG. 12 is a plan view showing a semiconductor device according to the third embodiment of the present invention.
- FIG. 13 is a sectional view taken along line V-VI in FIG.
- FIG. 14 is a sectional view taken along the line VII-VIII in FIG. 12 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 12 is the same as FIG.
- the total width of the optical waveguide core layer 10 and the transparent waveguide core layer 16 gradually decreases toward the emission end of the electroabsorption optical modulator 2. Thereby, the spot size can be enlarged as compared with the second embodiment.
- Other configurations and effects are the same as those of the first and second embodiments.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Semiconductor Lasers (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Un laser à semiconducteur (1) et un modulateur optique à électroabsorption (2) sont intégrés l'un à l'autre. Le laser à semiconducteur (1) émet une lumière laser. Le modulateur optique à électroabsorption (2) module la lumière laser. Dans le modulateur optique à électroabsorption (2), une couche semiconductrice de premier type de conductivité (4), une couche centrale de guide d'ondes optique (10) et une couche semiconductrice de second type de conductivité sont stratifiées dans cet ordre. Une première électrode (8) est formée en dessous de la couche semiconductrice de premier type de conductivité (4). Juste au-dessus de la couche centrale de guide d'ondes optique (10), une seconde électrode (11) est formée sur la couche semiconductrice de second type de conductivité (6). Le coefficient d'absorption optique de la couche centrale de guide d'ondes optique (10) change en raison d'une tension appliquée entre la première électrode (8) et la seconde électrode (11). La largeur de la couche centrale de guide d'ondes optique (10) est progressivement réduite vers l'extrémité de sortie de lumière du modulateur optique à électroabsorption (2).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001699 WO2018134940A1 (fr) | 2017-01-19 | 2017-01-19 | Laser à semiconducteur intégré à un modulateur optique |
JP2017514368A JP6146554B1 (ja) | 2017-01-19 | 2017-01-19 | 光変調器集積半導体レーザ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001699 WO2018134940A1 (fr) | 2017-01-19 | 2017-01-19 | Laser à semiconducteur intégré à un modulateur optique |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018134940A1 true WO2018134940A1 (fr) | 2018-07-26 |
Family
ID=59061190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001699 WO2018134940A1 (fr) | 2017-01-19 | 2017-01-19 | Laser à semiconducteur intégré à un modulateur optique |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6146554B1 (fr) |
WO (1) | WO2018134940A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7501819B1 (ja) | 2023-04-26 | 2024-06-18 | 三菱電機株式会社 | 半導体光集積素子 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308556A (ja) * | 1997-05-02 | 1998-11-17 | Nec Corp | 半導体光素子およびその製造方法 |
JP2000193921A (ja) * | 1998-12-28 | 2000-07-14 | Nec Corp | 変調器集積化レ―ザモジュ―ル |
JP2004177728A (ja) * | 2002-11-28 | 2004-06-24 | Opnext Japan Inc | 電界吸収型変調器 |
JP2009510505A (ja) * | 2005-09-27 | 2009-03-12 | ブッカム・テクノロジー・ピーエルシー | 光導波路工程で損失を低減するテーパー部を備える光学素子 |
JP2011039262A (ja) * | 2009-08-11 | 2011-02-24 | Nippon Telegr & Teleph Corp <Ntt> | 光変調器 |
-
2017
- 2017-01-19 JP JP2017514368A patent/JP6146554B1/ja active Active
- 2017-01-19 WO PCT/JP2017/001699 patent/WO2018134940A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308556A (ja) * | 1997-05-02 | 1998-11-17 | Nec Corp | 半導体光素子およびその製造方法 |
JP2000193921A (ja) * | 1998-12-28 | 2000-07-14 | Nec Corp | 変調器集積化レ―ザモジュ―ル |
JP2004177728A (ja) * | 2002-11-28 | 2004-06-24 | Opnext Japan Inc | 電界吸収型変調器 |
JP2009510505A (ja) * | 2005-09-27 | 2009-03-12 | ブッカム・テクノロジー・ピーエルシー | 光導波路工程で損失を低減するテーパー部を備える光学素子 |
JP2011039262A (ja) * | 2009-08-11 | 2011-02-24 | Nippon Telegr & Teleph Corp <Ntt> | 光変調器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7501819B1 (ja) | 2023-04-26 | 2024-06-18 | 三菱電機株式会社 | 半導体光集積素子 |
WO2024224495A1 (fr) * | 2023-04-26 | 2024-10-31 | 三菱電機株式会社 | Élément intégré optique à semi-conducteur |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018134940A1 (ja) | 2019-01-31 |
JP6146554B1 (ja) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100333482B1 (ko) | 초고속 반도체 광변조기 및 그 제조방법 | |
JP5823920B2 (ja) | 半導体光集積素子 | |
KR102021278B1 (ko) | 반사형 파장무의존 광원 | |
JP2016072608A (ja) | 半導体レーザおよびこれを備える光集積光源 | |
JP2009198881A (ja) | 光半導体装置 | |
JP5461046B2 (ja) | 光半導体装置 | |
JP4421951B2 (ja) | 光送信モジュール | |
JP2014085501A (ja) | 半導体光変調器 | |
JP2019008179A (ja) | 半導体光素子 | |
JP4762834B2 (ja) | 光集積回路 | |
JP2013137360A (ja) | 光合分波素子およびマッハツェンダ型光変調器 | |
JP6146554B1 (ja) | 光変調器集積半導体レーザ | |
JP2012002929A (ja) | 半導体光素子の製造方法、レーザモジュール、光伝送装置 | |
JP6761390B2 (ja) | 半導体光集積素子 | |
JP2015065406A (ja) | 波長可変光源および波長可変光源モジュール | |
JP4629346B2 (ja) | 光集積デバイス | |
JP4411938B2 (ja) | 変調器集積半導体レーザ、光変調システムおよび光変調方法 | |
WO2020144752A1 (fr) | Élément intégré à semi-conducteur optique | |
JP2011181789A (ja) | 半導体光源 | |
US20220360038A1 (en) | Systems and methods for external modulation of a laser | |
US20170194766A1 (en) | Optical device and optical module | |
US20240266799A1 (en) | Semiconductor Laser and Optical Transmitter | |
US7548574B2 (en) | Integrated modulator/laser assembly and a method of producing same | |
JP2013251424A (ja) | 光集積素子 | |
JP5086141B2 (ja) | 電界吸収型変調器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017514368 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892966 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892966 Country of ref document: EP Kind code of ref document: A1 |