+

WO2018134940A1 - Optical modulator integrated semiconductor laser - Google Patents

Optical modulator integrated semiconductor laser Download PDF

Info

Publication number
WO2018134940A1
WO2018134940A1 PCT/JP2017/001699 JP2017001699W WO2018134940A1 WO 2018134940 A1 WO2018134940 A1 WO 2018134940A1 JP 2017001699 W JP2017001699 W JP 2017001699W WO 2018134940 A1 WO2018134940 A1 WO 2018134940A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide core
core layer
layer
optical waveguide
optical modulator
Prior art date
Application number
PCT/JP2017/001699
Other languages
French (fr)
Japanese (ja)
Inventor
和久 高木
崇 柳楽
斎藤 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/001699 priority Critical patent/WO2018134940A1/en
Priority to JP2017514368A priority patent/JP6146554B1/en
Publication of WO2018134940A1 publication Critical patent/WO2018134940A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to an optical modulator integrated semiconductor laser.
  • An optical modulator integrated semiconductor laser is used as a light source for transmission in an optical fiber communication device (see, for example, Patent Documents 1 to 4).
  • an optical modulator integrated semiconductor laser in which a light beam diameter of the emitted light, that is, a spot size converter (SSC) for expanding the spot size is integrated. It has been proposed (see Non-Patent Document 1, for example).
  • a transparent waveguide core layer having a spot size conversion function is connected to the emission end of the core layer of the optical modulator by a butt joint.
  • Japanese Unexamined Patent Publication No. 10-308556 Japanese Unexamined Patent Publication No. 2005-234319 Japanese Unexamined Patent Publication No. 2016-156928 Japanese Unexamined Patent Publication No. 2015-045789
  • the value of the imaginary part of the effective refractive index of the optical waveguide does not match at the connection between the optical modulator and the spot size converter. For this reason, reflected return light to the semiconductor laser is generated, and transmission characteristics are deteriorated.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain an optical modulator integrated semiconductor laser capable of improving transmission quality.
  • An optical modulator integrated semiconductor laser comprises: a semiconductor laser that emits laser light; and an electroabsorption optical modulator that is integrated with the semiconductor laser and modulates the laser light, the electroabsorption optical modulation And a first conductive semiconductor layer, an optical waveguide core layer and a second conductive semiconductor layer, a first electrode formed under the first conductive semiconductor layer, and the optical waveguide core.
  • a second electrode formed on the second conductive type semiconductor layer immediately above the layer, and the optical waveguide core is applied with a voltage applied between the first electrode and the second electrode.
  • the optical absorption coefficient of the layer changes, and the width of the optical waveguide core layer gradually decreases toward the light exit end of the electroabsorption optical modulator.
  • the width of the optical waveguide core layer of the electroabsorption optical modulator gradually decreases toward the output end of the electroabsorption optical modulator.
  • the electroabsorption optical modulator operates as a spot size converter that modulates light and simultaneously enlarges the spot size.
  • reflected return light caused by the difference in the imaginary part of the refractive index does not occur, so that transmission quality can be improved.
  • FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • FIG. 4 is a cross-sectional view taken along the line III-IV in FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line V-VI in FIG. 1.
  • FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on a comparative example.
  • FIG. 7 is a cross-sectional view taken along line V-VI in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on Embodiment 2 of this invention.
  • FIG. 10 is a sectional view taken along line V-VI in FIG. 9.
  • FIG. 10 is a sectional view taken along line VII-VIII in FIG. It is a top view which shows the semiconductor device which concerns on Embodiment 3 of this invention.
  • FIG. 13 is a sectional view taken along line V-VI in FIG. 12.
  • FIG. 13 is a cross-sectional view taken along the line VII-VIII in FIG.
  • FIG. 1 is a plan view showing a semiconductor device according to Embodiment 1 of the present invention.
  • a semiconductor laser 1 and an electroabsorption optical modulator 2 are integrated.
  • the semiconductor laser 1 emits laser light, and the electroabsorption optical modulator 2 modulates the laser light.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • an n-InP clad layer 4 an active layer 5, a p-InP clad layer 6, and a p-InGaAsP contact layer 7 are sequentially stacked on an n-InP substrate 3.
  • the active layer 5 is, for example, InGaAsP-MQW or AlGaInAs-MQW and includes a diffraction grating layer.
  • a cathode electrode 8 is formed under the n-InP substrate 3.
  • An anode electrode 9 is formed on the p-InGaAsP contact layer 7 immediately above the active layer 5.
  • FIG. 3 is a cross-sectional view taken along the line III-IV in FIG.
  • FIG. 4 is a cross-sectional view taken along the line V-VI in FIG.
  • FIG. 5 is a sectional view taken along line VII-VIII in FIG.
  • the optical waveguide core layer 10 is, for example, AlGaInAs-MQW or InGaAsP-MQW.
  • An anode 11 is formed on the p-InGaAsP contact layer 7 directly above the optical waveguide core layer 10. Except for the anode electrodes 9 and 11, the p-InGaAsP contact layer 7 is covered with a SiO 2 insulating film 12. A semi-insulating InP layer 13 and an n-InP current blocking layer 14 embed both sides of the active layer 5 and the optical waveguide core layer 10.
  • the light absorption coefficient of the optical waveguide core layer 10 changes depending on the voltage applied between the cathode electrode 8 and the anode electrode 11.
  • the electroabsorption optical modulator 2 has a portion where the width of the optical waveguide core layer 10 is constant, and a portion where the width of the optical waveguide core layer 10 gradually decreases toward the light emitting end of the electroabsorption optical modulator 2. .
  • the anode electrode 11 is also formed immediately above the portion where the width gradually decreases.
  • the same modulation signal is applied to both the constant width portion and the gradually decreasing portion via the common anode electrode 11 to operate as an optical modulator.
  • the portion where the width of the optical waveguide core layer 10 gradually decreases along the propagation direction of the laser light operates not only as an optical modulator but also as a spot size converter portion.
  • FIG. 6 is a plan view showing a semiconductor device according to a comparative example.
  • FIG. 7 is a sectional view taken along line V-VI in FIG.
  • FIG. 8 is a sectional view taken along line VII-VIII in FIG. 6 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 6 is the same as FIG.
  • the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 is constant, and the transparent waveguide core layer 16 of the spot size converter 15 having a spot size conversion function is formed at the emission end thereof.
  • the extinction ratio is Ext
  • the absorption coefficient of the electroabsorption optical modulator 2 is ⁇
  • the modulator length is L
  • the optical wavelength is ⁇
  • the imaginary part of the refractive index of the optical waveguide core layer 10 is k
  • the real part of the refractive index is n.
  • the modulator length L is 180 ⁇ m
  • the oscillation wavelength ⁇ of the semiconductor laser 1 is 1.55 ⁇ m
  • the fluctuation of the imaginary part k of the refractive index is 7.5E-4.
  • the effective refractive index n of the real part of both the optical waveguide core layer 10 and the transparent waveguide core layer 16 is 3.2
  • the fluctuation R of the reflectance due to the fluctuation of the imaginary part of the refractive index is 1.9E-16%. It becomes.
  • the value of the imaginary part of the effective refractive index does not match at the connection part between the electroabsorption optical modulator 2 and the spot size converter 15. For this reason, the light whose intensity is changed by the semiconductor laser 1 returns, disturbs the light intensity inside the active layer 5, and deteriorates the transmission characteristics.
  • the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 gradually decreases toward the emission end of the electroabsorption optical modulator 2.
  • the electroabsorption optical modulator 2 operates as a spot size converter that modulates light and simultaneously enlarges the spot size.
  • the reflected return light caused by the difference in the imaginary part of the refractive index as in the comparative example does not occur, so that the transmission quality can be improved.
  • the return light becomes large due to the extremely large difference in refractive index between the optical waveguide core layer 10 of the electroabsorption optical modulator 2 and the buried layer of the window structure. The effect of cannot be obtained. Therefore, in order to reduce light reflection at the light emitting end, it is preferable that the optical waveguide core layer 10 extends to the light emitting end.
  • FIG. 9 is a plan view showing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 10 is a sectional view taken along line V-VI in FIG.
  • FIG. 11 is a sectional view taken along line VII-VIII in FIG. 9 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 9 is the same as FIG.
  • a transparent waveguide core layer 16 is formed around the optical waveguide core layer 10 and is in contact with the optical waveguide core layer 10.
  • the transparent waveguide core layer 16 is, for example, InGaAsP or AlGaInAs.
  • the anode electrode 11 is not formed immediately above the transparent waveguide core layer 16 or is not in contact with the p-InGaAsP contact layer 7 by being formed on the SiO 2 insulating film 12.
  • the refractive index of the transparent waveguide core layer 16 is a value between the refractive index of the semi-insulating InP layer 13 and the n-InP current blocking layer 14 and the refractive index of the optical waveguide core layer 10.
  • the band gap energy of the transparent waveguide core layer 16 is larger than the band gap energy of the optical waveguide core layer 10.
  • the extinction characteristic and the spot size of the electroabsorption optical modulator 2 can be designed independently.
  • Other configurations and effects are the same as those of the first embodiment.
  • FIG. 12 is a plan view showing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 13 is a sectional view taken along line V-VI in FIG.
  • FIG. 14 is a sectional view taken along the line VII-VIII in FIG. 12 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 12 is the same as FIG.
  • the total width of the optical waveguide core layer 10 and the transparent waveguide core layer 16 gradually decreases toward the emission end of the electroabsorption optical modulator 2. Thereby, the spot size can be enlarged as compared with the second embodiment.
  • Other configurations and effects are the same as those of the first and second embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A semiconductor laser (1) and an electroabsorption optical modulator (2) are integrated with each other. The semiconductor laser (1) outputs laser light. The electroabsorption optical modulator (2) modulates the laser light. In the electroabsorption optical modulator (2), a first conductivity-type semiconductor layer (4), an optical waveguide core layer (10), and a second conductivity-type semiconductor layer (6) are laminated in this order. A first electrode (8) is formed below the first conductivity-type semiconductor layer (4). Just above the optical waveguide core layer (10), a second electrode (11) is formed on the second conductivity-type semiconductor layer (6). The optical absorption coefficient of the optical waveguide core layer (10) changes due to a voltage applied between the first electrode (8) and the second electrode (11). The width of the optical waveguide core layer (10) is gradually reduced toward the light output end of the electroabsorption optical modulator (2).

Description

光変調器集積半導体レーザOptical modulator integrated semiconductor laser
 本発明は、光変調器集積半導体レーザに関する。 The present invention relates to an optical modulator integrated semiconductor laser.
 光ファイバ通信装置の送信用光源として光変調器集積半導体レーザが用いられている(例えば、特許文献1~4参照)。電界吸収型光変調器(EAM)と集積半導体レーザ(EML)に加えて、出射光の光ビーム径、即ちスポットサイズを拡大するスポットサイズ変換器(SSC)を集積した光変調器集積半導体レーザも提案されている(例えば、非特許文献1参照)。このレーザでは、光変調器のコア層の出射端にスポットサイズ変換機能を有する透明導波路コア層がバットジョイントにより接続されている。 An optical modulator integrated semiconductor laser is used as a light source for transmission in an optical fiber communication device (see, for example, Patent Documents 1 to 4). In addition to the electroabsorption optical modulator (EAM) and the integrated semiconductor laser (EML), there is also an optical modulator integrated semiconductor laser in which a light beam diameter of the emitted light, that is, a spot size converter (SSC) for expanding the spot size is integrated. It has been proposed (see Non-Patent Document 1, for example). In this laser, a transparent waveguide core layer having a spot size conversion function is connected to the emission end of the core layer of the optical modulator by a butt joint.
日本特開平10-308556号公報Japanese Unexamined Patent Publication No. 10-308556 日本特開2005-234319号公報Japanese Unexamined Patent Publication No. 2005-234319 日本特開2016-156928号公報Japanese Unexamined Patent Publication No. 2016-156928 日本特開2015-045789号公報Japanese Unexamined Patent Publication No. 2015-045789
 しかし、光変調器とスポットサイズ変換器の接続部において光導波路の実効屈折率の虚部の値が合致しない。このため、半導体レーザへの反射戻り光が発生し、伝送特性の劣化が生じていた。 However, the value of the imaginary part of the effective refractive index of the optical waveguide does not match at the connection between the optical modulator and the spot size converter. For this reason, reflected return light to the semiconductor laser is generated, and transmission characteristics are deteriorated.
 本発明は、上述のような課題を解決するためになされたもので、その目的は伝送品質を改善することができる光変調器集積半導体レーザを得るものである。 The present invention has been made to solve the above-described problems, and an object thereof is to obtain an optical modulator integrated semiconductor laser capable of improving transmission quality.
 本発明に係る光変調器集積半導体レーザは、レーザ光を出射する半導体レーザと、前記半導体レーザと集積され、前記レーザ光を変調する電界吸収型光変調器とを備え、前記電界吸収型光変調器は、順に積層された第1導電型半導体層、光導波路コア層及び第2導電型半導体層と、前記第1導電型半導体層の下に形成された第1の電極と、前記光導波路コア層の真上において前記第2導電型半導体層の上に形成された第2の電極とを有し、前記第1の電極と前記第2の電極との間に印加する電圧によって前記光導波路コア層の光吸収係数が変化し、前記光導波路コア層の幅は、前記電界吸収型光変調器の光出射端に向かって漸減することを特徴とする。 An optical modulator integrated semiconductor laser according to the present invention comprises: a semiconductor laser that emits laser light; and an electroabsorption optical modulator that is integrated with the semiconductor laser and modulates the laser light, the electroabsorption optical modulation And a first conductive semiconductor layer, an optical waveguide core layer and a second conductive semiconductor layer, a first electrode formed under the first conductive semiconductor layer, and the optical waveguide core. A second electrode formed on the second conductive type semiconductor layer immediately above the layer, and the optical waveguide core is applied with a voltage applied between the first electrode and the second electrode. The optical absorption coefficient of the layer changes, and the width of the optical waveguide core layer gradually decreases toward the light exit end of the electroabsorption optical modulator.
 本発明では、電界吸収型光変調器の光導波路コア層の幅が、電界吸収型光変調器の出射端に向かって漸減する。これにより、電界吸収型光変調器は、光を変調すると同時に、スポットサイズを拡大するスポットサイズ変換器としても動作する。これにより、屈折率の虚部の差異に起因する反射戻り光は生じないため、伝送品質を改善することができる。 In the present invention, the width of the optical waveguide core layer of the electroabsorption optical modulator gradually decreases toward the output end of the electroabsorption optical modulator. Thus, the electroabsorption optical modulator operates as a spot size converter that modulates light and simultaneously enlarges the spot size. As a result, reflected return light caused by the difference in the imaginary part of the refractive index does not occur, so that transmission quality can be improved.
本発明の実施の形態1に係る半導体装置を示す平面図である。1 is a plan view showing a semiconductor device according to a first embodiment of the present invention. 図1のI-IIに沿った断面図である。FIG. 2 is a cross-sectional view taken along the line II of FIG. 図1のIII-IVに沿った断面図である。FIG. 4 is a cross-sectional view taken along the line III-IV in FIG. 1. 図1のV-VIに沿った断面図である。FIG. 5 is a cross-sectional view taken along line V-VI in FIG. 1. 図1のVII-VIIIに沿った断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. 比較例に係る半導体装置を示す平面図である。It is a top view which shows the semiconductor device which concerns on a comparative example. 図6のV-VIに沿った断面図である。FIG. 7 is a cross-sectional view taken along line V-VI in FIG. 6. 図6のVII-VIIIに沿った断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VIII in FIG. 本発明の実施の形態2に係る半導体装置を示す平面図である。It is a top view which shows the semiconductor device which concerns on Embodiment 2 of this invention. 図9のV-VIに沿った断面図である。FIG. 10 is a sectional view taken along line V-VI in FIG. 9. 図9のVII-VIIIに沿った断面図である。FIG. 10 is a sectional view taken along line VII-VIII in FIG. 本発明の実施の形態3に係る半導体装置を示す平面図である。It is a top view which shows the semiconductor device which concerns on Embodiment 3 of this invention. 図12のV-VIに沿った断面図である。FIG. 13 is a sectional view taken along line V-VI in FIG. 12. 図12のVII-VIIIに沿った断面図である。FIG. 13 is a cross-sectional view taken along the line VII-VIII in FIG.
 本発明の実施の形態に係る光変調器集積半導体レーザについて図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 An optical modulator integrated semiconductor laser according to an embodiment of the present invention will be described with reference to the drawings. The same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
実施の形態1.
 図1は、本発明の実施の形態1に係る半導体装置を示す平面図である。半導体レーザ1と電界吸収型光変調器2が集積されている。半導体レーザ1がレーザ光を出射し、そのレーザ光を電界吸収型光変調器2が変調する。
Embodiment 1 FIG.
FIG. 1 is a plan view showing a semiconductor device according to Embodiment 1 of the present invention. A semiconductor laser 1 and an electroabsorption optical modulator 2 are integrated. The semiconductor laser 1 emits laser light, and the electroabsorption optical modulator 2 modulates the laser light.
 図2は図1のI-IIに沿った断面図である。半導体レーザ1において、n-InP基板3上にn-InPクラッド層4、活性層5、p-InPクラッド層6及びp-InGaAsPコンタクト層7が順に積層されている。活性層5は例えばInGaAsP-MQW又はAlGaInAs-MQWであり、回折格子の層も含む。カソード電極8がn-InP基板3の下に形成されている。アノード電極9が活性層5の真上においてp-InGaAsPコンタクト層7上に形成されている。 FIG. 2 is a cross-sectional view taken along the line II of FIG. In the semiconductor laser 1, an n-InP clad layer 4, an active layer 5, a p-InP clad layer 6, and a p-InGaAsP contact layer 7 are sequentially stacked on an n-InP substrate 3. The active layer 5 is, for example, InGaAsP-MQW or AlGaInAs-MQW and includes a diffraction grating layer. A cathode electrode 8 is formed under the n-InP substrate 3. An anode electrode 9 is formed on the p-InGaAsP contact layer 7 immediately above the active layer 5.
 図3は図1のIII-IVに沿った断面図である。図4は図1のV-VIに沿った断面図である。図5は図1のVII-VIIIに沿った断面図である。電界吸収型光変調器2において、n-InP基板3上にn-InPクラッド層4、光導波路コア層10、p-InPクラッド層6及びp-InGaAsPコンタクト層7が順に積層されている。光導波路コア層10は例えばAlGaInAs-MQW又はInGaAsP-MQWである。 FIG. 3 is a cross-sectional view taken along the line III-IV in FIG. FIG. 4 is a cross-sectional view taken along the line V-VI in FIG. FIG. 5 is a sectional view taken along line VII-VIII in FIG. In the electroabsorption optical modulator 2, an n-InP cladding layer 4, an optical waveguide core layer 10, a p-InP cladding layer 6, and a p-InGaAsP contact layer 7 are sequentially stacked on an n-InP substrate 3. The optical waveguide core layer 10 is, for example, AlGaInAs-MQW or InGaAsP-MQW.
 アノード電極11が光導波路コア層10の真上においてp-InGaAsPコンタクト層7の上に形成されている。アノード電極9,11以外においてp-InGaAsPコンタクト層7はSiO絶縁膜12で覆われている。半絶縁性InP層13及びn-InP電流ブロック層14が活性層5及び光導波路コア層10の両サイドを埋め込んでいる。 An anode 11 is formed on the p-InGaAsP contact layer 7 directly above the optical waveguide core layer 10. Except for the anode electrodes 9 and 11, the p-InGaAsP contact layer 7 is covered with a SiO 2 insulating film 12. A semi-insulating InP layer 13 and an n-InP current blocking layer 14 embed both sides of the active layer 5 and the optical waveguide core layer 10.
 カソード電極8とアノード電極11との間に印加する電圧によって光導波路コア層10の光吸収係数が変化する。電界吸収型光変調器2は、光導波路コア層10の幅が一定の部分と、光導波路コア層10の幅が電界吸収型光変調器2の光出射端に向かって漸減する部分とを有する。幅が漸減する部分の直上にもアノード電極11が形成されている。幅が一定の部分と漸減する部分の両方に同じ変調信号を共通のアノード電極11を介して印加し、光変調器として動作させる。光導波路コア層10の幅がレーザ光の伝搬方向に沿って徐々に狭くなる部分は、光変調器としてだけでなく、スポットサイズ変換器部としても動作する。 The light absorption coefficient of the optical waveguide core layer 10 changes depending on the voltage applied between the cathode electrode 8 and the anode electrode 11. The electroabsorption optical modulator 2 has a portion where the width of the optical waveguide core layer 10 is constant, and a portion where the width of the optical waveguide core layer 10 gradually decreases toward the light emitting end of the electroabsorption optical modulator 2. . The anode electrode 11 is also formed immediately above the portion where the width gradually decreases. The same modulation signal is applied to both the constant width portion and the gradually decreasing portion via the common anode electrode 11 to operate as an optical modulator. The portion where the width of the optical waveguide core layer 10 gradually decreases along the propagation direction of the laser light operates not only as an optical modulator but also as a spot size converter portion.
 続いて、本実施の形態の効果を比較例と比較して説明する。図6は、比較例に係る半導体装置を示す平面図である。図7は図6のV-VIに沿った断面図である。図8は図6のVII-VIIIに沿った断面図である。図6のI-IIに沿った断面図は図2と同じであり、図6のIII-IVに沿った断面図は図3と同じである。 Subsequently, the effect of the present embodiment will be described in comparison with a comparative example. FIG. 6 is a plan view showing a semiconductor device according to a comparative example. FIG. 7 is a sectional view taken along line V-VI in FIG. FIG. 8 is a sectional view taken along line VII-VIII in FIG. 6 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 6 is the same as FIG.
 比較例では、電界吸収型光変調器2の光導波路コア層10の幅が一定であり、その出射端に、スポットサイズ変換機能を有するスポットサイズ変換器15の透明導波路コア層16がバットジョイントにより接続されている。消光比をExt、電界吸収型光変調器2の吸収係数をα、変調器長をL、光波長をλ、光導波路コア層10の屈折率の虚部をk、屈折率の実部をn、反射率をRとすると以下の関係式が成り立つ。
Ext=exp(-αL)
k=αλ/4π
R=(k/sqrt(n+k)+n)
In the comparative example, the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 is constant, and the transparent waveguide core layer 16 of the spot size converter 15 having a spot size conversion function is formed at the emission end thereof. Connected by. The extinction ratio is Ext, the absorption coefficient of the electroabsorption optical modulator 2 is α, the modulator length is L, the optical wavelength is λ, the imaginary part of the refractive index of the optical waveguide core layer 10 is k, and the real part of the refractive index is n. When the reflectance is R, the following relational expression is established.
Ext = exp (−αL)
k = αλ / 4π
R = (k / sqrt (n 2 + k 2 ) + n) 2
 一例として、消光比Extが11dB、変調器長Lが180μm、半導体レーザ1の発振波長λが1.55μmの場合、屈折率の虚部kの変動は7.5E-4となる。光導波路コア層10と透明導波路コア層16の実部の実効屈折率nがともに3.2であった場合、屈折率の虚部の変動による反射率の変動Rは1.9E-16%となる。このように電界吸収型光変調器2とスポットサイズ変換器15の接続部において実効屈折率の虚部の値が合致しない。このため、半導体レーザ1に変調され強度が変化する光が戻り、活性層5内部の光強度を擾乱し、伝送特性の劣化が生じる。 As an example, when the extinction ratio Ext is 11 dB, the modulator length L is 180 μm, and the oscillation wavelength λ of the semiconductor laser 1 is 1.55 μm, the fluctuation of the imaginary part k of the refractive index is 7.5E-4. When the effective refractive index n of the real part of both the optical waveguide core layer 10 and the transparent waveguide core layer 16 is 3.2, the fluctuation R of the reflectance due to the fluctuation of the imaginary part of the refractive index is 1.9E-16%. It becomes. In this way, the value of the imaginary part of the effective refractive index does not match at the connection part between the electroabsorption optical modulator 2 and the spot size converter 15. For this reason, the light whose intensity is changed by the semiconductor laser 1 returns, disturbs the light intensity inside the active layer 5, and deteriorates the transmission characteristics.
 これに対して、本実施の形態では、電界吸収型光変調器2の光導波路コア層10の幅が、電界吸収型光変調器2の出射端に向かって漸減する。これにより、電界吸収型光変調器2は、光を変調すると同時に、スポットサイズを拡大するスポットサイズ変換器としても動作する。これにより、比較例のような屈折率の虚部の差異に起因する反射戻り光は生じないため、伝送品質を改善することができる。 On the other hand, in the present embodiment, the width of the optical waveguide core layer 10 of the electroabsorption optical modulator 2 gradually decreases toward the emission end of the electroabsorption optical modulator 2. Thereby, the electroabsorption optical modulator 2 operates as a spot size converter that modulates light and simultaneously enlarges the spot size. Thereby, the reflected return light caused by the difference in the imaginary part of the refractive index as in the comparative example does not occur, so that the transmission quality can be improved.
 また、窓構造を設けると、電界吸収型光変調器2の光導波路コア層10と窓構造の埋込層との間の屈折率差が極めて大きなことに起因して戻り光が大きくなり、上記の効果が得られなくなる。そこで、光出射端での光反射を低減するため、光導波路コア層10は光出射端まで延在していることが好ましい。 Further, when the window structure is provided, the return light becomes large due to the extremely large difference in refractive index between the optical waveguide core layer 10 of the electroabsorption optical modulator 2 and the buried layer of the window structure. The effect of cannot be obtained. Therefore, in order to reduce light reflection at the light emitting end, it is preferable that the optical waveguide core layer 10 extends to the light emitting end.
実施の形態2.
 図9は、本発明の実施の形態2に係る半導体装置を示す平面図である。図10は図9のV-VIに沿った断面図である。図11は図9のVII-VIIIに沿った断面図である。図9のI-IIに沿った断面図は図2と同じであり、図9のIII-IVに沿った断面図は図3と同じである。
Embodiment 2. FIG.
FIG. 9 is a plan view showing a semiconductor device according to the second embodiment of the present invention. FIG. 10 is a sectional view taken along line V-VI in FIG. FIG. 11 is a sectional view taken along line VII-VIII in FIG. 9 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 9 is the same as FIG.
 透明導波路コア層16が光導波路コア層10の周囲に形成され光導波路コア層10に接触する。透明導波路コア層16は例えばInGaAsP又はAlGaInAsである。透明導波路コア層16の真上においてアノード電極11は形成されていないか、又はSiO絶縁膜12の上に形成されるなどしてp-InGaAsPコンタクト層7に接触していない。透明導波路コア層16の屈折率は、半絶縁性InP層13及びn-InP電流ブロック層14の屈折率と光導波路コア層10の屈折率との間の値である。透明導波路コア層16のバンドギャップエネルギーは、光導波路コア層10のバンドギャップエネルギーよりも大きい。 A transparent waveguide core layer 16 is formed around the optical waveguide core layer 10 and is in contact with the optical waveguide core layer 10. The transparent waveguide core layer 16 is, for example, InGaAsP or AlGaInAs. The anode electrode 11 is not formed immediately above the transparent waveguide core layer 16 or is not in contact with the p-InGaAsP contact layer 7 by being formed on the SiO 2 insulating film 12. The refractive index of the transparent waveguide core layer 16 is a value between the refractive index of the semi-insulating InP layer 13 and the n-InP current blocking layer 14 and the refractive index of the optical waveguide core layer 10. The band gap energy of the transparent waveguide core layer 16 is larger than the band gap energy of the optical waveguide core layer 10.
 このように透明導波路コア層16を設けることで電界吸収型光変調器2の消光特性とスポットサイズとを独立に設計することができる。その他の構成及び効果は実施の形態1と同様である。 Thus, by providing the transparent waveguide core layer 16, the extinction characteristic and the spot size of the electroabsorption optical modulator 2 can be designed independently. Other configurations and effects are the same as those of the first embodiment.
実施の形態3.
 図12は、本発明の実施の形態3に係る半導体装置を示す平面図である。図13は図12のV-VIに沿った断面図である。図14は図12のVII-VIIIに沿った断面図である。図12のI-IIに沿った断面図は図2と同じであり、図12のIII-IVに沿った断面図は図3と同じである。
Embodiment 3 FIG.
FIG. 12 is a plan view showing a semiconductor device according to the third embodiment of the present invention. FIG. 13 is a sectional view taken along line V-VI in FIG. FIG. 14 is a sectional view taken along the line VII-VIII in FIG. 12 is the same as FIG. 2, and the cross-sectional view along III-IV in FIG. 12 is the same as FIG.
 光導波路コア層10と透明導波路コア層16の合計幅は、電界吸収型光変調器2の出射端に向かって漸減する。これにより、実施の形態2よりもスポットサイズを拡大することができる。その他の構成及び効果は実施の形態1,2と同様である。 The total width of the optical waveguide core layer 10 and the transparent waveguide core layer 16 gradually decreases toward the emission end of the electroabsorption optical modulator 2. Thereby, the spot size can be enlarged as compared with the second embodiment. Other configurations and effects are the same as those of the first and second embodiments.
1 半導体レーザ、2 電界吸収型光変調器、4 n-InPクラッド層(第1導電型半導体層)、6 p-InPクラッド層(第2導電型半導体層)、8 カソード電極(第1の電極)、11 アノード電極(第2の電極)、10 光導波路コア層、13 半絶縁性InP層(埋込層)、14 n-InP電流ブロック層(埋込層)、16 透明導波路コア層 1 semiconductor laser, 2 electroabsorption optical modulator, 4 n-InP cladding layer (first conductivity type semiconductor layer), 6 p-InP cladding layer (second conductivity type semiconductor layer), 8 cathode electrode (first electrode) ), 11 anode electrode (second electrode), 10 optical waveguide core layer, 13 semi-insulating InP layer (buried layer), 14 n-InP current blocking layer (buried layer), 16 transparent waveguide core layer

Claims (4)

  1.  レーザ光を出射する半導体レーザと、
     前記半導体レーザと集積され、前記レーザ光を変調する電界吸収型光変調器とを備え、
     前記電界吸収型光変調器は、順に積層された第1導電型半導体層、光導波路コア層及び第2導電型半導体層と、前記第1導電型半導体層の下に形成された第1の電極と、前記光導波路コア層の真上において前記第2導電型半導体層の上に形成された第2の電極とを有し、
     前記第1の電極と前記第2の電極との間に印加する電圧によって前記光導波路コア層の光吸収係数が変化し、
     前記光導波路コア層の幅は、前記電界吸収型光変調器の光出射端に向かって漸減することを特徴とする光変調器集積半導体レーザ。
    A semiconductor laser that emits laser light;
    An electroabsorption optical modulator that is integrated with the semiconductor laser and modulates the laser light;
    The electroabsorption optical modulator includes a first conductive semiconductor layer, an optical waveguide core layer, a second conductive semiconductor layer, and a first electrode formed under the first conductive semiconductor layer, which are sequentially stacked. And a second electrode formed on the second conductivity type semiconductor layer directly above the optical waveguide core layer,
    The light absorption coefficient of the optical waveguide core layer is changed by a voltage applied between the first electrode and the second electrode,
    An optical modulator integrated semiconductor laser, wherein the width of the optical waveguide core layer gradually decreases toward a light emitting end of the electroabsorption optical modulator.
  2.  前記光導波路コア層の両サイドを埋め込む埋込層と、
     前記光導波路コア層の周囲に形成され前記光導波路コア層に接触する透明導波路コア層とを備え、
     前記透明導波路コア層の真上において前記第2の電極は形成されていないか、又は前記第2導電型半導体層に接触しておらず、
     前記透明導波路コア層の屈折率は、前記埋込層の屈折率と前記光導波路コア層の屈折率との間の値であり、
     前記透明導波路コア層のバンドギャップエネルギーは、前記光導波路コア層のバンドギャップエネルギーよりも大きいことを特徴とする請求項1に記載の光変調器集積半導体レーザ。
    Embedded layers embedding both sides of the optical waveguide core layer;
    A transparent waveguide core layer formed around the optical waveguide core layer and in contact with the optical waveguide core layer;
    The second electrode is not formed directly above the transparent waveguide core layer, or is not in contact with the second conductivity type semiconductor layer,
    The refractive index of the transparent waveguide core layer is a value between the refractive index of the buried layer and the refractive index of the optical waveguide core layer,
    2. The optical modulator integrated semiconductor laser according to claim 1, wherein a band gap energy of the transparent waveguide core layer is larger than a band gap energy of the optical waveguide core layer.
  3.  前記光導波路コア層と前記透明導波路コア層の合計幅は、前記電界吸収型光変調器の出射端に向かって漸減することを特徴とする請求項2に記載の光変調器集積半導体レーザ。 3. The optical modulator integrated semiconductor laser according to claim 2, wherein a total width of the optical waveguide core layer and the transparent waveguide core layer is gradually reduced toward an emission end of the electroabsorption optical modulator.
  4.  前記光導波路コア層は光出射端まで延在していることを特徴とする請求項1~3の何れか1項に記載の光変調器集積半導体レーザ。 The optical modulator integrated semiconductor laser according to any one of claims 1 to 3, wherein the optical waveguide core layer extends to a light emitting end.
PCT/JP2017/001699 2017-01-19 2017-01-19 Optical modulator integrated semiconductor laser WO2018134940A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/001699 WO2018134940A1 (en) 2017-01-19 2017-01-19 Optical modulator integrated semiconductor laser
JP2017514368A JP6146554B1 (en) 2017-01-19 2017-01-19 Optical modulator integrated semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/001699 WO2018134940A1 (en) 2017-01-19 2017-01-19 Optical modulator integrated semiconductor laser

Publications (1)

Publication Number Publication Date
WO2018134940A1 true WO2018134940A1 (en) 2018-07-26

Family

ID=59061190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001699 WO2018134940A1 (en) 2017-01-19 2017-01-19 Optical modulator integrated semiconductor laser

Country Status (2)

Country Link
JP (1) JP6146554B1 (en)
WO (1) WO2018134940A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501819B1 (en) 2023-04-26 2024-06-18 三菱電機株式会社 Semiconductor optical integrated device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308556A (en) * 1997-05-02 1998-11-17 Nec Corp Semiconductor optical element and its manufacture
JP2000193921A (en) * 1998-12-28 2000-07-14 Nec Corp Modulator integrated laser module
JP2004177728A (en) * 2002-11-28 2004-06-24 Opnext Japan Inc Electro-absorption modulator
JP2009510505A (en) * 2005-09-27 2009-03-12 ブッカム・テクノロジー・ピーエルシー Optical element having tapered portion for reducing loss in optical waveguide process
JP2011039262A (en) * 2009-08-11 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308556A (en) * 1997-05-02 1998-11-17 Nec Corp Semiconductor optical element and its manufacture
JP2000193921A (en) * 1998-12-28 2000-07-14 Nec Corp Modulator integrated laser module
JP2004177728A (en) * 2002-11-28 2004-06-24 Opnext Japan Inc Electro-absorption modulator
JP2009510505A (en) * 2005-09-27 2009-03-12 ブッカム・テクノロジー・ピーエルシー Optical element having tapered portion for reducing loss in optical waveguide process
JP2011039262A (en) * 2009-08-11 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> Optical modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501819B1 (en) 2023-04-26 2024-06-18 三菱電機株式会社 Semiconductor optical integrated device
WO2024224495A1 (en) * 2023-04-26 2024-10-31 三菱電機株式会社 Semiconductor optical integrated element

Also Published As

Publication number Publication date
JPWO2018134940A1 (en) 2019-01-31
JP6146554B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
KR100333482B1 (en) High speed semiconductor optical modulator and its fabrication method
JP5823920B2 (en) Semiconductor optical integrated device
KR102021278B1 (en) reflective colorless optical transmitter
JP2016072608A (en) Semiconductor laser and optical integrated light source
JP2009198881A (en) Optical semiconductor device
JP5461046B2 (en) Optical semiconductor device
JP4421951B2 (en) Optical transmission module
JP2014085501A (en) Semiconductor optical modulator
JP2019008179A (en) Semiconductor optical element
JP4762834B2 (en) Optical integrated circuit
JP2013137360A (en) Optical multiplexing/demultiplexing element and mach-zehnder optical modulator
JP6146554B1 (en) Optical modulator integrated semiconductor laser
JP2012002929A (en) Method for manufacturing semiconductor optical element, laser module, and optical transmission apparatus
JP6761390B2 (en) Semiconductor optical integrated device
JP2015065406A (en) Wavelength variable light source and wavelength variable light source module
JP4629346B2 (en) Optical integrated device
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
WO2020144752A1 (en) Optical semiconductor integrated element
JP2011181789A (en) Semiconductor light source
US20220360038A1 (en) Systems and methods for external modulation of a laser
US20170194766A1 (en) Optical device and optical module
US20240266799A1 (en) Semiconductor Laser and Optical Transmitter
US7548574B2 (en) Integrated modulator/laser assembly and a method of producing same
JP2013251424A (en) Optical integrated device
JP5086141B2 (en) Electroabsorption modulator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017514368

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892966

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载