+

WO2018123911A1 - 含塩素プロペンの製造方法 - Google Patents

含塩素プロペンの製造方法 Download PDF

Info

Publication number
WO2018123911A1
WO2018123911A1 PCT/JP2017/046251 JP2017046251W WO2018123911A1 WO 2018123911 A1 WO2018123911 A1 WO 2018123911A1 JP 2017046251 W JP2017046251 W JP 2017046251W WO 2018123911 A1 WO2018123911 A1 WO 2018123911A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
catalyst
reaction
compound represented
chlorine
Prior art date
Application number
PCT/JP2017/046251
Other languages
English (en)
French (fr)
Inventor
優 竹内
和江 戸田
寺園 真二
旭 王
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2018123911A1 publication Critical patent/WO2018123911A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for producing chlorine-containing propene, and in particular, a production method preferably used for producing 1-chloro-2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CHCl (HCFO-1224yd)). About.
  • Chlorine-containing propene is very useful as a building block for organic compounds, as an intermediate for pharmaceuticals and agricultural chemicals, and as a monomer because of its reactivity derived from olefins.
  • 2,3,3,3-tetrafluoro-1-propene (CF 3 CF ⁇ CH 2 (hereinafter also referred to as “HFO-1234yf”) is useful for refrigerants, solvents, and the like.
  • HFO-1234yf which is known as an alternative refrigerant
  • the intermediate product 1-chloro-2,3,3,3-tetrafluoropropene CF 3 CF ⁇ CHCl (hereinafter “HCFO-1224yd”).
  • HFO-1234yf and HCFO- 1224yd is useful as a foaming agent, a solvent, a cleaning agent, a refrigerant, a working fluid, a propellant, a fluororesin raw material, a medical and agrochemical intermediate for rigid polyurethane foam, and the like.
  • HCFO-1224yd which is an example of chlorine-containing propene, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CCl 2 (hereinafter also referred to as “HCFO-1214ya”)) Is known to react with hydrogen in the presence of Pd-supported activated carbon in which 0.5 part by mass of Pd is supported with respect to 100 parts by mass of the activated carbon support (Patent Document 1)
  • Pd-supported activated carbon in which 0.5 part by mass of Pd is supported with respect to 100 parts by mass of the activated carbon support
  • 1224 yd The yield was low, which was disadvantageous for industrial production of 1224yd.
  • HCFO-1224yd As another method for producing HCFO-1224yd, there is Pd / Cu-supported activated carbon in which HCFO-1214ya is loaded with 0.5 parts by mass of Pd and 8.5 parts by mass of Cu with respect to 100 parts by mass of the activated carbon support. It is known to react with hydrogen below (Patent Document 2). However, in this method, a catalyst carrying a large amount of metal must be used, and the environmental load is high. Further, in this method, although HCFO-1224yd is obtained in a larger amount than the above, the reaction is considered even if the total amount (HFO-1234yf + HCFO-1224yd) with HFO-1234yf that is simultaneously produced as the intended useful compound is considered. They were also disadvantageous for industrial production due to their low total selectivity in the product.
  • An object of the present invention is to provide a production method for efficiently producing chlorine-containing propene such as HCFO-1224yd by an industrially advantageous method with a small environmental load.
  • a compound represented by the following formula (1) is reacted with hydrogen in the presence of a catalyst to obtain a compound represented by the following formula (2).
  • the catalyst is supported on a carrier and has at least one first element selected from the group consisting of Pd and Pt, Ru, Cu, Au, Zn, Cd, Hg, Al, Ga, In, And at least one second element selected from the group consisting of Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se, Te, and Po.
  • the catalyst is 0.01 to 8 parts by mass with respect to 100 parts by mass of the carrier.
  • CX 3 CY CCl 2 (1) (In Formula (1), X represents F, Cl, or H each independently, and Y represents F or H.)
  • CX 3 CY CHCl (2) (In formula (2), X and Y are the same as X and Y in formula (1).)
  • chlorine-containing propene of the present invention by using a specific catalyst, chlorine-containing propene such as HCFO-1224yd is efficiently produced, and the total amount of metals used as the catalyst is small.
  • a compound represented by the following formula (1) is reacted with hydrogen in the presence of a catalyst to obtain a compound represented by the following formula (2). It is a manufacturing method.
  • the catalyst is supported on a carrier and has at least one first element selected from the group consisting of Pd and Pt, Ru, Cu, Au, Zn, Cd, Hg, Al, Ga, In, And at least one second element selected from the group consisting of Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se, Te, and Po.
  • the catalyst is used in an amount of 0.01 to 8 parts by mass with respect to 100 parts by mass of the carrier.
  • CX 3 CY CCl 2 (1) (In Formula (1), X represents F, Cl, or H each independently, and Y represents F or H.)
  • CX 3 CY CHCl (2) (In formula (2), X and Y are the same as X and Y in formula (1).)
  • X is independently composed of F, Cl, or H
  • Y is composed of F or H.
  • all three Xs may be composed of the same element, or may be composed of two or three different elements.
  • one of the olefin-terminated Cls can be selectively reduced to H.
  • reduction means replacing a halogen atom with H.
  • it means that specific Cl is substituted with H, and when other Cl is reduced, a compound other than the compound of formula (2), which is the target product, is produced.
  • F which is inactive in the reduction reaction, is extremely difficult to reduce, and the reductant H does not cause any further reduction reaction. Therefore, since the reduction reaction other than Cl at the olefin end is suppressed and the compound other than the target compound of the formula (2) is reduced, in the formula (1), each X is independently F or H. Yes, it is preferable that Y is F or H, and since a product excellent in cooling efficiency and friendly to the global environment is obtained, X is all F, and Y is F. CFO-1214ya is more preferable.
  • CFO-1214ya can be produced by a known method.
  • 1,1-dichloro-2,2,3,3,3-pentafluoropropane CF 3 CF 2 CHCl 2 (hereinafter also referred to as “HCFC-225ca”)
  • HCFC-225ca 1,1-dichloro-2,2,3,3,3-pentafluoropropane
  • TBAB tetrabutylammonium bromide
  • HCFC-225 dichloropentafluoropropane containing HCFC-225ca
  • HCFC-225 only the HCFC-225ca in the HCFC-225 is selectively dehydrofluorinated by the phase transfer catalyst.
  • CFO-1214ya can be separated and recovered by a known method such as distillation.
  • HCFC-225 including HCFC-225ca can be produced by reacting tetrafluoroethylene and dichlorofluoromethane in the presence of a catalyst such as aluminum chloride.
  • HCFC-225 obtained by the above reaction includes HCFC-225ca and 1,3-dichloro-1,2,2,3,3-pentafluoropropane (CHClFCF 2 CClF 2 (hereinafter also referred to as “HCFC-225cb”). .))
  • HCFC-225cb 1,3-dichloro-1,2,2,3,3-pentafluoropropane
  • HCFC-225 including HCFC-225ca may be used.
  • Asahi Clin (trademark) AK225 manufactured by Asahi Glass Co., Ltd., a mixture of 48 mol% of HCFC-225ca and 52 mol% of HCFC-225cb; hereinafter referred to as “AK225”) can be mentioned.
  • HCFO-1224yd can be obtained as represented by the following formula (3).
  • the catalyst includes a first element and a second element.
  • the first element and the second element may form an alloy or may be in a mixed state.
  • an alloy means a metal-like thing which consists of a some metallic element or a metallic element, and a nonmetallic element, A state does not ask
  • the first element is at least one selected from the group consisting of Pd and Pt.
  • Pd and Pt may form an alloy, or may not form an alloy and may simply be in a mixed state.
  • the first element is Pd
  • the compound represented by the formula (2) can be efficiently generated.
  • Pt has a long catalyst life from the viewpoint of acid resistance.
  • the first element preferably contains Pd.
  • the content ratio of Pd is preferably 90 mol% or more, more preferably 95 mol% or more, and most preferably 100 mol% in a total of 100 mol% of Pd and Pt.
  • the second element is made of Ru, Cu, Au, Zn, Cd, Hg, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se, Te, and Po. It is at least one selected from the group.
  • the catalytic activity of the first element is adjusted, and the generation of a compound other than the compound represented by the formula (2) is suppressed, which is represented by the formula (2). Can be produced efficiently.
  • the first element and the second element may be mixed in the catalyst or may be in an alloy state.
  • the formation of the alloy state may be performed in the production process of the catalyst-supported carrier, in an atmosphere of an inert gas such as nitrogen gas, carbon dioxide gas or argon gas before use in the reaction, in a reducing atmosphere containing a trace amount of hydrogen, or oxygen. It can carry out by heat treatment in the contained oxidizing atmosphere.
  • the second element preferably contains at least one selected from the group consisting of Ru, Cu, Au, Sn, Zn, Bi, S, and Te.
  • the production of compounds other than the compound represented by formula (2) can be effectively suppressed.
  • the second element includes at least one selected from the group consisting of Au, Zn, Bi, S, and Te.
  • the second element preferably contains at least one selected from the group consisting of Sn, Zn, Bi, S, and Te, and Zn, Bi, It is more preferable to include at least one selected from the group consisting of S and Te, and it is most preferable to include at least one selected from the group consisting of Bi and S.
  • the second element is preferably contained in an amount of 0.1 to 400 mol% with respect to 100 mol% of the first element.
  • the content of the second element is 0.1 mol% or more, the catalytic activity of the first element is effectively adjusted, and production other than the compound represented by the formula (2) is further suppressed. Can do.
  • the content is more preferably 1 mol% or more, and further preferably 5 mol% or more.
  • the excessive fall of catalyst activity is suppressed as content of a 2nd element is 400 mol% or less, and the metal amount to be used can be reduced.
  • the content is more preferably 200 mol% or less, and even more preferably 100 mol% or less.
  • the catalyst can contain other elements other than the first element and the second element as long as the effects of the present invention are not impaired.
  • other elements include metal elements such as Fe, Co, and Ni.
  • the other element may form an alloy with or both of the first element and the second element, or may be mixed.
  • the other elements are preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 1 part by mass or less with respect to a total of 100 parts by mass of the first element and the second element.
  • a catalyst carrying carrier is referred to as a catalyst carrying carrier.
  • the catalyst can be dispersed.
  • the carrier include carbon materials such as activated carbon, carbon black, and carbon fiber, and oxide materials such as alumina, silica, titania, zirconia, alkali metal oxides, and alkaline earth metal oxides. Silica, zirconia, alkali metal oxides and alkaline earth metal oxides are preferred.
  • activated carbon, alumina, and zirconia are more preferable because they have a large specific surface area and easily support the catalyst.
  • activated carbon is particularly preferable because generation of a compound other than the compound represented by the formula (2) is suppressed.
  • Examples of the activated carbon include activated carbon prepared from fruit shells such as wood, charcoal, and coconut shells, peat, lignite, and coal.
  • Examples of the activated carbon include aggregates of formed coal having a length of about 2 to 7 mm, crushed coal having a size of about 4 to 50 mesh, and granular coal. Among these, aggregates of forming coal or crushed coal of 4 to 30 mesh are preferable.
  • Examples of alumina include those having different crystal states such as ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina.
  • the crystal state is not particularly limited, and can be used widely from ⁇ -alumina having a large specific surface area to ⁇ -alumina having a high crystallinity and a small specific surface area.
  • the shape of the alumina is not necessarily limited, but is preferably formed into a spherical shape or a pellet shape because the filling property when filling the reactor, the flowability of the reaction gas, and the like are good.
  • zirconia examples include monocrystalline, tetragonal, cubic, and purely stable tetragonal crystal forms having different crystal states, as well as amorphous hydrated zirconium oxide. There is no particular limitation, and any zirconia can be used widely.
  • the shape of zirconia is not necessarily limited, but is preferably formed into a spherical shape or a pellet shape because the filling property when filling the reactor, the flowability of the reaction gas, and the like are good.
  • the catalyst content is 0.01 parts by mass or more with respect to 100 parts by mass of the carrier. Reaction can be effectively advanced as this content is 0.01 mass part or more. From the viewpoint of allowing the reaction to proceed effectively, the content is preferably 0.05 parts by mass or more, and more preferably 0.1 parts by mass or more. Further, from the viewpoint of suppressing the total amount of metal and suppressing environmental load, the content is 8 parts by mass or less, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
  • the specific surface area of the catalyst-loaded support is preferably 10 ⁇ 2000m 2 / g, more preferably 30 ⁇ 1500m 2 / g.
  • the specific surface area is 10 m 2 / g or more, the reaction can be effectively advanced.
  • generation of compounds other than the compound represented by Formula (2) can be suppressed as a specific surface area is 2000 m ⁇ 2 > / g or less.
  • the specific surface area of the catalyst-supported carrier is measured by a method based on an N 2 gas adsorption method, for example, the BET method.
  • the catalyst-supported carrier can be produced by a known method. Examples of such a method include an impregnation method and a colloid method. Although the example of the manufacturing method of these catalysts is shown below, it is not restricted to this.
  • the impregnation method is a general method for supporting a catalyst on a carrier.
  • the impregnation method can be performed as follows. First, the catalyst metal salt solution is impregnated with the carrier, and the catalyst metal salt is adsorbed on the surface of the carrier. Then, after the carrier is dried, the catalytic metal salt is reduced by bringing a reducing agent into contact with the catalytic metal salt on the surface. Thereby, the catalyst can be supported on the carrier.
  • reducing agent examples include ammonia, hydrazine, reducing compounds such as sodium borohydride, reducing gases such as hydrogen, alcohols, aldehydes, organic acids and salts thereof, borohydrides and salts thereof, and hydrazines.
  • reducing liquid is mentioned.
  • the metal fine particle dispersion is brought into contact with the surface of the carrier, and then dried, thereby supporting the metal fine particles on the surface of the carrier.
  • the metal fine particle dispersion can be obtained by dissolving a metal salt in a solvent and then reducing with a reducing agent.
  • a high molecular organic compound can be used in order to enhance dispersibility. Examples of such high molecular organic compounds include polyvinylpyrrolidone, polyethyleneimine, polyallylamine, poly (N-carboxymethyl) allylamine, poly (N, N-dicarboxymethyl) allylamine, poly (N-carboxymethyl) ethyleneimine, etc. Is mentioned.
  • Method ( ⁇ ) A method of reacting in the gas phase.
  • Method ( ⁇ ) A method of reacting in a liquid phase.
  • the raw material may contain components other than the compound represented by the formula (1).
  • Examples of the method ( ⁇ ) include a method in which a compound represented by the formula (1) and hydrogen are introduced into a reactor filled with a catalyst-supporting carrier and reacted in the gas phase.
  • a gas of a compound represented by the formula (1) and hydrogen gas are mixed to form a raw material mixed gas, and then this raw material mixed gas is introduced into a reactor, or a formula ( Examples thereof include a method in which a liquid of a compound represented by 1), hydrogen gas, and a dilution gas are introduced into a reactor, gasified in the reactor, and then contacted with a catalyst-supported carrier.
  • a method for introducing the raw material into the reactor it may be introduced as a gas or may be introduced as a liquid and gasified in the reactor. Dilution gas may or may not be introduced.
  • the dilution gas for example, an inert gas can be mentioned.
  • the inert gas include nitrogen gas, rare gas, carbon dioxide, and chlorofluorocarbons inert to hydrogenation reaction.
  • hydrogen chloride, oxygen, etc. are mentioned as dilution gas other than an inert gas.
  • the amount of the diluent gas introduced is determined from the number of moles of the diluent gas and the number of moles of the compound represented by the formula (1) from the viewpoint of adjusting the reaction temperature described later, extending the catalyst life, and improving the selectivity and the conversion rate.
  • the ratio (diluted gas / compound represented by formula (1)) is preferably 0.1 or more, and more preferably 0.5 or more. Further, from the viewpoint of suppressing an excessive decrease in volumetric efficiency, the above ratio (diluted gas / compound represented by formula (1)) is preferably 100 or less, and more preferably 10 or less.
  • the catalyst-supporting carrier is filled in a reactor to form a catalyst layer.
  • the packing density of the catalyst-supporting carrier varies depending on the carrier. For example, in the case of activated carbon, 0.2 to 1 g / cm 3 is preferable, and 0.4 to 0.8 g / cm 3 is more preferable. Reaction can be advanced effectively as it is 0.4 g / cm ⁇ 3 > or more. On the other hand, when it is 1 g / cm 3 or less, an excessive increase in temperature of the catalyst layer is suppressed, and the production of compounds other than the compound represented by Formula (2) can be suppressed.
  • a general flow reactor used for gas-solid heterogeneous catalytic reaction in which the catalyst-supporting carrier is solid and the reaction fluid is gas can be used.
  • Flow-type reactors can be roughly classified into fixed bed reactors and fluidized bed reactors.
  • a fixed bed reactor it is preferable to fill various shaped bodies as a catalyst support in order to reduce the pressure loss of the reaction fluid.
  • a system in which a catalyst-carrying support is packed, moved by gravity, and extracted from the bottom of the reactor and regenerated is called a moving bed reactor as in the fixed bed reactor.
  • the catalyst-supporting carrier is dispersed in the reaction fluid and moves in the reactor.
  • a fixed bed reactor is preferable.
  • the reaction temperature can be appropriately controlled. Thereby, the production
  • Examples of the fixed bed reactor include a tubular reactor and a tank reactor. Among these, a tubular reactor is preferable because the reaction temperature can be easily controlled.
  • Examples of the tubular reactor include a multi-tube heat exchange type in which a large number of reaction tubes having a small diameter are arranged in parallel and a heat medium is circulated outside. Note that only one catalyst layer may be provided in the flow direction, or two or more catalyst layers may be provided.
  • the reaction temperature is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, and further preferably 40 ° C. or higher, from the viewpoint of allowing the reaction to proceed effectively. Moreover, from the point which suppresses production
  • the reaction temperature is the temperature of the highest temperature portion of the catalyst layer. Since the reaction region generates heat due to the reaction, the temperature becomes the highest, but the size of the local heat generation varies depending on the type of the catalyst-supporting carrier and the reaction conditions.
  • the reaction temperature can be measured by providing a thermometer in the catalyst layer. Note that the catalyst gradually deteriorates from the upstream side to the downstream side of the catalyst layer. In accordance with this, the reaction region also gradually moves from the upstream side to the downstream side of the catalyst layer. For this reason, the measurement of the reaction temperature is performed by moving the measurement position in accordance with the movement of the reaction region.
  • Examples of the method for adjusting the reaction temperature include a method ( ⁇ 1) in which hydrogen is dividedly introduced into the catalyst layer. According to the method ( ⁇ 1), by dividing and introducing hydrogen, the reaction region can be dispersed and the reaction temperature can be lowered. Further, the temperature of the catalyst layer can be made uniform, and the productivity can be improved.
  • Hydrogen may be introduced at one location or multiple locations. In the case of two places, two places of the entrance of a catalyst layer and the midway introduction part provided in the middle of a catalyst layer are mentioned. In this case, it is preferable that the compound represented by the formula (1) and hydrogen are introduced into the inlet of the catalyst layer, and only hydrogen is introduced into the midway introduction portion.
  • Two hydrogen introduction points are preferable from the viewpoint of simplifying the reactor.
  • three or more locations are preferred.
  • a method for adjusting the reaction temperature a method using a dilution gas ( ⁇ 2) can be mentioned.
  • a diluent gas is introduced together with the compound represented by the formula (1) and hydrogen.
  • the concentration of the compound represented by the formula (1) and hydrogen can be lowered, and the reaction temperature can be lowered.
  • Examples of adjustment methods other than the method ( ⁇ 1) and the method ( ⁇ 2) include a method ( ⁇ 3) of adjusting the temperature of the heat medium used for heating the reactor and the like. According to the method ( ⁇ 3), heat can be removed quickly by lowering the temperature of the heat medium, and the reaction can be promoted by increasing the temperature of the heat medium.
  • the method ( ⁇ 1), the method ( ⁇ 2), and the method ( ⁇ 3) are exemplified as methods for adjusting the reaction temperature. However, these methods may be used alone, or two or three. May be used in combination.
  • the reaction pressure is preferably an absolute pressure of 0 to 1.0 MPa, more preferably 0 to 0.5 MPa from the viewpoint of workability. From the viewpoint of workability, the absolute pressure is more preferably 0.1 to 0.4 MPa.
  • the contact time which is the time during which the compound represented by formula (1) is in contact with the catalyst, is preferably 0.1 to 10,000 seconds, and more preferably 1 to 100 seconds. However, this preferred contact time varies depending on the volume of the catalyst layer and is not limited to this numerical range. The contact time can be calculated from the amount of substance per unit time introduced into the reactor and the volume of the catalyst layer.
  • the ratio (H 2 / Cl) of the number of moles of chlorine atoms to the number of moles of hydrogen in the compound represented by formula (1) is 0.1. It is preferable to adjust the introduction amount of the compound represented by the formula (1) and hydrogen so as to be ⁇ 3.0. When the ratio (H 2 / Cl) is 0.1 to 3.0, it becomes easy to obtain the compound represented by the formula (2).
  • the ratio (H 2 / Cl) is more preferably 0.2 to 2.0.
  • hydrogen when hydrogen is introduced in a divided manner, it may be within the above range when hydrogen is introduced from all introduction locations.
  • the rate of introducing the compound represented by the formula (1) is such that the linear velocity u in the catalyst layer represented by the following formula is preferably 0.1 to 100 cm / sec, more preferably 1 to 50 cm / sec. preferable. Productivity will become favorable in it being 0.1 cm / sec or more. Moreover, the compound and hydrogen which are represented by Formula (1) can fully be reacted as it is 100 cm / sec or less.
  • V represents the total gas flow rate (cm 3 / second) per unit time introduced into the reactor
  • S represents the cross-sectional area (cm 2 ) of the catalyst layer with respect to the gas flow direction.
  • the reactor a known reactor used for a gas phase reaction can be used.
  • the material for the reactor include iron, nickel, alloys containing these as main components, and glass.
  • the product gas obtained by the reaction of the compound represented by the formula (1) and hydrogen includes the compound represented by the formula (2), the compound represented by the formula (1), and the compound represented by the formula (1).
  • a compound in which hydrogen is added to the bond (CX 3 -CYH-CCl 2 H), a compound in which hydrogen is added to the double bond of formula (2) (CX 3 -CYH-CClH 2 ), and a terminal chlorine in formula (2)
  • Hydrogen chloride can be removed by blowing the product gas into an alkaline aqueous solution to neutralize it. Examples of the alkali used in the alkaline aqueous solution include sodium hydroxide and potassium hydroxide.
  • the compound represented by the formula (1) and the compound represented by the formula (2) can be separated by a known method such as distillation.
  • the compound represented by the formula (1) can be used again for the reaction with hydrogen.
  • ⁇ Method ( ⁇ )> In the method ( ⁇ ), it is preferable to use a solvent.
  • the solvent include organic solvents such as water and alcohol.
  • the amount of the solvent used is preferably 10 to 500 parts by mass with respect to 100 parts by mass of the compound represented by the formula (1).
  • Examples of the method ( ⁇ ) include a method in which hydrogen gas is blown into a solution composed of the compound represented by the formula (1), a catalyst support, and a solvent.
  • the method ( ⁇ ) for example, hydrogen is dissolved in a first solvent under pressure to prepare a first solution, and separately, a compound represented by the formula (1), a catalyst-supporting carrier, and There is a method in which a second solution composed of a second solvent is prepared, and the first solution is added to the second solution.
  • the method ( ⁇ ) may be a batch method or a continuous method.
  • the reaction temperature is preferably 0 to 300 ° C, more preferably 20 to 200 ° C.
  • the reaction temperature is 0 ° C. or higher, the reaction can proceed effectively, and when it is 300 ° C. or lower, the production of compounds other than the compound represented by formula (2) is suppressed.
  • the reaction pressure is preferably an absolute pressure of 0 to 10.0 MPa, more preferably 0 to 8.0 MPa from the viewpoint of workability. From the viewpoint of workability, the reaction time of 0.1 to 5.0 MPa in terms of absolute pressure is more preferable.
  • the batch time is preferably 1 to 50 hours, and the continuous time is preferably 0.1 to 1000 minutes.
  • the ratio of the number of moles of chlorine atoms to the number of moles of hydrogen in the compound represented by the formula (1) (H 2 / Cl ) Is preferably adjusted to 0.1 to 3.0, and the amount of the compound represented by the formula (1) and hydrogen is adjusted.
  • the ratio (H 2 / Cl) is more preferably 0.2 to 2.0. In the batch system, the ratio (H 2 / Cl) changes with time, and is not limited to this.
  • the reaction solution after the reaction includes a compound represented by the formula (1), hydrogen chloride, and the like together with a compound represented by the formula (2).
  • Hydrogen chloride can be removed by blowing the product gas into an alkaline aqueous solution to neutralize it.
  • alkali used in the alkaline aqueous solution include sodium hydroxide and potassium hydroxide.
  • the compound represented by the formula (1) and the compound represented by the formula (2) can be separated by a known method such as distillation.
  • the compound represented by formula (1) can be used again for the reaction.
  • the reactor a known reactor used for a liquid phase reaction can be used.
  • the material for the reactor include iron, nickel, alloys containing these as main components, and glass.
  • the compound represented by the formula (2) usually contains a trans isomer and a cis isomer that are geometric isomers. Therefore, in order to obtain a desired geometric isomer, it is preferable to perform separation by a known separation method such as distillation, membrane separation, extractive distillation, azeotropic separation, or two-layer separation.
  • a known separation method such as distillation, membrane separation, extractive distillation, azeotropic separation, or two-layer separation.
  • the compound name of the trans isomer is represented by (E)
  • the compound name of the cis isomer is represented by (Z).
  • the compound represented by the formula (2) can be efficiently produced. Specifically, by using a specific second element together with at least one first element selected from the group consisting of Pd and Pt, the catalytic activity of the first element can be reduced, and the formula Generation of compounds other than the compound represented by (2) can be suppressed.
  • the selectivity and yield of the target compound can be improved. Furthermore, the selectivity (valuable material selectivity) of the compound group (valuable material) in which the target compound and the target compound are different from each other only in the presence or absence of reduction of Cl at the olefin end is also good. I can do it.
  • the selectivity refers to the ratio of the production amount of the target compound to the consumption of the raw material compound in the reaction
  • the yield refers to the production amount of the target compound relative to the maximum reaction product (mixture) that can be obtained in the reaction.
  • the ratio of The valuable substance selectivity refers to the ratio of the amount of valuable substances produced to the consumption of raw material compounds in the reaction.
  • the yield is preferably more than 5%, more preferably more than 8%, and most preferably more than 10%.
  • the valuable material selectivity is preferably 82% or more, more preferably 87% or more, and most preferably 92% or more. Further, the valuable material selectivity is preferably 87% or more and the yield is more than 5%, the valuable material selectivity is more than 82% and the yield is more than 8%, and the valuable material selectivity is 87% or more. It is even more preferable that the yield is more than 8%, and it is most preferable that the valuables selectivity is 92% or more and the yield is more than 10%.
  • CFO-1214ya was produced as a compound represented by the formula (1).
  • CFO-1214ya was produced by the following method using AK225.
  • a 1 L glass reactor equipped with a Dimroth cooled to 0 ° C was charged with 3 g of TBAB as a phase transfer catalyst, 83 g (1.485 mol) of potassium hydroxide, 180 g of water, and 609 g (3.0 mol) of AK225. Then, the temperature was gradually raised while stirring, and the reaction was carried out at 45 ° C. for 1 hour. The reaction solution thus obtained was separated into two phases, an organic phase and an aqueous phase. The organic phase was separated from this reaction solution and charged into a distillation column having a capacity of 1 L in a kettle and a theoretical plate number of 10 to carry out distillation. As a result of distillation, 262 g (1.43 mol) of CFO-1214ya (boiling point: 45 ° C.) having a purity of 99.5% was obtained.
  • Example 1 A catalyst-supported carrier was prepared in which a catalyst made of an alloy of Pd as the first element and Bi as the second element was supported on the surface of the carrier made of activated carbon.
  • the activated carbon used was coconut shell crushed charcoal having 4 to 30 mesh and a specific surface area of about 1000 to 1200.
  • the catalyst was 0.75 part by mass with respect to 100 parts by mass of the carrier.
  • the content ratio of the first element is 0.5 parts by mass with respect to 100 parts by mass of the carrier.
  • the content ratio of the second element is 25 mol% with respect to 100 mol% of the first element.
  • a U-shaped reaction tube made of SUS304 and having an inner diameter of 21.4 mm was prepared as a reactor.
  • the reaction tube has a sheath tube into which a thermometer for measuring the internal temperature is inserted.
  • the reaction tube was filled with 141 mL of the catalyst-supporting carrier at a packing density of 0.4 g / cm 3 .
  • the reaction tube was immersed in an oil bath whose temperature was controlled at 110 to 130 ° C. After soaking, nitrogen was introduced into the reaction tube to dry the catalyst support. The amount of nitrogen introduced was 600 NmL / min, and the introduction time was 16 hours. Thereby, the water content of the outlet gas of the reaction tube became 23 ppm.
  • CFO-1214ya and nitrogen Due to the introduction of CFO-1214ya and nitrogen, an exothermic peak due to adsorption was observed on the inlet side of the catalyst layer. As the adsorption progressed, the exothermic peak moved from the inlet side to the outlet side of the catalyst layer. After the exothermic peak reached the outlet side of the catalyst layer, CFO-1214ya and nitrogen were further supplied for 30 minutes or more.
  • the flow rate was divided into three stages to reach the target flow rate in order to suppress rapid heat generation due to reaction heat.
  • the total flow rate of CFO-1214ya, hydrogen, and nitrogen was kept constant. Specifically, the total flow rate of CFO-1214ya, hydrogen, and nitrogen was kept constant by lowering the nitrogen flow rate by this amount as the hydrogen flow rate increased with the introduction of hydrogen.
  • the oil bath temperature was maintained at 45 ° C.
  • the product gas was collected from the outlet of the reaction tube.
  • the composition was analyzed using a gas chromatograph, and the selectivity of HCFO-1224yd was determined from the peak area as the analysis result by the following formula. The results are shown in Table 1.
  • the reaction temperature at this time was 46 ° C.
  • Valuables selectivity selectivity + (ratio of peak area of HFO-1234yf in total area of peak of product gas [%]) / ((peak area of CFO-1214ya in total area of peak of mixed gas of raw material) Ratio [%])-(Proportion of peak area of CFO-1214ya in total area of peak of product gas [%]))
  • HCFO-1224yd (Z) was separated.
  • the produced gas is washed with water, then passed through a 10% by weight potassium hydroxide (KOH) aqueous solution to remove acidic components, and further passed through a dehydration tower packed with synthetic zeolite (Molecular Sieves 4A) for dehydration. Went. After dehydration, the generated gas was trapped in a cylinder cooled with dry ice.
  • KOH potassium hydroxide
  • Molecular Sieves 4A synthetic zeolite
  • this product gas was distilled to obtain a distillate containing HCFO-1224yd (Z).
  • Distillation was carried out using a distillation column having about 40 theoretical plates, supplying the product gas to the bottom of the column, and performing batch distillation at an operating pressure of 0.05 MPa (gauge pressure). By such distillation, a distillate containing 99.3% by mass of HCFO-1224yd (Z) could be obtained from the top of the distillation column.
  • HCFO-1224yd was produced by reacting CFO-1214ya with hydrogen in the same manner as in Example 1 except that the composition of the catalyst support and the oil bath temperature were changed. The selectivity, yield and valuable material selectivity of the obtained HCFO-1224yd were determined. The results are shown in Table 1. The amount introduced at each oil bath temperature was calculated using a gas equation of state so that the contact times would be equal without changing the ratio of each component.
  • HCFO-1224yd was produced by reacting CFO-1214ya with hydrogen in the same manner as in Example 1 except that the composition of the catalyst support and the oil bath temperature were changed. The selectivity, yield and valuable material selectivity of the obtained HCFO-1224yd were determined. In Comparative Examples 1 and 2, a catalyst-supporting carrier that does not have the second element is used. The results are also shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

HCFO-1224yd等の含塩素プロペンを効率的に製造することができる製造方法を提供する。本発明の含塩素プロペンの製造方法は、触媒の存在下、下記式(1)で表される化合物を水素と反応させて下記式(2)で表される化合物を製造する。触媒は、担体に担持され、PdおよびPtから選ばれる少なくとも1種の第1の元素と、Ru、Cu、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Bi、S、Se、Te、およびPoから選ばれる少なくとも1種の第2の元素とを含む。 CXCY=CCl ・・・(1) (式(1)中、Xは、それぞれ独立して、F、Cl、またはHを表し、Yは、FまたはHを表す。) CXCY=CHCl ・・・(2) (式(2)中、XおよびYは式(1)のXおよびYと同一である。)

Description

含塩素プロペンの製造方法
 本発明は、含塩素プロペンの製造方法に係り、特に、1-クロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CHCl(HCFO-1224yd))の製造に好ましく用いられる製造方法に関する。
 含塩素プロペンはオレフィンに由来する反応性から、有機化合物のビルディングブロックとして、医農薬中間体やモノマーとして非常に有用である。その中でも2,3,3,3-テトラフルオロ-1-プロペン(CFCF=CH(以下「HFO-1234yf」とも記す。)は冷媒や溶剤等に有用である。
 この代替冷媒等として知られているHFO-1234yfの製造において、その中間生成物である1-クロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CHCl(以下「HCFO-1224yd」とも記す。)も、近年、冷媒や溶剤等として有用であることが確認されてきた。そのため、HCFO-1224ydをより効率的に製造できる方法が求められている。また、HFO-1234yfおよびHCFO-1224ydは硬質ポリウレタンフォームの発泡剤、溶剤、洗浄剤、冷媒、作動流体、噴射剤、フッ素樹脂の原料、医農薬中間体等として有用である。
 含塩素プロペンの一例であるHCFO-1224ydの製法としては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl(以下「HCFO-1214ya」とも記す。)を、活性炭担体100質量部に対して0.5質量部のPdを担持させたPd担持活性炭存在下、水素と反応させることが知られている(特許文献1)。しかし、この方法では1224ydの収率が低く、1224ydを工業的に製造するためには不利であった。
 また、別のHCFO-1224ydの製法としては、HCFO-1214yaを、活性炭担体100質量部に対して0.5質量部のPdおよび8.5質量部のCuを担持させたPd・Cu担持活性炭存在下、水素と反応させることが知られている(特許文献2)。しかしながら、この方法では、大量の金属を担持させた触媒を使用しなくてはならず、環境負荷が高い。さらに、この方法では、HCFO-1224ydが上記に比べて多く得られるものの、目的とする有用な化合物として同時に生成するHFO-1234yfとの合量(HFO-1234yf+HCFO-1224yd)で考慮しても、反応生成物中における、それらの合計選択率が低いため、工業的に製造するにはやはり不利であった。
 そのため、環境負荷が小さく、工業的に有利な方法で、1224ydなどの含塩素プロペンを製造する方法が求められている。
国際公開第2011/162341号 国際公開第2015/160532号
 本発明は、環境負荷が小さく、工業的に有利な方法で、HCFO-1224yd等の含塩素プロペンを効率的に製造するための製造方法を提供することを目的とする。
 本発明の含塩素プロペンの製造方法は、触媒の存在下、下記式(1)で表される化合物を水素と反応させて、下記式(2)で表される化合物を得る含塩素プロペンの製造方法である。触媒は、担体に担持されたものであって、PdおよびPtからなる群より選ばれる少なくとも1種の第1の元素と、Ru、Cu、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Bi、S、Se、Te、およびPoからなる群より選ばれる少なくとも1種の第2の元素とを含む。触媒は、担体100質量部に対して、0.01~8質量部である。
 CXCY=CCl ・・・(1)
 (式(1)中、Xは、それぞれ独立して、F、Cl、またはHを表し、Yは、FまたはHを表す。)
 CXCY=CHCl ・・・(2)
 (式(2)中、XおよびYは式(1)のXおよびYと同一である。)
 本発明の含塩素プロペンの製造方法によれば、特定の触媒を用いることにより、HCFO-1224yd等の含塩素プロペンを効率的に製造し、かつ、触媒として使用する金属の総量が少ない。
 以下、本発明の含塩素プロペンの製造方法について、一実施形態を参照しながら具体的に説明する。
 本実施形態の含塩素プロペンの製造方法は、触媒の存在下、下記式(1)で表される化合物を水素と反応させて、下記式(2)で表される化合物を得る含塩素プロペンの製造方法である。触媒は、担体に担持されたものであって、PdおよびPtからなる群より選ばれる少なくとも1種の第1の元素と、Ru、Cu、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Bi、S、Se、Te、およびPoからなる群より選ばれる少なくとも1種の第2の元素とを含む。触媒は、担体100質量部に対して、0.01~8質量部用いられる。
 CXCY=CCl ・・・(1)
 (式(1)中、Xは、それぞれ独立して、F、Cl、またはHを表し、Yは、FまたはHを表す。)
 CXCY=CHCl ・・・(2)
 (式(2)中、XおよびYは式(1)のXおよびYと同一である。)
<式(1)で表される化合物>
 式(1)で表される化合物は、Xが、それぞれ独立して、F、Cl、またはHからなり、Yが、FまたはHからなるものである。ここで、3つのXは、全てが同一の元素からなるものでもよいし、2種または3種の異なる元素からなるものでもよい。
 本実施形態の含塩素プロペンの製造方法によれば、オレフィン末端のClの1つを選択的にHに還元することができる。
 なお、本明細書において、還元とは、ハロゲン原子をHに置換することを意味する。本実施形態においては特定のClがHに置換されることを意味し、その他のClが還元された場合、目的物である式(2)の化合物以外の化合物が生成する。Clに比べて還元反応に不活性であるFは極めて還元されにくく、還元体であるHはこれ以上の還元反応を起こさない。そのため、オレフィン末端のCl以外の還元反応が抑制され目的物である式(2)の化合物以外の化合物が減少することから、式(1)において、Xが、それぞれ独立して、FまたはHであり、YがFまたはHであることが好ましく、冷却効率に優れ、かつ地球環境にも優しい生成物が得られることから、Xが、いずれもFであり、YがFであること、すなわち、CFO-1214yaであることがより好ましい。
 CFO-1214yaは、公知の方法により製造できる。例えば、1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン(CFCFCHCl(以下「HCFC-225ca」とも記す。))をテトラブチルアンモニウムブロマイド(TBAB)等の相間移動触媒の存在下にアルカリ水溶液と接触させる脱フッ化水素反応により製造することができる。
 脱フッ化水素反応にはHCFC-225caを含むジクロロペンタフルオロプロパン(以下「HCFC-225」とも記す。)を使用できる。脱フッ化水素反応では、相間移動触媒により、HCFC-225中のHCFC-225caのみが選択的に脱フッ化水素される。脱フッ化水素反応後、蒸留等の公知の方法により、CFO-1214yaを分離回収できる。
 HCFC-225caを含むHCFC-225は、塩化アルミニウム等の触媒の存在下に、テトラフルオロエチレンとジクロロフルオロメタンを反応させることにより製造できる。上記反応により得られるHCFC-225には、HCFC-225caと、1,3-ジクロロ-1,2,2,3,3-ペンタフルオロプロパン(CHClFCFCClF(以下、「HCFC-225cb」とも記す。))が主成分として含まれる。
 HCFC-225caを含むHCFC-225は、市販品を使用してもよい。市販品としては、アサヒクリン(商標)AK225(旭硝子社製、HCFC-225caの48モル%と、HCFC-225cbの52モル%の混合物;以下、「AK225」という。)が挙げられる。
<式(2)で表される含塩素プロペン>
 式(2)で表される含塩素プロペンは、具体的には、式(1)のXがそのまま維持される。なお、Xは3つあるため、それぞれ独立して、F、Cl、またはHであり、式(1)のXがそれぞれ維持される。
 また、Yも式(1)のYがそのまま維持される。
 例えば、式(1)で表される化合物がCFO-1214yaの場合、下記式(3)に表されるように、HCFO-1224ydを得ることができる。
 CFCF=CCl+H → CFCF=CHCl+HCl ・・・(3)
<触媒>
 触媒は、第1の元素と第2の元素とを含む。代表的な形態としては、第1の元素と第2の元素とが合金を形成していてもよく、混合された状態でもよい。ここで、合金とは、複数の金属元素または金属元素と非金属元素からなる金属様のものをいい、状態は問わない。
<第1の元素>
 第1の元素は、PdおよびPtからなる群より選ばれる少なくとも1種である。第1の元素がPdおよびPtである場合、PdおよびPtは合金を形成していてもよいし、合金を形成しておらず、単に混合された状態でもよい。
 第1の元素がPdであれば、式(2)で表される化合物を効率的に生成させることができる。一方、Ptであれば耐酸性の観点から、触媒寿命が長い。式(2)で表される化合物を効率的に生成させる観点から、第1の元素は、Pdを含むことが好ましい。Pdの含有割合は、PdとPtとの合計100モル%中、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、100モル%が最も好ましい。
<第2の元素>
 第2の元素は、Ru、Cu、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Bi、S、Se、Te、およびPoからなる群より選ばれる少なくとも1種である。
 第1の元素とともに第2の元素を用いることにより、第1の元素の触媒活性が調整され、式(2)で表される化合物以外の化合物の生成を抑制し、式(2)で表される化合物を効率的に製造することができる。
 第1の元素と第2の元素とは、触媒中で混合されていてもよく、合金状態であってもよい。合金状態の形成は、触媒担持担体の製造工程や、反応で使用する前の窒素ガス、炭酸ガス、アルゴンガス等の不活性ガスの雰囲気下、微量水素を含有した還元雰囲気下、または、酸素を含有した酸化雰囲気下、での加熱処理により行うことができる。
 第2の元素は、Ru、Cu、Au、Sn、Zn、Bi、S、およびTeからなる群より選ばれる少なくとも1種を含むことが好ましい。これらの元素の少なくとも1種を含むことにより、式(2)で表される化合物以外の化合物の生成を効果的に抑制することができる。選択率の観点から、BiとSから選ばれる少なくとも1種を含むことが好ましい。有価物選択率の観点から、第2の元素は、Au、Zn、Bi、S、およびTeからなる群より選ばれる少なくとも1種を含むことがより好ましい。また、収率および有価物選択率の観点からは、第2の元素は、Sn、Zn、Bi、S、およびTeからなる群より選ばれる少なくとも1種を含むことがより好ましく、Zn、Bi、S、およびTeからなる群より選ばれる少なくとも1種を含むことがさらに好ましく、BiおよびSからなる群より選ばれる少なくとも1種を含むことが最も好ましい。
 第2の元素は、第1の元素100モル%に対し、0.1~400モル%含有することが好ましい。第2の元素の含有量が、0.1モル%以上であると、第1の元素の触媒活性が効果的に調整され、式(2)で表される化合物以外の生成をより抑制することができる。第1の元素の触媒活性を効果的に調整する観点から、この含有量は1モル%以上がより好ましく、5モル%以上がさらに好ましい。また、第2の元素の含有量が、400モル%以下であると、触媒活性の過度な低下が抑制され、使用する金属量を低減できる。触媒活性の過度な低下を抑制する観点から、この含有量は200モル%以下がより好ましく、100モル%以下がさらに好ましい。
 触媒は、本発明の効果を損なわない範囲で第1の元素および第2の元素以外のその他の元素を含むことができる。その他の元素としては、Fe、Co、Ni等の金属元素が挙げられる。その他の元素は、1種のみが含まれてもよいし、2種以上が含まれてもよい。その他の元素は、例えば、第1の元素および第2の元素の両方または一方と合金を形成していてもよく、混合されていてもよい。その他の元素は、第1の元素および第2の元素の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましく、1質量部以下がさらに好ましい。
<担体>
 触媒は、担体に担持されている。本明細書においては、担体に触媒が担持されたものを触媒担持担体と記す。担体を用いることにより、触媒を分散させることができる。担体としては、活性炭、カーボンブラック、カーボンファイバー等のカーボン材料、アルミナ、シリカ、チタニア、ジルコニア、アルカリ金属酸化物、アルカリ土類金属酸化物等の酸化物材料等が挙げられるが、活性炭、アルミナ、シリカ、ジルコニア、アルカリ金属酸化物、アルカリ土類金属酸化物が好ましい。これらの中でも、比表面積が大きく、触媒を担持させやすいことから、活性炭、アルミナ、ジルコニアがより好ましい。また、式(2)で表される化合物以外の化合物の生成が抑制されることから、活性炭が特に好ましい。
 活性炭としては、例えば、木材、木炭、ヤシ殻等の果実殻、泥炭、亜炭、石炭等から調製した活性炭が挙げられる。活性炭の形態としては、長さ2~7mm程度の成形炭の集合物、4~50メッシュ程度の破砕炭、粒状炭等が挙げられる。これらの中でも、成形炭の集合物、または4~30メッシュの破砕炭が好ましい。
 アルミナとしては、α-アルミナ、γ-アルミナ、θ-アルミナ等の結晶状態の異なるものが挙げられる。結晶状態は特に制限されるものではなく、比表面積の大きなγ-アルミナから、高結晶性で比表面積の小さいα-アルミナまで幅広く使用することができる。アルミナの形状については、必ずしも制限されないが、反応器に充填するときの充填性、反応ガスの流通性等が良好であることから、球状、ペレット状に成形されたものが好ましい。
 ジルコニアとしては、単斜晶、正方晶、立方晶、純安定正方晶などの結晶状態の異なる様々な結晶形のものから、非晶質状態の水和酸化ジルコニウムなどが挙げられるが、結晶状態は特に制限されるものではなく、いずれのジルコニアでも幅広く使用することができる。ジルコニアの形状については、必ずしも制限されないが、反応器に充填するときの充填性、反応ガスの流通性等が良好であることから、球状、ペレット状に成形されたものが好ましい。
 触媒の含有量は、担体100質量部に対して、0.01質量部以上である。この含有量が0.01質量部以上であると、反応を効果的に進行させることができる。反応を効果的に進行させる観点から、含有量は0.05質量部以上が好ましく、0.1質量部以上がより好ましい。また、金属の総量を抑制し、環境負荷を抑える観点から、この含有量は8質量部以下であり、5質量部以下が好ましく、3質量部以下がより好ましい。
 触媒担持担体の比表面積は、10~2000m/gが好ましく、30~1500m/gがより好ましい。比表面積が10m/g以上であると、反応を効果的に進行させることができる。比表面積が2000m/g以下であると、式(2)で表される化合物以外の化合物の生成を抑制することができる。触媒担持担体の比表面積は、Nガス吸着法、例えば、BET法に準拠した方法で測定される。
(触媒担持担体の製造方法)
 触媒担持担体は、公知の方法により製造することができる。このようなものとして、含浸法、コロイド法等が挙げられる。以下に、これら触媒の製造方法の例を示すが、これに限られない。
 含浸法は、担体に触媒を担持させる一般的な方法である。含浸法は、以下のようにして行うことができる。まず、触媒金属塩溶液に担体を含浸させて、担体の表面に触媒金属塩を吸着させる。そして、この担体を乾燥させた後、表面の触媒金属塩に還元剤を接触させて触媒金属塩を還元する。これにより、担体に触媒を担持させることができる。
 還元剤としては、アンモニア、ヒドラジン、水素化ホウ素ナトリウム等の還元作用のある化合物、水素等の還元性ガス、アルコール類、アルデヒド類、有機酸およびその塩、水素化ホウ素およびその塩、ヒドラジン類の還元性液が挙げられる。
 コロイド法は、担体の表面に金属微粒子分散液を接触させた後、これを乾燥させることより、担体の表面に金属微粒子を担持させる。金属微粒子分散液は、金属塩を溶媒に溶解させた後、還元剤で還元することにより得ることができる。この際、分散性を高めるために、高分子有機化合物を使用することができる。このような高分子有機化合物としては、ポリビニルピロリドン、ポリエチレンイミン、ポリアリルアミン、ポリ(N-カルボキシメチル)アリルアミン、ポリ(N,N-ジカルボキシメチル)アリルアミン、ポリ(N-カルボキシメチル)エチレンイミン等が挙げられる。
<反応方法>
 式(1)で表される化合物を水素と反応させる方法として、下記の方法(α)または方法(β)が挙げられる。
 方法(α):気相で反応させる方法。
 方法(β):液相で反応させる方法。
 なお、原料には式(1)で表される化合物以外の成分を含んでもよい。
<方法(α)>
 方法(α)としては、例えば、触媒担持担体が充填された反応器に、式(1)で表される化合物と水素とを導入して気相で反応させる方法が挙げられる。このような方法としては、例えば、式(1)で表される化合物のガスと水素ガスとを混合して原料混合ガスとした後、この原料混合ガスを反応器に導入する方法や、式(1)で表される化合物の液体と水素ガス、希釈ガスを反応器に導入し、反応器内でガス化させた後に触媒担持担体と接触させる方法等が挙げられる。反応器への原料の導入方法は、ガスで導入しても、液体で導入し反応器内でガス化させてもよい。希釈ガスは導入してもしなくてもよい。
 希釈ガスとしては、例えば、不活性ガスが挙げられる。不活性ガスとしては、窒素ガス、希ガス、二酸化炭素、水素化反応に不活性なフロン類等が挙げられる。また、不活性ガス以外の希釈ガスとしては、塩化水素、酸素等が挙げられる。
 希釈ガスの導入量は、後述の反応温度の調整や、触媒寿命の延長、選択率や転化率向上の観点から、希釈ガスのモル数と式(1)で表される化合物のモル数との比(希釈ガス/式(1)で表される化合物)が0.1以上が好ましく、0.5以上がより好ましい。また、容積効率の過度な低下を抑制する観点から、上記の比(希釈ガス/式(1)で表される化合物)は100以下が好ましく、10以下がより好ましい。
 触媒担持担体は、例えば、反応器に充填されて触媒層を形成する。触媒担持担体の充填密度は、担体により異なるが、例えば、活性炭の場合は、0.2~1g/cmが好ましく、0.4~0.8g/cmがより好ましい。0.4g/cm以上であると、反応を効果的に進行させることができる。一方、1g/cm以下であると、触媒層の過度な温度上昇が抑制され、式(2)で表される化合物以外の化合物の生成を抑制することができる。
 反応器としては、触媒担持担体が固体で、反応流体が気体である気固不均一系触媒反応に使用される一般的な流通式反応器を用いることができる。流通式反応器は、固定床反応器、流動床反応器に大別することができる。
 固定床反応器では、反応流体の圧力損失を少なくするため、触媒担持担体として各種成型体を充填することが好ましい。また、固定床反応器と同様に触媒担持担体を充填し、その重力により移動させ、反応器の下から抜き出して再生したりする方式を移動床反応器という。移動床反応器では、反応流体中に触媒担持担体が分散されて反応器内を移動する。
 反応器としては、固定床反応器が好ましい。固定床反応器によれば、反応温度を適切に制御することができる。これにより、式(2)で表される化合物以外の化合物の生成を抑制することができ、かつ、触媒の劣化も抑制することができる。
 固定床反応器としては、管型反応器、槽型反応器が挙げられる。これらの中でも、反応温度を制御しやすいことから管型反応器が好ましい。管型反応器としては、例えば、管径の小さい反応管を多数並列に配置し、外側に熱媒を循環させる多管熱交換式が挙げられる。なお、触媒層は、流動方向に1つのみ設けられてもよいし、2つ以上設けられてよい。
 反応温度は、反応を効果的に進行させる観点から、30℃以上が好ましく、35℃以上がより好ましく、40℃以上がさらに好ましい。また、式(2)で表される化合物以外の化合物の生成を抑制する点から、350℃以下が好ましく、300℃以下がより好ましく、250℃以下がさらに好ましく、200℃以下が特に好ましい。
 ここで、反応温度は、触媒層のうち、温度が最も高くなる部分の温度である。反応領域では反応に伴う発熱があるため、温度が最も高くなるが、触媒担持担体の種類や、反応条件によって局所発熱の大きさは異なる。
 反応温度の測定は、触媒層に温度計を設けることにより行うことができる。なお、触媒は、触媒層の上流側から下流側へと向かって徐々に劣化する。これに合わせて、反応領域も、触媒層の上流側から下流側へと向かって徐々に移動する。このため、反応温度の測定は、反応領域の移動に合わせて、測定する位置を移動させて行う。
 反応温度の調整方法としては、例えば、触媒層に水素を分割して導入する方法(α1)が挙げられる。方法(α1)によれば、水素を分割して導入することにより、反応領域を分散させることができ、反応温度を低下させることができる。また、触媒層の温度を均一にすることができ、生産性を向上させることができる。
 水素の導入箇所は、1箇所でよく、複数個所でもよい。2箇所の場合、触媒層の入口と、触媒層の途中に設けられる中途導入部との2箇所が挙げられる。この場合、触媒層の入口には、式(1)で表される化合物および水素が導入され、中途導入部には、水素のみが導入されることが好ましい。
 水素の導入箇所は、反応器の簡略化の観点からは2箇所が好ましい。一方、反応温度を低下させる観点からは3箇所以上が好ましい。通常、各導入箇所には、水素を均等に導入することが好ましい。
 また、反応温度の調整方法としては、希釈ガスを用いる方法(α2)が挙げられる。方法(α2)では、式(1)で表される化合物および水素とともに希釈ガスを導入する。これにより、式(1)で表される化合物および水素の濃度を低下させて、反応温度を低下させることができる。
 方法(α1)、方法(α2)以外の調整方法として、反応器の加熱等に用いられる熱媒の温度を調整する方法(α3)が挙げられる。方法(α3)によれば、熱媒の温度を低下させることにより、迅速に除熱を行うことができ、また、熱媒の温度を高くして、反応を促進することもできる。
 以上、反応温度の調整方法として、方法(α1)、方法(α2)、方法(α3)を例示したが、これらの方法は、1つを単独で使用してもよいし、2つまたは3つを併用してもよい。
 反応圧力は、作業性の観点から、絶対圧で、0~1.0MPaが好ましく、0~0.5MPaがより好ましい。作業性の観点からは絶対圧で0.1~0.4MPaがより好ましい。また、式(1)で表される化合物が触媒と接触している時間である接触時間は、0.1~10000秒が好ましく、1~100秒がより好ましい。しかし、この好ましい接触時間は、触媒層の体積によって異なるので、この数値範囲の限りではない。接触時間は、反応器に導入される単位時間当たりの物質量と、触媒層の体積とから計算できる。
 式(1)で表される化合物と水素との反応では、式(1)で表される化合物中の塩素原子のモル数と水素のモル数との比(H/Cl)が0.1~3.0となるように、式(1)で表される化合物と水素との導入量を調整することが好ましい。比(H/Cl)が0.1~3.0であると、式(2)で表される化合物を得やすくなる。比(H/Cl)は、0.2~2.0がより好ましい。なお、水素が分割して導入される場合、全ての導入箇所から水素が導入されたときに上記範囲内になっていればよい。
 式(1)で表される化合物を導入する速度は、下記式により表わされる触媒層における線速度uが0.1~100cm/秒であることが好ましく、1~50cm/秒であることがより好ましい。0.1cm/秒以上であると、生産性が良好になる。また、100cm/秒以下であると、式(1)で表される化合物と水素とを十分に反応させることができる。
 u=V/S
 式中、Vは、反応器に導入した単位時間当たりの全ガス流量(cm/秒)を示し、Sは、触媒層のガスの流通方向に対する断面積(cm)を示す。
 反応器としては、気相反応に用いられる公知の反応器を用いることができる。反応器の材質としては、例えば、鉄、ニッケル、これらを主成分とする合金、ガラス等が挙げられる。
 式(1)で表される化合物と水素との反応により得られる生成ガスには、式(2)で表される化合物とともに、式(1)で表される化合物、式(1)の二重結合に水素が付加した化合物(CX-CYH-CClH)、式(2)の二重結合に水素が付加した化合物(CX-CYH-CClH)、式(2)の末端塩素が還元された化合物(CX-CY=CH)、式(2)の末端塩素が還元された化合物の二重結合に水素が付加した化合物(CX-CYH-CH)、塩化水素等が含まれる。塩化水素は、アルカリ水溶液に生成ガスを吹き込んで中和することにより除去できる。アルカリ水溶液に用いられるアルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられる。
 式(1)で表される化合物と式(2)で表される化合物とは、例えば、蒸留等の公知の方法により分離することができる。式(1)で表される化合物は、再び、水素との反応に使用することができる。
<方法(β)>
 方法(β)においては、溶媒を使用することが好ましい。溶媒としては、水、アルコール等の有機溶媒が挙げられる。溶媒の使用量は、式(1)で表される化合物100質量部に対して、10~500質量部が好ましい。
 方法(β)としては、例えば、式(1)で表される化合物、触媒担持担体、および溶媒からなる溶液に水素ガスを吹き込む方法が挙げられる。また、方法(β)としては、例えば、第1の溶媒に加圧により水素を溶解させて第1の溶液を準備するとともに、別途、式(1)で表される化合物、触媒担持担体、および第2の溶媒からなる第2の溶液を準備し、第2の溶液に第1の溶液を添加する方法が挙げられる。方法(β)は、回分式でもよく、連続式でもよい。
 反応温度は、0~300℃が好ましく、20~200℃がより好ましい。反応温度が、0℃以上であると反応を効果的に進行させることができ、300℃以下であると式(2)で表される化合物以外の化合物の生成が抑制される。
 反応圧力は、作業性の観点から、絶対圧で、0~10.0MPaが好ましく、0~8.0MPaがより好ましい。作業性の観点からは絶対圧で0.1~5.0MPaがより好ましい反応時間は、回分式であれば1~50時間が好ましく、連続式であれば0.1~1000分が好ましい。
 式(1)で表される化合物と水素との反応では、連続式においては、式(1)で表される化合物中の塩素原子のモル数と水素のモル数との比(H/Cl)が0.1~3.0となるように、式(1)で表される化合物と水素との量を調整することが好ましい。比(H/Cl)が0.1~3.0であると、式(2)で表される化合物を得やすくなる。比(H/Cl)は、0.2~2.0がより好ましい。回分式においては、比(H/Cl)は経時で変化するため、この限りではない。
 反応後の反応液には、式(2)で表される化合物とともに、式(1)で表される化合物、塩化水素等が含まれる。塩化水素は、アルカリ水溶液に生成ガスを吹き込んで中和することにより除去できる。アルカリ水溶液に用いられるアルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられる。なお、反応に使用する反応液に予めアルカリを添加してもよい。
 式(1)で表される化合物と式(2)で表される化合物とは、例えば、蒸留等の公知の方法により分離することができる。式(1)で表される化合物は、再び反応に使用することができる。
 反応器としては、液相反応に用いられる公知の反応器を用いることができる。反応器の材質としては、例えば、鉄、ニッケル、これらを主成分とする合金、ガラス等が挙げられる。
 なお、本実施形態の製造方法においては、通常、式(2)で表される化合物は、幾何異性体であるトランス体とシス体とを含んでいる。このため、所望とする幾何異性体を得るために、蒸留、膜分離、抽出蒸留、共沸分離、二層分離など既知の分離方法で分離を行うことが好ましい。以下、幾何異性体のうち、トランス体の化合物名の後に(E)を付して表し、シス体の化合物名の後に(Z)を付して表す。
 以上説明したように、本実施形態によれば、式(2)で表される化合物を効率的に製造することができる。具体的には、PdおよびPtからなる群より選ばれる少なくとも1種からなる第1の元素とともに特定の第2の元素を用いることにより、第1の元素の触媒活性を低下させることができ、式(2)で表される化合物以外の化合物の生成を抑制することができる。
 よって、本実施形態によれば、目的とする化合物の選択率および収率を良好なものとできる。さらに、目的とする化合物と、該目的とする化合物とはオレフィン末端のClの還元の有無のみが異なる化合物と、を合わせた化合物群(有価物)の選択率(有価物選択率)も良好なものとできる。
 ここで、選択率とは、反応における原料化合物の消費量に対する目的化合物の生成量の割合をいい、収率とは、反応における得られうる最大の反応生成物(混合物)に対する目的化合物の生成量の割合をいう。また、有価物選択率とは、反応における原料化合物の消費量に対する有価物の生成量の割合をいう。
 収率については、5%より多いことが好ましく、8%より多いことがより好ましく、10%より多いことが最も好ましい。
 有価物選択率については、82%以上が好ましく、87%以上がより好ましく、92%以上が最も好ましい。
 また、有価物選択率が87%以上かつ収率が5%より多いことが好ましく、有価物選択率が82%以上かつ収率が8%より多いより好ましく、有価物選択率が87%以上かつ収率が8%より多いことがさらにより好ましく、有価物選択率が92%以上かつ収率が10%より多いことが最も好ましい。
 以下、実施例および比較例を示して本発明を詳細に説明する。
 ただし、本発明は本実施例により限定されるものではない。
(式(1)で表される化合物の製造)
 式(1)で表される化合物として、CFO-1214yaを製造した。CFO-1214yaは、AK225を用いて以下の方法により製造した。
 0℃に冷却したジムロートを設置した内容積1Lのガラス反応器に、相間移動触媒としてのTBAB 3g、水酸化カリウム 83g(1.485モル)、水 180g、AK225 609g(3.0モル)を投入した後、撹拌しながら徐々に昇温して、45℃で1時間反応を行った。このようにして得られた反応液は、有機相と水相との2相に分離していた。この反応液から有機相を分液して、釜容積1L、理論段数10段の能力を有する蒸留塔に投入して蒸留を実施した。蒸留の結果、純度99.5%のCFO-1214ya(沸点45℃) 262g(1.43モル)を得た。
(実施例1)
 触媒担持担体として、活性炭からなる担体の表面に、第1の元素であるPdと第2の元素であるBiとの合金からなる触媒が担持されたものを用意した。該活性炭は、4~30メッシュ、比表面積は1000~1200程度のヤシ殻破砕炭を用いた。触媒は、担体100質量部に対して、0.75質量部とした。このとき、第1の元素の含有割合は、担体100質量部に対して、0.5質量部である。第2の元素の含有割合は、第1の元素100モル%に対して、25モル%である。
 別途、反応器として、SUS304製、内径21.4mmのU字型の反応管を用意した。なお、反応管は、内部の温度を測定するための温度計が挿入される、さや管を有するものである。この反応管には、上記触媒担持担体を充填密度0.4g/cmで、141mL充填した。
 この反応管を110~130℃に温度管理された油浴に浸漬した。浸漬後、反応管に窒素を導入して触媒担持担体の乾燥を行った。窒素の導入量は600NmL/minとし、導入時間は16時間とした。これにより、反応管の出口ガスは、含水率が23ppmとなった。
 その後、油浴の温度を低下させて反応管内の温度を45℃とし、CFO-1214yaと窒素とを導入した。導入量は、CFO-1214yaが149NmL/minであり、窒素が447NmL/minであった。なお、原料は反応器入口までは、液状で導入した。反応はすべて大気圧で実施した。
 CFO-1214yaおよび窒素の導入により、触媒層の入口側に吸着による発熱ピークが認められた。吸着の進行につれて、発熱ピークは触媒層の入口側から出口側へと移動した。発熱ピークが触媒層の出口側に達してから、さらに、CFO-1214yaおよび窒素を30分以上供給した。
 次に、反応管に、CFO-1214ya、水素、および窒素からなる原料混合ガスを導入した。これにより、CFO-1214yaと水素とを反応させ、HCFO-1224ydを製造した。
 水素の導入については、反応熱による、急激な発熱を抑制するため、流量を3段階に分けて、目的流量に到達させた。その際、CFO-1214ya、水素、および窒素の合計した流量が一定となるように行った。具体的には、水素の導入に伴う水素の流量の増加に応じて、この分だけ窒素の流量を低下させることにより、CFO-1214ya、水素、および窒素の合計した流量を一定とした。
 各成分の最終的な導入量は、CFO-1214yaが149NmL/min、水素が149NmL/min、窒素が298NmL/minであった。このとき、比(H/Cl)は0.5、比(希釈ガス/CFO-1214ya)は2である。水素の供給を段階的に開始することで、反応温度を250℃以下に保つことができた。
 反応中は、油浴温度を45℃に維持した。反応開始から5時間後、反応管の出口から生成ガスを捕集した。そして、ガスクロマトグラフを用いて組成の分析を行い、分析結果であるピークの面積から以下の式によりHCFO-1224ydの選択率を求めた。結果を表1に示す。なお、この時の反応温度は、46℃であった。
 選択率=(生成ガスのピークの総面積におけるHCFO-1224ydのピークの面積の割合[%])÷((原料混合ガスのピークの総面積におけるCFO-1214yaのピークの面積の割合[%])-(生成ガスのピークの総面積におけるCFO-1214yaのピーク面積の割合[%]))
 さらに、得られた選択率を用い、HCFO-1224ydの収率および有価物選択率を以下の式により求めた。結果を表1に併せて示す。なお、有価物選択率は、HCFO-1224ydとHFO-1234yfの各選択率を足し合わせて算出でき、原料化合物に対して、有用な化合物であるHCFO-1224ydおよびHFO-1234yfに転換できた割合を示す。
 収率=選択率×((原料混合ガスのピークの総面積におけるCFO-1214yaのピークの面積の割合[%])-(生成ガスのピークの総面積におけるCFO-1214yaのピーク面積の割合[%]))
 有価物選択率=選択率+(生成ガスのピークの総面積におけるHFO-1234yfのピークの面積の割合[%])÷((原料混合ガスのピークの総面積におけるCFO-1214yaのピークの面積の割合[%])-(生成ガスのピークの総面積におけるCFO-1214yaのピーク面積の割合[%]))
 次に、HCFO-1224yd(Z)の分離を行った。
 まず、生成ガスを水洗した後、濃度10質量%の水酸化カリウム(KOH)水溶液に流通させて酸性成分を除去し、さらに、合成ゼオライト(モレキュラーシーブス4A)を充填した脱水塔に流通させて脱水を行った。脱水後、ドライアイスを用いて冷却されたシリンダー内に生成ガスを捕捉した。
 その後、この生成ガスを蒸留することにより、HCFO-1224yd(Z)を含む留出液を得た。蒸留は、理論段数約40段の蒸留塔を用い、塔底に生成ガスを供給して、運転圧力0.05MPa(ゲージ圧)で、バッチ式の蒸留を行った。このような蒸留により、蒸留塔の塔頂から、HCFO-1224yd(Z)を99.3質量%含む留出液を得ることができた。
(実施例2~22)
 表1に示すように、触媒担持担体の構成、油浴温度を変更したことを除いて、実施例1と同様にして、CFO-1214yaと水素との反応を行いHCFO-1224ydを製造し、得られたHCFO-1224ydの選択率、収率および有価物選択率を求めた。結果を表1に示す。なお、各油浴温度での導入量は、各成分の比率を変更せず、接触時間が等しくなるように、気体の状態方程式を用いて算出した。
(比較例1および2)
 表1に示すように、触媒担持担体の構成、油浴温度を変更したことを除いて、実施例1と同様にして、CFO-1214yaと水素との反応を行いHCFO-1224ydを製造し、得られたHCFO-1224ydの選択率、収率および有価物選択率を求めた。なお、比較例1および2は、第2の元素を有しない触媒担持担体を用いたものである。結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、第2の元素を有する触媒担持担体を用いることにより、HCFO-1224ydの選択率および収率を向上させることができることがわかった。また、HFO-1234yfを含めた有価物選択率も良好であることがわかった。したがって、本発明の含塩素プロペンの製造方法によれば、目的とする含塩素プロペンを効率的に製造することができる。

Claims (8)

  1.  触媒の存在下、下記式(1)で表される化合物を水素と反応させて、下記式(2)で表される化合物を得る含塩素プロペンの製造方法であって、
     前記触媒は、担体に担持されたものであって、PdおよびPtからなる群より選ばれる少なくとも1種の第1の元素と、Ru、Cu、Au、Zn、Cd、Hg、Al、Ga、In、Si、Ge、Sn、Pb、P、As、Sb、Bi、S、Se、Te、およびPoからなる群より選ばれる少なくとも1種の第2の元素とを含み、前記担体100質量部に対して前記触媒が0.01~8質量部であることを特徴とする含塩素プロペンの製造方法。
     CXCY=CCl ・・・(1)
     (式(1)中、Xは、それぞれ独立して、F、Cl、またはHを表し、Yは、FまたはHを表す。)
     CXCY=CHCl ・・・(2)
     (式(2)中、XおよびYは式(1)とXおよびYと同一である。)
  2.  前記第2の元素は、Ru、Cu、Au、Sn、Zn、Bi、S、およびTeからなる群より選ばれる少なくとも1種を含む請求項1に記載の含塩素プロペンの製造方法。
  3.  前記第2の元素は、前記第1の元素100モル%に対して、0.1~400モル%である請求項1または2に記載の含塩素プロペンの製造方法。
  4.  前記第1の元素がPdを含む請求項1~3のいずれか一項に記載の含塩素プロペンの製造方法。
  5.  前記式(1)中、Xが、それぞれ独立して、FまたはHであり、YがFまたはHである請求項1~4のいずれか一項に記載の含塩素プロペンの製造方法。
  6.  前記式(1)中、XがFであり、YがFである請求項1~4のいずれか一項に記載の含塩素プロペンの製造方法。
  7.  前記担体が、活性炭、アルミナ、シリカ、ジルコニア、アルカリ金属酸化物、およびアルカリ土類金属酸化物からなる群より選ばれる少なくとも1種を含む、請求項1~6のいずれか一項に記載の含塩素プロペンの製造方法。
  8.  前記反応の反応温度を30~350℃とする請求項1~7のいずれか一項に記載の含塩素プロペンの製造方法。
PCT/JP2017/046251 2016-12-28 2017-12-22 含塩素プロペンの製造方法 WO2018123911A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255659 2016-12-28
JP2016255659 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123911A1 true WO2018123911A1 (ja) 2018-07-05

Family

ID=62707490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046251 WO2018123911A1 (ja) 2016-12-28 2017-12-22 含塩素プロペンの製造方法

Country Status (1)

Country Link
WO (1) WO2018123911A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123759A1 (ja) * 2017-12-22 2019-06-27 Agc株式会社 溶剤組成物、洗浄方法、塗膜形成用組成物、塗膜付き基材の製造方法、エアゾール組成物、リンス組成物、部材の洗浄方法および部材の洗浄装置
WO2020213600A1 (ja) * 2019-04-16 2020-10-22 Agc株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
WO2021044983A1 (ja) * 2019-09-06 2021-03-11 Agc株式会社 ハイドロフルオロオレフィンの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162336A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンおよび2,3,3,3-テトラフルオロプロペンの製造方法
WO2015160532A1 (en) * 2014-04-16 2015-10-22 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
WO2016031777A1 (ja) * 2014-08-25 2016-03-03 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162336A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンおよび2,3,3,3-テトラフルオロプロペンの製造方法
WO2015160532A1 (en) * 2014-04-16 2015-10-22 The Chemours Company Fc, Llc Conversion of chlorofluororopanes and chlorofluropropenes to more desirable fluoropropanes and fluororopenes
WO2016031777A1 (ja) * 2014-08-25 2016-03-03 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123759A1 (ja) * 2017-12-22 2019-06-27 Agc株式会社 溶剤組成物、洗浄方法、塗膜形成用組成物、塗膜付き基材の製造方法、エアゾール組成物、リンス組成物、部材の洗浄方法および部材の洗浄装置
WO2020213600A1 (ja) * 2019-04-16 2020-10-22 Agc株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
JP7484900B2 (ja) 2019-04-16 2024-05-16 Agc株式会社 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
WO2021044983A1 (ja) * 2019-09-06 2021-03-11 Agc株式会社 ハイドロフルオロオレフィンの製造方法
JP7511113B2 (ja) 2019-09-06 2024-07-05 Agc株式会社 ハイドロフルオロオレフィンの製造方法

Similar Documents

Publication Publication Date Title
US10781151B2 (en) Process for producing hydrofluoroolefin
JP6673413B2 (ja) フルオロオレフィンの製造方法
JP5947337B2 (ja) 2,2,3,3−テトラフルオロ−1−プロペンの製造方法
JP6477712B2 (ja) ハイドロフルオロオレフィンの製造方法
US10189758B2 (en) Method for producing hydrofluoroolefin
US9850189B2 (en) Method for producing trifluoroethylene
JP6780696B2 (ja) 1−クロロ−2,3,3,3−テトラフルオロプロペンの製造方法
WO2018123911A1 (ja) 含塩素プロペンの製造方法
JP5533002B2 (ja) 3,3,3−トリフルオロプロペンの製造方法
JP5817591B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5713018B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP7511113B2 (ja) ハイドロフルオロオレフィンの製造方法
JP7553758B2 (ja) ビニル化合物の製造方法
CN107262092A (zh) 一种合成顺式1,1,1,4,4,4‑六氟‑2‑丁烯的催化剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载