WO2018123545A1 - マルチプレクサ - Google Patents
マルチプレクサ Download PDFInfo
- Publication number
- WO2018123545A1 WO2018123545A1 PCT/JP2017/044421 JP2017044421W WO2018123545A1 WO 2018123545 A1 WO2018123545 A1 WO 2018123545A1 JP 2017044421 W JP2017044421 W JP 2017044421W WO 2018123545 A1 WO2018123545 A1 WO 2018123545A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- inductor
- parallel arm
- arm resonator
- inductance value
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 20
- 239000010410 layer Substances 0.000 description 18
- 230000006866 deterioration Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 239000011241 protective layer Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000010897 surface acoustic wave method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/72—Networks using surface acoustic waves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
Definitions
- the present invention relates to a multiplexer.
- the multiplexer in which a plurality of filters are connected to the common terminal on the antenna end side, when the ladder type filter described in Patent Document 1 is used as a filter corresponding to a high frequency band, the parallel arm resonator is connected to the ground. In some cases, the loss characteristic of the filter corresponding to the low frequency band may be deteriorated by the inductor connected to.
- one aspect of a multiplexer includes a first filter that passes a high-frequency signal and a ladder filter that passes a high-frequency signal in a higher frequency band than the first filter.
- a second filter wherein the second filter is connected in series between a common terminal to which the first filter and the second filter are connected, and an input / output terminal opposite to the common terminal.
- a plurality of parallel arm resonators connected between a node to which the series arm resonator is connected and a ground, and the plurality of parallel arm resonators.
- the first parallel arm resonator And ground the first inductor is greater inductance than the inductance value between the second parallel arm resonator and the ground are connected.
- the inductance value between the first parallel arm resonator and the ground and the inductance value between the second parallel arm resonator and the ground are the frequencies of the second filter. Affects the formation of bands.
- the inductance value between the second parallel arm resonator close to the common terminal and the ground is more than the inductance value between the first parallel arm resonator far from the common terminal and the ground.
- the influence on the pass characteristics of the filter is large. Therefore, the inductance value of the first inductor connected between the first parallel arm resonator far from the common terminal and the ground is made larger than the inductance value between the second parallel arm resonator and the ground. Accordingly, it is possible to improve the pass characteristic of the first filter corresponding to the frequency band lower than that of the second filter without deteriorating the pass characteristic of the second filter.
- a second inductor having an inductance value smaller than that of the first inductor may be connected between the second parallel arm resonator and the ground.
- an inductor having an inductance value of 0 is arranged between the second parallel arm resonator and the ground. Therefore, the inductance value of the first inductor is larger than the inductance value between the second parallel arm resonator and the ground. Thereby, the pass characteristic of the 1st filter corresponding to a lower frequency band than the 2nd filter can be improved, without degrading the pass characteristic of the 2nd filter.
- At least one other filter in which a frequency band of a high-frequency signal to be passed is different from that of the first filter and the second filter may be further provided.
- the second filter corresponds to the highest frequency band among the plurality of filters, the pass characteristics of the filter are compared with all other filters corresponding to the frequency band lower than the second filter. Can be improved.
- a multiplexer capable of improving the pass characteristic of a filter corresponding to a low frequency band connected to a ladder filter at a common terminal.
- FIG. 4B is a diagram illustrating a pass characteristic of the second filter in the multiplexer according to the embodiment.
- FIG. 5A is a diagram illustrating a pass characteristic of the first filter in the multiplexer according to the embodiment.
- FIG. 5B is a diagram illustrating pass characteristics of other filters in the multiplexer according to the embodiment.
- FIG. 5C is a diagram illustrating a pass characteristic of another filter in the multiplexer according to the embodiment.
- FIG. 6 is a diagram illustrating the relationship between the loss deterioration amount and the inductance value of the multiplexer according to the embodiment.
- FIG. 7 is a conceptual diagram showing a configuration of a multiplexer according to a modified example.
- FIG. 1 is a schematic configuration diagram showing a configuration of a multiplexer 1 according to the present embodiment.
- the multiplexer 1 includes filters 11, 12, 13, and 14 having different frequency bands.
- the filters 11, 12, 13 and 14 are each connected to a common terminal 20 connected to the antenna 2.
- the opposite side of the filters 11, 12, 13, and 14 to the common terminal 20 side is connected to input / output terminals 21, 22, 23, and 24, respectively.
- the filter 11 is a transmission filter having a band 3 transmission band (1710-1785 MHz) of the LTE (Long Term Evolution) standard as a pass band, for example.
- LTE Long Term Evolution
- the filter 12 is a reception filter having a band 3 reception band (1805 to 1880 MHz) as a pass band, for example.
- the filter 13 is, for example, a transmission filter having a band 1 transmission band (1920-1980 MHz) as a pass band.
- the filter 13 is a first filter.
- the filter 14 is, for example, a reception filter having a band 1 reception band (2110-2170 MHz) as a pass band.
- the filter 14 is a filter used in a higher frequency band than the filters 11, 12 and 13. That is, the filter 14 is a filter that passes a high-frequency signal in the highest frequency band among the plurality of filters provided in the multiplexer 1.
- the filter 14 includes a ladder type filter including five series arm resonators and four parallel arm resonators. In the present embodiment, the filter 14 is a second filter.
- one end of the parallel arm resonator 34b is connected to the node between the series arm resonators 32b and 32c
- one end of the parallel arm resonator 34c is connected to the node between the series arm resonators 32c and 32d.
- One end of a parallel arm resonator 34d is connected to a node between the arm resonators 32d and 32e.
- Inductors 36b, 36c, and 36d are connected between the other ends of the parallel arm resonators 34b, 34c, and 34d and the ground, respectively.
- the parallel arm resonator 34d is a first parallel arm resonator.
- the inductor 36d is a first inductor.
- the series arm resonators 32a, 32b, 32c, 32d and 32e, the parallel arm resonators 34a, 34b, 34c and 34d, and the inductors 36a, 36b, 36c and 36d as described above make the filter 14 as a ladder filter. It is configured.
- the inductance value L1 of the inductor 36a and the inductance value L4 of the inductor 36d are set larger than the inductance value L2 of the inductor 36b and the inductance value L3 of the inductor 36c.
- the inductance values L1, L2, L3, and L4 of the inductors 36a, 36b, 36c, and 36d are not limited to the values described above, and may be other values.
- the series arm resonators 32a, 32b, 32c, 32d, and 32e, and the parallel arm resonators 34a, 34b, 34c, and 34d are resonators formed of, for example, surface acoustic wave filters.
- FIG. 2 is a schematic diagram showing the configuration of the surface acoustic wave filter 100 that constitutes the series arm resonators 32a, 32b, 32c, 32d, and 32e and the parallel arm resonators 34a, 34b, 34c, and 34d.
- 2A is a plan view
- FIG. 2B is a cross-sectional view taken along the one-dot chain line shown in FIG.
- the series arm resonators 32a, 32b, 32c, 32d, and 32e and the parallel arm resonators 34a, 34b, 34c, and 34d have the same configuration, but are not limited thereto.
- the IDT electrode 101a and the IDT electrode 101b have a structure in which an adhesion layer 107 and a main electrode layer 108 are laminated as shown in FIG.
- the adhesion layer 107 is a layer for improving the adhesion between the piezoelectric substrate 106 and the main electrode layer 108.
- a material for example, NiCr is used.
- the film thickness of the adhesion layer 17 is, for example, 10 nm.
- the protective layer 109 is formed so as to cover the IDT electrodes 101a and 101b.
- the protective layer 109 is a layer for the purpose of protecting the main electrode layer 108 from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance, for example, a film containing silicon dioxide as a main component. .
- the protective layer 109 may have a single layer structure or a laminated structure.
- the materials constituting the adhesion layer 107, the main electrode layer 108, and the protective layer 109 are not limited to the materials described above. Furthermore, the IDT electrodes 101a and 101b do not have to have the above laminated structure.
- the IDT electrodes 101a and 101b may be made of, for example, a metal or an alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, and a plurality of layers made of the above metals or alloys are laminated. It may also be configured with a stacked structure. Further, the protective layer 109 may not be formed.
- ⁇ is the repetition pitch of the plurality of electrode fingers 102a and 102b constituting the IDT electrodes 101a and 101b
- D is the cross width of the IDT electrodes 101a and 101b
- W is the width of the electrode fingers 102a and 102b
- S is The width h between the electrode fingers 102a and 102b indicates the height of the IDT electrodes 101a and 101b.
- the inductor connected to the parallel arm resonator disposed at the position closest to the common terminal and the parallel arm resonator disposed at the position closest to the input / output terminal opposite to the common terminal are connected.
- the connected inductor is an inductor that greatly influences the determination of the frequency band of the ladder filter. Replacing the inductor values of these inductors does not affect the pass characteristics of the ladder filter itself.
- the inductor connected to the parallel arm resonator arranged closest to the common terminal is arranged close to other filters connected to the ladder filter, the inductance value of this inductor is large. It is thought that it has a great influence on the pass characteristics of other filters.
- FIG. 5A is a diagram illustrating the pass characteristic of the filter 13 in the multiplexer 1.
- FIG. 5B is a diagram illustrating the pass characteristic of the filter 11 in the multiplexer 1.
- FIG. 5C is a diagram illustrating pass characteristics of the filter 12 in the multiplexer 1.
- the parallel arm resonators 34a and 34d have the same capacity by adjusting the crossing width and logarithm of the IDT electrodes constituting the parallel arm resonators 34a and 34d.
- the filter 13 when the relationship between the inductance value L1 of the inductor 36a and the inductance value L4 of the inductor 36d is changed from L4 ⁇ L1 to L1 ⁇ L4, the pass band (1920-1980 MHz) of the filter 13 is obtained. It can be seen that the insertion loss at is reduced and the pass characteristics are improved.
- the filter 11 when the relationship between the inductance value L1 of the inductor 36a and the inductance value L4 of the inductor 36d is changed from L4 ⁇ L1 to L1 ⁇ L4, the passband (1710-1785 MHz) of the filter 11 is obtained. ) Is reduced, and the pass characteristics are improved.
- the filter 12 when the relationship between the inductance value L1 of the inductor 36a and the inductance value L4 of the inductor 36d is changed from L4 ⁇ L1 to L1 ⁇ L4, the passband (1805 to 1880 MHz) of the filter 12 is obtained. The insertion loss is reduced, and the pass characteristics are improved.
- FIG. 6 is a diagram illustrating the relationship between the loss deterioration amount of the high frequency module and the inductance value L1 of the inductor 36a.
- FIG. 6 shows the loss deterioration amount with respect to the inductance value of the inductor 36a when the Q value (resonance sharpness) is infinite, 40, and 20.
- the inductance value L1 of the inductor 36a is increased by 0 to 0.2nH, the loss deterioration amount in the parallel arm resonator 34a increases. It can also be seen that the loss degradation amount increases as the Q value decreases.
- the loss deterioration amount is preferably, for example, 0.03 dB or less. This is because if the loss deterioration amount is 0.03 dB or less, the influence of the filter 14 on the frequency bands of the other filters 11, 12, and 13 can be reduced.
- the inductance value L1 of the inductor 36a at which the loss degradation amount is 0.03 dB or less is L1 ⁇ 1.8 nH, for example, when Q is 20. Since the inductor 36a is the inductor arranged closest to the common terminal 20 in the filter 14, the inductance value L1 of the inductor 36a greatly affects the other filters 11, 12, and 13. Therefore, it is preferable that the inductance value L1 of the inductor 36a having the greatest influence on the other filters 11, 12, and 13 is L1 ⁇ 1.8 nH. Thereby, the loss degradation amount of the filter 14 can be 0.03 dB or less with a small influence on the frequency bands of the other filters 11, 12, and 13.
- the Q value of commonly used inductors is 20 to 40. According to FIG. 6, when the Q value is 20 to 40, if the inductance value L1 of the inductor 36a on the common terminal 20 side is L1 ⁇ 1.8 nH, the loss deterioration amount is at least 0.03 dB or less. .
- the filter 14 is connected to the series arm resonator in the case of a ladder type filter.
- the number and arrangement of the parallel arm resonators may be changed. Even in this case, by setting the inductance value L1 of the inductor 36a connected to the parallel arm resonator 34a arranged closest to the common terminal 20 to L1 ⁇ 1.8 nH, the filter 14 is connected to the filters 11, 12, and 13. The influence on the frequency band can be reduced.
- the filter 14 is a filter corresponding to the highest frequency band among the plurality of filters 11, 12, 13, and 14 arranged in the multiplexer 1, another filter corresponding to a frequency band lower than the filter 14 is used.
- the pass characteristics of all the filters 11, 12 and 13 can be improved.
- the loss deterioration amount of the filter 14 can be set to 0.03 dB or less. Thereby, the influence which the filter 14 has with respect to the frequency band of the other filters 11, 12, and 13 can be made small, and the pass characteristic of the filters 11, 12, and 13 can be improved.
- the filter 14 in the multiplexer 1 is a reception filter having a band 1 reception band (2110-2170 MHz) as a pass band, but is not limited thereto.
- the filter 14 may be a reception filter having another frequency band as a reception band as long as it is not a filter corresponding to the lowest frequency band among the plurality of filters constituting the multiplexer 1.
- the filter 14 is not limited to a reception filter, and may be a transmission filter or a transmission / reception filter that can perform both transmission and reception.
- the filter 14 that is a ladder filter connects five series arm resonators 32a, 32b, 32c, 32, and 32e and four parallel arm resonators 34a, 34b, 34c, and 34d.
- the filter 14 may be configured to include at least one series arm resonator and a plurality (two or more) parallel arm resonators.
- the multiplexer 1a according to this modification is different from the multiplexer 1 according to the embodiment in that the parallel arm resonator 34a arranged closest to the common terminal 20 in the filter 14a is directly connected to the ground.
- FIG. 7 is a conceptual diagram showing the configuration of the multiplexer 1a according to this modification.
- the multiplexer 1a includes filters 11, 12, 13, and 14a.
- the configurations of the filters 11, 12 and 13 are the same as the configurations of the filters 11, 12 and 13 in the multiplexer 1 shown in the first embodiment, and thus detailed description thereof is omitted.
- the filter 14a is a ladder type filter, and an inductor 36d is connected between the parallel arm resonator 34d arranged closest to the input / output terminal 24 and the ground. Further, the parallel arm resonator 34a arranged closest to the common terminal 20 is directly connected to the ground. That is, as compared with the multiplexer 1 shown in the above-described embodiment, the inductor 36a shown in the embodiment is not connected between the parallel arm resonator 34a and the ground.
- the multiplexer 1a has a configuration in which the parallel arm resonator 34a and the ground are directly connected and no inductor is provided between the parallel arm resonator 34a and the ground, the pass characteristic of the filter 14a is deteriorated. Therefore, the pass characteristics of the filters 11, 12 and 13 can be improved.
- the filter 14 in the multiplexer 1 is a reception filter having a band 1 reception band (2110-2170 MHz) as a pass band, but is not limited thereto.
- the filter 14 may be a reception filter having another frequency band as a reception band as long as it is not a filter corresponding to the lowest frequency band among the plurality of filters constituting the multiplexer 1.
- the filter 14 is not limited to a reception filter, and may be a transmission filter or a transmission / reception filter that can perform both transmission and reception.
- a series arm resonator may be disposed at a position closest to the common terminal 20, or a parallel arm resonator may be disposed.
- a series arm resonator may be disposed at a position closest to the input / output terminal 24 on the side opposite to the common terminal 20, or a parallel arm resonator may be disposed.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
ラダー型フィルタと共通端子(20)において接続された、低い周波数帯域に対応したフィルタの通過特性を向上することができるマルチプレクサ(1)を提供する。フィルタ(13)と、フィルタ(13)よりも高い周波数帯域の高周波信号を通過させるラダー型フィルタからなるフィルタ(14)とを備え、フィルタ(14)は、直列腕共振子(32a~32e)と並列腕共振子(34a~34d)とを有し、並列腕共振子(34a)とグランドとの間に、並列腕共振子(34d)とグランドとの間のインダクタンス値よりインダクタンス値が大きいインダクタ(36a)が接続されている。
Description
本発明は、マルチプレクサに関する。
近年、通信用高周波モジュールの小型化およびマルチバンド化のために、一つのチップ上に複数のフィルタ回路を形成したデュプレクサ、マルチプレクサ等の高周波モジュール等が開発されている。このような高周波モジュールに使用されるフィルタとして、例えば、直列腕共振子と並列腕共振子とを組み合わせたラダー型フィルタが用いられている(例えば、特許文献1参照)。
特許文献1に記載のラダー型フィルタでは、直列腕共振子の共振周波数と並列腕共振子の反共振周波数とを一致させ、ラダー型フィルタの並列腕共振子とグランドとの間にインダクタを接続することにより、ロス特性が良好でかつ高い減衰特性を有するフィルタを実現している。
しかし、複数のフィルタがアンテナ端側の共通端子に接続されたマルチプレクサにおいて、高い周波数帯域に対応したフィルタとして特許文献1に記載のラダー型フィルタを用いた場合、並列腕共振子とグランドとの間に接続したインダクタによって、低い周波数帯域に対応したフィルタのロス特性が劣化する場合がある。
上記課題に鑑み、本発明は、高い周波数帯域に対応したラダー型フィルタと共通端子において接続された、低い周波数帯域に対応したフィルタの通過特性を向上することができるマルチプレクサを提供することを目的とする。
上記目的を達成するために、本発明にかかるマルチプレクサの一態様は、高周波信号を通過させる第1のフィルタと、前記第1のフィルタよりも高い周波数帯域の高周波信号を通過させるラダー型フィルタからなる第2のフィルタとを備え、前記第2のフィルタは、前記第1のフィルタと前記第2のフィルタとが接続された共通端子と、前記共通端子と反対側の入出力端子との間に直列に接続された少なくとも1つの直列腕共振子と、前記直列腕共振子が接続されたノードとグランドとの間に接続された複数の並列腕共振子とを有し、前記複数の並列腕共振子のうち最も前記共通端子から遠い側に配置された第1の並列腕共振子と、最も前記共通端子側に配置された第2の並列腕共振子とのうち、前記第1の並列腕共振子とグランドとの間に、前記第2の並列腕共振子とグランドとの間のインダクタンス値よりインダクタンス値が大きい第1のインダクタが接続されている。
ラダー型フィルタである第2のフィルタにおいて、第1の並列腕共振子とグランドとの間のインダクタンス値と第2の並列腕共振子とグランドとの間のインダクタンス値は、第2のフィルタの周波数帯域の形成に影響する。そして、共通端子に近い第2の並列腕共振子とグランドとの間のインダクタンス値の方が、共通端子から遠い第1の並列腕共振子とグランドとの間のインダクタンス値よりも、第1のフィルタの通過特性に与える影響が大きい。したがって、共通端子から遠い第1の並列腕共振子とグランドとの間に接続された第1のインダクタのインダクタンス値を、第2の並列腕共振子とグランドとの間のインダクタンス値よりも大きくすることにより、第2のフィルタの通過特性を劣化させることなく、第2のフィルタよりも低い周波数帯域に対応した第1のフィルタの通過特性を向上することができる。
また、前記第2の並列腕共振子とグランドとの間に、前記第1のインダクタのインダクタンス値よりもインダクタンス値が小さい第2のインダクタが接続されていてもよい。
これにより、第1のインダクタのインダクタンス値の方が第2のインダクタのインダクタンス値よりも大きいので、第2のフィルタの通過特性を劣化させることなく、第2のフィルタよりも低い周波数帯域に対応した第1のフィルタの通過特性を向上することができる。
また、前記第2の並列腕共振子とグランドとの間に、インダクタが接続されていなくてもよい。
この構成では、第2の並列腕共振子とグランドとの間にインダクタンス値が0のインダクタが配置されていると考えることができる。したがって、第1のインダクタのインダクタンス値は、第2の並列腕共振子とグランドとの間のインダクタンス値よりも大きいことになる。これにより、第2のフィルタの通過特性を劣化させることなく、第2のフィルタよりも低い周波数帯域に対応した第1のフィルタの通過特性を向上することができる。
また、通過させる高周波信号の周波数帯域が前記第1のフィルタおよび前記第2のフィルタと異なる、少なくとも1つの他のフィルタをさらに備えてもよい。
これにより、マルチプレクサに複数のフィルタが配置されている場合であっても、複数のフィルタのうち第2のフィルタよりも低い周波数帯域に対応したフィルタの通過特性を向上することができる。
また、前記第2のフィルタは、前記マルチプレクサに設けられた複数のフィルタのうち、最も高い周波数帯域の高周波信号を通過させるフィルタであってもよい。
これにより、第2のフィルタは複数のフィルタの中で最も高い周波数帯域に対応しているので、第2のフィルタよりも低い周波数帯域に対応した他の全てのフィルタに対して、フィルタの通過特性を向上することができる。
また、前記第2のインダクタのインダクタンス値は、1.8nH以下であってもよい。
これにより、第2のフィルタのロス劣化量を0.03dB以下とすることができるので、第2のフィルタが他のフィルタの周波数帯域に与える影響を小さくし、他のフィルタの通過特性を向上することができる。
本発明によれば、ラダー型フィルタと共通端子において接続された、低い周波数帯域に対応したフィルタの通過特性を向上することができるマルチプレクサを提供することができる。
以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
(実施の形態)
[1.マルチプレクサの構成]
本実施の形態に係るマルチプレクサ1は、例えば、複数のバンドの送信フィルタおよび受信フィルタを備えるマルチプレクサである。なお、マルチプレクサ1にはデュプレクサも含まれる。
[1.マルチプレクサの構成]
本実施の形態に係るマルチプレクサ1は、例えば、複数のバンドの送信フィルタおよび受信フィルタを備えるマルチプレクサである。なお、マルチプレクサ1にはデュプレクサも含まれる。
図1は、本実施の形態にかかるマルチプレクサ1の構成を示す概略構成図である。図1に示すように、マルチプレクサ1は、周波数帯域の異なるフィルタ11、12、13および14とを備えている。フィルタ11、12、13および14は、それぞれアンテナ2に接続される共通端子20に接続されている。また、フィルタ11、12、13および14の共通端子20側と反対側は、それぞれ入出力端子21、22、23および24に接続されている。
フィルタ11は、例えば、LTE(Long Term Evolution)規格のBand3の送信帯域(1710-1785MHz)を通過帯域とする送信フィルタである。
フィルタ12は、例えばBand3の受信帯域(1805-1880MHz)を通過帯域とする受信フィルタである。
フィルタ13は、例えばBand1の送信帯域(1920-1980MHz)を通過帯域とする送信フィルタである。なお、本実施の形態において、フィルタ13は第1のフィルタである。
フィルタ14は、例えばBand1の受信帯域(2110-2170MHz)を通過帯域とする受信フィルタである。フィルタ14は、フィルタ11、12および13よりも高い周波数帯域に使用されるフィルタである。つまり、フィルタ14は、マルチプレクサ1に設けられた複数のフィルタのうち、最も高い周波数帯域の高周波信号を通過させるフィルタである。フィルタ14は、5つの直列腕共振子と、4つの並列腕共振子とで構成されるラダー型フィルタからなる。本実施の形態において、フィルタ14は第2のフィルタである。
なお、本実施の形態において、フィルタ11および12は、他のフィルタである。フィルタ11および12は、通過させる高周波信号の周波数帯域がフィルタ13およびフィルタ14と異なっている。フィルタ11、12および13は、ラダー型フィルタに限らず、並列腕共振子および直列腕共振子を少なくとも1つ備えるその他の構成のフィルタであってもよい。
図1に示すように、フィルタ14において、共通端子20と入出力端子24との間には5つの直列腕共振子32a、32b、32c、32dおよび32eが、共通端子20側からこの順に直列に接続されている。また、直列腕共振子32aと32bとの間のノードには、並列腕共振子34aの一端が接続されている。さらに、並列腕共振子34aの他端とグランドとの間には、インダクタ36aが接続されている。本実施の形態において、並列腕共振子34aは第2の並列腕共振子である。また、インダクタ36aは第2のインダクタである。
同様に、直列腕共振子32bと32cとの間のノードには並列腕共振子34bの一端が、直列腕共振子32cと32dとの間のノードには並列腕共振子34cの一端が、直列腕共振子32dと32eとの間のノードには並列腕共振子34dの一端がそれぞれ接続されている。並列腕共振子34b、34c、34dの他端とグランドとの間には、それぞれインダクタ36b、36c、36dが接続されている。本実施の形態において、並列腕共振子34dは第1の並列腕共振子である。また、インダクタ36dは第1のインダクタである。
以上のような直列腕共振子32a、32b、32c、32dおよび32e、並列腕共振子34a、34b、34cおよび34d、並びに、インダクタ36a、36b、36cおよび36dにより、ラダー型フィルタであるフィルタ14が構成されている。
ここで、インダクタ36a、36b、36cおよび36dのインダクタンス値L1、L2、L3およびL4は、一例として、それぞれL1=2.00nH、L2=1.45nH、L3=1.64nHおよびL4=2.50nHである。つまり、インダクタ36aとインダクタ36dのインダクタンス値の関係は、L1<L4となっている。また、フィルタ14において、最も共通端子20側に配置された並列腕共振子34aに接続されたインダクタ36aと最も入出力端子24側に配置された並列腕共振子34dに接続されたインダクタ36dとによりフィルタ14の周波数帯域が形成されるため、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4は、インダクタ36bのインダクタンス値L2およびインダクタ36cのインダクタンス値L3よりも大きく設定されている。なお、インダクタ36a、36b、36cおよび36dのインダクタンス値L1、L2、L3およびL4は、上述した値に限らず、他の値であってもよい。
直列腕共振子32a、32b、32c、32dおよび32e、並列腕共振子34a、34b、34cおよび34dは、例えば弾性表面波フィルタで構成される共振子である。図2は、直列腕共振子32a、32b、32c、32dおよび32e、並列腕共振子34a、34b、34cおよび34dを構成する弾性表面波フィルタ100の構成を示す概略図である。図2において、(a)は平面図、(b)は(a)に示した一点鎖線における矢視断面図である。なお、直列腕共振子32a、32b、32c、32dおよび32eと並列腕共振子34a、34b、34cおよび34dとは同一の構成としているが、これに限らない。
図2の(a)および(b)に示すように、弾性表面波フィルタ100は、圧電基板106と、櫛形形状を有するIDT(InterDigital Transducer)電極101aおよび101bとで構成されている。
圧電基板106は、例えば、所定のカット角で切断されたLiNbO3の単結晶からなる。圧電基板106では、所定の方向に弾性表面波が伝搬する。
図2の(a)に示すように、圧電基板106の上には、対向する一対のIDT電極101aおよび101bが形成されている。IDT電極101aは、互いに平行な複数の電極指102aと、複数の電極指102aを接続するバスバー電極104aとで構成されている。また、IDT電極101bは、互いに平行な複数の電極指102bと、複数の電極指102bを接続するバスバー電極104bとで構成されている。IDT電極101aとIDT電極101bとは、IDT電極101aとIDT電極101bのうちの一方のIDT電極101aの複数の電極指102aのそれぞれの間に、他方のIDT電極101bの複数の電極指102bのそれぞれが配置される構成となっている。
また、IDT電極101aおよびIDT電極101bは、図2の(b)に示すように、密着層107と主電極層108とが積層された構造となっている。
密着層107は、圧電基板106と主電極層108との密着性を向上させるための層であり、材料としては、例えば、NiCrが用いられる。密着層17の膜厚は、例えば、10nmである。
主電極層108は、材料として、例えば、Ptが用いられる。主電極層108は、1つの層で構成された単層構造であり、膜厚は、例えば83nmである。なお、主電極層108は、複数の層が積層された積層構造であってもよい。
保護層109は、IDT電極101aおよび101bを覆うように形成されている。保護層109は、主電極層108を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。保護層109は、単層構造であってもよいし積層構造であってもよい。
なお、密着層107、主電極層108および保護層109を構成する材料は、上述した材料に限定されない。さらに、IDT電極101aおよび101bは、上記積層構造でなくてもよい。IDT電極101aおよび101bは、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属又は合金から構成されてもよく、また、上記の金属又は合金から構成される層が複数積層された積層構造で構成されてもよい。また、保護層109は、形成されていなくてもよい。
また、図2において、λはIDT電極101aおよび101bを構成する複数の電極指102aおよび102bの繰り返しピッチ、DはIDT電極101aおよび101bの交叉幅、Wは電極指102aおよび102bの幅、Sは電極指102aと電極指102bとの間の幅、hはIDT電極101aおよび101bの高さを示している。
なお、弾性表面波フィルタ100の構造は、図2の(a)および(b)に記載された構造に限定されない。例えば、IDT電極101aおよび101bは、金属膜の積層構造ではなく、金属膜の単層であってもよい。
フィルタ11、12および13は、ラダー型フィルタに限らず、その他の構成のフィルタであってもよい。
[2.マルチプレクサの高周波特性]
以下、マルチプレクサ1の高周波特性について説明する。
以下、マルチプレクサ1の高周波特性について説明する。
並列腕共振子のそれぞれとグランドとの間に接続されたインダクタのインダクタンス値を変化させたときの並列腕共振子のインピーダンス特性について説明する。図3は、ラダー型フィルタの並列腕共振子とグランドとの間に接続されたインダクタのインダクタンス値を変化させたときの、当該並列腕共振子のインピーダンスの変化を示す図である。
一般に、ラダー型フィルタにおいて並列腕共振子とグランドとの間に接続されたインダクタのインダクタンス値を0.5nH、1.0nH、2.0nH、4.0nHと変化させると、図3に示すように、インダクタンス値が高くなるにつれて並列腕共振子の共振点は低周波数側に移動し、かつ、インピーダンスZは劣化する。なお、図3において、Q値はQ=20で一定としている。したがって、ラダー型フィルタにおいて、並列腕共振子とグランドとの間に接続されるインダクタのインダクタンス値が高くなるほど、ラダー型フィルタ自体の通過特性は劣化する。また、共通端子においてラダー型フィルタと接続されている周波数帯域の低い他のフィルタへの信号の漏れ量が多くなるため、他のフィルタの特性も劣化すると考えらえる。
ここで、ラダー型フィルタにおいて共通端子に最も近い位置に配置された並列腕共振子に接続されたインダクタと、共通端子と反対側の入出力端子に最も近い位置に配置された並列腕共振子に接続されたインダクタは、ラダー型フィルタの周波数帯域を決定するのに大きく影響するインダクタである。これらのインダクタのインダクタ値を入れ替えても、ラダー型フィルタ自体の通過特性には影響しない。しかし、共通端子に最も近い位置に配置された並列腕共振子に接続されたインダクタは、ラダー型フィルタに接続された他のフィルタに近い位置に配置されているため、このインダクタのインダクタンス値が大きいと他のフィルタの通過特性に大きな影響を与えると考えられる。
そこで、本実施の形態にかかるマルチプレクサ1のフィルタ14の構成では、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL1<L4とすることで、フィルタ14の通過特性を劣化させることなく、かつ、他のフィルタ11、12および13の通過特性を向上することができる。
以下、マルチプレクサ1において、インダクタ36aのインダクタンス値L1とインダクタ36dとのインダクタンス値L4の関係をL4<L1としたときとL1<L4としたときの通過特性について示す。図4Aおよび図4Bは、マルチプレクサ1におけるフィルタ14の通過特性を示す図である。図5Aは、マルチプレクサ1におけるフィルタ13の通過特性を示す図である。図5Bは、マルチプレクサ1におけるフィルタ11の通過特性を示す図である。図5Cは、マルチプレクサ1におけるフィルタ12の通過特性を示す図である。
なお、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係がL4<L1の場合、インダクタ36a、36b、36cおよび36dのインダクタンス値を、それぞれL1=2.50nH、L2=1.45nH、L3=1.64nHおよびL4=2.00nHとしている。また、インダクタ36aのインダクタンス値L1とインダクタ36dとのインダクタンス値L4の関係がL1<L4の場合、インダクタ36a、36b、36cおよび36dのそれぞれのインダクタンス値L1、L2、L3およびL4を、それぞれL1=2.00nH、L2=1.45nH、L3=1.64nHおよびL4=2.50nHとしている。また、並列腕共振子34aと34dとは、並列腕共振子34aと34dを構成するIDT電極の交叉幅および対数を調整することで同一の容量としている。
また、図4A~図5Cでは、L4<L1の場合の通過特性を実線、L1<L4の場合の通過特性を破線で示している。
図4Aおよび図4Bに示すように、フィルタ14では、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL4<L1からL1<L4に変更しても、フィルタ14の通過帯域(2110-2170MHz)における通過特性はほとんど変化していないことがわかる。
また、図5Aに示すように、フィルタ13では、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL4<L1からL1<L4に変更すると、フィルタ13の通過帯域(1920-1980MHz)における挿入損失は小さくなり、通過特性は向上していることがわかる。
同様に、図5Bに示すように、フィルタ11では、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL4<L1からL1<L4に変更すると、フィルタ11の通過帯域(1710-1785MHz)における挿入損失は小さくなり、通過特性は向上している。また、図5Cに示すように、フィルタ12では、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL4<L1からL1<L4に変更すると、フィルタ12の通過帯域(1805-1880MHz)における挿入損失は小さくなり、通過特性は向上している。
このように、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL1<L4とすることにより、フィルタ14の通過特性を劣化させることなく、フィルタ11、12および13の通過特性を向上することができる。
ここで、インダクタ36aのインダクタンス値L1の一例を説明する。図6は、インダクタ36aのインダクタンス値L1に対する高周波時モジュールのロス劣化量の関係を示す図である。
図6では、Q値(共振の鋭さ)を無限大、40、20としたときの、インダクタ36aのインダクタンス値に対するロス劣化量を示している。図6に示すように、インダクタ36aのインダクタンス値L1を0から0.2nHずつ高くするにつれて、並列腕共振子34aにおけるロス劣化量は増加している。また、Q値が低いほどロス劣化量は増加していることがわかる。
ここで、測定のばらつき等を考慮すると、ロス劣化量は、例えば0.03dB以下であることが好ましい。ロス劣化量が0.03dB以下であれば、フィルタ14が他のフィルタ11、12および13の周波数帯域に対して与える影響を小さくすることができるためである。
図6によると、ロス劣化量が0.03dB以下となるインダクタ36aのインダクタンス値L1は、例えばQを20とした場合、L1≦1.8nHとなる。インダクタ36aはフィルタ14において最も共通端子20側に配置されたインダクタであるので、インダクタ36aのインダクタンス値L1は、他のフィルタ11、12および13に対して大きく影響を与える。したがって、他のフィルタ11、12および13に与える影響が最も大きいインダクタ36aのインダクタンス値L1をL1≦1.8nHとであることが好ましい。これにより、フィルタ14のロス劣化量を、他のフィルタ11、12および13の周波数帯域に与える影響の小さい0.03dB以下とすることができる。
なお、一般に使用されるインダクタのQ値は、20~40である。図6によると、Q値が20~40の場合、共通端子20側のインダクタ36aのインダクタンス値L1がL1≦1.8nHであれば、ロス劣化量は、少なくとも0.03dB以下となることがわかる。
また、インダクタ36aは、ラダー型フィルタであるフィルタ14の最も共通端子20側に配置された並列腕共振子34aに接続されているので、ラダー型フィルタであれば、フィルタ14は、直列腕共振子および並列腕共振子の数および配置を変更したものであってもよい。この場合でも、最も共通端子20側に配置された並列腕共振子34aに接続されたインダクタ36aのインダクタンス値L1をL1≦1.8nHとすることにより、フィルタ14が、フィルタ11、12および13の周波数帯域に対して与える影響を小さくすることができる。
[3.効果等]
本実施の形態にかかるマルチプレクサ1によると、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL1<L4とすることにより、フィルタ14の通過特性を変更することなく、フィルタ14と共通端子20において接続された他のフィルタ11、12および13のうち、フィルタ14よりも低い周波数帯域に対応したフィルタの通過特性を向上することができる。
本実施の形態にかかるマルチプレクサ1によると、インダクタ36aのインダクタンス値L1とインダクタ36dのインダクタンス値L4の関係をL1<L4とすることにより、フィルタ14の通過特性を変更することなく、フィルタ14と共通端子20において接続された他のフィルタ11、12および13のうち、フィルタ14よりも低い周波数帯域に対応したフィルタの通過特性を向上することができる。
また、フィルタ14がマルチプレクサ1に配置された複数のフィルタ11、12、13および14の中で最も高い周波数帯域に対応したフィルタである場合には、フィルタ14よりも低い周波数帯域に対応した他の全てのフィルタ11、12および13の通過特性を向上することができる。
また、インダクタ36aのインダクタンス値L1を1.8nH以下とすることにより、フィルタ14のロス劣化量を0.03dB以下とすることができる。これにより、フィルタ14が他のフィルタ11、12および13の周波数帯域に対して与える影響を小さくし、フィルタ11、12および13の通過特性を向上することができる。
なお、上述した実施の形態では、マルチプレクサ1におけるフィルタ14は、Band1の受信帯域(2110-2170MHz)を通過帯域とする受信フィルタとしたが、これに限らない。フィルタ14は、マルチプレクサ1を構成する複数のフィルタのうち最も低い周波数帯域に対応するフィルタでなければ、他の周波数帯域を受信帯域とする受信フィルタであってもよい。また、フィルタ14は、受信フィルタに限らず、送信フィルタであってもよいし、送受信のいずれも行うことができる送受信フィルタであってもよい。
また、上述した実施の形態では、ラダー型フィルタであるフィルタ14は、5つの直列腕共振子32a、32b、32c、32および32eと4つの並列腕共振子34a、34b、34cおよび34dとを接続した構成としたが、これに限らず、直列腕共振子および並列腕共振子の個数は適宜変更してもよい。フィルタ14は、直列腕共振子を少なくとも1つ、並列腕共振子を複数(2つ以上)備える構成であればよい。
また、フィルタ14において、共通端子20に最も近い位置には直列腕共振子が配置されていてもよいし、並列腕共振子が配置されていてもよい。また、共通端子20と反対側の入出力端子24に最も近い位置には直列腕共振子が配置されていてもよいし、並列腕共振子が配置されていてもよい。
(変形例)
以下、実施の形態の変形例について説明する。本変形例にかかるマルチプレクサ1aが実施の形態に係るマルチプレクサ1と異なる点は、フィルタ14aにおいて最も共通端子20側に配置された並列腕共振子34aが、グランドに直接接続されている点である。
以下、実施の形態の変形例について説明する。本変形例にかかるマルチプレクサ1aが実施の形態に係るマルチプレクサ1と異なる点は、フィルタ14aにおいて最も共通端子20側に配置された並列腕共振子34aが、グランドに直接接続されている点である。
図7は、本変形例にかかるマルチプレクサ1aの構成を示す概念図である。図7に示すように、マルチプレクサ1aは、フィルタ11、12、13および14aを備えている。フィルタ11、12および13の構成は、実施の形態1に示したマルチプレクサ1におけるフィルタ11、12および13の構成と同様であるため詳細な説明は省略する。
フィルタ14aは、ラダー型フィルタであり、最も入出力端子24側に配置された並列腕共振子34dとグランドとの間には、インダクタ36dが接続されている。また、最も共通端子20側に配置された並列腕共振子34aは、グランドに直接接続されている。つまり、上述した実施の形態に示したマルチプレクサ1と比較して、並列腕共振子34aとグランドとの間に、実施の形態に示したインダクタ36aが接続されていない構成となっている。
この構成の場合、並列腕共振子34aとグランドとの間にインダクタンス値が0のインダクタ36aが配置されていると考えることができる。したがって、入出力端子24に最も近い位置に配置されている並列腕共振子34dとグランドとの間に接続されたインダクタ36dのインダクタンス値L4は、並列腕共振子34aとグランドとの間のインダクタンス値(上述した実施の形態におけるインダクタンス値L1)よりも大きい値である。よって、マルチプレクサ1aは、上述した実施の形態に示したマルチプレクサ1と同様、L1<L4を満たす構成であると考えることができる。
このように、マルチプレクサ1aは、並列腕共振子34aとグランドとが直接接続され、並列腕共振子34aとグランドとの間にインダクタを備えない構成であっても、フィルタ14aの通過特性を劣化させることなく、フィルタ11、12および13の通過特性を向上することができる。
(その他の実施の形態)
なお、本発明は、上述した実施の形態に記載した構成に限定されるものではなく、例えば以下に示す変形例のように、適宜変更を加えてもよい。
なお、本発明は、上述した実施の形態に記載した構成に限定されるものではなく、例えば以下に示す変形例のように、適宜変更を加えてもよい。
例えば、上述した実施の形態では、上述した実施の形態では、マルチプレクサ1におけるフィルタ14は、Band1の受信帯域(2110-2170MHz)を通過帯域とする受信フィルタとしたが、これに限らない。フィルタ14は、マルチプレクサ1を構成する複数のフィルタのうち、最も低い周波数帯域に対応するフィルタでなければ、他の周波数帯域を受信帯域とする受信フィルタであってもよい。また、フィルタ14は、受信フィルタに限らず、送信フィルタであってもよいし、送受信のいずれも行うことができる送受信フィルタであってもよい。
また、上述した実施の形態では、ラダー型フィルタであるフィルタ14は、5つの直列腕共振子32a、32b、32c、32および32eと4つの並列腕共振子34a、34b、34cおよび34dとを接続した構成としたが、これに限らず、直列腕共振子および並列腕共振子の個数は適宜変更してもよい。フィルタ14は、直列腕共振子を少なくとも1つ、並列腕共振子を複数(2つ以上)備える構成であればよい。
また、フィルタ14において、共通端子20に最も近い位置には直列腕共振子が配置されていてもよいし、並列腕共振子が配置されていてもよい。また、共通端子20と反対側の入出力端子24に最も近い位置には直列腕共振子が配置されていてもよいし、並列腕共振子が配置されていてもよい。
その他、上述の実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で上述の実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
本発明は、複数のフィルタを備えたマルチプレクサ(デュプレクサを含む)、マルチフィルタ、送信装置、受信装置等の通信機器等に利用することができる。
1、1a マルチプレクサ
11、12 フィルタ
13 フィルタ(第1のフィルタ)
14 フィルタ(第2のフィルタ)
20 共通端子
21、22、23、24 入出力端子
32a、32b、32c、32d、32e 直列腕共振子
34a 並列腕共振子(第2の並列腕共振子)
34b、34c 並列腕共振子
34d 並列腕共振子(第1の並列腕共振子)
36a インダクタ(第2のインダクタ)
36b、36c インダクタ
36d インダクタ(第1のインダクタ)
100 弾性表面波フィルタ
101a、101b IDT電極
102a、102b 電極指
104a、104b バスバー電極
106 圧電基板
107 密着層
108 主電極層
109 保護層
11、12 フィルタ
13 フィルタ(第1のフィルタ)
14 フィルタ(第2のフィルタ)
20 共通端子
21、22、23、24 入出力端子
32a、32b、32c、32d、32e 直列腕共振子
34a 並列腕共振子(第2の並列腕共振子)
34b、34c 並列腕共振子
34d 並列腕共振子(第1の並列腕共振子)
36a インダクタ(第2のインダクタ)
36b、36c インダクタ
36d インダクタ(第1のインダクタ)
100 弾性表面波フィルタ
101a、101b IDT電極
102a、102b 電極指
104a、104b バスバー電極
106 圧電基板
107 密着層
108 主電極層
109 保護層
Claims (6)
- 高周波信号を通過させる第1のフィルタと、
前記第1のフィルタよりも高い周波数帯域の高周波信号を通過させるラダー型フィルタからなる第2のフィルタとを備え、
前記第2のフィルタは、
前記第1のフィルタと前記第2のフィルタとが接続された共通端子と、前記共通端子と反対側の入出力端子との間に直列に接続された少なくとも1つの直列腕共振子と、
前記直列腕共振子が接続されたノードとグランドとの間に接続された複数の並列腕共振子とを有し、
前記複数の並列腕共振子のうち最も前記共通端子から遠い側に配置された第1の並列腕共振子と、最も前記共通端子側に配置された第2の並列腕共振子とのうち、前記第1の並列腕共振子とグランドとの間に、前記第2の並列腕共振子とグランドとの間のインダクタンス値よりインダクタンス値が大きい第1のインダクタが接続されている、
マルチプレクサ。 - 前記第2の並列腕共振子とグランドとの間に、前記第1のインダクタのインダクタンス値よりもインダクタンス値が小さい第2のインダクタが接続されている、
請求項1に記載のマルチプレクサ。 - 前記第2の並列腕共振子とグランドとの間に、インダクタが接続されていない、
請求項1に記載のマルチプレクサ。 - 通過させる高周波信号の周波数帯域が前記第1のフィルタおよび前記第2のフィルタと異なる、少なくとも1つの他のフィルタをさらに備える、
請求項1~3のいずれか1項に記載のマルチプレクサ。 - 前記第2のフィルタは、前記マルチプレクサに設けられた複数のフィルタのうち、最も高い周波数帯域の高周波信号を通過させるフィルタである、
請求項1~4のいずれか1項に記載のマルチプレクサ。 - 前記第2のインダクタのインダクタンス値は、1.8nH以下である、
請求項1~5のいずれか1項に記載のマルチプレクサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201790001476.4U CN209823720U (zh) | 2016-12-28 | 2017-12-11 | 多工器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-256200 | 2016-12-28 | ||
JP2016256200 | 2016-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123545A1 true WO2018123545A1 (ja) | 2018-07-05 |
Family
ID=62710883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044421 WO2018123545A1 (ja) | 2016-12-28 | 2017-12-11 | マルチプレクサ |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN209823720U (ja) |
WO (1) | WO2018123545A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112290906A (zh) * | 2019-07-22 | 2021-01-29 | 株式会社村田制作所 | 滤波器及多工器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192974A (ja) * | 2009-02-16 | 2010-09-02 | Ube Ind Ltd | 分波器 |
WO2014045726A1 (ja) * | 2012-09-19 | 2014-03-27 | 株式会社村田製作所 | フィルタ装置 |
WO2016015914A1 (de) * | 2014-07-31 | 2016-02-04 | Epcos Ag | Duplexer mit verbesserter reflektivität |
-
2017
- 2017-12-11 WO PCT/JP2017/044421 patent/WO2018123545A1/ja active Application Filing
- 2017-12-11 CN CN201790001476.4U patent/CN209823720U/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010192974A (ja) * | 2009-02-16 | 2010-09-02 | Ube Ind Ltd | 分波器 |
WO2014045726A1 (ja) * | 2012-09-19 | 2014-03-27 | 株式会社村田製作所 | フィルタ装置 |
WO2016015914A1 (de) * | 2014-07-31 | 2016-02-04 | Epcos Ag | Duplexer mit verbesserter reflektivität |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112290906A (zh) * | 2019-07-22 | 2021-01-29 | 株式会社村田制作所 | 滤波器及多工器 |
Also Published As
Publication number | Publication date |
---|---|
CN209823720U (zh) | 2019-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102166218B1 (ko) | 필터 | |
US11496116B2 (en) | Acoustic wave filter device, multiplexer and composite filter device | |
WO2019117133A1 (ja) | マルチプレクサ、高周波フロントエンド回路および通信装置 | |
WO2018003297A1 (ja) | マルチプレクサ、高周波フロントエンド回路及び通信装置 | |
KR102249183B1 (ko) | 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치 | |
WO2016111262A1 (ja) | 複合フィルタ装置 | |
WO2019111902A1 (ja) | マルチプレクサ、高周波フロントエンド回路および通信装置 | |
US10511283B2 (en) | Surface acoustic wave filter, high frequency module, and multiplexer | |
CN107547064B (zh) | 声表面波滤波器、双工器及多工器 | |
CN111164891B (zh) | 多工器、高频前端电路以及通信装置 | |
CN211830723U (zh) | 弹性波滤波器装置以及复合滤波器装置 | |
JP7103420B2 (ja) | フィルタ装置およびマルチプレクサ | |
US20200295735A1 (en) | Filter device and multiplexer | |
WO2018123545A1 (ja) | マルチプレクサ | |
WO2018142812A1 (ja) | 弾性波装置、デュプレクサ及びフィルタ装置 | |
US11245384B2 (en) | Multiplexer, radio-frequency front end circuit, and communication device | |
US10790803B2 (en) | Radio-frequency module, multiplexer, and multi-filter | |
CN111183584B (zh) | 多工器、高频前端电路以及通信装置 | |
US11271545B2 (en) | Multiplexer, radio-frequency front end circuit, and communication device | |
WO2022059643A1 (ja) | 弾性波フィルタ | |
CN116210155A (zh) | 多工器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17887898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |