+

WO2018142812A1 - 弾性波装置、デュプレクサ及びフィルタ装置 - Google Patents

弾性波装置、デュプレクサ及びフィルタ装置 Download PDF

Info

Publication number
WO2018142812A1
WO2018142812A1 PCT/JP2017/046447 JP2017046447W WO2018142812A1 WO 2018142812 A1 WO2018142812 A1 WO 2018142812A1 JP 2017046447 W JP2017046447 W JP 2017046447W WO 2018142812 A1 WO2018142812 A1 WO 2018142812A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
resonators
electrode
wave device
film
Prior art date
Application number
PCT/JP2017/046447
Other languages
English (en)
French (fr)
Inventor
潤平 安田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201790001548.5U priority Critical patent/CN210201798U/zh
Publication of WO2018142812A1 publication Critical patent/WO2018142812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device in which a plurality of resonators having IDT electrodes are formed on the same plane of a piezoelectric substrate, a duplexer having the elastic wave device, and a filter device.
  • duplexers using elastic waves have been widely used in smartphones and mobile phones.
  • a duplexer using an elastic wave is a nonlinear device. Accordingly, there is a problem that intermodulation distortion (IMD) is likely to occur.
  • IMD intermodulation distortion
  • the series arm resonator or parallel arm resonator closest to the antenna terminal is divided without changing the capacitance. Thereby, the area of the series arm resonator or the parallel arm resonator is increased, and the power consumption per unit area is reduced. Therefore, the occurrence of IMD is suppressed.
  • An object of the present invention is to provide an elastic wave device that can suppress the occurrence of IMD and can be miniaturized. Another object of the present invention is to provide a duplexer and a filter device having the elastic wave device of the present invention.
  • An acoustic wave device is provided on a piezoelectric substrate, the piezoelectric substrate, an antenna terminal connected to an antenna, and the piezoelectric substrate.
  • a signal terminal for inputting / outputting a signal and a plurality of resonators formed on the piezoelectric substrate, each of the plurality of resonators having an IDT electrode,
  • Each IDT electrode has an electrode film, and the electrode film is a metal film made of a single metal or a single alloy or a laminated metal film made by laminating a plurality of metal films, and the plurality of resonators are: A resonator connected between the antenna terminal and the signal terminal, and the thickness of the electrode film of the IDT electrode of the resonator closest to the antenna terminal among the plurality of resonators; The IDT of all the resonators Of the thickness of the pole of the electrode film, thinnest.
  • An acoustic wave device is provided on a piezoelectric substrate, the piezoelectric substrate, an antenna terminal connected to an antenna, and the piezoelectric substrate.
  • a signal terminal for inputting / outputting a signal and a plurality of resonators formed on the piezoelectric substrate, each of the plurality of resonators having an IDT electrode,
  • Each IDT electrode has an electrode film, and the electrode film is a metal film made of a single metal or a single alloy or a laminated metal film made by laminating a plurality of metal films, and the plurality of resonators are:
  • the resonator has a resonator connected between the antenna terminal and the signal terminal, and the weight per unit area of the IDT electrode of the resonator closest to the antenna terminal is the IDT in all the resonators. Electrode unit area The lightest in weight of.
  • the film thickness of the densest metal film in the electrode film constituting the IDT electrode of the resonator closest to the antenna terminal is It is thinner than the film thickness of the densest metal film in the electrode film of the IDT electrode of the resonator.
  • a dimension along the elastic wave propagation direction of the resonator closest to the antenna terminal is a dimension along the elastic wave propagation direction of all the resonators. Not the maximum. In this case, further downsizing can be achieved.
  • a resonator having a maximum dimension along the elastic wave propagation direction among the plurality of resonators is a longitudinally coupled resonator type elastic wave filter.
  • the acoustic wave device having the longitudinally coupled resonator type acoustic wave filter can be further miniaturized.
  • the metal film having the highest density is a kind selected from the group consisting of Pt, Mo, and W.
  • the plurality of resonators are provided in a series arm resonator connected to the series arm connecting the antenna terminal and the signal terminal, and the series A parallel arm resonator provided on the parallel arm connecting the arm and the ground potential;
  • the acoustic wave device having the series arm resonator and the parallel arm resonator may be a ladder filter.
  • a longitudinally coupled resonator-type acoustic wave filter provided with a series arm in which the plurality of resonators connect the antenna terminal and the signal terminal.
  • the duplexer according to the present invention includes a first band-pass filter and a second band-pass filter that is commonly connected to the antenna terminal and has a different pass band from the first band-pass filter, At least one of the first band-pass filter and the second band-pass filter has an acoustic wave device configured according to the present invention.
  • a filter device includes a first band-pass filter composed of an acoustic wave device configured according to the present invention and at least one antenna terminal commonly connected to the antenna terminal of the first band-pass filter.
  • a band-pass filter composed of an acoustic wave device configured according to the present invention and at least one antenna terminal commonly connected to the antenna terminal of the first band-pass filter.
  • the elastic wave device duplexer, and filter device according to the present invention, it is possible to reduce the size while suppressing the occurrence of IMD.
  • FIG. 1 is a plan view showing an electrode structure of an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing the electrode structure of the series arm resonator closest to the antenna terminal used in the first embodiment of the present invention.
  • FIG. 4 is a partial front sectional view for explaining a laminated structure in the electrode finger of the IDT electrode of the series arm resonator used in the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a filter device in which the acoustic wave device according to the first embodiment of the present invention is used.
  • FIG. 1 is a plan view showing an electrode structure of an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing
  • FIG. 6 is a diagram showing IMD characteristics when the total thickness of the IDT electrode is 600 nm, 490 nm, or 348 nm in the series arm resonator closest to the antenna terminal.
  • FIG. 7 is a diagram illustrating IMD characteristics when the normalized weight of the IDT electrode of the acoustic wave resonator closest to the antenna terminal is 1.00 or 0.90.
  • FIG. 8 is a circuit diagram of an elastic wave device according to a third embodiment of the present invention.
  • FIG. 9 is a plan view showing an electrode structure of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 10 is a circuit diagram of an acoustic wave device according to a fourth embodiment of the present invention.
  • FIG. 11 is a circuit diagram for explaining a duplexer as a fifth embodiment of the present invention.
  • FIG. 1 is a plan view showing an electrode structure of an acoustic wave device according to the first embodiment of the present invention
  • FIG. 2 is a circuit diagram of the acoustic wave device according to the first embodiment of the present invention.
  • the elastic wave device 1 is a Band 5 reception filter.
  • the acoustic wave device 1 includes a substrate 2 having piezoelectricity.
  • the substrate 2 having piezoelectricity is made of LiTaO 3 .
  • the substrate 2 having piezoelectricity may be made of another piezoelectric single crystal such as LiNbO 3 .
  • the substrate 2 having piezoelectricity may have a structure in which a piezoelectric single crystal film is stacked on a support substrate.
  • piezoelectric ceramics may be used instead of the piezoelectric single crystal.
  • An antenna terminal 3, a receiving terminal 4 as a signal terminal, and ground terminals 5 to 8 connected to a ground potential are provided on a substrate 2 having piezoelectricity.
  • a type resonator 9 is connected in series with each other.
  • a parallel arm resonator P1 is connected between the connection point between the series arm resonators S1 and S2 and the ground potential.
  • a parallel arm resonator P2 is connected between a connection point between the series arm resonator S2 and the longitudinally coupled resonator 9 and the ground potential.
  • the acoustic wave device 1 includes series arm resonators S1 and S2, a longitudinally coupled resonator 9 and parallel arm resonators P1 and P2 as a plurality of resonators provided on a substrate 2 having piezoelectricity. .
  • FIG. 3 is a plan view showing an electrode structure of the 1-port elastic wave resonator 11 as the series arm resonator S1.
  • reflectors 13 and 14 are provided on both sides of the IDT electrode 12 in the elastic wave propagation direction.
  • the IDT electrode 12 includes a plurality of first electrode fingers 12a and a plurality of second electrode fingers 12b that are interleaved with each other.
  • the electrode materials for forming the antenna terminal 3, the receiving terminal 4, the ground terminals 5 to 8, the series arm resonators S1 and S2, the longitudinally coupled resonator 9 and the parallel arm resonators P1 and P2 are not particularly limited.
  • a metal such as Pt, Mo, W, Al, Cu, Au, or Ti, or an alloy mainly composed of these metals such as AlCu or NiCr is used.
  • the IDT electrode has an electrode film, and the electrode film may be a metal film made of a single metal or a single alloy, and is a laminated metal film in which a plurality of metal films are laminated. There may be.
  • the electrode film of the IDT electrode 12 of the series arm resonator S1 is a laminated metal film formed by laminating a plurality of metal films.
  • FIG. 4 is a partial front sectional view for explaining the laminated structure of the IDT electrode 12 in the 1-port elastic wave resonator as the series arm resonator S1. Here, a portion including a cross section of one electrode finger of the IDT electrode 12 is illustrated.
  • a Pt film 12c, a Ti film 12d, an Al film 12e, and a Ti film 12f are laminated in this order from the piezoelectric substrate 2 side.
  • the electrode structure is schematically shown.
  • the first dielectric film 16 is laminated so as to cover the electrode structure.
  • the first dielectric film 16 is made of SiO 2.
  • a dielectric film having a positive frequency temperature coefficient such as a SiO 2 film
  • the frequency temperature characteristic can be improved.
  • a second dielectric film 17 made of Si is laminated on the first dielectric film 16.
  • the second dielectric film 17 is provided as a protective film or a frequency adjustment film.
  • the first and second dielectric films 16 and 17 may not be provided.
  • FIG. 5 is a circuit diagram of a filter device in which the acoustic wave device 1 is used.
  • the antenna terminal 3 of the acoustic wave device 1 is connected to the antenna 18.
  • An amplifier 19 is connected to the subsequent stage of the reception terminal 4.
  • the characteristic of the acoustic wave device 1 is that the thickness of the electrode film of the IDT electrode of the series arm resonator S1, which is the resonator closest to the antenna terminal 3 among all the resonators, that is, the thickness of the laminated metal film is that of all the resonators.
  • the thickness of the electrode film of the IDT electrode, that is, the laminated metal film is the thinnest. Thereby, generation of IMD can be suppressed and downsizing can be achieved.
  • the elastic wave device according to the second embodiment of the present invention has the same structure as the elastic wave device 1 of the first embodiment.
  • the thickness of the electrode film of the IDT electrode of the resonator closest to the antenna terminal that is, the thickness of the laminated metal film is not particularly limited.
  • the weight per unit area of the IDT electrode of the series arm resonator that is the resonator closest to the antenna terminal is the largest among the weights per unit area of the IDT electrode in all the resonators. It is light.
  • the second embodiment is the same as the first embodiment.
  • the weight per unit area of the IDT electrode of the series arm resonator closest to the antenna terminal is the lightest among the weights per unit area of the IDT electrodes of all the resonators.
  • the characteristic configuration of the first embodiment that is, the electrode film of the IDT electrode of the series arm resonator closest to the antenna terminal, that is, the thickness of the laminated metal film, is the electrode film of the IDT electrode of all the resonators.
  • the thinnest configuration may be further provided, and in that case, the occurrence of IMD can be more effectively suppressed.
  • FIG. 6 shows the IMD characteristics of Band 5, that is, the IMD characteristics in the 2Tx-Rx band when the total thickness of the IDT electrodes of the series arm resonator closest to the antenna terminal is 600 nm, 490 nm, or 348 nm in the acoustic wave device.
  • FIG. 6 The design parameters of the resonator A, the resonator B, and the resonator C in FIG. 6 are as shown in Table 1 below.
  • the film thickness of the IDT electrode in the resonator A, the resonator B, and the resonator C is as follows. As shown in Table 2.
  • ⁇ in Table 1 is a wavelength determined by the electrode finger pitch of the IDT electrode.
  • the logarithm is the logarithm of electrode fingers in the IDT electrode
  • the duty is the duty of the IDT electrode.
  • any of the resonators A to C a Pt film, a Ti film, an Al film, and a Ti film are laminated in this order from the piezoelectric substrate side.
  • the thicknesses of the Ti film, Al film, and Ti film were all the same.
  • the thickness of the Pt film was changed, and the total thickness of the IDT electrode was 600 nm, 490 nm, or 348 nm. Therefore, when the weight of the IDT electrode is normalized with respect to the resonator A, in the resonator B, the normalized weight of the IDT electrode is 0.70, and the normalized weight of the IDT electrode of the resonator C is 0. 32.
  • the areas of the IDT electrodes of the resonator A, the resonator B, and the resonator C are equal.
  • the weight per unit area of the IDT electrodes of the resonator A, the resonator B, and the resonator C is the above-described normalized weight. expressed. Therefore, it is the resonator C among the resonator A, the resonator B, and the resonator C that has the IDT electrode having the lightest weight per unit area.
  • the IMD is higher than the resonator A and the resonator B. It can be seen that the characteristics can be improved.
  • the resonator that is electrically closest to the antenna terminal has the greatest influence on the IMD characteristics.
  • the thickness of the laminated metal film of the IDT electrode of the series arm resonator S1 which is the resonator closest to the antenna terminal, is the IDT electrode of all the resonators.
  • the thickness of the laminated metal film is the thinnest. Therefore, the occurrence of IMD can be effectively suppressed.
  • the occurrence of IMD is suppressed by devising the thickness of the laminated metal film of the IDT electrode of the series arm resonator.
  • the duplexer described in Patent Document 1 uses a structure in which the series arm resonator or the parallel arm resonator closest to the antenna terminal is divided without changing the capacitance. Therefore, the area of the series arm resonator or the parallel arm resonator closest to the antenna terminal is increased, and it is difficult to reduce the size.
  • the occurrence of IMD is suppressed by adjusting the thickness of the electrode film of the IDT electrode of the series arm resonator. Therefore, an increase in size of the series arm resonator closest to the antenna terminal 3 can be avoided, and the elastic wave device 1 can be reduced in size.
  • the thickness of the Pt film which is the thickness of the metal film having the highest density is the thickness of the other resonator. It is desirable that the thickness of the electrode film in the IDT electrode, that is, the thickness of the Pt film which is the metal film having the highest density among the laminated metal films. Thereby, generation of IMD in the series arm resonator S1 can be further effectively suppressed.
  • all the resonators have a laminated metal film in which the same kind of metal film is laminated in the same order. More specifically, all the other metal films have the same thickness except for the metal film having the highest density.
  • the laminated structure of the laminated metal films in all the resonators is the same except for the thickness of the metal film having the highest density.
  • the laminated structure is not limited to this. That is, if the thickness of the laminated metal film on the IDT electrode in the resonator closest to the antenna terminal is the smallest among the thicknesses of the laminated metal films on the IDT electrodes of all the resonators, the generation of IMD is effective as described above. Can be suppressed.
  • the film thickness of the metal film having the highest density is the electrode film in the IDT electrode of the other resonator, ie, the laminated metal It is preferable that the thickness is smaller than the thickness of the metal film having the highest density in the film.
  • the metal film with the highest density in the resonator closest to the antenna terminal and the metal film with the highest density in other resonators may be made of different metals.
  • the IMD characteristics can be improved by reducing the thickness of the electrode film constituting the IDT electrode or by reducing the weight per unit area to the minimum. The reason why it can be done is not clear.
  • the inventor of the present application has experimentally confirmed that if the thickness of the electrode film of the resonator closest to the antenna terminal is the thinnest or the weight per unit area is the lightest, the IMD characteristics can be improved. It is a headline.
  • FIG. 7 is a diagram showing the IMD characteristics of the Band 5 2Tx-Rx band of the resonator D and the resonator E shown in Table 4 below as the series arm resonator S1.
  • is a wavelength determined by the electrode finger pitch of the IDT electrode.
  • the electrode film a laminated metal film formed by laminating an Al film with a thickness of 372 nm on a Ti film with a thickness of 10 nm was used as the electrode film.
  • the weight of the IDT electrode in the resonator D is 1.00
  • the normalized weight of the IDT electrode of the resonator E is 0.90. Therefore, the weight per unit area of the IDT electrode is lighter in the resonator E than in the resonator D.
  • Table 5 below shows the IMD (dBm) of the resonator D and the resonator E at 869 MHz, 881.5 MHz, and 894 MHz shown in FIG.
  • the resonator E can effectively suppress the occurrence of IMD as compared with the resonator D.
  • FIG. 8 is a circuit diagram of an acoustic wave device according to a third embodiment of the present invention.
  • series arm resonators S ⁇ b> 11 and S ⁇ b> 12 are arranged on a series arm connecting the antenna terminal 3 and the receiving terminal 4 as a signal terminal.
  • a parallel arm resonator P11 is connected between the antenna terminal 3 and the ground potential.
  • a parallel arm resonator P12 is connected between the connection point between the series arm resonators S11 and S12 and the ground potential.
  • the resonator closest to the antenna terminal 3 is the parallel arm resonator P11.
  • the resonator closest to the antenna terminal 3 may be the parallel arm resonator P11 instead of the series arm resonator S11.
  • the thickness of the electrode film of the IDT electrode of the parallel arm resonator P11 closest to the antenna terminal 3 is the remaining thickness. What is necessary is just to be thinner than the thickness of the electrode film which comprises the IDT electrode of series arm resonator S11, S12 and parallel arm resonator P12.
  • the weight per unit area of the IDT electrode of the parallel arm resonator P11 closest to the antenna terminal 3 is the lightest weight per unit area of the IDT electrode in all the resonators. Also good.
  • the IMD characteristics can be improved and the size can be reduced.
  • the remaining parallel arm resonators other than the parallel arm resonator P11 closest to the antenna terminal 3 may be There may be one.
  • FIG. 9 is a plan view showing the electrode structure of the elastic wave device of the fourth embodiment
  • FIG. 10 is a circuit diagram of the elastic wave device of the fourth embodiment.
  • a series arm resonator S3 is provided in place of the longitudinally coupled resonator 9 in the first embodiment. That is, a plurality of series arm resonators S1, S2, and S3 are connected in series with each other in a series arm that connects the antenna terminal 3 and the reception terminal 4 as a signal terminal.
  • the acoustic wave device 31 includes series arm resonators S1, S2, S3 and parallel arm resonators P1, P2 as a plurality of resonators. Thereby, a ladder type filter is configured.
  • the thickness of the electrode film of the IDT electrode of the series arm resonator S1 closest to the antenna terminal 3 constitutes the IDT electrodes of the remaining series arm resonators S2 and S3. What is necessary is just to be thinner than the thickness of an electrode film.
  • the weight per unit area of the IDT electrode of the series arm resonator S1 closest to the antenna terminal 3 is the lightest weight per unit area of the IDT electrode in all the resonators. Also good. As a result, like the first and second embodiments, the IMD characteristics can be improved and the size can be reduced.
  • FIG. 11 is a circuit diagram for explaining a duplexer as a fifth embodiment of the present invention.
  • the duplexer 41 has a common terminal 43 connected to the antenna 42.
  • the elastic wave device 1 according to the first embodiment is connected to the common terminal 43 as a first band-pass filter. That is, the antenna terminal 3 is connected to the common terminal 43.
  • a second band pass filter 44 is also connected to the common terminal 43.
  • the second band pass filter 44 is a transmission filter having a transmission terminal 45 and an output terminal 46.
  • the output terminal 46 is connected to the common terminal 43.
  • the duplexer 41 includes the reception filter that is the first band-pass filter including the elastic wave device 1 and the transmission filter that is the second band-pass filter 44.
  • the reception filter that is the first band-pass filter is configured by the elastic wave device 1 that is the embodiment of the present invention.
  • the second bandpass filter may be configured by the elastic wave device according to the present invention, and the first and second bandpass filters. Both mold filters may consist of an acoustic wave device constructed in accordance with the present invention.
  • the common terminal 51 in common. May be.
  • a bundling filter device suitable for carrier aggregation (CA) can be configured.
  • CA carrier aggregation
  • the common terminal 51 only needs to be connected in common to the acoustic wave device 1 and at least one band-pass filter having a different pass band.
  • the embodiment of the reception filter has been described.
  • the acoustic wave device according to the present invention may be applied to a transmission filter. That is, also in the transmission filter, the resonator that is closest to the antenna terminal has the most influence on the IMD characteristics. Therefore, the present invention can also be applied to a transmission filter having a plurality of series arm resonators in the series arm.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

IMDの発生を抑制することができ、かつ小型化を図り得る、弾性波装置を提供することにある。 圧電性を有する基板2上に、アンテナ端子3と、信号端子と、複数の共振子S1,S2,P1,P2とが設けられており、アンテナ端子3に最も近い共振子S1のIDT電極の電極膜の厚みが、全ての共振子のIDT電極の電極膜の厚みのうち最も薄く、またはアンテナ端子3に最も近い共振子S1のIDT電極の単位面積あたりの重さが、全ての共振子におけるIDT電極の単位面積あたりの重さの中で最も軽い、弾性波装置1。

Description

弾性波装置、デュプレクサ及びフィルタ装置
 本発明は、圧電性を有する基板の同一平面上にIDT電極を有する複数の共振子が構成されている弾性波装置、該弾性波装置を有するデュプレクサ及びフィルタ装置に関する。
 従来、スマートフォンや携帯電話機などにおいて、弾性波を利用したデュプレクサなどが広く用いられている。弾性波を利用したデュプレクサは、非線形デバイスである。従って、相互変調歪み(IMD:Inter Moduration Distortion)が発生しやすいという問題があった。
 下記の特許文献1に記載の弾性波フィルタを有するデュプレクサでは、アンテナ端子に最も近い直列腕共振子または並列腕共振子が、静電容量を変えることなく分割されている。それによって、直列腕共振子または並列腕共振子の面積を大きくし、単位面積あたりの消費電力を低めている。そのため、IMDの発生が抑制されている。
特開2007-74698号公報
 しかしながら、特許文献1に記載のように、直列腕共振子や並列腕共振子を分割すると、直列腕共振子や並列腕共振子が大面積となる。従って、小型化が困難になるという問題があった。
 本発明の目的は、IMDの発生を抑制することができ、かつ小型化を図り得る、弾性波装置を提供することにある。本発明の他の目的は、本発明の弾性波装置を有するデュプレクサ及びフィルタ装置を提供することにある。
 本願の第1の発明に係る弾性波装置は、圧電性を有する基板と、前記圧電性を有する基板上に設けられており、アンテナに接続されるアンテナ端子と、前記圧電性を有する基板上に設けられており、信号が入出力される信号端子と、前記圧電性を有する基板上に構成されている複数の共振子とを備え、前記複数の共振子が、それぞれ、IDT電極を有し、前記各IDT電極が電極膜を有し、前記電極膜が、単一金属もしくは単一合金からなる金属膜または複数の金属膜を積層してなる積層金属膜であり、前記複数の共振子が、前記アンテナ端子と前記信号端子との間に接続されている共振子を有し、前記複数の共振子のうち、前記アンテナ端子に最も近い前記共振子の前記IDT電極の前記電極膜の厚みが、全ての前記共振子の前記IDT電極の前記電極膜の厚みのうち、最も薄い。
 本願の第2の発明に係る弾性波装置は、圧電性を有する基板と、前記圧電性を有する基板上に設けられており、アンテナに接続されるアンテナ端子と、前記圧電性を有する基板上に設けられており、信号が入出力される信号端子と、前記圧電性を有する基板上に構成されている複数の共振子とを備え、前記複数の共振子が、それぞれ、IDT電極を有し、前記各IDT電極が電極膜を有し、前記電極膜が、単一金属もしくは単一合金からなる金属膜または複数の金属膜を積層してなる積層金属膜であり、前記複数の共振子が、前記アンテナ端子と前記信号端子との間に接続された共振子を有し、前記アンテナ端子に最も近い前記共振子の前記IDT電極の単位面積あたりの重さが、全ての前記共振子における前記IDT電極の単位面積あたりの重さの中で最も軽い。
 以下、第1,第2の発明を総称して本発明と略す。
 本発明に係る弾性波装置のある特定の局面では、前記アンテナ端子に最も近い前記共振子の前記IDT電極を構成している前記電極膜中の最も密度の高い金属膜の膜厚が、他の前記共振子の前記IDT電極における前記電極膜中の最も密度の高い金属膜の膜厚よりも薄い。
 本発明に係る弾性波装置の他の特定の局面では、前記アンテナ端子に最も近い前記共振子の弾性波伝搬方向に沿う寸法が、全ての前記共振子における弾性波伝搬方向に沿う寸法の中で最大ではない。この場合には、より一層の小型化を図ることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記複数の共振子のうち、弾性波伝搬方向に沿う寸法が最大である共振子が、縦結合共振子型弾性波フィルタである。この場合には、縦結合共振子型弾性波フィルタを有する弾性波装置において、より一層の小型化を図ることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記電極膜において、最も密度の高い金属膜が、Pt、Mo、及びWからなる群から選択された一種である。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記複数の共振子が、前記アンテナ端子と前記信号端子とを接続している直列腕に設けられた直列腕共振子と、前記直列腕とグラウンド電位とを接続している並列腕に設けられた並列腕共振子とを有する。このように、直列腕共振子及び並列腕共振子を有する弾性波装置は、ラダー型フィルタであってもよい。
 本発明に係る弾性波装置の別の特定の局面では、前記複数の共振子が、前記アンテナ端子と前記信号端子とを接続している直列腕に設けられた縦結合共振子型弾性波フィルタを前記共振子として有する。
 本発明に係るデュプレクサは、第1の帯域通過型フィルタと、前記アンテナ端子に共通接続されており、前記第1の帯域通過型フィルタと通過帯域が異なる第2の帯域通過型フィルタとを備え、前記第1の帯域通過型フィルタと前記第2の帯域通過型フィルタの少なくとも一方が本発明に従って構成されている弾性波装置を有する。
 本発明に係るフィルタ装置は、本発明に従って構成された弾性波装置からなる第1の帯域通過型フィルタと、前記第1の帯域通過型フィルタの前記アンテナ端子に共通接続されている少なくとも1個の帯域通過型フィルタとを備える。
 本発明に係る弾性波装置、デュプレクサ及びフィルタ装置によれば、IMDの発生を抑制しつつ、小型化を図ることができる。
図1は、本発明の第1の実施形態に係る弾性波装置の電極構造を示す平面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の回路図である。 図は3、本発明の第1の実施形態で用いられている、アンテナ端子に最も近い直列腕共振子の電極構造を示す平面図である。 図4は、本発明の第1の実施形態で用いられている直列腕共振子のIDT電極の電極指における積層構造を説明するための部分正面断面図である。 図5は、本発明の第1の実施形態に係る弾性波装置が用いられているフィルタ装置の回路図である。 図6は、アンテナ端子に最も近い直列腕共振子において、IDT電極の総厚みが600nm、490nmまたは348nmの場合のIMD特性を示す図である。 図7は、アンテナ端子に最も近い弾性波共振子のIDT電極の規格化された重さが1.00または0.90の場合のIMD特性を示す図である。 図8は、本発明の第3の実施形態の弾性波装置の回路図である。 図9は、本発明の第4の実施形態の弾性波装置の電極構造を示す平面図である。 図10は、本発明の第4の実施形態の弾性波装置の回路図である。 図11は、本発明の第5の実施形態としてのデュプレクサを説明するための回路図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る弾性波装置の電極構造を示す平面図であり、図2は、本発明の第1の実施形態に係る弾性波装置の回路図である。
 弾性波装置1は、Band5の受信フィルタである。
 弾性波装置1は、圧電性を有する基板2を有する。圧電性を有する基板2はLiTaOからなる。もっとも、圧電性を有する基板2は、LiNbOなどの他の圧電単結晶からなるものであってもよい。また、圧電性を有する基板2は、支持基板上に圧電単結晶膜を積層した構造を有していてもよい。さらに、圧電単結晶に代えて、圧電セラミックスが用いられてもよい。
 圧電性を有する基板2上に、アンテナ端子3と、信号端子としての受信端子4と、グラウンド電位に接続されるグラウンド端子5~8とが設けられている。
 図2に示すように、弾性波装置1では、アンテナ端子3と受信端子4とを結ぶ直列腕において、複数の直列腕共振子S1,S2と、縦結合共振子型弾性波フィルタである縦結合型の共振子9とがお互いに直列に接続されている。また直列腕共振子S1,S2間の接続点と、グラウンド電位との間に並列腕共振子P1が接続されている。直列腕共振子S2と、縦結合型の共振子9との間の接続点とグラウンド電位との間に、並列腕共振子P2が接続されている。すなわち、弾性波装置1は、圧電性を有する基板2上に設けられた複数の共振子として、直列腕共振子S1,S2、縦結合型の共振子9及び並列腕共振子P1,P2を有する。
 ところで、図1及び図2に示すように、アンテナ端子3に電気的に最も近い共振子は、直列腕共振子S1である。直列腕共振子S1は、1ポート型弾性波共振子からなる。図3は、直列腕共振子S1としての1ポート型弾性波共振子11の電極構造を示す平面図である。1ポート型弾性波共振子11では、IDT電極12の弾性波伝搬方向両側に反射器13,14が設けられている。IDT電極12は、互いに間挿し合う複数本の第1の電極指12a及び複数本の第2の電極指12bを有する。
 上記アンテナ端子3、受信端子4、グラウンド端子5~8、直列腕共振子S1,S2、縦結合型の共振子9及び並列腕共振子P1,P2を構成するための電極材料は特に限定されない。例えば、Pt、Mo、W、Al、Cu、Au、Tiなどの金属または、AlCuもしくはNiCrなどのこれらの金属を主体とする合金が用いられる。本発明では、IDT電極は電極膜を有し、この電極膜は、単一の金属もしくは単一の合金からなる金属膜であってもよく、複数の金属膜が積層されている積層金属膜であってもよい。本実施形態では、直列腕共振子S1のIDT電極12の電極膜は、複数の金属膜を積層してなる積層金属膜からなる。図4は、直列腕共振子S1としての1ポート型弾性波共振子におけるIDT電極12の積層構造を説明するための部分正面断面図である。ここでは、IDT電極12の1本の電極指の横断面を含む部分が図示されている。
 圧電性を有する基板2上において、IDT電極12の電極膜では、圧電性を有する基板2側から、Pt膜12c、Ti膜12d、Al膜12e及びTi膜12fがこの順序で積層されている。
 また、図1及び図2では、電極構造を模式的に示したが、図4に示すように、電極構造を覆うように、第1の誘電体膜16が積層されている。第1の誘電体膜16は、SiOからなる。SiO膜のように、周波数温度係数が正の誘電体膜を積層することにより、周波数温度特性を改善することができる。また、Siからなる第2の誘電体膜17が、第1の誘電体膜16上に積層されている。第2の誘電体膜17は、保護膜または周波数調整膜として設けられている。もっとも、本発明においては、第1,第2の誘電体膜16,17は設けられずともよい。
 図5は弾性波装置1が用いられているフィルタ装置の回路図である。フィルタ装置15では、弾性波装置1のアンテナ端子3が、アンテナ18に接続される。そして、受信端子4の後段に、増幅器19が接続されている。
 弾性波装置1の特徴は、全ての共振子のうち、アンテナ端子3に最も近い共振子である、直列腕共振子S1のIDT電極の電極膜すなわち積層金属膜の厚みが、全ての共振子のIDT電極の電極膜すなわち積層金属膜の厚みのうち、最も薄いことにある。それによって、IMDの発生を抑制することができ、かつ小型化を図ることができる。
 (第2の実施形態)
 本発明の第2の実施形態に係る弾性波装置は、第1の実施形態の弾性波装置1と同様の構造を有する。第2の実施形態では、複数の共振子のうち、アンテナ端子に最も近い共振子のIDT電極の電極膜すなわち積層金属膜の厚みは特に限定していない。第2の実施形態は、アンテナ端子に最も近い共振子である直列腕共振子のIDT電極の単位面積あたりの重さが、全ての共振子におけるIDT電極の単位面積あたりの重さの中で最も軽いことを特徴とする。その他の構成は、第2の実施形態は第1の実施形態と同様である。
 なお、第2の実施形態では、アンテナ端子に最も近い直列腕共振子のIDT電極の単位面積あたりの重さが、全ての共振子のIDT電極における単位面積あたりの重さの中で最も軽くされているが、第1の実施形態の特徴的構成、すなわち、アンテナ端子に最も近い直列腕共振子のIDT電極の電極膜すなわち積層金属膜の厚みが、全ての共振子のIDT電極の電極膜すなわち積層金属膜の厚みのうち、最も薄い構成がさらに備えられていてもよく、その場合にはIMDの発生をより一層効果的に抑制することができる。
 第1及び第2の実施形態の弾性波装置において、小型化を図ることをでき、IMDの発生を抑制することができることを、具体的な実験例に基づき説明する。図6を参照して、第1の実験例を説明する。図6は、弾性波装置において、アンテナ端子に最も近い直列腕共振子のIDT電極の総厚みを、600nm、490nmまたは348nmとした場合のBand5のIMD特性、すなわち2Tx-Rx帯におけるIMD特性を示す図である。なお、図6の共振子A、共振子B及び共振子Cの設計パラメータは下記の表1に示す通りである、共振子A、共振子B及び共振子CにおけるIDT電極の膜厚は下記の表2に示す通りである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、表1におけるλは、IDT電極の電極指ピッチで定まる波長である。
 また、対数は、IDT電極における電極指の対数であり、デューティは、IDT電極のデューティである。
 また、表2に示すように、共振子A~Cのいずれにおいても、圧電性を有する基板側から順に、Pt膜、Ti膜、Al膜、Ti膜がこの順序で積層されている。
 表2に示すように、Ti膜、Al膜、Ti膜の厚みは全て同一とした。Pt膜の厚みを変化させ、IDT電極の総厚みを600nm、490nmまたは348nmとした。従って、共振子Aを基準として、IDT電極の重さを規格化すると、共振子Bでは、IDT電極の規格化重さは0.70、共振子CのIDT電極の規格化重さは0.32となる。共振子A、共振子B及び共振子CのIDT電極の面積は等しい、従って、共振子A、共振子B及び共振子CのIDT電極の単位面積あたりの重さは、上記規格化重さで表される。よって、単位面積あたりの重さが最も軽いIDT電極を有するのは、共振子A、共振子B及び共振子Cのうち、共振子Cとなる。
 下記の表3は、図6に示したIMD(dBm)を示す。
Figure JPOXMLDOC01-appb-T000003
 図6及び表3から明らかなように、共振子A~Cにおいて、869MHz、881.5MHz、894MHzのいずれの周波数においても、共振子Cによれば、共振子A及び共振子Bに比べ、IMD特性を改善し得ることがわかる。
 一般に、複数の共振子が、アンテナ端子と、信号端子との間に接続されているフィルタ装置では、アンテナ端子に電気的に最も近い共振子が、IMD特性に最も大きく影響する。
 第1の実施形態の弾性波装置では、全ての共振子のうち、アンテナ端子に最も近い共振子である直列腕共振子S1のIDT電極の積層金属膜の厚みが、全ての共振子のIDT電極の積層金属膜の厚みのうち最も薄くされている。従って、IMDの発生を効果的に抑制することができる。
 加えて、第1の実施形態の弾性波装置では、直列腕共振子のIDT電極の積層金属膜の厚みを工夫することにより、IMDの発生が抑制されている。特許文献1に記載のデュプレクサでは、アンテナ端子に最も近い直列腕共振子または並列腕共振子を、静電容量を変えることなく分割した構造を用いていた。そのため、アンテナ端子に最も近い直列腕共振子または並列腕共振子の面積が大きくなり、小型化が困難であった。これに対して、弾性波装置では、直列腕共振子のIDT電極の電極膜の厚みを調整することにより、IMDの発生が抑制されている。従って、アンテナ端子3に最も近い直列腕共振子の大型化を避けることができ、弾性波装置1では、小型化を進めることができる。
 なお、好ましくは、直列腕共振子のIDT電極を構成している電極膜すなわち積層金属膜のうち、最も密度が高い金属膜の膜厚であるPt膜である膜厚が、他の共振子のIDT電極における電極膜すなわち積層金属膜のうち最も密度の高い金属膜であるPt膜の膜厚よりも薄いことが望ましい。それによって、直列腕共振子S1におけるIMDの発生をより一層効果的に抑制することができる。
 第1の実施形態では、全ての共振子において、同じ種類の金属膜を同じ順序で積層された積層金属膜を有する。より具体的には、最も密度の高い金属膜の膜厚を除いては、他の金属膜の膜厚は全て等しくされている。
 上記実施形態では、全ての共振子における積層金属膜の積層構造を、最も密度の高い金属膜の膜厚を除いては等しくしていた。しかしながら、本発明においては、電極膜が積層金属膜である場合、積層構造はこれに限定されるものではない。すなわち、全ての共振子のIDT電極の積層金属膜の厚みのうち、アンテナ端子に最も近い共振子におけるIDT電極における積層金属膜の厚みが最も薄ければ、上記のように、IMDの発生を効果的に抑制することができる。
 また、アンテナ端子に最も近い共振子におけるIDT電極を構成している電極膜すなわち積層金属膜のうち、最も密度の高い金属膜の膜厚が、他の共振子のIDT電極における電極膜すなわち積層金属膜中の最も密度の高い金属膜の膜厚より薄いことが好ましい。この場合、アンテナ端子に最も近い共振子における最も密度の高い金属膜と、他の共振子における最も密度の高い金属膜は、異なる金属からなるものであってもよい。
 IDT電極の厚みが共振子A~Cにおいて、最も薄い共振子Cにおいて、IMDの発生を効果的に抑制し得ることを説明した。表2において、共振子A~CのIDT電極の規格化重さの比較からも明らかなように、共振子Cでは、IDT電極の単位面積あたりの重さが最も軽いことによっても、IMDの発生が抑制されている。
 なお、アンテナ端子に最も近い直列腕共振子において、IDT電極を構成している電極膜の厚みを最も薄くすることにより、あるいは単位面積あたりの重さを最も軽くすることにより、IMD特性の改善をされ得る理由は明確ではない。本願発明者は、実験的に、上記アンテナ端子に最も近い共振子の電極膜の厚みを最も薄く、あるいは最も単位面積あたりの重さを軽くすれば、IMD特性の改善を図り得ることを、実験的に見出したものである。
 次に、図7を参照して、第2の実験例を説明する。図7は、直列腕共振子S1として、下記の表4に示す共振子D及び共振子EのBand5の2Tx-Rx帯のIMD特性を示す図である。
Figure JPOXMLDOC01-appb-T000004
 表4において、λは、IDT電極の電極指ピッチで定まる波長である。
 また、共振子Dでは、電極膜として、10nmの厚みのTi膜上に、372nmの厚みのAl膜を積層してなる積層金属膜を用いた。共振子Eでは、電極膜として、10nmの厚みのTi膜上に332nmの厚みのAl膜を積層した積層金属膜を用いた。従って、共振子DのIDT電極における積層金属膜の厚みに比べて、共振子EにおけるIDT電極の積層金属膜の厚みが薄くされている。また、表4から明らかなように、共振子DにおけるIDT電極の重さを1.00とした場合、共振子EのIDT電極の規格化重さは0.90となる。よって、IDT電極の単位面積あたりの重さは、共振子Dに比べて共振子Eが軽くなっている。
 下記の表5は図7に示した869MHz、881.5MHz及び894MHzにおける共振子D及び共振子EのIMD(dBm)を示す。
Figure JPOXMLDOC01-appb-T000005
 表5及び図7から明らかなように、共振子Eでは、共振子Dに比べてIMDの発生を効果的に抑制し得ることがわかる。
 図8は、本発明の第3の実施形態に係る弾性波装置の回路図である。弾性波装置21では、アンテナ端子3と、信号端子としての受信端子4との間を接続している直列腕に、直列腕共振子S11,S12が配置されている。アンテナ端子3とグラウンド電位との間に並列腕共振子P11が接続されている。直列腕共振子S11,S12の間の接続点とグラウンド電位との間に、並列腕共振子P12が接続されている。複数の共振子としての直列腕共振子S11,S12及び並列腕共振子P11,P12のうち、アンテナ端子3に最も近い共振子は、並列腕共振子P11である。このように、アンテナ端子3に最も近い共振子は、直列腕共振子S11ではなく、並列腕共振子P11であってもよい。
 この場合においては、複数の直列腕共振子S11,S12及び複数の並列腕共振子P11,P12のうち、アンテナ端子3に最も近い並列腕共振子P11のIDT電極の電極膜の厚みが、残りの直列腕共振子S11,S12及び並列腕共振子P12のIDT電極を構成している電極膜の厚みより薄ければよい。また、前述したように、アンテナ端子3に最も近い並列腕共振子P11のIDT電極の単位面積あたりの重さが、全ての共振子におけるIDT電極の単位面積あたりの重さの中で最も軽くてもよい。それによって、第1,第2の実施形態と同様に、IMD特性を改善することができ、かつ小型化を図り得る。なお、アンテナ端子3に最も近い並列腕共振子P11以外の残りの直列腕共振子は1つであってもよく、アンテナ端子3に最も近い並列腕共振子P11以外の残りの並列腕共振子は1つであってもよい。
 図9は、第4の実施形態の弾性波装置の電極構造を示す平面図であり、図10は、第4の実施形態の弾性波装置の回路図である。
 第4の実施形態の弾性波装置31では、第1の実施形態における縦結合型の共振子9に代えて、直列腕共振子S3が設けられている。すなわち、アンテナ端子3と信号端子としての受信端子4とを結ぶ直列腕において、複数の直列腕共振子S1,S2,S3が互いに直列に接続されている。本実施形態では、弾性波装置31は、複数の共振子として、直列腕共振子S1,S2,S3及び並列腕共振子P1,P2を有する。それによって、ラダー型フィルタが構成されている。
 直列腕共振子S1,S2,S3のうち、アンテナ端子3に最も近い直列腕共振子S1のIDT電極の電極膜の厚みが、残りの直列腕共振子S2,S3のIDT電極を構成している電極膜の厚みより薄ければよい。また、前述したように、アンテナ端子3に最も近い直列腕共振子S1のIDT電極の単位面積あたりの重さが、全ての共振子におけるIDT電極の単位面積あたりの重さの中で最も軽くてもよい。それによって、第1,第2の実施形態と同様に、IMD特性を改善することができ、かつ小型化を図り得る。
 図11は、本発明の第5の実施形態としてのデュプレクサを説明するための回路図である。デュプレクサ41は、アンテナ42に接続される共通端子43を有する。共通端子43に第1の帯域通過型フィルタとして、第1の実施形態に係る弾性波装置1が接続されている。すなわち、アンテナ端子3が、共通端子43に接続されている。また、共通端子43に第2の帯域通過型フィルタ44も接続されている。第2の帯域通過型フィルタ44は、送信端子45と、出力端子46とを有する送信フィルタである。出力端子46は共通端子43に接続されている。このように、デュプレクサ41は、弾性波装置1からなる第1の帯域通過型フィルタである受信フィルタと、第2の帯域通過型フィルタ44である送信フィルタとを備えている。
 第5の実施形態のデュプレクサ41では、第1の帯域通過型フィルタである受信フィルタが本発明の実施形態である弾性波装置1により構成されていた。もっとも、本発明に係るデュプレクサでは、第1の帯域通過型フィルタではなく、第2の帯域通過型フィルタが本発明に係る弾性波装置により構成されていてもよく、第1及び第2の帯域通過型フィルタの双方が、本発明に従って構成された弾性波装置からなるものであってもよい。
 また、図5に破線で示すように、共通端子51に、第1の帯域通過型フィルタとしての弾性波装置1だけでなく、通過帯域が異なる2以上の帯域通過型フィルタ52,53が共通接続されていてもよい。その場合には、キャリアアグリゲーション(CA)に適した束ね型のフィルタ装置を構成することができる。なお、キャリアアグリゲーション(CA)などに用いる場合には、共通端子51に、弾性波装置1と、通過帯域が異なる少なくとも1個以上の帯域通過型フィルタとが共通接続されていればよい。
 なお、第1~第3の実施形態では、受信フィルタについての実施形態を説明したが、本発明に係る弾性波装置は、送信フィルタに適用されていてもよい。すなわち、送信フィルタにおいても、IMD特性に最も影響するのは、アンテナ端子に最も近い共振子である。従って、直列腕に複数の直列腕共振子を有する送信フィルタにも、本発明を適用することができる。
1…弾性波装置
2…圧電性を有する基板
3…アンテナ端子
4…受信端子
5~8…グラウンド端子
9…共振子
11…1ポート型弾性波共振子
12…IDT電極
12a…第1の電極指
12b…第2の電極指
12c…Pt膜
12d…Ti膜
12e…Al膜
12f…Ti膜
13,14…反射器
15…フィルタ装置
16…第1の誘電体膜
17…第2の誘電体膜
18…アンテナ
19…増幅器
21,31…弾性波装置
41…デュプレクサ
42…アンテナ
43…共通端子
44…第2の帯域通過型フィルタ
45…送信端子
46…出力端子
51…共通端子
52,53…帯域通過型フィルタ
P1,P2,P11,P12…並列腕共振子
S1,S2,S3,S11,S12…直列腕共振子

Claims (11)

  1.  圧電性を有する基板と、前記圧電性を有する基板上に設けられており、アンテナに接続されるアンテナ端子と、
     前記圧電性を有する基板上に設けられており、信号が入出力される信号端子と、
     前記圧電性を有する基板上に構成されている複数の共振子とを備え、
     前記複数の共振子が、それぞれ、IDT電極を有し、前記各IDT電極が電極膜を有し、前記電極膜が、単一金属もしくは単一合金からなる金属膜または複数の金属膜を積層してなる積層金属膜であり、
     前記複数の共振子が前記アンテナ端子と前記信号端子との間に接続されている共振子を有し、
     前記複数の共振子のうち、前記アンテナ端子に最も近い前記共振子の前記IDT電極の前記電極膜の厚みが、全ての前記共振子の前記IDT電極の前記電極膜の厚みのうち、最も薄い、弾性波装置。
  2.  圧電性を有する基板と、前記圧電性を有する基板上に設けられており、アンテナに接続されるアンテナ端子と、
     前記圧電性を有する基板上に設けられており、信号が入出力される信号端子と、
     前記圧電性を有する基板上に構成されている複数の共振子とを備え、
     前記複数の共振子が、それぞれ、IDT電極を有し、前記各IDT電極が電極膜を有し、前記電極膜が、単一金属もしくは単一合金からなる金属膜または複数の金属膜を積層してなる積層金属膜であり、
     前記複数の共振子が、前記アンテナ端子と前記信号端子との間に接続された共振子を有し、
     前記アンテナ端子に最も近い前記共振子の前記IDT電極の単位面積あたりの重さが、全ての前記共振子における前記IDT電極の単位面積あたりの重さの中で最も軽い、弾性波装置。
  3.  前記アンテナ端子に最も近い前記共振子の前記IDT電極を構成している前記電極膜中の最も密度の高い金属膜の膜厚が、他の前記共振子の前記IDT電極における前記電極膜中の最も密度の高い金属膜の膜厚よりも薄い、請求項1または2に記載の弾性波装置。
  4.  前記アンテナ端子に最も近い前記共振子の弾性波伝搬方向に沿う寸法が、全ての前記共振子における弾性波伝搬方向に沿う寸法の中で最大ではない、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記複数の共振子のうち、弾性波伝搬方向に沿う寸法が最大である共振子が、縦結合共振子型弾性波フィルタである、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記電極膜において、最も密度の高い金属膜が、Pt、Mo、及びWからなる群から選択された一種である、請求項1~5のいずれか1項に記載の弾性波装置。
  7.  前記複数の共振子が、前記アンテナ端子と前記信号端子とを接続している直列腕に設けられた直列腕共振子と、
     前記直列腕とグラウンド電位とを接続している並列腕に設けられた並列腕共振子とを有する、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  ラダー型フィルタである、請求項7に記載の弾性波装置。
  9.  前記複数の共振子が、前記アンテナ端子と前記信号端子とを接続している直列腕に設けられた縦結合共振子型弾性波フィルタを前記共振子として有する、請求項1~8のいずれか1項に記載の弾性波装置。
  10.  第1の帯域通過型フィルタと、前記アンテナ端子に共通接続されており、前記第1の帯域通過型フィルタと通過帯域が異なる第2の帯域通過型フィルタとを備え、
     前記第1の帯域通過型フィルタと前記第2の帯域通過型フィルタの少なくとも一方が請求項1~9のいずれか1項に記載の弾性波装置を有する、デュプレクサ。
  11.  請求項1~9のいずれか1項に記載の弾性波装置からなる第1の帯域通過型フィルタと、
     前記第1の帯域通過型フィルタの前記アンテナ端子に共通接続されている少なくとも1個の帯域通過型フィルタとを備える、フィルタ装置。
PCT/JP2017/046447 2017-02-06 2017-12-25 弾性波装置、デュプレクサ及びフィルタ装置 WO2018142812A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201790001548.5U CN210201798U (zh) 2017-02-06 2017-12-25 弹性波装置、双工器以及滤波器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-019661 2017-02-06
JP2017019661 2017-02-06

Publications (1)

Publication Number Publication Date
WO2018142812A1 true WO2018142812A1 (ja) 2018-08-09

Family

ID=63039541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046447 WO2018142812A1 (ja) 2017-02-06 2017-12-25 弾性波装置、デュプレクサ及びフィルタ装置

Country Status (2)

Country Link
CN (1) CN210201798U (ja)
WO (1) WO2018142812A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162756A (zh) * 2018-11-08 2020-05-15 株式会社村田制作所 多工器
CN113196658A (zh) * 2018-12-20 2021-07-30 株式会社村田制作所 多工器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244275A (ja) * 1999-02-19 2000-09-08 Murata Mfg Co Ltd Saw共振子フィルタ
JP2005005763A (ja) * 2003-06-09 2005-01-06 Alps Electric Co Ltd 表面弾性波素子及びフィルタ
WO2010001522A1 (ja) * 2008-06-30 2010-01-07 株式会社村田製作所 帯域阻止フィルタ
JP2014143657A (ja) * 2012-12-27 2014-08-07 Kyocera Corp 弾性波素子、分波器および通信モジュール
WO2015198905A1 (ja) * 2014-06-27 2015-12-30 株式会社村田製作所 弾性波装置
WO2016088543A1 (ja) * 2014-12-01 2016-06-09 株式会社村田製作所 弾性波共振子、弾性波フィルタ、デュプレクサ及び弾性波装置
WO2016208447A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244275A (ja) * 1999-02-19 2000-09-08 Murata Mfg Co Ltd Saw共振子フィルタ
JP2005005763A (ja) * 2003-06-09 2005-01-06 Alps Electric Co Ltd 表面弾性波素子及びフィルタ
WO2010001522A1 (ja) * 2008-06-30 2010-01-07 株式会社村田製作所 帯域阻止フィルタ
JP2014143657A (ja) * 2012-12-27 2014-08-07 Kyocera Corp 弾性波素子、分波器および通信モジュール
WO2015198905A1 (ja) * 2014-06-27 2015-12-30 株式会社村田製作所 弾性波装置
WO2016088543A1 (ja) * 2014-12-01 2016-06-09 株式会社村田製作所 弾性波共振子、弾性波フィルタ、デュプレクサ及び弾性波装置
WO2016208447A1 (ja) * 2015-06-25 2016-12-29 株式会社村田製作所 マルチプレクサ、高周波フロントエンド回路及び通信装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162756A (zh) * 2018-11-08 2020-05-15 株式会社村田制作所 多工器
JP2020078048A (ja) * 2018-11-08 2020-05-21 株式会社村田製作所 マルチプレクサ
JP7151668B2 (ja) 2018-11-08 2022-10-12 株式会社村田製作所 マルチプレクサ
CN111162756B (zh) * 2018-11-08 2023-09-08 株式会社村田制作所 多工器
CN113196658A (zh) * 2018-12-20 2021-07-30 株式会社村田制作所 多工器
CN113196658B (zh) * 2018-12-20 2024-05-03 株式会社村田制作所 多工器

Also Published As

Publication number Publication date
CN210201798U (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
JP6791403B2 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
US10742194B2 (en) Filter
US10044340B2 (en) Ladder-type elastic wave filter having series and parallel resonators
WO2018097201A1 (ja) 弾性波フィルタ装置
US9019040B2 (en) Elastic wave branching filter
US9722576B2 (en) Elastic wave filter and duplexer using same
US20160056793A1 (en) Ladder-type surface acoustic wave filter including series and parallel resonators
US11962285B2 (en) Acoustic wave device, duplexer, and filter device
KR102249183B1 (ko) 멀티플렉서, 고주파 프론트 엔드 회로 및 통신 장치
CN109845105B (zh) 弹性波滤波器装置
WO2019111902A1 (ja) マルチプレクサ、高周波フロントエンド回路および通信装置
JPWO2019031201A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2017159408A1 (ja) 弾性波装置、帯域通過型フィルタ及び複合フィルタ装置
US8106725B2 (en) Acoustic wave filter device
WO2012090559A1 (ja) 弾性波フィルタ装置及びそれを備えた通信機器
JPWO2018164210A1 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2018142812A1 (ja) 弾性波装置、デュプレクサ及びフィルタ装置
US10298205B2 (en) Elastic wave resonator, elastic wave filter, and duplexer
JP7103420B2 (ja) フィルタ装置およびマルチプレクサ
US11245384B2 (en) Multiplexer, radio-frequency front end circuit, and communication device
WO2018123545A1 (ja) マルチプレクサ
US11271545B2 (en) Multiplexer, radio-frequency front end circuit, and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载