WO2018120717A1 - 空调器控制方法和装置 - Google Patents
空调器控制方法和装置 Download PDFInfo
- Publication number
- WO2018120717A1 WO2018120717A1 PCT/CN2017/091182 CN2017091182W WO2018120717A1 WO 2018120717 A1 WO2018120717 A1 WO 2018120717A1 CN 2017091182 W CN2017091182 W CN 2017091182W WO 2018120717 A1 WO2018120717 A1 WO 2018120717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- value
- temperature
- interval
- wind speed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 230000008859 change Effects 0.000 claims description 51
- 238000012937 correction Methods 0.000 claims description 48
- 238000004364 calculation method Methods 0.000 claims description 42
- 230000000694 effects Effects 0.000 claims description 22
- 230000035807 sensation Effects 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 230000037237 body shape Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000003155 kinesthetic effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
Definitions
- the present invention relates to the field of air conditioner technology, and in particular, to an air conditioner control method and apparatus.
- the air conditioner operating parameters such as the wind speed and the set temperature are adjusted according to the indoor temperature in order to make the user feel comfortable, but the difference between the indoor temperature and the user's perceived temperature is only based on the indoor Adjusting the temperature will result in inaccurate room temperature control.
- the invention provides an air conditioner control method and device, the main purpose of which is to solve the technical problem that the control of the indoor temperature is not accurate enough.
- the present invention provides an air conditioner control method, and the air conditioner control method includes:
- the step of adjusting an operating parameter of the air conditioner according to the portable sensing interval includes:
- the temperature corresponding to the body feeling section is adjusted to the operating temperature of the air conditioner.
- the step of acquiring the user's personal value includes:
- the step of adjusting an operating parameter of the air conditioner according to the portable sensing interval includes:
- the step of adjusting an operating parameter of the air conditioner according to the portable sensing interval includes:
- the present invention also provides an air conditioner control apparatus, and the air conditioner control apparatus includes:
- a determining module configured to determine a walk-through interval in which the value of the portable body is located
- the adjustment module is configured to adjust an operating parameter of the air conditioner according to the portable sensing interval.
- the adjusting module includes:
- Determining a submodule configured to determine a temperature corresponding to the body sensation interval in which the body value is located
- the adjustment submodule is configured to adjust a temperature corresponding to the body feeling interval to an operating temperature of the air conditioner.
- the obtaining module is further configured to acquire a distance between the user and the air conditioner, and calculate a body-fit value according to the distance, the current user ambient temperature, and the current indoor fan wind speed;
- the adjustment module includes:
- Obtaining a sub-module configured to obtain a first air guiding strip angle value corresponding to the physical fitness value interval in which the physical fitness value is located, and an angle value of the second air guiding strip corresponding to the distance interval in which the distance is located;
- a adjusting submodule configured to adjust an angle of the left and right air guiding strips of the air conditioner according to the air guiding strip angle value, and adjust an upper air guiding strip angle of the air conditioner according to the second air guiding strip angle value.
- the adjusting module includes:
- a calculation submodule configured to calculate a wind speed change amount according to a calculation manner corresponding to the body feeling interval and the position coefficient
- a modulation submodule configured to adjust a wind speed of the indoor fan of the air conditioner according to the amount of change in the wind speed.
- the air conditioner control method and device provided by the invention determine the calculation of the body-fitness value according to the current ambient temperature of the user, determine the body-fit range in which the body-fit value is located, and adjust the operating parameters of the air conditioner according to the body-fit interval, so that the air conditioner is The control is more accurate.
- FIG. 1 is a schematic flow chart of a first embodiment of a method for controlling an air conditioner according to the present invention
- FIG. 2 is a schematic flow chart showing the steps of adjusting the operating parameters of the air conditioner according to the body-fit range in the second embodiment of the air conditioner control method according to the present invention
- FIG. 3 is a schematic diagram showing the steps of determining the temperature corresponding to the body-fit interval in which the body value is located in the third embodiment of the air conditioner control and control method according to the present invention
- FIG. 4 is a schematic diagram showing a procedure of determining a temperature corresponding to a body-fit interval in which a body value is located in a fourth embodiment of the air conditioner control and control method according to the present invention
- FIG. 5 is a schematic flow chart of a fifth embodiment of a method for controlling an air conditioner according to the present invention.
- FIG. 6 is a schematic flow chart showing the steps of adjusting the operating parameters of the air conditioner according to the body-fit range in the eighth embodiment of the air conditioner control method according to the present invention.
- Fig. 7 is a schematic view showing the functional blocks of the first embodiment of the air conditioner control device of the present invention.
- the invention provides an air conditioner control method.
- FIG. 1 is a schematic flow chart of a first embodiment of a method for controlling an air conditioner according to the present invention.
- Step S10 Acquire a value of the user's body feeling, and the value of the body feeling is calculated according to the ambient temperature of the user detected by the wearable device;
- the ambient temperature of the user can be detected by the wearable device worn by the user, and the temperature sensor is set on the wearable device, and the detected indoor temperature is uploaded to the air conditioner every preset time interval, and the indoor temperature of the air conditioner is used as the ambient temperature of the user. .
- K and H are constants, and K and H can be determined by the amount of activity of the user, and the K and H corresponding to different amounts of the user's activities are different.
- the judgment of the awake and sense of sleep is determined by the amount of activity of the user or whether the current time point is located in the sleep period.
- Step S20 determining a range of the body feeling in which the body value is located
- the calculated body-fitness value can be divided into multiple body-feeling ranges to avoid inaccurate temperature adjustment due to fluctuations in the body-worn value.
- the specific range of the body-sensing interval can be set by the developer according to the needs.
- the delineation of the interval is related to the values corresponding to K, H, A1, and A2, and will not be described here.
- Different temperature ranges can be set for different portable range, and different temperature adjustment strategies can be set for temperature adjustment.
- step S30 the operating parameters of the air conditioner are adjusted according to the range of the body.
- the operating parameters of the air conditioner include the set temperature of the air conditioner, the angle of the air guiding strip and/or the wind speed, and the different values of the body value correspond to different set temperatures, air guiding strip angles and/or wind speeds.
- the calculation of the body-fitness value is determined according to the current ambient temperature of the user, and the body-fit range of the body-fit value is determined, and the operating parameters of the air conditioner are adjusted according to the body-fit range, so that the air conditioner is Control is more accurate.
- step S30 includes:
- Step S31 determining a temperature corresponding to the body feeling interval where the body value is located
- step S32 the temperature corresponding to the body-optic section is adjusted to the operating temperature of the air conditioner.
- adjusting the operating temperature to the temperature corresponding to the physical sensing interval at one time may cause the user to feel uncomfortable, and may The preset time interval is adjusted until the operating temperature is adjusted to the temperature corresponding to the body sensing interval, so that the user feels more comfortable.
- the time interval corresponding to the sensation interval is obtained, and the preset time interval is updated by using the time interval corresponding to the sensible interval.
- Different time intervals corresponding to the update operating temperature are different, and the user's comfort can be improved by updating the time interval, and the number of calculating the value of the body feeling is reduced, thereby saving the energy consumption of the air conditioner.
- the calculation of the body-worn value according to the current ambient temperature of the user is determined, and the body-fit interval of the body-worn value is determined, and the temperature corresponding to the body-fit range is adjusted to the operating temperature of the air conditioner.
- the adjustment of the operating parameters according to the ambient temperature of the user detected by the wearable device makes the adjustment of the operating temperature of the air conditioner more accurate.
- step S31 includes:
- Step S311 acquiring a current operation mode, where the operation mode includes a cooling mode and a heating mode;
- Step S312 acquiring a temperature variable corresponding to the body feeling interval, and obtaining a temperature comparison value corresponding to the body feeling interval according to the operation mode;
- Step S313 correcting the current operating temperature according to the temperature variable, and comparing the temperature comparison value and the corrected current operating temperature according to the comparison manner corresponding to the body sensing interval, and obtaining the comparison result, wherein the comparing manner includes taking the maximum value and the minimum value;
- step S314 the temperature corresponding to the comparison result is taken as the temperature corresponding to the body feeling section.
- the user experience corresponding to each body part is different.
- the user feeling corresponding to each body part can be cold, cold, cool, comfortable, warm, hot and hot, and the user feeling in the body part is cold.
- the comparison method corresponding to colder and colder time may take the maximum value.
- the set temperature does not change, and the user feeling corresponding to the body-feeling interval is warm, hot, and hot.
- the comparison method is to take a minimum value, and the temperature comparison value is different from the cooling mode and the cooling mode.
- the temperature variables corresponding to different body parts are different.
- the temperature variable can be the temperature variable value preset by the developer or calculated according to other conditions.
- the step of obtaining the temperature variable corresponding to the body feeling interval includes:
- the temperature variable is calculated based on the body value and the position coefficient.
- the position coefficient between the user and the air conditioner is different.
- the product between the position coefficient and the body value can be used as the temperature variable, and the current operating temperature is subtracted from the temperature variable to correct the current operating temperature.
- C is the position coefficient, and the Tb corresponding to the different body sensation range is different.
- the step of correcting the current operating temperature according to the temperature variable is performed; or, the comparison corresponding to the body feeling interval is performed.
- the step of correcting the current operating temperature according to the temperature variable is performed.
- the operating temperature is not change.
- the target operating temperature is determined by comparing the correction value of the operating temperature and the set temperature comparison value to make the target operating temperature more accurate.
- step S31 includes:
- Step S316 increasing or decreasing the temperature increment value for the current operating temperature to obtain a temperature corresponding to the body sensation interval.
- Z is the temperature increment value
- the user experience corresponding to each body part is different.
- the user feeling corresponding to each body part can be cold, cold, cool, comfortable, warm, hot and hot, respectively.
- Step S21 includes: acquiring a position coefficient corresponding to a distance between the user and the air conditioner; and calculating a temperature increment value according to the body value and the position coefficient.
- the operating temperature adjustment can be performed according to the temperature adjustment mode corresponding to the second embodiment.
- the temperature corresponding to the third embodiment can be used.
- the adjustment mode performs the operation temperature adjustment, for example, when the current time point is within the preset awake time period or when the user is in the active state, the operation temperature adjustment is performed according to the temperature adjustment mode corresponding to the second embodiment, and the preset time is at the current time point.
- the duration of the sleep period or when the user is in the stationary state is greater than the preset duration, the operating temperature adjustment may be performed according to the temperature adjustment mode corresponding to the third embodiment.
- step S10 includes:
- Step S11 obtaining a distance between the user and the air conditioner
- Step S12 calculating a body value according to the distance, the current user ambient temperature, and the current indoor fan wind speed
- Step S30 includes:
- Step S33 obtaining an angle value of the first air guiding strip corresponding to the body value range where the body feeling value is located, and adjusting an angle of the left and right air guiding strips of the air conditioner according to the air guiding strip angle value;
- Step S34 Obtain an angle value of the second air guiding strip corresponding to the distance interval in which the distance is located, and adjust an angle of the upper and lower air guiding strips of the air conditioner according to the second air guiding strip angle value.
- the distance between the user and the air conditioner can be obtained in various ways, for example, by image, calculating the distance between the user and the air conditioner according to the position of the user in the image taken by the camera; or detecting the intensity of the preset frequency infrared signal.
- the distance between the user and the air conditioner may be determined by a signal sent by the wearable device worn by the user, such as a wearable device Sending an ultrasonic signal or a Bluetooth signal, etc.
- the air conditioner confirms the received signal strength; or the air conditioner and the wearable device establish a connection through Bluetooth, and the wearable device can detect the signal strength of the Bluetooth signal sent by the air conditioner, and the signal strength
- the air conditioner transmits to the air conditioner, and the air conditioner determines the distance between the user and the air conditioner according to the received signal strength, that is, the step of obtaining the distance between the user and the air conditioner includes: acquiring the air conditioner detected by the wearable device paired with the air conditioner The signal strength of the Bluetooth signal; the distance between the user and the air conditioner is determined according to the signal strength .
- the signal strength detected by the wearable device paired with the air conditioner can be obtained after the air conditioner enters the portable mode.
- the wearable device can send a one-button power-on signal to the air conditioner, and after receiving the one-button power-on signal, the air conditioner turns on according to the set operating parameter, and turns on the portable function.
- the air conditioner receives the control command of the portable mode, it can directly enter the portable mode, and the control command can be triggered by a voice control command or a control command sent by the remote controller.
- the wearable device can be paired with the air conditioner via Bluetooth, and the data is transmitted through the Bluetooth.
- the wearable device can upload the detected Bluetooth signal strength of the air conditioner periodically or in real time, or only the detected Bluetooth.
- the Bluetooth signal strength is uploaded to the air conditioner to prevent the air conditioner from repeatedly calculating; the air conditioner can also obtain the intensity of the air conditioner Bluetooth signal detected by the wearable device periodically or in real time after entering the portable mode.
- the wearable device can be a smart bracelet, and the time interval of the signal strength of the smart air conditioner Bluetooth signal can be adjusted according to the comfort obtained by each calculation.
- the mapping relationship between signal strength and distance can be set.
- the distance between the user and the air conditioner corresponding to the signal strength can be known by looking up the table. To ensure the accuracy between the obtained user and the air conditioner distance, the signal intensity interval can be set.
- mapping relationship table corresponding to the distance interval is described by taking the signal strength S as an example. For example, when S ⁇ 60, the corresponding distance is 0 ⁇ L ⁇ 1; 0 ⁇ S ⁇ 59, 1 ⁇ L ⁇ 2; 20 ⁇ S ⁇ 39, 2 ⁇ L ⁇ 3; 5 ⁇ S ⁇ 19, L>3; S ⁇ 5, the wearable device is disconnected from the air conditioner.
- the value of the body sensation can be calculated according to the distance, the temperature of the current user and the current indoor fan speed. According to the above three sets of parameters, the user can feel more comfortable after the set temperature and the wind speed are adjusted.
- the angle of the upper and lower air guiding strips is increased to the upper limit angle.
- the greater the distance between the user and the air conditioner the closer the angle of the upper and lower air guiding strips is to the upper limit angle, and the user and the user can be set.
- the distance between the upper and lower air guides corresponding to the distance interval of the air conditioner.
- the distance between the user and the air conditioner is obtained, and the body value is calculated according to the distance, the current user temperature, and the current indoor fan wind speed, and the body value range corresponding to the body value is obtained.
- the angle of the first air guiding strip is adjusted, and the angles of the left and right air guiding strips of the air conditioner are adjusted according to the angle value of the air guiding strip, so that the adjusted left and right air guiding strip angles satisfy the requirements of the body feeling, and are more comfortable, and at the same time, the distance interval of the distance is obtained.
- step S12 includes:
- the body value is calculated according to the first body feeling correction value, the current user ambient temperature, and the second body feeling correction value.
- the body-worn value can be directly calculated according to the current ambient temperature of the user, the wind speed of the indoor fan, and the distance between the user and the air conditioner, and the adjustment of the operating parameter is performed according to the value of the body-worn value, so that the adjustment of the operating parameter is performed. more precise.
- a seventh embodiment of the air conditioner control method of the present invention is proposed based on the fifth or sixth embodiment.
- the method further includes:
- the control air conditioner operates according to the target operating parameters.
- the operating parameters of the air conditioner can be further adjusted according to the body value and the position coefficient, so that the adjustment of the operating parameters of the air conditioner is more accurate.
- the air conditioner is obtained according to the body value and the position coefficient.
- the steps of the target operational parameters may include:
- the target operating parameters are calculated according to the operating parameter adjustment rules, the position coefficient, the body value, and the current operating parameters.
- the indoor fan updates the set temperature value based on the current set temperature value each time the following range is determined.
- the operating parameters are adjusted according to the operating parameter adjustment rules corresponding to different portable sensing intervals in the mapping table, so that the adjustment of the operating parameters is more accurate.
- step S30 includes:
- Step S35 detecting the distance of the user from the air conditioner, and determining the position coefficient of the wind speed adjustment according to the distance;
- Step S36 calculating a wind speed change amount according to a calculation method corresponding to the body feeling interval and a position coefficient
- step S37 the wind speed of the indoor fan of the air conditioner is adjusted according to the amount of change in the wind speed.
- step S10 includes: detecting, by the wearable device, a temperature of the user in the vicinity of the user and a distance from the air conditioner to the first correction value of the sense of the body and a second correction value of the wind speed change to the sense of the sense; according to the vicinity of the user
- the temperature, the first correction value, and the second correction value calculate the user's body value.
- the wearable device is Bluetooth communication, that is, the wearable device can communicate with the air conditioner through Bluetooth to complete data interaction and control of the air conditioner.
- the temperature in the vicinity of the user is detected by a temperature detector on the wearable device, the first correction value of the distance from the user to the air conditioner, and the second correction value of the wind speed change to the sense of the body.
- the temperature near the user is detected by the wearable device, which is a bracelet, a watch, or the like. When the wearable device is worn by the user, it is the temperature of the user's body surface, and when the wearable device is not worn by the user, it is the temperature around the user.
- the second correction value A2 of the wind speed change to the sense of the body refers to Table 2, and wherein the correction value is different according to the wind blowing, the wind, and the wind; the distance from the air conditioner to the first correction value A2 of the body feeling.
- the distance from the user to the air conditioner is to determine the distance between the person and the air conditioner by the strength of the Bluetooth signal connected to the air conditioner by the wearable device.
- the Bluetooth signal is divided into four levels of strength and weakness, and different levels correspond to different distances.
- the correspondence between the detected wearable device and the air conditioner is determined by the correspondence between the signal strength level and the distance.
- the distance L of the air conditioner the stronger the signal, the closer the user is to the air conditioner.
- the signal strength level is 1, the corresponding distance is more than 3m; the strength and weakness level is 2, the corresponding distance is 2m ⁇ L ⁇ 3m; the signal strength level is 3, the corresponding distance is 1m ⁇ L ⁇ 2m; the signal strength level is 4, The corresponding distance is 0m ⁇ L ⁇ 1m.
- different activities correspond to different calculation methods.
- the calculation coefficients set by a1, a2, a3 and a4 corresponding to different activities are calculated according to the experiment; the compensation values set by b1, b2, b3 and b4 corresponding to different activity amounts are calculated according to the experiment; Ta is passed The temperature near the user detected by the wearable device.
- the distance from the user to the air conditioner is detected, and the position coefficient of the wind speed adjustment is determined according to the distance.
- the wind speed change amount is calculated based on the calculation method corresponding to the body feeling interval and the position coefficient. There are different ways to calculate the amount of wind speed change ARate for different range of the body.
- the step of calculating the wind speed change amount according to the calculation method corresponding to the body feeling interval and the adjustment coefficient includes:
- the wind speed change amount is calculated according to the calculation method corresponding to the body sensation interval and the position coefficient;
- the amount of wind speed change is calculated based on the calculation method corresponding to the sensible range and the derivative of the position coefficient.
- the wind speed of the air conditioner indoor fan is adjusted according to the direction of the change, that is, the current wind speed of the indoor fan is adjusted according to the change amount. For example, if the calculated wind speed change is 20% and the adjustment direction is increased, the wind speed is increased by 20% based on the current wind speed.
- the method further includes:
- the adjusted wind speed is calculated according to the amount of change in the wind speed
- the wind speed of the air conditioner indoor fan is adjusted according to the wind speed limit value.
- the difference between this embodiment and the above embodiment is that a preset interval is set, and the wind speed adjustment of the preset interval is different from the adjustment of the other portable range, and the wind speed adjustment of the preset interval needs to be limited.
- the preset interval is the portable range 3, and it may be other portable range according to the experiment.
- the wind speed of the air conditioner indoor fan is adjusted according to the wind speed limit value.
- the wind speed of the indoor fan of the air conditioner is adjusted according to the wind speed change amount, that is, the wind speed of the indoor fan is adjusted according to the actually calculated wind speed change amount.
- the preset walk-through range is a relatively comfortable section, and the current adjustment cannot be made. Therefore, it is necessary to limit the adjustment of the wind speed. This makes the user feel better in the comfort zone.
- the invention further provides an air conditioner control device.
- Figure 7 is a schematic diagram of the functional modules of the first embodiment of the air conditioner control device of the present invention.
- the embodiment provides an air conditioner control device, and the air conditioner control device includes:
- the obtaining module 10 is configured to obtain a value of the user's body feeling, and the value of the body feeling is calculated according to the ambient temperature of the user detected by the wearable device;
- the determining module 20 is configured to determine a walk-through interval in which the body value is located;
- the adjustment module 30 is configured to adjust an operating parameter of the air conditioner according to the body feeling interval.
- the ambient temperature of the user can be detected by the wearable device worn by the user, and the temperature sensor is set on the wearable device, and the detected indoor temperature is uploaded to the air conditioner every preset time interval, and the indoor temperature of the air conditioner is used as the ambient temperature of the user. .
- K and H are constants, and K and H can be determined by the amount of activity of the user, and the K and H corresponding to different amounts of the user's activities are different.
- the judgment of the awake and sense of sleep is determined by the amount of activity of the user or whether the current time point is located in the sleep period.
- the calculated body-fitness value can be divided into multiple body-feeling ranges to avoid inaccurate temperature adjustment due to fluctuations in the body-worn value.
- the specific range of the body-sensing interval can be set by the developer according to the needs.
- the delineation of the interval is related to the values corresponding to K, H, A1, and A2, and will not be described here.
- Different temperature ranges can be set for different portable range, and different temperature adjustment strategies can be set for temperature adjustment.
- the calculation of the body-fitness value is determined according to the current ambient temperature of the user, and the body-fit range of the body-fit value is determined, and the operating parameters of the air conditioner are adjusted according to the body-fit interval to control the air conditioner. more precise.
- the adjustment module 30 includes:
- the adjustment submodule is used to adjust the temperature corresponding to the body sensing section to the operating temperature of the air conditioner.
- the determining submodule includes:
- the acquiring unit is configured to acquire a current running mode at every preset time interval, the running mode includes a cooling mode and a heating mode, and obtain a temperature variable corresponding to the body-feeling interval, and obtain a temperature comparison value corresponding to the body-fit interval according to the running mode. ;
- a correction unit for correcting a current operating temperature according to a temperature variable
- a comparison unit configured to compare the temperature comparison value and the corrected current operating temperature according to the comparison manner corresponding to the body feeling interval, and obtain a comparison result, wherein the comparison manner includes taking the maximum value and the minimum value;
- the processing unit is configured to use the temperature corresponding to the comparison result as the temperature corresponding to the body feeling interval.
- the first obtaining unit includes:
- the acquisition module 10 is further configured to acquire a distance between the user and the air conditioner, and according to the distance, the current ambient temperature of the user, and The current indoor fan wind speed is calculated with the body value;
- the adjustment module 30 includes:
- Obtaining a sub-module configured to obtain a first air guiding strip angle value corresponding to the physical fitness value interval where the physical value is located, and a second air guiding strip angle value corresponding to the distance interval in which the obtaining distance is located;
- the adjusting submodule is configured to adjust the left and right air guiding strip angles of the air conditioner according to the air guiding strip angle value, and adjust the upper and lower air guiding strip angles of the air conditioner according to the second air guiding strip angle value.
- the obtaining module 10 includes:
- An acquiring unit configured to acquire a first body feeling correction value corresponding to the distance, a current user ambient temperature, and a second body feeling correction value corresponding to the current indoor fan wind speed;
- a calculating unit configured to calculate the body value according to the first body feeling correction value, the current user ambient temperature, and the second body feeling correction value.
- the adjustment module includes:
- a calculation submodule configured to calculate a wind speed change amount according to a calculation method corresponding to the body feeling interval and a position coefficient
- the modulation submodule is configured to adjust the wind speed of the indoor fan of the air conditioner according to the amount of change in the wind speed.
- the calculation sub-module is further configured to calculate the wind speed change amount according to the calculation method and the position coefficient corresponding to the body-feeling interval when the determined body-fit interval is a hot interval, and to be cold in the determined body-fit interval In the interval, the wind speed change amount is calculated based on the calculation method corresponding to the body feeling interval and the derivative of the position coefficient.
- calculation sub-module is further configured to calculate the adjusted wind speed according to the wind speed change amount when the body-worn interval is a preset interval;
- Determining a sub-module further for determining a wind speed limit value corresponding to a running time of the walk-in interval
- the adjustment submodule is further configured to adjust the wind speed of the indoor fan of the air conditioner according to the wind speed limit value when the adjusted wind speed is greater than the determined wind speed limit value.
- the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
- Implementation Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
- the optical disc includes a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a cloud server, an air conditioner, or a network device, etc.) to perform the methods of various embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
公开了一种空调器控制方法,包括:获取用户的随身感值,随身感值根据可穿戴设备检测得到的用户周围温度计算得到(步骤S10);确定随身感值所在的随身感区间(步骤S20);根据随身感区间调整空调器的运行参数(步骤S30)。还公开了一种空调器控制装置。该方案直接根据可穿戴设备检测得到的用户周围温度进行运行参数的调节,使得空调器运行温度的调节更加准确。
Description
技术领域
本发明涉及空调器技术领域,尤其涉及一种空调器控制方法和装置。
背景技术
空调器在运行制冷或制热模式时,为使用户感到舒适往往根据室内温度进行空调器运行参数如风速以及设定温度的调节,但室内温度与用户感受到的温度之间与差别仅仅根据室内温度进行调节,会导致室内温度控制不够准确。
发明内容
本发明提供一种空调器控制方法和装置,其主要目的在于解决对室内温度的控制不够准确的技术问题。
为实现上述目的,本发明提供一种空调器控制方法,所述空调器控制方法包括:
获取用户的随身感值,所述随身感值根据可穿戴设备检测得到的用户周围温度计算得到;
确定所述随身感值所在的随身感区间;
根据所述随身感区间调整空调器的运行参数。
可选地,所述根据所述随身感区间调整空调器的运行参数的步骤包括:
确定所述随身感值所在的随身感区间对应的温度;
将所述随身感区间对应的温度调整为所述空调器的运行温度。
可选地,所述获取用户的随身感值的步骤包括:
获取用户与空调器的距离,并根据所述距离、当前用户周围温度以及当前室内风机风速计算随身感值;
所述根据所述随身感区间调整空调器的运行参数的步骤包括:
获取所述随身感值所在的随身感值区间对应的第一导风条角度值,并根据所述导风条角度值调节所述空调器的左右导风条角度;
获取所述距离所在的距离区间对应的第二导风条角度值,并根据所述第二导风条角度值调节所述空调器的上下导风条角度,其中,根据用户与空调器的距离、当前用户周围温度以及当前室内风机风速计算随身感值。
可选地,所述根据所述随身感区间调整空调器的运行参数的步骤包括:
检测用户离空调器的距离,根据所述距离确定风速调整的位置系数;
根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量;
按照所述风速变化量调整空调器室内风机的风速
此外,为实现上述目的,本发明还提出一种空调器控制装置,所述空调器控制装置包括:
获取模块,获取用户的随身感值,所述随身感值根据可穿戴设备检测得到的用户周围温度计算得到;
确定模块,用于确定所述随身感值所在的随身感区间;
调整模块,用于根据所述随身感区间调整空调器的运行参数。
可选地,所述调整模块包括:
确定子模块,用于确定所述随身感值所在的随身感区间对应的温度;
调整子模块,用于将所述随身感区间对应的温度调整为所述空调器的运行温度。
可选地,其特征在于,
所述获取模块,还用于获取用户与空调器的距离,并根据所述距离、当前用户周围温度以及当前室内风机风速计算随身感值;
所述调整模块包括:
获取子模块,用于获取所述随身感值所在的随身感值区间对应的第一导风条角度值以及获取所述距离所在的距离区间对应的第二导风条角度值;
调节子模块,用于根据所述导风条角度值调节所述空调器的左右导风条角度,以及根据所述第二导风条角度值调节所述空调器的上下导风条角度。
可选地,所述调整模块包括:
确定子模块,用于检测用户离空调器的距离,根据所述距离确定风速调整的位置系数;
计算子模块,用于根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量;
调制子模块,用于按照所述风速变化量调整空调器室内风机的风速。
本发明提出的空调器控制方法和装置,根据当前的用户周围温度确定计算随身感值,并确定随身感值所在的随身感区间,并根据随身感区间调整空调器的运行参数,使得对空调器的控制更加准确。
附图说明
图1为本发明空调器控制方法第一实施例的流程示意图;
图2为本发明空调器控制方法第二实施例中根据随身感区间调整空调器的运行参数的步骤的细化流程示意图;
图3为本发明空调器控制控制方法第三实施例中确定随身感值所在的随身感区间对应的温度的步骤的程示意图;
[根据细则91更正 04.08.2017]
图4为本发明空调器控制控制方法第四实施例中确定随身感值所在的随身感区间对应的温度的步骤的程示意图;
图4为本发明空调器控制控制方法第四实施例中确定随身感值所在的随身感区间对应的温度的步骤的程示意图;
图5为本发明空调器控制方法第五实施例的流程示意图;
图6为本发明空调器控制方法第八实施例中根据随身感区间调整空调器的运行参数的步骤的细化流程示意图;
图7为本发明空调器控制装置第一实施例的功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种空调器控制方法。
参照图1,图1为本发明空调器控制方法第一实施例的流程示意图。
本实施例公开的空调器控制方法包括:
步骤S10,获取用户的随身感值,随身感值根据可穿戴设备检测得到的用户周围温度计算得到;
用户周围温度可通过用户佩戴的可穿戴设备检测得到,可穿戴设备上设置温度传感器,每个预设时间间隔向空调器上传检测到的室内温度,空调器将接收到的室内温度作为用户周围温度。在空调器处于清醒随身感模式时,采用风速以及用户与空调器之间的距离对随身感值进行修正,即随身感值AMV=
K(Ta+A1+A2)-H,风速对应有修正值A1,用户与空调器之间的距离对应有修正值A2,
K和H为常量,K和H可通过用户的活动量确定,用户的活动量不同所对应的K和H不同。
在空调器处于睡眠随身感模式时,可采用辐射温度、用户睡眠状态、预设时间间隔内的运动步数及/或体温等对数据对随身感进行修正,例如AMV=KTa+LTr+M,其中,Ta为用户周围温度,Tr为辐射温度,K、L以及M为常量也可通过其它方式确定,例如用户的运动步数以及当前时间点等数据,Tr=Ta+A1,A1为第一修正值。清醒随身感以及睡眠随身感的判断由用户的活动量或者当前时间点是否位于睡眠时间段来确定。
步骤S20,确定随身感值所在的随身感区间;
可将计算得到的随身感值分为多个随身感区间进行控制,避免由于随身感值波动导致温度调节的不准确,具体的随身感区间的划分可由开发人员根据需要进行设定,具体随身感区间的划定与K、H、A1以及A2对应的值有关,在此不再赘述。不同的随身感区间可设定不同的温度,也可设定不同的温度调整策略很行温度调整。
步骤S30,根据随身感区间调整空调器的运行参数。
该空调器的运行参数包括空调器的设定温度、导风条角度及/或风速,不同的随身感值区间对应不同的设定温度、导风条角度及/或风速。
本实施例中公开的技术方案中,根据当前的用户周围温度确定计算随身感值,并确定随身感值所在的随身感区间,并根据随身感区间调整空调器的运行参数,使得对空调器的控制更加准确。
进一步地,参照图2,基于第一实施例提出本发明空调器控制方法第二实施例,在本实施例中,步骤S30包括:
步骤S31,确定随身感值所在的随身感区间对应的温度;
步骤S32,将随身感区间对应的温度调整为空调器的运行温度。
可以理解的是,若随身感区间对应的温度与当前设定温度之间的温度差太大,一次性将运行温度调节至随身感区间对应的温度可能会导致用户感到不够舒适,则可每隔预设时间间隔调整预设度数,直至将运行温度调节至随身感区间对应的温度,使得用户感受更加舒适。
在随身感区间与上一次计算得到的随身感值所在的随身感区间不同时,获取随身感区间对应的时间间隔,采用随身感区间对应的时间间隔更新预设时间间隔。不同的随身感区间对应的更新运行温度的时间间隔不同,可通过更新时间间隔提高用户的舒适度,同时减少计算随身感值的次数,节省空调器的能耗。在随身感区间与随身感区间相同时,保持该预设时间间隔不变
本实施例公开的方案中,根据当前的用户周围温度确定计算随身感值,并确定随身感值所在的随身感区间,将该随身感区间对应的温度调整为空调器的运行温度,本方案直接根据可穿戴设备检测得到的用户周围温度进行运行参数的调节,使得空调器运行温度的调节更加准确。
进一步地,参照图3,基于第一实施例提出本发明空调器控制方法第三实施例,在本实施例中,步骤S31包括:
步骤S311,获取当前的运行模式,运行模式包括制冷模式和制热模式;
步骤S312,获取随身感区间对应的温度变量,并根据运行模式获取随身感区间对应的温度比较值;
步骤S313,根据温度变量修正当前运行温度,并根据随身感区间对应的比较方式比较温度比较值以及修正后的当前运行温度,并获取比较结果,其中,比较方式包括取最大值及最小值;
步骤S314,将比较结果对应的温度作为随身感区间对应的温度。
每个随身感区间对应的用户感受不同,例如各个随身感区间对应的用户感受可分别为冷、较冷、凉、舒适、暖、较热以及热,在随身感区间对应的用户感受为冷、较冷、凉时对应的比较方式可为取最大值,在随身感区间对应的用户感受为舒适时,设定温度不变,在随身感区间对应的用户感受为暖、较热以及热时对应的比较方式为取最小值,该温度比较值制热模式和制冷模式不同。不同随身感区间对应的温度变量不同,该温度变量可为开发人员预设的温度变量值,也可根据其他条件计算得到。
由于用户与空调器之间的距离不同时,用户的感受不同,则需要根据用户与空调器之间的距离调节空调器的运行温度,即获取随身感区间对应的温度变量的步骤包括:
获取用户与空调器之间的距离对应的位置系数;
根据随身感值以及位置系数计算温度变量。
用户与空调器之间的距离不同对应的位置系数也不同,可将位置系数与随身感值之间的乘积作为温度变量,并对当前运行温度减去温度变量以对当前运行温度进行修正,将修正后的运行温度与温度比较值之间进行比对,即在随身感区间对应的用户感受为冷、较冷、凉时对应的比较方式可为TS(n+1)=max(TSn-AMV*C,Tb),在随身感区间对应的用户感受为舒适时,TS(n+1)=
TSn,在随身感区间对应的用户感受为暖、较热以及热时,TS(n+1)=min(TSn-AMV*C,Tb),Tb为温度比较值,TSn为当前运行温度,AMV为随身感值,C为位置系数,不同的随身感区间对应的Tb不同。
可以理解的是,在随身感区间对应的比较方式为取最大值,且当前运行温度大于或等于温度比较值时,执行根据温度变量修正当前运行温度的步骤;或者,在随身感区间对应的比较方式为取最小值,且当前运行温度小于或等于温度比较值时,执行根据温度变量修正当前运行温度的步骤。
随身感区间对应的比较方式为取最大值时,且当前运行温度小于温度比较值时,或者在随身感区间对应的比较方式为取最小值,且当前运行温度大于温度比较值时,运行温度不变。
本实施例公开的技术方案中,直接通过比较运行温度的修正值以及设定的温度比较值以确定目标运行温度,使得到的目标运行温度更加准确。
进一步地,参照图4,基于第一实施例提出本发明空调器控制方法第四实施例,在本实施例中,步骤S31包括:
步骤S315,获取随身感区间对应的温度增量值;
步骤S316,对当前运行温度增加或减少温度增量值得到随身感区间对应的温度。
TS(n+1)= TSn+Z或者TS(n+1)=
TSn-Z,Z为温度增量值,每个随身感区间对应的用户感受不同,例如各个随身感区间对应的用户感受可分别为冷、较冷、凉、舒适、暖、较热以及热,在随身感区间对应的用户感受为冷、较冷、凉时TS(n+1)=
TSn+Z,在随身感区间对应的用户感受为舒适时,TS(n+1)= TSn,在随身感区间对应的用户感受为暖、较热以及热时TS(n+1)=
TSn-Z,该温度比较值制热模式和制冷模式不同。不同随身感区间对应的温度增量值不同,该温度增量值可为开发人员预设的温度变量值,也可根据其他条件计算得到,例如TS(n+1)=
TSn+AMV*C或者TS(n+1)=
TSn-AMV*C,AMV为随身感值,C为位置系数,即步骤S21包括:获取用户与空调器之间的距离对应的位置系数;根据随身感值以及位置系数计算温度增量值。
可以理解的是,在空调器处于清醒随身感模式时,可按照第二实施例对应的温度调节模式进行运行温度调节,在空调器处于睡眠随身感模式时,可按照第三实施例对应的温度调节模式进行运行温度调节,例如在当前时间点位于预设的清醒时间段内或者用户处于活动状态时,按照第二实施例对应的温度调节模式进行运行温度调节,在当前时间点位于预设的睡眠时间段内或者用户处于静止状态的时长大于预设时长时,可按照第三实施例对应的温度调节模式进行运行温度调节。
进一步地,参照图5,基于第一实施例提出本发明空调器控制方法第五实施例,在本实施例中,步骤S10包括:
步骤S11,获取用户与空调器的距离;
步骤S12,根据距离、当前用户周围温度以及当前室内风机风速计算随身感值;
步骤S30包括:
步骤S33,获取随身感值所在的随身感值区间对应的第一导风条角度值,并根据导风条角度值调节空调器的左右导风条角度;
步骤S34,获取距离所在的距离区间对应的第二导风条角度值,并根据第二导风条角度值调节空调器的上下导风条角度。
用户与空调器之间的距离可通过多种方式获得,例如可通过图像获得,根据用户在摄像头拍摄的图像中的位置计算用户与空调器之间的距离;或者检测预设频率红外信号的强度计算用户与空调器之间的距离,该预设频率为人体辐射的红外线的频率;或者,也可通过用户佩戴的可穿戴设备发送的信号确定用户与空调器之间的距离,例如可穿戴设备发送超声波信号或者蓝牙信号等,由空调器确认接收到的信号强度;或者,空调器与可穿戴设备通过蓝牙建立连接,可穿戴设备可检测空调器发送的蓝牙信号的信号强度,并将信号强度传输至空调器,空调器根据接收到的信号强度确定用户与及空调器之间的距离,即获取用户与空调器的距离的步骤包括:获取与空调器配对的可穿戴设备检测到的空调器蓝牙信号的信号强度;根据信号强度确定用户与空调器的距离。
在空调器进入随身感模式后可获取与空调器配对的可穿戴设备检测到的信号强度。在空调器与配对的可穿戴设备建立连接后,可穿戴设备可向空调器发送一键开机信号,在接收到一键开机信号后,空调器按照设定的运行参数开机,并开启随身感功能;或者,空调器接收到随身感模式的控制指令时,可直接进入随身感模式,该控制指令可由语音控制指令或者遥控器发送的控制指令来触发。该可穿戴设备可与空调器之间通过蓝牙进行配对,并通过蓝牙进行数据的传输,可穿戴设备可定时或实时上传其检测到的空调器蓝牙信号的强度,也可仅在检测到的蓝牙信号强度变化时,向空调器上传蓝牙信号强度,避免空调器多次重复计算;空调器也可在进入随身感模式后定时或实时获取可穿戴设备检测到的空调器蓝牙信号的强度。该可穿戴设备可为智能手环、智能空调器蓝牙信号的信号强度的时间间隔可根据每次计算得到的舒适感至进行调节。可设定信号强度与距离的映射关系表,通过查表可得知信号强度所对应的用户与空调器的距离,为保证得到的用户与空调器距离之间的准确性,可设置信号强度区间与距离区间对应的映射关系表,以信号强度为S为例进行说明,例如S≥60时,对应的距离为0<L≤1;0<
S≤59, 1<L≤2; 20< S≤39, 2<L≤3; 5< S≤19 ,L>3;
S≤5,可穿戴设备与空调器断开连接。
随身感值可根据距离、当前用户周围温度以及当前室内风机风速计算得到,根据上述三组参数计算可使得设定温度以及风速调节后,用户感觉更加舒适。
用户与空调器的距离大于预设距离如3m时,将上下导风条的角度打到上限角度,用户与空调器的距离越大,上下导风条的角度越靠近上限角度,可设置用户与空调器的距离区间对应的上下导风条角度。
本实施例提出的方案中,获取用户与空调器的距离,并根据距离、当前用户周围温度以及当前室内风机风速计算随身感值计算随身感值,获取随身感值所在的随身感值区间对应的第一导风条角度值,并根据导风条角度值调节空调器的左右导风条角度,使得调节后的左右导风条角度满足随身感的要求,更加舒适,同时获取距离所在的距离区间对应的第二导风条角度值,并根据第二导风条角度值调节空调器的上下导风条角度,通过用户与空调器的距离调节上下导风板的角度,使得用户更加舒适,而不用在距离变化时手动调节左右导风板和上下导风板,导风板的调节更加智能。
进一步地,基于第五实施例提出本发明空调器控制方法第六实施例,在本实施例中,步骤S12包括:
获取距离对应的第一随身感修正值、当前用户周围温度以及当前室内风机风速对应的第二随身感修正值;
根据第一随身感修正值、当前用户周围温度和第二随身感修正值计算随身感值。
不同的风速区间对应不同的随身感修正值,不同的距离区间对应不同的随身感修正值。根据距离对应的随身感修正值、用户周围温度以及室内风机风速对应的随身感修正值计算随身感值的计算公式可为:AMV=H×(Ta+A1+A2)-K,其中,Ta为用户周围温度,A1为室内风机风速对应的随身感修正值,A2为距离对应的随身感修正值,H和K为常量值,该常量值可根据用户的活动量确定,用户的活动量可根据可穿戴设备中的加速度传感器检测得到的加速度计算得到。例如用户静坐即活动量M=58时,H=0.2389,K=6.1558;低活动量M=93时,H=0.175,K=3.643;中活动量即M=123时,H=0.174,K=30358;高活动量即M=157时,H=0.265,K=4.158。
本实施例公开的技术方案中可直接按照当前的用户周围温度、室内风机的风速以及用户与空调器的距离计算得到随身感值,并根据随身感值进行运行参数的调节,使得运行参数的调节更加准确。
进一步地,基于第五或第六实施例提出本发明空调器控制方法第七实施例,在本实施例中,步骤S11之后还包括:
根据距离与位置系数之间的映射关系确定距离对应的位置系数;
根据随身感值与位置系数获取空调器的目标运行参数,空调器的运行参数包括设定温度及/或室内风机风速;
控制空调器按照目标运行参数运行。
在计算得到随身感值后,可根据随身感值以及位置系数进一步调节空调器的运行参数,使得空调器的运行参数的调节更加准确,在本实施例中根据随身感值与位置系数获取空调器的目标运行参数的步骤可包括:
获取随身感值所在的随身感区间,并获取随身感区间对应的运行参数调节规则;
按照运行参数调节规则、位置系数、随身感值以及当前运行参数计算目标运行参数。
可以理解的是在空调器的运行模式不同时,运行参数为室内风机风速时,每次确定随身感区间后,室内风机在当前风速基础上更新一次风速值,即Vsl=
Vsl+ △V*C,C为位置系数,与用户距离空调的距离有关系。当Vsl >100%时,取Vsl =100%,当Vsl <1%,取Vsl
=1%。
运行参数为设定温度值时,每次确定随身感区间后,室内风机在当前设定温度值基础上更新一次设定温度值
本实施例公开的方案,按照映射表中不同的随身感区间对应的运行参数调节规则进行运行参数的调节,使得运行参数的调节更加准确。
进一步地,参照图6,基于第一实施例提出本发明空调器控制方法第八实施例,在本实施例中,步骤S30包括:
步骤S35,检测用户离空调器的距离,根据距离确定风速调整的位置系数;
步骤S36,根据随身感区间对应的计算方式以及位置系数计算得到风速变化量;
步骤S37,按照风速变化量调整空调器室内风机的风速。
在本实施例中,步骤S10包括:通过可穿戴设备检测用户的用户附近温度以及用户离空调器的距离对随身感的第一修正值和风速变化对随身感的第二修正值;根据用户附近温度、第一修正值和第二修正值计算用户的随身感值。
可穿戴设备为蓝牙通信,即,可穿戴设备可以通过蓝牙与空调器通信,完成数据交互和空调器的控制。通过可穿戴设备上的温度检测器检测用户附近温度,用户离空调器的距离对随身感的第一修正值和风速变化对随身感的第二修正值。用户附近温度通过可穿戴设备检测,可穿戴设备为手环、手表等。在可穿戴设备被用户穿戴时,为用户体表温度,在可穿戴设备未被用户穿戴时,为用户周边的温度。风速变化对随身感的第二修正值A2参考表2,且其中,修正值根据风对人吹、摆风和避风不同;用户离空调器的距离对随身感的第一修正值A2。用户离空调器的距离是通过可穿戴设备与空调器连接的蓝牙信号的强弱来判断人与空调器的距离。例如,蓝牙信号划分为4个强弱等级,不同的等级对应不同的距离,通过信号强弱等级与距离的对应关系,确定检测到的可穿戴设备与空调器间蓝牙信号的强弱得到用户离空调器的距离L,信号越强,用户离空调器的距离越近。例如,信号强弱等级1,对应距离为3m以上;强弱等级为2,对应距离为2m<L≤3m;信号强弱等级3,对应距离为1m<L≤2m;信号强弱等级4,对应距离为0m<L≤1m。
为了提高随身感的计算精确度,不同的活动量对应不同的计算方式,例如,在静坐时,活动量少,计算方式为:AMV=a1*(Ta+A1+A2)-b1;在低活动量(大于静坐的活动量)时,计算方式为:AMV=
a2*(Ta+A1+A2)-b2;中活动量时,计算方式为:AMV= a3*(Ta+A1+A2)-b3;高活动量时,计算方式为:AMV=
a4*(Ta+A1+A2)-b4。其中,a1、a2、a3和a4对应不同活动量而设置的计算系数,根据实验计算得到;b1、b2、b3和b4对应不同活动量而设置的补偿值,根据实验计算得到;Ta为通过可穿戴设备检测的用户附近温度。例如,静坐时计算方式为:AMV=0.2389*(Ta+A1+A2)-6.1558;高活动量时计算方式为:AMV=0.265*(Ta+A1+A2)-4.158。
用户处在不同的距离,对风速调整的需求不同。检测用户离空调器的距离,根据距离确定风速调整的位置系数。当用户比较热时,用户距离空调器越远,期望风速变化越大,越近期望风速变化越小,所以系数为C,当用户较冷时,用户距离空调器越近,期望风速变化越大,越远期望风速变化越小,所以系数为C。
在确定位置系数C后,根据随身感区间对应的计算方式以及位置系数计算得到风速变化量。对应不同的随身感区间有不同的风速变化量ARate的计算方式。
进一步地,为了更好的调整风速,计算得到风速变化量,根据随身感区间对应的计算方式以及调整系数计算得到风速变化量的步骤包括:
在所确定的随身感区间为热的区间时,根据随身感区间对应的计算方式以及位置系数计算得到风速变化量;
在所确定的随身感区间为冷的区间时,根据随身感区间对应的计算方式以及位置系数的导数计算得到风速变化量。
例如,当计算得到的随身感值所落入的区间为随身感区间4,为舒适(有点暖)的随身感区间,风速变化量为△Rate
=-(ucJSX-1%)/2*(1/C);当计算得到的随身感值所落入的区间为随身感区间1,为冷的随身感区间,风速变化量为△Rate
=+(100%-ucJSX)/2*C,其中ucJSX为当前风机的风速值。
在计算得到风速变化量后,按照变化的方向,调整空调器室内风机的风速,即,在室内风机当前风速的基础上按照变化量调整。例如,计算出来的风速变化量为20%,调整方向为增加,则在当前风速的基础上增加20%的风速。
本实施例通过用户的随身感、随身感的区间以及距离对风速变化影响的位置系数;根据区间对应的计算方式及位置系数计算风速变化量,自动按照风速变化量调整室内风机的风速。提供一种灵活的风速调节方式,会随着用户的真实需求提供精细化的风速调节方式,提供更加舒适的空调器体验,且提高了空调器风速调节的智能化程度。
在本发明一实施例中,为了更加精确的控制风速,根据随身感区间对应的计算方式以及位置系数计算得到风速变化量之后,还包括:
在随身感区间为预设区间时,根据风速变化量计算调整后的风速;
确定与随身感区间的运行时间对应的风速限定值;
在调整后的风速大于所确定的风速限定值时,按照风速限定值调整空调器室内风机的风速。
本实施例与上述实施例的不同之处在于,设置了预设区间,预设区间的风速调节与其他随身感区间的调节不同,该预设区间的风速调节需要限制。预设区间为随身感区间3,也可以是其他根据实验所得的随身感区间。
在调整后的风速大于所确定的风速限定值时,按照风速限定值调整空调器室内风机的风速。具体的,风速限定值与随身感区间3的运行时间ucSectionTim关联,例如,ucSectionTim<=
30分钟,最大风速值限定为80%;60分钟<ucSectionTim<=90分钟时,最大风速值限定为40%。在调整后的风速小于或等于所确定的风速限定值时,按照风速变化量调整空调器室内风机的风速,即,按照实际计算的风速变化量调整室内风机的风速。该预设随身感区间为比较舒适的区间,不能对当前的做大的调整,因此,需要限制风速的调整。使得用户在该随身感区间内的舒适感更好。
本发明进一步提供一种空调器控制装置。
参照图7,图7为本发明空调器控制装置第一实施例的功能模块示意图。
本实施例提出一种空调器控制装置,该空调器控制装置包括:
获取模块10,获取用户的随身感值,随身感值根据可穿戴设备检测得到的用户周围温度计算得到;
确定模块20,用于确定随身感值所在的随身感区间;
调整模块30,用于根据随身感区间调整空调器的运行参数。
用户周围温度可通过用户佩戴的可穿戴设备检测得到,可穿戴设备上设置温度传感器,每个预设时间间隔向空调器上传检测到的室内温度,空调器将接收到的室内温度作为用户周围温度。在空调器处于清醒随身感模式时,采用风速以及用户与空调器之间的距离对随身感值进行修正,即随身感值AMV=
K(Ta+A1+A2)-H,风速对应有修正值A1,用户与空调器之间的距离对应有修正值A2,
K和H为常量,K和H可通过用户的活动量确定,用户的活动量不同所对应的K和H不同。
在空调器处于睡眠随身感模式时,可采用辐射温度、用户睡眠状态、预设时间间隔内的运动步数及/或体温等对数据对随身感进行修正,例如AMV=KTa+LTr+M,其中,Ta为用户周围温度,Tr为辐射温度,K、L以及M为常量也可通过其它方式确定,例如用户的运动步数以及当前时间点等数据,Tr=Ta+A1,A1为第一修正值。清醒随身感以及睡眠随身感的判断由用户的活动量或者当前时间点是否位于睡眠时间段来确定。
可将计算得到的随身感值分为多个随身感区间进行控制,避免由于随身感值波动导致温度调节的不准确,具体的随身感区间的划分可由开发人员根据需要进行设定,具体随身感区间的划定与K、H、A1以及A2对应的值有关,在此不再赘述。不同的随身感区间可设定不同的温度,也可设定不同的温度调整策略很行温度调整。
本实施例公开的技术方案中,根据当前的用户周围温度确定计算随身感值,并确定随身感值所在的随身感区间,并根据随身感区间调整空调器的运行参数,使得对空调器的控制更加准确。
进一步地,基于第一实施例提出本发明空调器控制装置第二实施例,在本实施例中,调整模块30包括:
确定子模块,用于确定随身感值所在的随身感区间对应的温度;
调整子模块,用于将随身感区间对应的温度调整为空调器的运行温度。
进一步地,确定子模块包括:
获取单元,用于每隔预设时间间隔获取当前的运行模式,运行模式包括制冷模式和制热模式,以及获取随身感区间对应的温度变量,并根据运行模式获取随身感区间对应的温度比较值;
修正单元,用于根据温度变量修正当前运行温度;
比较单元,用于根据随身感区间对应的比较方式比较温度比较值以及修正后的当前运行温度,并获取比较结果,其中,比较方式包括取最大值及最小值;
处理单元,用于将比较结果对应的温度作为随身感区间对应的温度。
进一步地,第一获取单元包括:
获取子单元,用于获取用户与空调器之间的距离对应的位置系数;
计算子单元,用于根据随身感值以及位置系数计算温度变量。
本实施中各个模块功能的实现方式具体参照上述方法实施例,在此不再赘述。
进一步地,基于第一实施例提出本发明空调器控制装置第三实施例,在本实施例中,获取模块10,还用于获取用户与空调器的距离,并根据距离、当前用户周围温度以及当前室内风机风速计算随身感值;
调整模块30包括:
获取子模块,用于获取随身感值所在的随身感值区间对应的第一导风条角度值以及获取距离所在的距离区间对应的第二导风条角度值;
调节子模块,用于根据导风条角度值调节空调器的左右导风条角度,以及根据第二导风条角度值调节空调器的上下导风条角度。
进一步地,获取模块10包括:
获取单元,用于获取距离对应的第一随身感修正值、当前用户周围温度以及当前室内风机风速对应的第二随身感修正值;
计算单元,用于根据第一随身感修正值、当前用户周围温度和第二随身感修正值计算随身感值。
本实施中各个模块功能的实现方式具体参照上述方法实施例,在此不再赘述。
进一步地,基于第一实施例提出本发明空调器控制装置第四实施例,在本实施例中,调整模块包括:
确定子模块,用于检测用户离空调器的距离,根据距离确定风速调整的位置系数;
计算子模块,用于根据随身感区间对应的计算方式以及位置系数计算得到风速变化量;
调制子模块,用于按照风速变化量调整空调器室内风机的风速。
进一步地,计算子模块,还用于在所确定的随身感区间为热的区间时,根据随身感区间对应的计算方式以及位置系数计算得到风速变化量,以及在所确定的随身感区间为冷的区间时,根据随身感区间对应的计算方式以及位置系数的导数计算得到风速变化量。
进一步地,计算子模块,还用于在随身感区间为预设区间时,根据风速变化量计算调整后的风速;
确定子模块,还用于确定与随身感区间的运行时间对应的风速限定值;
调整子模块,还用于在调整后的风速大于所确定的风速限定值时,按照风速限定值调整空调器室内风机的风速。
本实施中各个模块功能的实现方式具体参照上述方法实施例,在此不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,云端服务器,空调器,或者网络设备等)执行本发明各个实施例的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (26)
- 一种空调器控制方法,其特征在于,所述空调器控制方法包括:获取用户的随身感值,所述随身感值根据可穿戴设备检测得到的用户周围温度计算得到;确定所述随身感值所在的随身感区间;根据所述随身感区间调整空调器的运行参数。
- 如权利要求1所述的空调器控制方法,其特征在于,所述根据所述随身感区间调整空调器的运行参数的步骤包括:确定所述随身感值所在的随身感区间对应的温度;将所述随身感区间对应的温度调整为所述空调器的运行温度。
- 如权利要求1所述的空调器控制方法,其特征在于,所述确定所述随身感值所在的随身感区间对应的温度的步骤包括:获取当前的运行模式,所述运行模式包括制冷模式和制热模式;获取所述随身感区间对应的温度变量,并根据所述运行模式获取所述随身感区间对应的温度比较值;根据所述温度变量修正当前运行温度,并根据所述随身感区间对应的比较方式比较所述温度比较值以及修正后的当前运行温度,并获取比较结果,其中,所述比较方式包括取最大值及最小值;将所述比较结果对应的温度作为所述随身感区间对应的温度。
- 如权利要求3所述的空调器控制方法,其特征在于,所述获取所述随身感区间对应的温度变量的步骤包括:获取用户与所述空调器之间的距离对应的位置系数;根据所述随身感值以及所述位置系数计算所述温度变量。
- 如权利要求3所述的空调器控制方法,其特征在于,在所述随身感区间对应的比较方式为取最大值时,且当前运行温度大于或等于所述温度比较值时,执行所述根据所述温度变量修正当前运行温度的步骤;或者,在所述随身感区间对应的比较方式为取最小值时,且当前运行温度小于或等于所述温度比较值时,执行所述根据所述温度变量修正当前运行温度的步骤。
- 如权利要求2所述的空调器控制方法,其特征在于,所述确定所述随身感值所在的随身感区间对应的温度的步骤包括:获取所述随身感区间对应的温度增量值;对当前运行温度增加或减少所述温度增量值得到所述随身感区间对应的温度。
- 如权利要求6所述的空调器控制方法,其特征在于,所述获取所述随身感区间对应的温度增量值的步骤包括:获取用户与所述空调器之间的距离对应的位置系数;根据所述随身感值以及所述位置系数计算所述温度增量值。
- 如权利要求1所述的空调器控制方法,其特征在于,所述获取用户的随身感值的步骤包括:获取用户与空调器的距离,并根据所述距离、当前用户周围温度以及当前室内风机风速计算随身感值;所述根据所述随身感区间调整空调器的运行参数的步骤包括:获取所述随身感值所在的随身感值区间对应的第一导风条角度值,并根据所述导风条角度值调节所述空调器的左右导风条角度;获取所述距离所在的距离区间对应的第二导风条角度值,并根据所述第二导风条角度值调节所述空调器的上下导风条角度。
- 如权利要求8所述的空调器导风板控制方法,其特征在于,所述根据所述距离、当前用户周围温度以及当前室内风机风速计算随身感值的步骤包括:获取所述距离对应的第一随身感修正值、当前用户周围温度以及当前室内风机风速对应的第二随身感修正值;根据所述第一随身感修正值、当前用户周围温度和所述第二随身感修正值计算所述随身感值。
- 如权利要求8所述的空调器导风板控制方法,其特征在于,所述根据所述距离、当前用户周围温度以及当前室内风机风速计算随身感值的步骤之后,所述空调器导风板控制方法包括:根据距离与位置系数之间的映射关系确定所述距离对应的位置系数;根据所述随身感值与所述位置系数获取所述空调器的目标运行参数,所述空调器的运行参数包括设定温度及/或室内风机风速;控制所述空调器按照所述目标运行参数运行。
- 如权利要求10所述的空调器导风板控制方法,其特征在于,所述根据所述随身感值与所述位置系数获取所述空调器的运行参数的步骤包括:获取所述随身感值所在的随身感区间,并获取所述随身感区间对应的运行参数调节规则;按照所述运行参数调节规则、位置系数、随身感值以及当前运行参数计算所述目标运行参数。
- 如权利要求8所述的空调器导风板控制方法,其特征在于,所述获取用户与空调器的距离的步骤包括:获取与空调器配对的可穿戴设备检测到的空调器蓝牙信号的信号强度;根据所述信号强度确定用户与所述空调器的距离。
- 如权利要求1所述的空调器控制方法,其特征在于,所述根据所述随身感区间调整空调器的运行参数的步骤包括:检测用户离空调器的距离,根据所述距离确定风速调整的位置系数;根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量;按照所述风速变化量调整空调器室内风机的风速。
- 如权利要求13所述的空调器风速控制方法,其特征在于,所述根据所述随身感区间对应的计算方式以及所述调整系数计算得到风速变化量的步骤包括:在所确定的随身感区间为热的区间时,根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量;在所确定的随身感区间为冷的区间时,根据所述随身感区间对应的计算方式以及所述位置系数的导数计算得到风速变化量。
- 如权利要求13所述的空调器风速控制方法,其特征在于,所述根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量之后,还包括:在所述随身感区间为预设区间时,根据所述风速变化量计算调整后的风速;确定与所述随身感区间的运行时间对应的风速限定值;在所述调整后的风速大于所确定的风速限定值时,按照所述风速限定值调整空调器室内风机的风速。
- 如权利要求13所述的空调器风速控制方法,其特征在于,所述获取用户的随身感值之前,还包括:通过可穿戴设备检测用户附近温度以及用户离空调器的距离对随身感的第一修正值和风速变化对随身感的第二修正值;根据所述用户附近温度、第一修正值和第二修正值计算用户的随身感值。
- 如权利要求16所述的空调器风速控制方法,其特征在于,所述根据所述用户附近温度、第一修正值和第二修正值计算随身感值包括:获取用户的活动量;按照所述活动量对应的计算方式根据所述用户附近温度、第一修正值和第二修正值计算用户的随身感值。
- 一种空调器控制装置,其特征在于,所述空调器控制装置包括:获取模块,获取用户的随身感值,所述随身感值根据可穿戴设备检测得到的用户周围温度计算得到;确定模块,用于确定所述随身感值所在的随身感区间;调整模块,用于根据所述随身感区间调整空调器的运行参数。
- 如权利要求18所述的空调器控制装置,其特征在于,所述调整模块包括:确定子模块,用于确定所述随身感值所在的随身感区间对应的温度;调整子模块,用于将所述随身感区间对应的温度调整为所述空调器的运行温度。
- 如权利要求19所述的空调器控制装置,其特征在于,所述确定子模块包括:获取单元,用于每隔预设时间间隔获取当前的运行模式,所述运行模式包括制冷模式和制热模式,以及获取所述随身感区间对应的温度变量,并根据所述运行模式获取所述随身感区间对应的温度比较值;修正单元,用于根据所述温度变量修正当前运行温度;比较单元,用于根据所述随身感区间对应的比较方式比较所述温度比较值以及修正后的当前运行温度,并获取比较结果,其中,所述比较方式包括取最大值及最小值;处理单元,用于将所述比较结果对应的温度作为所述随身感区间对应的温度。
- 如权利要求20所述的空调器控制装置,其特征在于,所述第一获取单元包括:获取子单元,用于获取用户与所述空调器之间的距离对应的位置系数;计算子单元,用于根据所述随身感值以及所述位置系数计算所述温度变量。
- 如权利要求18所述的空调器控制装置,其特征在于,所述获取模块,还用于获取用户与空调器的距离,并根据所述距离、当前用户周围温度以及当前室内风机风速计算随身感值;所述调整模块包括:获取子模块,用于获取所述随身感值所在的随身感值区间对应的第一导风条角度值以及获取所述距离所在的距离区间对应的第二导风条角度值;调节子模块,用于根据所述导风条角度值调节所述空调器的左右导风条角度,以及根据所述第二导风条角度值调节所述空调器的上下导风条角度。
- 如权利要求22所述的空调器控制装置,其特征在于,所述获取模块包括:获取单元,用于获取所述距离对应的第一随身感修正值、当前用户周围温度以及当前室内风机风速对应的第二随身感修正值;计算单元,用于根据所述第一随身感修正值、当前用户周围温度和所述第二随身感修正值计算所述随身感值。
- 如权利要求如权利要求18所述的空调器控制装置,其特征在于,所述调整模块包括:确定子模块,用于检测用户离空调器的距离,根据所述距离确定风速调整的位置系数;计算子模块,用于根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量;调制子模块,用于按照所述风速变化量调整空调器室内风机的风速。
- 如权利要求如权利要求24所述的空调器控制装置,其特征在于,所述计算子模块,还用于在所确定的随身感区间为热的区间时,根据所述随身感区间对应的计算方式以及所述位置系数计算得到风速变化量,以及在所确定的随身感区间为冷的区间时,根据所述随身感区间对应的计算方式以及所述位置系数的导数计算得到风速变化量。
- 如权利要求如权利要求24所述的空调器控制装置,其特征在于,所述计算子模块,还用于在所述随身感区间为预设区间时,根据所述风速变化量计算调整后的风速;所述确定子模块,还用于确定与所述随身感区间的运行时间对应的风速限定值;所述调整子模块,还用于在所述调整后的风速大于所确定的风速限定值时,按照所述风速限定值调整空调器室内风机的风速。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611270476.2A CN106705373B (zh) | 2016-12-30 | 2016-12-30 | 空调器风速控制方法、装置、存储介质及空调器 |
CN201611271145.0A CN106595002B (zh) | 2016-12-30 | 2016-12-30 | 空调器控制方法和装置 |
CN201611271039.2 | 2016-12-30 | ||
CN201611270476.2 | 2016-12-30 | ||
CN201611271145.0 | 2016-12-30 | ||
CN201611271039.2A CN106610094A (zh) | 2016-12-30 | 2016-12-30 | 空调器导风板控制方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018120717A1 true WO2018120717A1 (zh) | 2018-07-05 |
Family
ID=62707702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091182 WO2018120717A1 (zh) | 2016-12-30 | 2017-06-30 | 空调器控制方法和装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018120717A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113310187A (zh) * | 2021-06-09 | 2021-08-27 | 海信(山东)空调有限公司 | 空调器的控制方法及装置、空调器和计算机可读存储介质 |
CN115218381A (zh) * | 2022-06-16 | 2022-10-21 | 青岛海尔空调器有限总公司 | 空调控制方法、装置、电子设备及存储介质 |
CN115614967A (zh) * | 2022-09-19 | 2023-01-17 | 珠海格力电器股份有限公司 | 一种空调器控制方法、控制装置及空调器 |
CN115875813A (zh) * | 2022-12-06 | 2023-03-31 | 珠海格力电器股份有限公司 | 送风控制方法、空调器及存储介质 |
CN116017963A (zh) * | 2023-03-28 | 2023-04-25 | 浙江德塔森特数据技术有限公司 | 一种智能调节机柜制冷量的调节方法及智能调节机柜 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110788A (zh) * | 2014-01-14 | 2014-10-22 | 美的集团股份有限公司 | 一种空调器的控制方法和控制装置 |
CN104613603A (zh) * | 2015-02-05 | 2015-05-13 | 广东美的制冷设备有限公司 | 空调器及其控制方法 |
CN205066053U (zh) * | 2015-08-10 | 2016-03-02 | 珠海格力电器股份有限公司 | 一种空调及人体检测装置 |
CN106196481A (zh) * | 2016-07-29 | 2016-12-07 | 广东美的制冷设备有限公司 | 基于冷热感值的导风条调节方法及装置 |
CN106225162A (zh) * | 2016-07-29 | 2016-12-14 | 广东美的制冷设备有限公司 | 基于冷热感值的风速调节方法及装置 |
CN106595002A (zh) * | 2016-12-30 | 2017-04-26 | 广东美的制冷设备有限公司 | 空调器控制方法和装置 |
CN106610094A (zh) * | 2016-12-30 | 2017-05-03 | 广东美的制冷设备有限公司 | 空调器导风板控制方法和装置 |
CN106705373A (zh) * | 2016-12-30 | 2017-05-24 | 广东美的制冷设备有限公司 | 空调器风速控制方法、装置、存储介质及空调器 |
-
2017
- 2017-06-30 WO PCT/CN2017/091182 patent/WO2018120717A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104110788A (zh) * | 2014-01-14 | 2014-10-22 | 美的集团股份有限公司 | 一种空调器的控制方法和控制装置 |
CN104613603A (zh) * | 2015-02-05 | 2015-05-13 | 广东美的制冷设备有限公司 | 空调器及其控制方法 |
CN205066053U (zh) * | 2015-08-10 | 2016-03-02 | 珠海格力电器股份有限公司 | 一种空调及人体检测装置 |
CN106196481A (zh) * | 2016-07-29 | 2016-12-07 | 广东美的制冷设备有限公司 | 基于冷热感值的导风条调节方法及装置 |
CN106225162A (zh) * | 2016-07-29 | 2016-12-14 | 广东美的制冷设备有限公司 | 基于冷热感值的风速调节方法及装置 |
CN106595002A (zh) * | 2016-12-30 | 2017-04-26 | 广东美的制冷设备有限公司 | 空调器控制方法和装置 |
CN106610094A (zh) * | 2016-12-30 | 2017-05-03 | 广东美的制冷设备有限公司 | 空调器导风板控制方法和装置 |
CN106705373A (zh) * | 2016-12-30 | 2017-05-24 | 广东美的制冷设备有限公司 | 空调器风速控制方法、装置、存储介质及空调器 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113310187A (zh) * | 2021-06-09 | 2021-08-27 | 海信(山东)空调有限公司 | 空调器的控制方法及装置、空调器和计算机可读存储介质 |
CN115218381A (zh) * | 2022-06-16 | 2022-10-21 | 青岛海尔空调器有限总公司 | 空调控制方法、装置、电子设备及存储介质 |
CN115614967A (zh) * | 2022-09-19 | 2023-01-17 | 珠海格力电器股份有限公司 | 一种空调器控制方法、控制装置及空调器 |
CN115614967B (zh) * | 2022-09-19 | 2024-06-04 | 珠海格力电器股份有限公司 | 一种空调器控制方法、控制装置及空调器 |
CN115875813A (zh) * | 2022-12-06 | 2023-03-31 | 珠海格力电器股份有限公司 | 送风控制方法、空调器及存储介质 |
CN116017963A (zh) * | 2023-03-28 | 2023-04-25 | 浙江德塔森特数据技术有限公司 | 一种智能调节机柜制冷量的调节方法及智能调节机柜 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018120717A1 (zh) | 空调器控制方法和装置 | |
WO2018120715A1 (zh) | 空调器的控制方法、装置及空调器 | |
WO2019114553A1 (zh) | 空气调节器及其控制方法、装置以及存储介质 | |
WO2017204499A1 (ko) | 이동형 공조장치 | |
WO2018076757A1 (zh) | 一种人体位置获取方法和装置 | |
WO2017008521A1 (zh) | 一种基于移动终端的智能家电控制方法及移动终端、附件 | |
WO2021047070A1 (zh) | 终端拍摄方法、装置、移动终端及可读存储介质 | |
WO2019017696A1 (ko) | 신발 끈 조절장치 및 이를 구비하는 신발 | |
WO2020124847A1 (zh) | 空调器的控制方法、空调器及存储介质 | |
WO2019114559A1 (zh) | 空气调节器的控制方法、装置及计算机可读存储介质 | |
WO2020011019A1 (zh) | 电子膨胀阀的控制方法、空调器及计算机可读存储介质 | |
WO2020062616A1 (zh) | 显示面板的伽马值调节方法、装置及显示设备 | |
WO2018018808A1 (zh) | 空调器及其温湿度控制方法 | |
WO2020141727A1 (ko) | 헬스 케어 로봇 및 그 제어 방법. | |
WO2018107668A1 (zh) | 空调器及其一键开机控制方法 | |
WO2019075909A1 (zh) | 空调器及其控制方法、控制装置和计算机可读存储介质 | |
WO2019051900A1 (zh) | 智能家居设备的控制方法、装置及可读存储介质 | |
WO2020078404A1 (zh) | 背光补偿方法、设备、系统及存储介质 | |
WO2021031334A1 (zh) | 空调系统及其空调控制方法、空调控制装置 | |
WO2019114565A1 (zh) | 空气调节器的调节方法、装置以及存储介质 | |
WO2020082503A1 (zh) | 情景模式的推荐方法、服务器、家电设备以及存储介质 | |
WO2015194697A1 (en) | Video display device and operating method thereof | |
WO2018028327A1 (zh) | 空调器及其一键开机控制方法 | |
WO2018076688A1 (zh) | 空调控制方法、装置及空调 | |
WO2020116829A2 (ko) | 특정부위 위치 측정이 가능한 마사지 모듈을 포함하는 마사지 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17888782 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17888782 Country of ref document: EP Kind code of ref document: A1 |