+

WO2018109847A1 - Control device, imaging device, mobile body, control method, and program - Google Patents

Control device, imaging device, mobile body, control method, and program Download PDF

Info

Publication number
WO2018109847A1
WO2018109847A1 PCT/JP2016/087126 JP2016087126W WO2018109847A1 WO 2018109847 A1 WO2018109847 A1 WO 2018109847A1 JP 2016087126 W JP2016087126 W JP 2016087126W WO 2018109847 A1 WO2018109847 A1 WO 2018109847A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
focus lens
imaging device
condition
determination unit
Prior art date
Application number
PCT/JP2016/087126
Other languages
French (fr)
Japanese (ja)
Inventor
本庄謙一
永山佳範
Original Assignee
エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスゼット ディージェイアイ テクノロジー カンパニー リミテッド filed Critical エスゼット ディージェイアイ テクノロジー カンパニー リミテッド
Priority to PCT/JP2016/087126 priority Critical patent/WO2018109847A1/en
Priority to JP2017559736A priority patent/JP6543878B2/en
Publication of WO2018109847A1 publication Critical patent/WO2018109847A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a control device, an imaging device, a moving body, a control method, and a program.
  • a change in temperature may cause a physical change in the imaging device, for example, and a focus position may shift. Therefore, the imaging device may correct the position of the focus lens according to the temperature.
  • Patent Document 1 when the elapsed time from the power-on to the image input device is included in the time range corresponding to the fluctuation period of the ambient temperature of the distance measuring sensor, the elapsed time corresponds to the stable period of the ambient temperature. It is described that the scanning range of the focus lens in autofocus is set wider than that included in the time range.
  • Patent Document 1 Japanese Patent No. 4226936
  • a control device includes a condition related to an evaluation value of an image captured by an imaging device, a condition related to a distance between the imaging device and a subject, a condition related to an altitude of the imaging device, a condition related to a moving speed of the imaging device, In the case where a predetermined condition including at least one of a condition regarding the moving speed of the focus lens and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is based on the temperature. You may provide the determination part which determines to correct
  • the evaluation value may be an evaluation value related to contrast derived by the contrast AF method.
  • the determination unit may determine that the predetermined condition is satisfied when the change amount of the evaluation value per unit time is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
  • the evaluation value may be an evaluation value related to the phase difference derived by the phase difference AF method.
  • the determination unit may determine that the predetermined condition is satisfied when the change amount of the evaluation value per unit time is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
  • the evaluation value may be an evaluation value related to the size of the subject in the image.
  • the determination unit may determine that the predetermined condition is satisfied when the change amount of the evaluation value per unit time is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
  • the determination unit may determine that a predetermined condition is satisfied when the amount of change per unit time of the distance is equal to or less than a threshold, and may determine to correct the position of the focus lens based on the temperature.
  • the determination unit may determine that the predetermined condition is satisfied when the amount of change per unit time of the altitude is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
  • the determination unit may determine that a predetermined condition is satisfied when the moving speed of the imaging apparatus is equal to or less than a threshold value, and may determine to correct the position of the focus lens based on the temperature.
  • the determination unit may determine that a predetermined condition is satisfied when the moving speed of the focus lens of the imaging apparatus is equal to or less than a threshold, and may determine to correct the position of the focus lens based on the temperature.
  • the determining unit may determine that the predetermined condition is satisfied when the imaging apparatus is not performing the contrast AF, and may determine to correct the position of the focus lens based on the temperature.
  • the determination unit determines that the predetermined condition is satisfied when the other condition that the change amount from the reference temperature of the image pickup apparatus satisfies the condition is at least a threshold is satisfied, and the focus lens satisfies the predetermined condition. May be determined to be corrected based on temperature.
  • the determination unit may update the reference temperature based on the temperature when the amount of change from the reference temperature is greater than or equal to the threshold value.
  • the determination unit determines that a predetermined condition is satisfied when the other condition that the amount of movement according to the temperature from the reference position of the focus lens is equal to or greater than the threshold is satisfied.
  • the focus lens position may be determined to be corrected based on the temperature.
  • the determination unit may update the reference position based on the position of the focus lens when the amount of movement from the reference position is equal to or greater than a threshold value.
  • An imaging device may include the control device.
  • the imaging device may include a focus lens.
  • the imaging apparatus may include a control unit that controls the focus lens to correct the position of the focus lens in response to the determination unit determining to correct the position of the focus lens based on the temperature.
  • a moving body according to one embodiment of the present invention is provided with the imaging device.
  • a control method includes a condition related to an evaluation value of an image captured by an imaging apparatus, a condition related to a distance between the imaging apparatus and a subject, a condition related to an altitude of the imaging apparatus, a condition related to a moving speed of the imaging apparatus, In the case where a predetermined condition including at least one of a condition regarding the moving speed of the focus lens and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is based on the temperature.
  • a step of determining to correct may be provided.
  • a program includes a condition related to an evaluation value of an image captured by an imaging apparatus, a condition related to a distance between the imaging apparatus and a subject, a condition related to an altitude of the imaging apparatus, a condition related to a moving speed of the imaging apparatus, When a predetermined condition including at least one of a condition regarding the moving speed of the focus lens and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is corrected based on the temperature.
  • the computer may execute the step of determining to do.
  • FIG. 1 Various embodiments of the present invention may be described with reference to flowcharts and block diagrams.
  • the blocks in the flowcharts and block diagrams may represent (1) the stage of the process in which the operation is performed or (2) the “part” of the device responsible for performing the operation.
  • Certain stages and “parts” are provided with dedicated circuitry, programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor.
  • Dedicated circuitry may include digital and / or analog hardware circuitry. Integrated circuits (ICs) and / or discrete circuits may be included.
  • Programmable circuits may be logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLA), for example. , Flip-flops, registers, and memory elements, including reconfigurable hardware circuitry.
  • FPGAs field programmable gate arrays
  • PLA programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions to be executed by a suitable device.
  • a computer readable storage medium having instructions stored thereon comprises a product that includes instructions that can be executed to create a means for performing the operations specified in the flowcharts or block diagrams.
  • Examples of computer readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory).
  • EEPROM Electrically erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • Blu-ray registered trademark
  • the computer readable instructions may include either source code or object code written in any combination of one or more programming languages.
  • the source code or object code includes a conventional procedural programming language.
  • Conventional procedural programming languages include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA, C ++, etc. It may be an object-oriented programming language and a “C” programming language or a similar programming language.
  • Computer readable instructions may be directed to a general purpose computer, special purpose computer, or other programmable data processing device processor or programmable circuit locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, etc. ).
  • the processor or programmable circuit may execute computer readable instructions to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 100.
  • the UAV 100 includes a UAV main body 102, a gimbal 200, an imaging device 300, and a plurality of imaging devices 230.
  • the UAV 100 is an example of a moving object.
  • the moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
  • the UAV main body 102 includes a plurality of rotor blades.
  • the UAV main body 102 flies the UAV 100 by controlling the rotation of a plurality of rotor blades.
  • the UAV main body 102 causes the UAV 100 to fly using four rotary wings.
  • the number of rotor blades is not limited to four.
  • the UAV 100 may be a fixed wing aircraft that does not have a rotating wing.
  • the imaging device 300 is a camera for capturing a moving image or a still image.
  • the plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100.
  • Two imaging devices 230 may be provided on the front surface that is the nose of the UAV 100.
  • Two other imaging devices 230 may be provided on the bottom surface of the UAV 100.
  • the two imaging devices 230 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 230 on the bottom side may also be paired and function as a stereo camera.
  • the distance from the UAV 100 to the object may be measured based on images captured by the plurality of imaging devices 230.
  • Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230.
  • the number of imaging devices 230 included in the UAV 100 is not limited to four.
  • the UAV 100 only needs to include at least one imaging device 230.
  • the UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100.
  • the angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 300.
  • the imaging device 230 may have a single focus lens or a fisheye lens.
  • FIG. 2 shows an example of functional blocks of the UAV100.
  • the UAV 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotating blade mechanism 210, an imaging device 300, an imaging device 230, a GPS receiver 240, an inertial measurement device (IMU) 250, a magnetic compass 260, and an atmospheric pressure.
  • An altimeter 270 is provided.
  • the communication interface 150 communicates with an external transmitter.
  • the communication interface 150 receives various commands for the UAV control unit 110 from a remote transmitter.
  • the memory 160 stores programs necessary for the UAV control unit 110 to control the gimbal 200, the rotary blade mechanism 210, the imaging device 300, the imaging device 230, the GPS receiver 240, the IMU 250, the magnetic compass 260, and the barometric altimeter 270.
  • the memory 160 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 160 may be provided inside the UAV main body 102.
  • the memory 160 may be provided so as to be removable from the UAV main body 102.
  • the gimbal 200 supports the imaging direction of the imaging device 300 so that it can be adjusted.
  • the gimbal 200 supports the imaging device 300 rotatably around at least one axis.
  • the gimbal 200 is an example of a support mechanism.
  • the gimbal 200 may support the imaging device 300 rotatably about the yaw axis, the pitch axis, and the roll axis.
  • the gimbal 200 may change the imaging direction of the imaging device 300 by rotating the imaging device 300 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the rotary blade mechanism 210 includes a plurality of rotary blades and a plurality of drive motors that rotate the plurality of rotary blades.
  • the imaging device 230 captures the surroundings of the UAV 100 and generates image data. Image data of the imaging device 230 is stored in the memory 160.
  • the GPS receiver 240 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites. The GPS receiver 240 calculates the position of the GPS receiver 240, that is, the position of the UAV 100, based on the received signals.
  • the inertial measurement device (IMU) 250 detects the posture of the UAV 100.
  • the IMU 250 detects, as the posture of the UAV 100, acceleration in the three axial directions of the front, rear, left, and upper sides of the UAV 100, and angular velocity in the three axial directions of pitch, roll, and yaw.
  • the magnetic compass 260 detects the heading of the UAV 100.
  • the barometric altimeter 270 detects the altitude at which the UAV 100 flies.
  • the UAV control unit 110 controls the flight of the UAV 100 in accordance with a program stored in the memory 160.
  • the UAV control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the UAV control unit 110 controls the flight of the UAV 100 according to a command received from a remote transmitter via the communication interface 150.
  • the UAV control unit 110 may specify the environment around the UAV 100 by analyzing a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 controls the flight while avoiding obstacles based on the environment around the UAV 100, for example.
  • the UAV control unit 110 may generate three-dimensional spatial data around the UAV 100 based on a plurality of images captured by the plurality of imaging devices 230, and control the flight based on the three-dimensional spatial data.
  • the UAV control unit 110 may measure the distance between the UAV 100 and the object that is the subject by a triangulation method based on a plurality of images captured by the plurality of imaging devices 230.
  • the UAV control unit 110 may measure the distance between the UAV 100 and the object using an ultrasonic sensor, an infrared sensor, a radar sensor, or the like.
  • the imaging apparatus 300 includes an imaging unit 301 and a lens unit 401.
  • the lens unit 401 may be a lens unit that can be detached from the imaging unit 301.
  • the imaging unit 301 includes an imaging control unit 310, an imaging element 330, and a memory 340.
  • the imaging control unit 310 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the imaging control unit 310 may control the imaging device 300 in accordance with an operation command for the imaging device 300 from the UAV control unit 110.
  • the memory 340 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 340 may be provided inside the housing of the imaging unit 301.
  • the memory 340 may be provided so as to be removable from the housing of the imaging unit 301.
  • the imaging device 330 may be configured by a CCD or a CMOS.
  • the image pickup device 330 is held inside the housing of the image pickup apparatus 300 and outputs image data of an optical image formed through the plurality of lenses 432 to the image pickup control unit 310.
  • the imaging control unit 310 performs a series of image processing such as noise reduction, demosaicing, gamma correction, and edge cooperation on the image data.
  • the imaging control unit 310 stores image data after a series of image processing in the memory 340.
  • the imaging control unit 310 may output and store the image data in the memory 160 via the UAV control unit 110.
  • the imaging control unit 310 may perform an autofocus operation using image data.
  • the lens unit 401 includes a lens control unit 410, a memory 420, a lens moving mechanism 430, a plurality of lenses 432, a lens position detection unit 440, and a temperature sensor 450.
  • the plurality of lenses 432 includes a zoom lens and a focus lens.
  • the lens control unit 410 controls the movement of the plurality of lenses 432 in the optical axis direction via the lens moving mechanism 430 in accordance with a lens operation command from the imaging unit 301.
  • the lens control unit 410 controls the movement of the plurality of lenses 432 via the lens moving mechanism 430. Some or all of the plurality of lenses 432 are moved along the optical axis by the lens moving mechanism 430.
  • the lens control unit 410 moves at least one of the plurality of lenses 432 along the optical axis in accordance with a lens operation command from the imaging control unit 310.
  • the lens control unit 410 performs at least one of a zoom operation and a focus operation by moving at least one of the plurality of lenses 432 along the optical axis.
  • the lens position detection unit 440 detects the position of each of the plurality of lenses 432.
  • the lens position detection unit 440 detects the current zoom position and focus position.
  • the memory 420 stores control values of a plurality of lenses 432 that move via the lens moving mechanism 430.
  • the memory 420 stores, for example, lens specific information such as an F value, a focal length, and an individual number of the lens unit 401 as a control value.
  • the memory 420 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the temperature sensor 450 detects the temperature of the lens unit 401 as the temperature of the imaging device 300.
  • the temperature sensor 450 may be provided in the lens barrel of the lens unit 401 or may be provided outside the lens barrel of the lens unit 401.
  • the temperature sensor 450 may be provided in the housing of the imaging unit 301 or may be provided in the UAV main body 102.
  • the lens control unit 410 includes a temperature correction unit 412.
  • the temperature correction unit 412 corrects the focus position of the focus lens according to the temperature via the lens moving mechanism 430.
  • a lens barrel or the like constituting the lens unit 401 expands and contracts depending on the temperature. Due to such expansion and contraction, the focus position of the focus lens may shift. Therefore, the temperature correction unit 412 corrects the focus position of the focus lens based on the temperature information from the temperature sensor 450.
  • the temperature correction unit 412 may correct the focus position according to the temperature based on a predetermined relationship between the temperature and the lens position of the focus lens. For example, as illustrated in FIG. 3, the temperature correction unit 412 uses a function that is defined for each focal length (zoom position) of the lens unit 401 and indicates the relationship between the temperature and the lens position of the focus lens. Correct. The temperature correction unit 412 may correct the focus position by using a function corresponding to each shooting distance indicating the distance between the imaging apparatus 300 and the subject and each focal length. Each function may be stored in memory 420. The memory 420 may store a table indicating the relationship between temperature and lens position for each shooting distance and focal length. The temperature correction unit 412 may specify the lens position of the focus lens and correct the focus position by referring to a table corresponding to the shooting distance and the focal length.
  • the imaging control unit 310 includes an AF processing unit 312.
  • the AF processing unit 312 may determine the focus position of the focus lens according to the contrast AF method or the phase difference AF method.
  • the AF processing unit 312 may determine the focus position of the focus lens according to the image plane phase difference AF method. While moving the focus lens via the lens control unit 410, evaluation values relating to contrast or phase difference are sequentially derived from the image data output from the image sensor 330.
  • the AF processing unit 312 determines the position of the focus lens when the evaluation value is the highest as the focus position.
  • the AF processing unit 312 moves the focus lens from the closest end to the infinity end according to the contrast AF method, and the focus lens when the evaluation value is the highest in the so-called hill-climbing method is shown.
  • Search for the location of. the temperature correction unit 412 may execute the correction of the focus position according to the temperature.
  • the degree of focus position correction by the temperature correction unit 412 according to the temperature change is large, and as shown in FIG. 5, there is a possibility that a part of the evaluation value becomes a discontinuous point (a part surrounded by a broken line 600). Due to the presence of such discontinuous points, the AF processing unit 312 may not be able to specify the focus position appropriately.
  • the imaging device 300 mounted on a moving body such as the UAV 100 often operates in an environment where the change in the ambient temperature is relatively large, the change in the temperature of the imaging device 300 may be large. Therefore, when contrast AF and temperature correction are performed simultaneously, there is a possibility of affecting the focus position specification.
  • the imaging apparatus 300 when it is preferable not to correct the position of the focus lens according to the temperature, the imaging apparatus 300 according to the present embodiment does not execute the temperature correction by the temperature correction unit 412 even if the temperature changes. As a result, the temperature correction unit 412 does not unnecessarily perform temperature correction, thereby reducing the processing burden on the imaging apparatus 300. For example, when the imaging apparatus 300 is mounted on the UAV 100, the temperature varies greatly depending on the altitude. In such a situation, when the imaging apparatus 300 is used, temperature correction may be frequently performed. As a result, the processing load of the imaging apparatus 300 increases, and there is a possibility that problems such as an increase in power consumption or an increase in the amount of heat generated by the CPU or the like may occur.
  • the temperature correction unit 412 By reducing the frequency with which the temperature correction unit 412 performs the temperature correction, it is possible to reduce the processing load of the imaging apparatus 300 and to prevent such a problem from occurring. Since the contrast AF and the temperature correction are performed in parallel, it is possible to prevent the occurrence of a trouble in specifying the focus position.
  • the imaging control unit 310 and the determination unit 316 are included.
  • the determination unit 316 includes a condition related to an evaluation value of an image captured by the imaging apparatus 300, a condition related to the distance between the imaging apparatus 300 and the subject, a condition related to the altitude of the imaging apparatus 300, a condition related to the moving speed of the imaging apparatus 300, It is determined whether or not a predetermined condition including at least one of a condition relating to a moving speed of the focus lens and a condition relating to whether or not the imaging apparatus 300 is performing contrast AF is satisfied.
  • the determination unit 316 determines whether or not to correct the position of the focus lens of the imaging device 300 based on the temperature, depending on whether or not a predetermined condition is satisfied. When the determination unit 316 determines that the predetermined condition is satisfied, the determination unit 316 may determine to correct the position of the focus lens based on the temperature.
  • the evaluation value may be an evaluation value related to contrast derived by the AF processing unit 312 using the contrast AF method.
  • the evaluation value may be an evaluation value related to the phase difference derived by the phase difference AF method in the AF processing unit 312.
  • the determination unit 316 may determine that the change amount per unit time of the evaluation value of the contrast or the phase difference does not satisfy the predetermined condition in the period T1 higher than the threshold value.
  • the determination unit 316 may determine that a predetermined condition is satisfied in a period in which the evaluation value other than the period T1 is stable.
  • the evaluation value may be an evaluation value related to the distance to the subject derived by the DFD (Depth From Defocus) method.
  • the evaluation value may be an evaluation value related to the size of the subject in the image captured by the imaging apparatus 300.
  • the determination unit 316 may determine that a predetermined condition is satisfied when the amount of change in the evaluation value per unit time is equal to or less than a threshold value. For example, as shown in FIG. 7, when transitioning from image (A) to image (B), the subject frame 610 of the subject in the image (A) and the subject frame 612 of the subject 500 in the image (B). Since the size does not change, the determination unit 316 determines that a predetermined condition is satisfied. On the other hand, when the image (A) transitions to the image (C), the subject frame 610 of the subject 500 in the image (A) and the subject frame 612 of the subject 500 in the image (B) change in size. The determination unit 316 determines that a predetermined condition is not satisfied.
  • the determination unit 316 determines that a predetermined condition is satisfied when the change amount per unit time of the shooting distance X indicating the distance between the subject 500 and the imaging device 300 is equal to or less than a threshold value. You can do it. As illustrated in FIG. 9, the determination unit 316 determines that the predetermined condition is not satisfied in the period T2 and the period T3 in which the shooting distance X changes as the UAV 100 moves or the subject 500 moves. It's okay. On the other hand, the determination unit 316 may determine that a predetermined condition is satisfied in a period other than the period T2 and the period T3.
  • the determination unit 316 may determine that a predetermined condition is satisfied when the change amount per unit time of the altitude of the imaging apparatus 300 is equal to or less than a threshold value.
  • the determination unit 316 may determine that a predetermined condition is satisfied when the moving speed of the imaging apparatus 300 is equal to or less than a threshold value.
  • the determination unit 316 may determine that a predetermined condition is satisfied when the moving speed of the focus lens of the imaging apparatus 300 is equal to or less than a threshold value.
  • the determination unit 316 may determine that a predetermined condition is satisfied when the imaging apparatus 300 is not performing contrast AF.
  • the determination unit 316 may update the reference temperature based on the temperature when the amount of change from the reference temperature is equal to or greater than the threshold value. Thereby, when the temperature change is small, the temperature correction is not performed, and therefore the frequency of execution of the temperature correction can be suppressed.
  • the determination unit 316 satisfies a predetermined condition when the other condition that the amount of movement according to the temperature from the reference position of the focus lens satisfies at least one of the above-described conditions and is greater than or equal to the threshold value is satisfied. You may judge.
  • the determination unit 316 may update the reference position based on the position of the focus lens when the amount of movement from the reference position is greater than or equal to the threshold value. Accordingly, when the temperature change is small and the amount of movement of the focus lens is small, the temperature correction is not performed, so that the frequency of performing the temperature correction can be suppressed.
  • an allowable temperature range that is allowed without performing temperature correction due to a temperature change is ⁇ 4 [° C.] with respect to the reference temperature.
  • the determining unit 316 determines that a predetermined condition is satisfied when the temperature change from the reference temperature is ⁇ 4 [° C.] or more.
  • the allowable movement amount of the focus lens without performing the temperature correction due to the temperature change is set as the allowable width ⁇ .
  • the determination unit 316 determines that a predetermined condition is satisfied when the amount of movement of the focus lens from the reference position at the reference temperature is equal to or larger than the allowable width ⁇ .
  • FIG. 11 is a flowchart showing an example of a temperature correction execution procedure by the imaging apparatus 300.
  • the determining unit 316 acquires lens information of the lens unit 401 from the lens unit 401 (S100).
  • the lens unit 401 may provide the lens information stored in the memory 340 to the determination unit 316.
  • the memory 340 may store information indicating whether or not the lens is compatible with temperature correction, in addition to the F value and the focal length, as lens information.
  • the determining unit 316 determines whether or not the lens unit 401 is a temperature correction compatible lens based on the lens information (S102).
  • the determination unit 316 ends the process. On the other hand, if the lens unit 401 is a temperature correction compatible lens, the determination unit 316 determines whether or not a predetermined condition for executing temperature correction is satisfied (S104).
  • the determination unit 316 includes a condition related to an evaluation value of an image captured by the imaging apparatus 300, a condition related to the distance between the imaging apparatus 300 and the subject, a condition related to the altitude of the imaging apparatus 300, a condition related to the moving speed of the imaging apparatus 300, It may be determined whether or not a predetermined condition including at least one of a condition relating to a moving speed of the focus lens and a condition relating to whether or not the imaging apparatus 300 is performing contrast AF is satisfied.
  • the determination unit 316 determines not to correct the position of the focus lens based on the temperature, and instructs the lens unit 401 to interrupt the temperature correction (S110).
  • the temperature correction unit 412 interrupts temperature correction in response to an instruction to interrupt temperature correction.
  • the determination unit 316 determines to correct the position of the focus lens based on the temperature, and instructs the lens unit 401 to execute the temperature correction (S106).
  • the temperature correction unit 412 receives an instruction to execute the temperature correction and interrupts the temperature correction, the temperature correction unit 412 starts the temperature correction. If the temperature correction is already being executed, the temperature correction unit 412 receives the instruction to execute the temperature correction and continues the temperature correction as it is (S108).
  • the imaging apparatus 300 repeats the processing from step S104 to step S112 until the imaging processing by the lens unit 401 is completed (S112).
  • the imaging apparatus 300 when it is preferable not to correct the position of the focus lens according to the temperature, the imaging apparatus 300 does not perform temperature correction. Therefore, the frequency of temperature correction can be reduced, and the processing burden on the imaging apparatus 300 can be reduced. By suppressing the frequency of the temperature correction, it is possible to reduce the flicker of the image captured by the imaging apparatus 300 and to prevent the user from feeling uncomfortable.
  • FIG. 12 is a flowchart illustrating an example of a procedure in which the imaging apparatus 300 performs temperature correction when the temperature changes beyond the allowable temperature range.
  • the imaging apparatus 300 may execute the procedure illustrated in FIG. 12 at a predetermined cycle, for example, at an interval of 1/60 sec.
  • the determination unit 316 acquires the temperature information Tc in the lens detected by the temperature sensor 450 via the lens control unit 410 (S200). The determination unit 316 derives a difference (Tc ⁇ To) between the reference temperature To and the temperature Tc as a temperature change ⁇ T (S202). The determination unit 316 determines whether or not the magnitude of the temperature change ⁇ T is 4 ° C. or more (S204). If the magnitude of the temperature change ⁇ T is within 4 ° C., the determination unit 316 determines that the predetermined condition is not satisfied and ends the process.
  • the determination unit 316 determines whether or not the contrast AF is being performed (S206). If the contrast AF is being executed, the determination unit 316 updates the reference temperature To to the temperature Tc and ends the process.
  • the determination unit 316 determines that a predetermined condition is satisfied.
  • the determination unit 316 instructs execution of temperature correction.
  • the temperature correction unit 412 corrects the focus position of the focus lens based on the temperature Tc (S208).
  • the determination unit 316 updates the reference temperature To to the temperature Tc and ends the process.
  • the temperature correction is not executed, so that the frequency of the temperature correction can be reduced and the processing load on the imaging apparatus 300 can be reduced.
  • FIG. 13 illustrates an example of a computer 1200 in which aspects of the present invention may be embodied in whole or in part.
  • a program installed in the computer 1200 can cause the computer 1200 to function as an operation associated with the apparatus according to the embodiment of the present invention or as one or more “units” of the apparatus.
  • the program can cause the computer 1200 to execute the operation or the one or more “units”.
  • the program can cause the computer 1200 to execute a process according to an embodiment of the present invention or a stage of the process.
  • Such a program may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212 and a RAM 1214, which are connected to each other by a host controller 1210.
  • the computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 via the input / output controller 1220.
  • Computer 1200 also includes ROM 1230.
  • the CPU 1212 operates according to programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • a hard disk drive may store programs and data used by CPU 1212 in computer 1200.
  • the ROM 1230 stores therein a boot program executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200.
  • the program is provided via a computer-readable recording medium such as a CR-ROM, a USB memory, or an IC card or a network.
  • the program is installed in the RAM 1214 or the ROM 1230 that is also an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • Information processing described in these programs is read by the computer 1200 to bring about cooperation between the programs and the various types of hardware resources.
  • An apparatus or method may be configured by implementing information operations or processing in accordance with the use of computer 1200.
  • the CPU 1212 executes a communication program loaded in the RAM 1214 and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order.
  • the communication interface 1222 reads transmission data stored in a RAM 1214 or a transmission buffer area provided in a recording medium such as a USB memory under the control of the CPU 1212 and transmits the read transmission data to a network, or The reception data received from the network is written into a reception buffer area provided on the recording medium.
  • the CPU 1212 allows the RAM 1214 to read all or necessary portions of a file or database stored in an external recording medium such as a USB memory, and executes various types of processing on the data on the RAM 1214. Good. The CPU 1212 may then write back the processed data to an external recording medium.
  • the CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval that are described throughout the present disclosure for data read from the RAM 1214 and specified by the instruction sequence of the program. Various types of processing may be performed, including / replacement, etc., and the result is written back to RAM 1214.
  • the CPU 1212 may search for information in files, databases, etc. in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 specifies the attribute value of the first attribute. The entry that matches the condition is searched from the plurality of entries, the attribute value of the second attribute stored in the entry is read, and thereby the first attribute that satisfies the predetermined condition is associated. The attribute value of the obtained second attribute may be acquired.
  • the program or software module described above may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200.
  • a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program is transferred to the computer 1200 via the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

It may not be possible to obtain a desired effect when correcting the position of a focus lens according to temperature. This control device may comprise a determination unit that determines correction of the position of a focus lens of an imaging device on the basis of temperature if at least one of the following preset conditions is met: a condition pertaining to an evaluation value for an image captured by the imaging device; a condition pertaining to the distance between the imaging device and a subject; a condition pertaining to the altitude of the imaging device; a condition pertaining to the movement speed of the imaging device; a condition pertaining to the movement speed of the focus lens of the imaging device; and a condition pertaining to whether the imaging device is currently performing contrast AF.

Description

制御装置、撮像装置、移動体、制御方法、およびプログラムControl device, imaging device, moving body, control method, and program
 本発明は、制御装置、撮像装置、移動体、制御方法、およびプログラムに関する。 The present invention relates to a control device, an imaging device, a moving body, a control method, and a program.
 温度の変化により例えば撮像装置に物理的な変化が生じ、フォーカス位置にずれが発生することがある。そこで、撮像装置が温度に応じてフォーカスレンズの位置を補正する場合がある。特許文献1には、測距センサの周辺温度の変動期間に対応する時間範囲内に、画像入力装置への電源投入からの経過時間が含まれる場合、経過時間が周辺温度の安定期間に対応する時間範囲内に含まれる場合よりも、オートフォーカスでのフォーカスレンズの走査範囲を広く設定することが記載されている。
 特許文献1 特許第4226936号公報
A change in temperature may cause a physical change in the imaging device, for example, and a focus position may shift. Therefore, the imaging device may correct the position of the focus lens according to the temperature. In Patent Document 1, when the elapsed time from the power-on to the image input device is included in the time range corresponding to the fluctuation period of the ambient temperature of the distance measuring sensor, the elapsed time corresponds to the stable period of the ambient temperature. It is described that the scanning range of the focus lens in autofocus is set wider than that included in the time range.
Patent Document 1 Japanese Patent No. 4226936
解決しようとする課題Challenges to be solved
 温度に応じたフォーカスレンズの位置の補正により好ましい効果が得られない場合がある。 Favorable effects may not be obtained by correcting the position of the focus lens according to the temperature.
一般的開示General disclosure
 本発明の一態様に係る制御装置は、撮像装置が撮像した画像の評価値に関する条件、撮像装置と被写体との距離に関する条件、撮像装置の高度に関する条件、撮像装置の移動速度に関する条件、撮像装置のフォーカスレンズの移動速度に関する条件、および撮像装置がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たす場合、撮像装置のフォーカスレンズの位置を温度に基づいて補正することを決定する決定部を備えてよい。 A control device according to an aspect of the present invention includes a condition related to an evaluation value of an image captured by an imaging device, a condition related to a distance between the imaging device and a subject, a condition related to an altitude of the imaging device, a condition related to a moving speed of the imaging device, In the case where a predetermined condition including at least one of a condition regarding the moving speed of the focus lens and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is based on the temperature. You may provide the determination part which determines to correct | amend.
 評価値は、コントラストAF方式で導出されるコントラストに関する評価値でよい。決定部は、評価値の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The evaluation value may be an evaluation value related to contrast derived by the contrast AF method. The determination unit may determine that the predetermined condition is satisfied when the change amount of the evaluation value per unit time is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
 評価値は、位相差AF方式で導出される位相差に関する評価値でよい。決定部は、評価値の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The evaluation value may be an evaluation value related to the phase difference derived by the phase difference AF method. The determination unit may determine that the predetermined condition is satisfied when the change amount of the evaluation value per unit time is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
 評価値は、画像内の被写体の大きさに関する評価値でよい。決定部は、評価値の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The evaluation value may be an evaluation value related to the size of the subject in the image. The determination unit may determine that the predetermined condition is satisfied when the change amount of the evaluation value per unit time is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
 決定部は、距離の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determination unit may determine that a predetermined condition is satisfied when the amount of change per unit time of the distance is equal to or less than a threshold, and may determine to correct the position of the focus lens based on the temperature.
 決定部は、高度の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determination unit may determine that the predetermined condition is satisfied when the amount of change per unit time of the altitude is equal to or less than the threshold, and may determine to correct the position of the focus lens based on the temperature.
 決定部は、撮像装置の移動速度が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determination unit may determine that a predetermined condition is satisfied when the moving speed of the imaging apparatus is equal to or less than a threshold value, and may determine to correct the position of the focus lens based on the temperature.
 決定部は、撮像装置のフォーカスレンズの移動速度が閾値以下の場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determination unit may determine that a predetermined condition is satisfied when the moving speed of the focus lens of the imaging apparatus is equal to or less than a threshold, and may determine to correct the position of the focus lens based on the temperature.
 決定部は、撮像装置がコントラストAFの実行中でない場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determining unit may determine that the predetermined condition is satisfied when the imaging apparatus is not performing the contrast AF, and may determine to correct the position of the focus lens based on the temperature.
 決定部は、条件の少なくとも1つを満たし、かつ撮像装置の温度の基準温度からの変化量が閾値以上であるという他の条件を満たす場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determination unit determines that the predetermined condition is satisfied when the other condition that the change amount from the reference temperature of the image pickup apparatus satisfies the condition is at least a threshold is satisfied, and the focus lens satisfies the predetermined condition. May be determined to be corrected based on temperature.
 決定部は、基準温度からの変化量が閾値以上であるときの温度に基づいて基準温度を更新してよい。 The determination unit may update the reference temperature based on the temperature when the amount of change from the reference temperature is greater than or equal to the threshold value.
 決定部は、上記条件の少なくとも1つを満たし、かつフォーカスレンズの基準位置からの温度に応じた移動量が閾値以上であるという他の条件を満たす場合、予め定められた条件を満たすと判断し、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 The determination unit determines that a predetermined condition is satisfied when the other condition that the amount of movement according to the temperature from the reference position of the focus lens is equal to or greater than the threshold is satisfied. The focus lens position may be determined to be corrected based on the temperature.
 決定部は、基準位置からの移動量が閾値以上であるときのフォーカスレンズの位置に基づいて基準位置を更新してよい。 The determination unit may update the reference position based on the position of the focus lens when the amount of movement from the reference position is equal to or greater than a threshold value.
 本発明の一態様に係る撮像装置は、上記制御装置を備えてよい。撮像装置は、フォーカスレンズを備えてよい。撮像装置は、決定部がフォーカスレンズの位置を温度に基づいて補正することを決定することに応じて、フォーカスレンズの位置を補正すべくフォーカスレンズを制御する制御部を備えてよい。 An imaging device according to one embodiment of the present invention may include the control device. The imaging device may include a focus lens. The imaging apparatus may include a control unit that controls the focus lens to correct the position of the focus lens in response to the determination unit determining to correct the position of the focus lens based on the temperature.
 本発明の一態様に係る移動体は、上記撮像装置を備えて移動する。 A moving body according to one embodiment of the present invention is provided with the imaging device.
 本発明の一態様に係る制御方法は、撮像装置が撮像した画像の評価値に関する条件、撮像装置と被写体との距離に関する条件、撮像装置の高度に関する条件、撮像装置の移動速度に関する条件、撮像装置のフォーカスレンズの移動速度に関する条件、および撮像装置がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たす場合、撮像装置のフォーカスレンズの位置を温度に基づいて補正することを決定する段階を備えてよい。 A control method according to an aspect of the present invention includes a condition related to an evaluation value of an image captured by an imaging apparatus, a condition related to a distance between the imaging apparatus and a subject, a condition related to an altitude of the imaging apparatus, a condition related to a moving speed of the imaging apparatus, In the case where a predetermined condition including at least one of a condition regarding the moving speed of the focus lens and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is based on the temperature. A step of determining to correct may be provided.
 本発明の一態様に係るプログラムは、撮像装置が撮像した画像の評価値に関する条件、撮像装置と被写体との距離に関する条件、撮像装置の高度に関する条件、撮像装置の移動速度に関する条件、撮像装置のフォーカスレンズの移動速度に関する条件、および撮像装置がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たす場合、撮像装置のフォーカスレンズの位置を温度に基づいて補正することを決定する段階をコンピュータに実行させてよい。 A program according to one embodiment of the present invention includes a condition related to an evaluation value of an image captured by an imaging apparatus, a condition related to a distance between the imaging apparatus and a subject, a condition related to an altitude of the imaging apparatus, a condition related to a moving speed of the imaging apparatus, When a predetermined condition including at least one of a condition regarding the moving speed of the focus lens and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is corrected based on the temperature. The computer may execute the step of determining to do.
 撮像装置が温度に応じてフォーカスレンズの位置を補正することにより、好ましくない影響が生じることを防止できる。 It is possible to prevent an unfavorable effect from being caused by the imaging device correcting the position of the focus lens according to the temperature.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションも発明となりうる。 The above summary of the invention does not enumerate all the features of the present invention. A sub-combination of these feature groups can also be an invention.
無人航空機の外観の一例を示す図である。It is a figure which shows an example of the external appearance of an unmanned aircraft. 無人航空機の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of an unmanned aerial vehicle. 焦点距離に応じた温度とフォーカスレンズの位置との関係の一例を示す図である。It is a figure which shows an example of the relationship between the temperature according to a focal distance, and the position of a focus lens. コントラストAFについて説明するための一例を示す図である。It is a figure which shows an example for demonstrating contrast AF. コントラストAFについて説明するための一例を示す図である。It is a figure which shows an example for demonstrating contrast AF. 温度補正の実行タイミングについて説明するための一例を示す図である。It is a figure which shows an example for demonstrating the execution timing of temperature correction. 温度補正の実行タイミングについて説明するための一例を示す図である。It is a figure which shows an example for demonstrating the execution timing of temperature correction. 撮像装置と被写体との距離について説明するための一例を示す図である。It is a figure which shows an example for demonstrating the distance of an imaging device and a to-be-photographed object. 温度補正の実行タイミングについて説明するための一例を示す図である。It is a figure which shows an example for demonstrating the execution timing of temperature correction. 温度補正の実行タイミングについて説明するための一例を示す図である。It is a figure which shows an example for demonstrating the execution timing of temperature correction. 温度補正の実行手順の一例を示すフローチャートである。It is a flowchart which shows an example of the execution procedure of temperature correction. 温度が許容温度範囲を超えて変化した場合に撮像装置が温度補正を実行する手順の一例を示すフローチャート。6 is a flowchart illustrating an example of a procedure in which the imaging apparatus performs temperature correction when the temperature changes beyond an allowable temperature range. ハードウェア構成の一例を示す図である。It is a figure which shows an example of a hardware constitutions.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 請求の範囲、明細書、図面、および要約書には、著作権による保護の対象となる事項が含まれる。著作権者は、これらの書類の何人による複製に対しても、特許庁のファイルまたはレコードに表示される通りであれば異議を唱えない。ただし、それ以外の場合、一切の著作権を保留する。 The claims, the description, the drawings, and the abstract include matters that are subject to copyright protection. The copyright owner will not object to any number of copies of these documents as they appear in the JPO file or record. However, in other cases, all copyrights are withheld.
 本発明の様々な実施形態は、フローチャート及びブロック図を参照して記載されてよい。フローチャート及びブロック図におけるブロックは、(1)オペレーションが実行されるプロセスの段階又は(2)オペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタルおよび/またはアナログハードウェア回路を含んでよい。集積回路(IC)および/またはディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 Various embodiments of the present invention may be described with reference to flowcharts and block diagrams. The blocks in the flowcharts and block diagrams may represent (1) the stage of the process in which the operation is performed or (2) the “part” of the device responsible for performing the operation. Certain stages and “parts” are provided with dedicated circuitry, programmable circuitry supplied with computer readable instructions stored on a computer readable storage medium, and / or computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor. Dedicated circuitry may include digital and / or analog hardware circuitry. Integrated circuits (ICs) and / or discrete circuits may be included. Programmable circuits may be logical products, logical sums, exclusive logical sums, negative logical products, negative logical sums, and other logical operations, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLA), for example. , Flip-flops, registers, and memory elements, including reconfigurable hardware circuitry.
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよい。その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 A computer-readable storage medium may include any tangible device capable of storing instructions to be executed by a suitable device. As a result, a computer readable storage medium having instructions stored thereon comprises a product that includes instructions that can be executed to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of computer readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer-readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory). Electrically erasable programmable read only memory (EEPROM), static random access memory (SRAM), compact disc read only memory (CD-ROM), digital versatile disc (DVD), Blu-ray (registered trademark) disc, memory stick Integrated circuit cards and the like may be included.
 コンピュータ可読命令は、1または複数のプログラミング言語の任意の組み合わせで記述されたソースコードまたはオブジェクトコードの何れかを含んでよい。ソースコードまたはオブジェクトコードは、従来の手続型プログラミング言語を含む。従来の手続型プログラミング言語は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、またはSmalltalk、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語でよい。 The computer readable instructions may include either source code or object code written in any combination of one or more programming languages. The source code or object code includes a conventional procedural programming language. Conventional procedural programming languages include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA, C ++, etc. It may be an object-oriented programming language and a “C” programming language or a similar programming language.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供されてよい。プロセッサまたはプログラマブル回路は、フローチャートまたはブロック図で指定されたオペレーションを実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。 Computer readable instructions may be directed to a general purpose computer, special purpose computer, or other programmable data processing device processor or programmable circuit locally or in a wide area network (WAN) such as a local area network (LAN), the Internet, etc. ). The processor or programmable circuit may execute computer readable instructions to create a means for performing the operations specified in the flowcharts or block diagrams. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.
 図1は、無人航空機(UAV)100の外観の一例を示す。UAV100は、UAV本体102、ジンバル200、撮像装置300、および複数の撮像装置230を備える。UAV100は、移動体の一例である。移動体とは、UAVの他、空中を移動する他の航空機、地上を移動する車両、水上を移動する船舶等を含む概念である。 FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 100. The UAV 100 includes a UAV main body 102, a gimbal 200, an imaging device 300, and a plurality of imaging devices 230. The UAV 100 is an example of a moving object. The moving body is a concept including, in addition to UAV, other aircraft that moves in the air, vehicles that move on the ground, ships that move on the water, and the like.
 UAV本体102は、複数の回転翼を備える。UAV本体102は、複数の回転翼の回転を制御することでUAV100を飛行させる。UAV本体102は、例えば、4つの回転翼を用いてUAV100を飛行させる。回転翼の数は、4つには限定されない。また、UAV100は、回転翼を有さない固定翼機でもよい。 The UAV main body 102 includes a plurality of rotor blades. The UAV main body 102 flies the UAV 100 by controlling the rotation of a plurality of rotor blades. For example, the UAV main body 102 causes the UAV 100 to fly using four rotary wings. The number of rotor blades is not limited to four. Further, the UAV 100 may be a fixed wing aircraft that does not have a rotating wing.
 撮像装置300は、動画または静止画を撮像するためのカメラである。複数の撮像装置230は、UAV100の飛行を制御するためにUAV100の周囲を撮像するセンシング用のカメラである。2つの撮像装置230が、UAV100の機首である正面に設けられてよい。さらに他の2つの撮像装置230が、UAV100の底面に設けられてよい。正面側の2つの撮像装置230はペアとなり、いわゆるステレオカメラとして機能してよい。底面側の2つの撮像装置230もペアとなり、ステレオカメラとして機能してよい。複数の撮像装置230により撮像された画像に基づいて、UAV100から対象物までの距離が計測されてよい。複数の撮像装置230により撮像された画像に基づいて、UAV100の周囲の3次元空間データが生成されてよい。UAV100が備える撮像装置230の数は4つには限定されない。UAV100は、少なくとも1つの撮像装置230を備えていればよい。UAV100は、UAV100の機首、機尾、側面、底面、および天井面のそれぞれに少なくとも1つの撮像装置230を備えてもよい。撮像装置230で設定できる画角は、撮像装置300で設定できる画角より広くてよい。撮像装置230は、単焦点レンズまたは魚眼レンズを有してもよい。 The imaging device 300 is a camera for capturing a moving image or a still image. The plurality of imaging devices 230 are sensing cameras that image the surroundings of the UAV 100 in order to control the flight of the UAV 100. Two imaging devices 230 may be provided on the front surface that is the nose of the UAV 100. Two other imaging devices 230 may be provided on the bottom surface of the UAV 100. The two imaging devices 230 on the front side may be paired and function as a so-called stereo camera. The two imaging devices 230 on the bottom side may also be paired and function as a stereo camera. The distance from the UAV 100 to the object may be measured based on images captured by the plurality of imaging devices 230. Three-dimensional spatial data around the UAV 100 may be generated based on images captured by the plurality of imaging devices 230. The number of imaging devices 230 included in the UAV 100 is not limited to four. The UAV 100 only needs to include at least one imaging device 230. The UAV 100 may include at least one imaging device 230 on each of the nose, the tail, the side surface, the bottom surface, and the ceiling surface of the UAV 100. The angle of view that can be set by the imaging device 230 may be wider than the angle of view that can be set by the imaging device 300. The imaging device 230 may have a single focus lens or a fisheye lens.
 図2は、UAV100の機能ブロックの一例を示す。UAV100は、UAV制御部110、通信インタフェース150、メモリ160、ジンバル200、回転翼機構210、撮像装置300、撮像装置230、GPS受信機240、慣性計測装置(IMU)250、磁気コンパス260、および気圧高度計270を備える。 FIG. 2 shows an example of functional blocks of the UAV100. The UAV 100 includes a UAV control unit 110, a communication interface 150, a memory 160, a gimbal 200, a rotating blade mechanism 210, an imaging device 300, an imaging device 230, a GPS receiver 240, an inertial measurement device (IMU) 250, a magnetic compass 260, and an atmospheric pressure. An altimeter 270 is provided.
 通信インタフェース150は、外部の送信機と通信する。通信インタフェース150は、遠隔の送信機からUAV制御部110に対する各種の命令を受信する。メモリ160は、UAV制御部110がジンバル200、回転翼機構210、撮像装置300、撮像装置230、GPS受信機240、IMU250、磁気コンパス260、および気圧高度計270を制御するのに必要なプログラム等を格納する。メモリ160は、コンピュータ読み取り可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、およびUSBメモリ等のフラッシュメモリの少なくとも1つを含んでよい。メモリ160は、UAV本体102の内部に設けられてよい。メモリ160は、UAV本体102から取り外し可能に設けられてよい。 The communication interface 150 communicates with an external transmitter. The communication interface 150 receives various commands for the UAV control unit 110 from a remote transmitter. The memory 160 stores programs necessary for the UAV control unit 110 to control the gimbal 200, the rotary blade mechanism 210, the imaging device 300, the imaging device 230, the GPS receiver 240, the IMU 250, the magnetic compass 260, and the barometric altimeter 270. Store. The memory 160 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory. The memory 160 may be provided inside the UAV main body 102. The memory 160 may be provided so as to be removable from the UAV main body 102.
 ジンバル200は、撮像装置300の撮像方向を調整可能に支持する。ジンバル200は、少なくとも1つの軸を中心に撮像装置300を回転可能に支持する。ジンバル200は、支持機構の一例である。ジンバル200は、ヨー軸、ピッチ軸、およびロール軸を中心に撮像装置300を回転可能に支持してよい。ジンバル200は、ヨー軸、ピッチ軸、およびロール軸の少なくとも1つを中心に撮像装置300を回転させることで、撮像装置300の撮像方向を変更してよい。回転翼機構210は、複数の回転翼と、複数の回転翼を回転させる複数の駆動モータとを有する。 The gimbal 200 supports the imaging direction of the imaging device 300 so that it can be adjusted. The gimbal 200 supports the imaging device 300 rotatably around at least one axis. The gimbal 200 is an example of a support mechanism. The gimbal 200 may support the imaging device 300 rotatably about the yaw axis, the pitch axis, and the roll axis. The gimbal 200 may change the imaging direction of the imaging device 300 by rotating the imaging device 300 about at least one of the yaw axis, the pitch axis, and the roll axis. The rotary blade mechanism 210 includes a plurality of rotary blades and a plurality of drive motors that rotate the plurality of rotary blades.
 撮像装置230は、UAV100の周囲を撮像して画像データを生成する。撮像装置230の画像データは、メモリ160に格納される。GPS受信機240は、複数のGPS衛星から発信された時刻を示す複数の信号を受信する。GPS受信機240は、受信された複数の信号に基づいてGPS受信機240の位置、つまりUAV100の位置を算出する。慣性計測装置(IMU)250は、UAV100の姿勢を検出する。IMU250は、UAV100の姿勢として、UAV100の前後、左右、および上下の3軸方向の加速度と、ピッチ、ロール、およびヨーの3軸方向の角速度とを検出する。磁気コンパス260は、UAV100の機首の方位を検出する。気圧高度計270は、UAV100が飛行する高度を検出する。 The imaging device 230 captures the surroundings of the UAV 100 and generates image data. Image data of the imaging device 230 is stored in the memory 160. The GPS receiver 240 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites. The GPS receiver 240 calculates the position of the GPS receiver 240, that is, the position of the UAV 100, based on the received signals. The inertial measurement device (IMU) 250 detects the posture of the UAV 100. The IMU 250 detects, as the posture of the UAV 100, acceleration in the three axial directions of the front, rear, left, and upper sides of the UAV 100, and angular velocity in the three axial directions of pitch, roll, and yaw. The magnetic compass 260 detects the heading of the UAV 100. The barometric altimeter 270 detects the altitude at which the UAV 100 flies.
 UAV制御部110は、メモリ160に格納されたプログラムに従ってUAV100の飛行を制御する。UAV制御部110は、CPUまたはMPU等のマイクロプロセッサ、MCU等のマイクロコントローラ等により構成されてよい。UAV制御部110は、通信インタフェース150を介して遠隔の送信機から受信した命令に従って、UAV100の飛行を制御する。 The UAV control unit 110 controls the flight of the UAV 100 in accordance with a program stored in the memory 160. The UAV control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The UAV control unit 110 controls the flight of the UAV 100 according to a command received from a remote transmitter via the communication interface 150.
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像を解析することで、UAV100の周囲の環境を特定してよい。UAV制御部110は、UAV100の周囲の環境に基づいて、例えば、障害物を回避して飛行を制御する。UAV制御部110は、複数の撮像装置230により撮像された複数の画像に基づいてUAV100の周囲の3次元空間データを生成し、3次元空間データに基づいて飛行を制御してよい。 The UAV control unit 110 may specify the environment around the UAV 100 by analyzing a plurality of images captured by the plurality of imaging devices 230. The UAV control unit 110 controls the flight while avoiding obstacles based on the environment around the UAV 100, for example. The UAV control unit 110 may generate three-dimensional spatial data around the UAV 100 based on a plurality of images captured by the plurality of imaging devices 230, and control the flight based on the three-dimensional spatial data.
 UAV制御部110は、複数の撮像装置230により撮像された複数の画像に基づいて三角測距方式でUAV100と被写体である対象物との距離を測定してよい。UAV制御部110は、超音波式センサ、赤外線センサ、またはレーダ式センサなどを用いてUAV100と対象物との距離を測定してよい。 The UAV control unit 110 may measure the distance between the UAV 100 and the object that is the subject by a triangulation method based on a plurality of images captured by the plurality of imaging devices 230. The UAV control unit 110 may measure the distance between the UAV 100 and the object using an ultrasonic sensor, an infrared sensor, a radar sensor, or the like.
 撮像装置300は、撮像部301、およびレンズ部401を備える。レンズ部401は、撮像部301から取り外しが可能なレンズユニットでもよい。撮像部301は、撮像制御部310、撮像素子330、およびメモリ340を有する。撮像制御部310は、CPUまたはMPUなどのマイクロプロセッサ、MCUなどのマイクロコントローラなどにより構成されてよい。撮像制御部310は、UAV制御部110からの撮像装置300の動作命令に応じて、撮像装置300を制御してよい。 The imaging apparatus 300 includes an imaging unit 301 and a lens unit 401. The lens unit 401 may be a lens unit that can be detached from the imaging unit 301. The imaging unit 301 includes an imaging control unit 310, an imaging element 330, and a memory 340. The imaging control unit 310 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like. The imaging control unit 310 may control the imaging device 300 in accordance with an operation command for the imaging device 300 from the UAV control unit 110.
 メモリ340は、コンピュータ可読可能な記録媒体でよく、SRAM、DRAM、EPROM、EEPROM、およびUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。メモリ340は、撮像部301の筐体の内部に設けられてよい。メモリ340は、撮像部301の筐体から取り外し可能に設けられてよい。 The memory 340 may be a computer-readable recording medium and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory. The memory 340 may be provided inside the housing of the imaging unit 301. The memory 340 may be provided so as to be removable from the housing of the imaging unit 301.
 撮像素子330は、CCDまたはCMOSにより構成されてよい。撮像素子330は、撮像装置300の筐体の内部に保持され、複数のレンズ432を介して結像された光学像の画像データを撮像制御部310に出力する。撮像制御部310は、画像データに対してノイズ低減、デモザイキング、ガンマ補正、およびエッジ協調などの一連の画像処理を施す。撮像制御部310は、一連の画像処理後の画像データをメモリ340に格納する。撮像制御部310は、画像データをUAV制御部110を介してメモリ160に出力して格納してもよい。撮像制御部310は、画像データを用いてオートフォーカス動作を実行してよい。 The imaging device 330 may be configured by a CCD or a CMOS. The image pickup device 330 is held inside the housing of the image pickup apparatus 300 and outputs image data of an optical image formed through the plurality of lenses 432 to the image pickup control unit 310. The imaging control unit 310 performs a series of image processing such as noise reduction, demosaicing, gamma correction, and edge cooperation on the image data. The imaging control unit 310 stores image data after a series of image processing in the memory 340. The imaging control unit 310 may output and store the image data in the memory 160 via the UAV control unit 110. The imaging control unit 310 may perform an autofocus operation using image data.
 レンズ部401は、レンズ制御部410、メモリ420、レンズ移動機構430、複数のレンズ432、レンズ位置検出部440、および温度センサ450を有する。複数のレンズ432は、ズームレンズおよびフォーカスレンズを含む。レンズ制御部410は、撮像部301からのレンズ動作命令に応じてレンズ移動機構430を介して、複数のレンズ432の光軸方向への移動を制御する。レンズ制御部410は、レンズ移動機構430を介して複数のレンズ432の移動を制御する。複数のレンズ432の一部または全部は、レンズ移動機構430により光軸に沿って移動する。レンズ制御部410は、撮像制御部310からのレンズ動作命令に従って、複数のレンズ432の少なくとも一つを光軸に沿って移動させる。レンズ制御部410は、複数のレンズ432の少なくとも一つを光軸に沿って移動させることで、ズーム動作およびフォーカス動作の少なくとも一方を実行する。レンズ位置検出部440は、複数のレンズ432のそれぞれの位置を検出する。レンズ位置検出部440は、現在のズーム位置およびフォーカス位置を検出する。 The lens unit 401 includes a lens control unit 410, a memory 420, a lens moving mechanism 430, a plurality of lenses 432, a lens position detection unit 440, and a temperature sensor 450. The plurality of lenses 432 includes a zoom lens and a focus lens. The lens control unit 410 controls the movement of the plurality of lenses 432 in the optical axis direction via the lens moving mechanism 430 in accordance with a lens operation command from the imaging unit 301. The lens control unit 410 controls the movement of the plurality of lenses 432 via the lens moving mechanism 430. Some or all of the plurality of lenses 432 are moved along the optical axis by the lens moving mechanism 430. The lens control unit 410 moves at least one of the plurality of lenses 432 along the optical axis in accordance with a lens operation command from the imaging control unit 310. The lens control unit 410 performs at least one of a zoom operation and a focus operation by moving at least one of the plurality of lenses 432 along the optical axis. The lens position detection unit 440 detects the position of each of the plurality of lenses 432. The lens position detection unit 440 detects the current zoom position and focus position.
 メモリ420は、レンズ移動機構430を介して移動する複数のレンズ432の制御値を記憶する。メモリ420は、例えば、制御値として、レンズ部401のF値、焦点距離、個体番号などのレンズ固有情報を記憶する。メモリ420は、SRAM、DRAM、EPROM、EEPROM、及びUSBメモリなどのフラッシュメモリの少なくとも1つを含んでよい。 The memory 420 stores control values of a plurality of lenses 432 that move via the lens moving mechanism 430. The memory 420 stores, for example, lens specific information such as an F value, a focal length, and an individual number of the lens unit 401 as a control value. The memory 420 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
 温度センサ450は、撮像装置300の温度として、レンズ部401の温度を検出する。温度センサ450は、レンズ部401の鏡筒内に設けられてもよし、レンズ部401の鏡筒の外側に設けられてもよい。温度センサ450は、撮像部301の筐体内に設けられてもよいし、UAV本体102に設けられてもよい。 The temperature sensor 450 detects the temperature of the lens unit 401 as the temperature of the imaging device 300. The temperature sensor 450 may be provided in the lens barrel of the lens unit 401 or may be provided outside the lens barrel of the lens unit 401. The temperature sensor 450 may be provided in the housing of the imaging unit 301 or may be provided in the UAV main body 102.
 レンズ制御部410は、温度補正部412を有する。温度補正部412は、レンズ移動機構430を介して温度に応じてフォーカスレンズのフォーカス位置を補正する。レンズ部401を構成する鏡筒などは、温度により伸縮する。このような伸縮により、フォーカスレンズのフォーカス位置がずれることがある。そこで、温度補正部412は、温度センサ450からの温度情報に基づいて、フォーカスレンズのフォーカス位置を補正する。 The lens control unit 410 includes a temperature correction unit 412. The temperature correction unit 412 corrects the focus position of the focus lens according to the temperature via the lens moving mechanism 430. A lens barrel or the like constituting the lens unit 401 expands and contracts depending on the temperature. Due to such expansion and contraction, the focus position of the focus lens may shift. Therefore, the temperature correction unit 412 corrects the focus position of the focus lens based on the temperature information from the temperature sensor 450.
 温度補正部412は、温度とフォーカスレンズのレンズ位置との予め定められた関係に基づいて、温度に応じてフォーカス位置を補正してよい。温度補正部412は、例えば、図3に示すように、レンズ部401の焦点距離(ズーム位置)ごとに規定された、温度とフォーカスレンズのレンズ位置との関係を示す関数を用いて、フォーカス位置を補正する。温度補正部412は、撮像装置300と被写体との距離を示す撮影距離ごと、かつ焦点距離ごとに応じた関数を利用して、フォーカス位置を補正してよい。それぞれの関数は、メモリ420に記憶されてよい。メモリ420は、温度とレンズ位置との関係を示すテーブルを撮影距離および焦点距離ごとに記憶してよい。温度補正部412は、撮影距離および焦点距離に対応するテーブルを参照することで、フォーカスレンズのレンズ位置を特定し、フォーカス位置を補正してよい。 The temperature correction unit 412 may correct the focus position according to the temperature based on a predetermined relationship between the temperature and the lens position of the focus lens. For example, as illustrated in FIG. 3, the temperature correction unit 412 uses a function that is defined for each focal length (zoom position) of the lens unit 401 and indicates the relationship between the temperature and the lens position of the focus lens. Correct. The temperature correction unit 412 may correct the focus position by using a function corresponding to each shooting distance indicating the distance between the imaging apparatus 300 and the subject and each focal length. Each function may be stored in memory 420. The memory 420 may store a table indicating the relationship between temperature and lens position for each shooting distance and focal length. The temperature correction unit 412 may specify the lens position of the focus lens and correct the focus position by referring to a table corresponding to the shooting distance and the focal length.
 撮像制御部310は、AF処理部312を有する。AF処理部312は、コントラストAF方式または位相差AF方式に従ってフォーカスレンズのフォーカス位置を決定してよい。AF処理部312は、像面位相差AF方式に従ってフォーカスレンズのフォーカス位置を決定してよい。レンズ制御部410を介してフォーカスレンズを移動させている間に、撮像素子330から出力される画像データからコントラストまたは位相差に関する評価値を順次導出する。AF処理部312は、評価値が最も高いときのフォーカスレンズの位置を、フォーカス位置として決定する。 The imaging control unit 310 includes an AF processing unit 312. The AF processing unit 312 may determine the focus position of the focus lens according to the contrast AF method or the phase difference AF method. The AF processing unit 312 may determine the focus position of the focus lens according to the image plane phase difference AF method. While moving the focus lens via the lens control unit 410, evaluation values relating to contrast or phase difference are sequentially derived from the image data output from the image sensor 330. The AF processing unit 312 determines the position of the focus lens when the evaluation value is the highest as the focus position.
 AF処理部312は、例えば、コントラストAF方式に従って、図4に示すように、フォーカスレンズを至近端から無限遠端の間で移動させて、いわゆる山登り方式で評価値が最も高いときのフォーカスレンズの位置を探索する。AF処理部312によるフォーカス位置の探索と並行して、温度補正部412が温度に応じたフォーカス位置の補正を実行する場合がある。温度の変化に応じた温度補正部412によるフォーカス位置の補正の度合いが大きく、図5に示すように、評価値の一部が不連続点(破線600で囲む部分)となる可能性がある。このような不連続点の存在により、AF処理部312が適切にフォーカス位置を特定できない場合がある。 For example, according to the contrast AF method, the AF processing unit 312 moves the focus lens from the closest end to the infinity end according to the contrast AF method, and the focus lens when the evaluation value is the highest in the so-called hill-climbing method is shown. Search for the location of. In parallel with the search for the focus position by the AF processing unit 312, the temperature correction unit 412 may execute the correction of the focus position according to the temperature. The degree of focus position correction by the temperature correction unit 412 according to the temperature change is large, and as shown in FIG. 5, there is a possibility that a part of the evaluation value becomes a discontinuous point (a part surrounded by a broken line 600). Due to the presence of such discontinuous points, the AF processing unit 312 may not be able to specify the focus position appropriately.
 例えば、UAV100などの移動体に搭載された撮像装置300は、周囲の温度の変化が比較的大きな環境で動作することが多いので、撮像装置300の温度の変化も大きくなる場合がある。したがって、コントラストAFと温度補正とを同時に行った場合、フォーカス位置の特定に影響を与える可能性がある。 For example, since the imaging device 300 mounted on a moving body such as the UAV 100 often operates in an environment where the change in the ambient temperature is relatively large, the change in the temperature of the imaging device 300 may be large. Therefore, when contrast AF and temperature correction are performed simultaneously, there is a possibility of affecting the focus position specification.
 さらに、撮像装置300と被写体との距離の変化が大きいときには、温度補正によりフォーカス位置を微調整しても、被写体に焦点が合わず、温度補正の効果がほとんど得られない場合がある。 Further, when the change in the distance between the imaging apparatus 300 and the subject is large, even if the focus position is finely adjusted by the temperature correction, the subject is not focused and the temperature correction effect may be hardly obtained.
 そこで、本実施形態に係る撮像装置300は、温度に応じてフォーカスレンズの位置を補正しないほうが好ましい場合には、温度が変化しても温度補正部412による温度補正を実行しない。これにより、温度補正部412が不必要に温度補正を実行しないので、撮像装置300の処理の負担が低減する。例えば、撮像装置300がUAV100に搭載されている場合、高度によって温度が大きく変わる。このような状況で、撮像装置300が使用されると、温度補正が頻繁に実行される可能性がある。これにより、撮像装置300の処理の負担が増大し、電力消費の増大、またはCPU等の発熱量の増大などの不具合が生じる可能性がある。温度補正部412が温度補正を実行する頻度が低減することで、撮像装置300の処理の負担を低減でき、そのような不具合が生じることを防ぐことができる。コントラストAFと温度補正とが並列して行われることで、フォーカス位置の特定に不具合が発生することを防止できる。 Therefore, when it is preferable not to correct the position of the focus lens according to the temperature, the imaging apparatus 300 according to the present embodiment does not execute the temperature correction by the temperature correction unit 412 even if the temperature changes. As a result, the temperature correction unit 412 does not unnecessarily perform temperature correction, thereby reducing the processing burden on the imaging apparatus 300. For example, when the imaging apparatus 300 is mounted on the UAV 100, the temperature varies greatly depending on the altitude. In such a situation, when the imaging apparatus 300 is used, temperature correction may be frequently performed. As a result, the processing load of the imaging apparatus 300 increases, and there is a possibility that problems such as an increase in power consumption or an increase in the amount of heat generated by the CPU or the like may occur. By reducing the frequency with which the temperature correction unit 412 performs the temperature correction, it is possible to reduce the processing load of the imaging apparatus 300 and to prevent such a problem from occurring. Since the contrast AF and the temperature correction are performed in parallel, it is possible to prevent the occurrence of a trouble in specifying the focus position.
 温度補正の実行を制御すべく、撮像制御部310は、および決定部316を有する。決定部316は、撮像装置300が撮像した画像の評価値に関する条件、撮像装置300と被写体との距離に関する条件、撮像装置300の高度に関する条件、撮像装置300の移動速度に関する条件、撮像装置300のフォーカスレンズの移動速度に関する条件、および撮像装置300がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たすか否かを判断する。決定部316は、予め定められた条件が満たされるか否かに応じて、撮像装置300のフォーカスレンズの位置を温度に基づいて補正するか否かを決定する。決定部316は、決定部316が予め定められた条件を満たすと判断した場合、フォーカスレンズの位置を温度に基づいて補正することを決定してよい。 In order to control the execution of the temperature correction, the imaging control unit 310 and the determination unit 316 are included. The determination unit 316 includes a condition related to an evaluation value of an image captured by the imaging apparatus 300, a condition related to the distance between the imaging apparatus 300 and the subject, a condition related to the altitude of the imaging apparatus 300, a condition related to the moving speed of the imaging apparatus 300, It is determined whether or not a predetermined condition including at least one of a condition relating to a moving speed of the focus lens and a condition relating to whether or not the imaging apparatus 300 is performing contrast AF is satisfied. The determination unit 316 determines whether or not to correct the position of the focus lens of the imaging device 300 based on the temperature, depending on whether or not a predetermined condition is satisfied. When the determination unit 316 determines that the predetermined condition is satisfied, the determination unit 316 may determine to correct the position of the focus lens based on the temperature.
 評価値は、AF処理部312においてコントラストAF方式で導出されるコントラストに関する評価値でよい。評価値は、AF処理部312において位相差AF方式で導出される位相差に関する評価値でよい。決定部316は、例えば、図6に示すように、コントラストまたは位相差の評価値の単位時間あたりの変化量が閾値より高い期間T1において予め定められた条件を満たさないと判断してよい。決定部316は、期間T1以外の評価値が安定している期間において予め定められた条件を満たすと判断してよい。評価値は、DFD(Depth From Defocus)方式で導出される被写体までの距離に関する評価値でもよい。 The evaluation value may be an evaluation value related to contrast derived by the AF processing unit 312 using the contrast AF method. The evaluation value may be an evaluation value related to the phase difference derived by the phase difference AF method in the AF processing unit 312. For example, as illustrated in FIG. 6, the determination unit 316 may determine that the change amount per unit time of the evaluation value of the contrast or the phase difference does not satisfy the predetermined condition in the period T1 higher than the threshold value. The determination unit 316 may determine that a predetermined condition is satisfied in a period in which the evaluation value other than the period T1 is stable. The evaluation value may be an evaluation value related to the distance to the subject derived by the DFD (Depth From Defocus) method.
 評価値は、撮像装置300により撮像される画像内の被写体の大きさに関する評価値でよい。決定部316は、評価値の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断してよい。例えば、図7に示すように、画像(A)から画像(B)に遷移する場合、画像(A)内の被写体の500の被写体枠610と、画像(B)内の被写体500の被写体枠612とは大きさが変わらないので、決定部316は、予め定められた条件を満たすと判断する。一方、画像(A)から画像(C)に遷移する場合、画像(A)内の被写体500の被写体枠610と、画像(B)内の被写体500の被写体枠612とは大きさが変わるので、決定部316は、予め定められた条件を満たさないと判断する。 The evaluation value may be an evaluation value related to the size of the subject in the image captured by the imaging apparatus 300. The determination unit 316 may determine that a predetermined condition is satisfied when the amount of change in the evaluation value per unit time is equal to or less than a threshold value. For example, as shown in FIG. 7, when transitioning from image (A) to image (B), the subject frame 610 of the subject in the image (A) and the subject frame 612 of the subject 500 in the image (B). Since the size does not change, the determination unit 316 determines that a predetermined condition is satisfied. On the other hand, when the image (A) transitions to the image (C), the subject frame 610 of the subject 500 in the image (A) and the subject frame 612 of the subject 500 in the image (B) change in size. The determination unit 316 determines that a predetermined condition is not satisfied.
 決定部316は、図8に示すように、被写体500と撮像装置300との間の距離を示す撮影距離Xの単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断してよい。決定部316は、図9に示すように、UAV100が移動したり、被写体500が移動したりすることで撮影距離Xが変化する期間T2および期間T3において予め定められた条件を満たさないと判断してよい。一方、決定部316は、期間T2および期間T3以外の期間において予め定められた条件を満たすと判断してよい。 As illustrated in FIG. 8, the determination unit 316 determines that a predetermined condition is satisfied when the change amount per unit time of the shooting distance X indicating the distance between the subject 500 and the imaging device 300 is equal to or less than a threshold value. You can do it. As illustrated in FIG. 9, the determination unit 316 determines that the predetermined condition is not satisfied in the period T2 and the period T3 in which the shooting distance X changes as the UAV 100 moves or the subject 500 moves. It's okay. On the other hand, the determination unit 316 may determine that a predetermined condition is satisfied in a period other than the period T2 and the period T3.
 撮像装置300の高度が変化する場合にも、撮像装置300と被写体500との距離が大きく変わる可能性が高い。そこで、決定部316は、撮像装置300の高度の単位時間あたりの変化量が閾値以下の場合、予め定められた条件を満たすと判断してよい。 Even when the altitude of the imaging apparatus 300 changes, the distance between the imaging apparatus 300 and the subject 500 is highly likely to change significantly. Accordingly, the determination unit 316 may determine that a predetermined condition is satisfied when the change amount per unit time of the altitude of the imaging apparatus 300 is equal to or less than a threshold value.
 撮像装置300の移動速度が速い場合にも、撮像装置300と被写体500との距離が大きく変わる可能性が高い。そこで、決定部316は、撮像装置300の移動速度が閾値以下の場合、予め定められた条件を満たすと判断してよい。 Even when the moving speed of the imaging apparatus 300 is fast, there is a high possibility that the distance between the imaging apparatus 300 and the subject 500 will change significantly. Therefore, the determination unit 316 may determine that a predetermined condition is satisfied when the moving speed of the imaging apparatus 300 is equal to or less than a threshold value.
 撮像装置300により撮像されている被写体から撮像装置300との間の距離が異なる他の被写体に比較的短時間に切り替わる場合、撮像装置300のフォーカス位置が大きく変化する。このような場合、フォーカス位置を温度により補正しても得られる効果は少ない場合がある。つまり、撮像装置300のフォーカスレンズの移動速度が速い場合、フォーカス位置を温度により補正しても得られる効果は少ない。そこで、決定部316は、撮像装置300のフォーカスレンズの移動速度が閾値以下の場合、予め定められた条件を満たすと判断してよい。 When the subject being imaged by the imaging device 300 is switched to another subject having a different distance from the imaging device 300 in a relatively short time, the focus position of the imaging device 300 changes greatly. In such a case, there are cases where the effect obtained even if the focus position is corrected by the temperature is small. That is, when the moving speed of the focus lens of the imaging apparatus 300 is fast, there are few effects obtained even if the focus position is corrected by the temperature. Therefore, the determination unit 316 may determine that a predetermined condition is satisfied when the moving speed of the focus lens of the imaging apparatus 300 is equal to or less than a threshold value.
 コントラストAF中に温度補正が実行されると、フォーカス位置の特定に不具合が生じる可能性がある。そこで、決定部316は、撮像装置300がコントラストAFの実行中でない場合、予め定められた条件を満たすと判断してよい。 温度 If temperature correction is executed during contrast AF, there may be a problem in specifying the focus position. Therefore, the determination unit 316 may determine that a predetermined condition is satisfied when the imaging apparatus 300 is not performing contrast AF.
 決定部316は、上記の各条件の少なくとも1つを満たし、かつ撮像装置300の温度の基準温度からの変化量が閾値以上であるという他の条件を満たす場合、予め定められた条件を満たすと判断してよい。決定部316は、基準温度からの変化量が閾値以上であるときの温度に基づいて基準温度を更新してよい。これにより、温度の変化が少ない場合、温度補正が行われないので、温度補正の実行頻度を抑制できる。 If the determination unit 316 satisfies at least one of the above-described conditions and satisfies another condition that the amount of change in the temperature of the imaging apparatus 300 from the reference temperature is equal to or greater than a threshold, You can judge. The determination unit 316 may update the reference temperature based on the temperature when the amount of change from the reference temperature is equal to or greater than the threshold value. Thereby, when the temperature change is small, the temperature correction is not performed, and therefore the frequency of execution of the temperature correction can be suppressed.
 決定部316は、上記の各条件の少なくとも1つを満たし、かつフォーカスレンズの基準位置からの温度に応じた移動量が閾値以上であるという他の条件を満たす場合、予め定められた条件を満たすと判断してよい。決定部316は、基準位置からの移動量が閾値以上であるときのフォーカスレンズの位置に基づいて基準位置を更新してよい。これにより、温度の変化が少なく、フォーカスレンズの移動量が少ない場合、温度補正が行われないので、温度補正の実行頻度を抑制できる。 The determination unit 316 satisfies a predetermined condition when the other condition that the amount of movement according to the temperature from the reference position of the focus lens satisfies at least one of the above-described conditions and is greater than or equal to the threshold value is satisfied. You may judge. The determination unit 316 may update the reference position based on the position of the focus lens when the amount of movement from the reference position is greater than or equal to the threshold value. Accordingly, when the temperature change is small and the amount of movement of the focus lens is small, the temperature correction is not performed, so that the frequency of performing the temperature correction can be suppressed.
 例えば、図10に示すように、温度変化による温度補正を行わずに許容する許容温度範囲を基準温度に対して±4[℃]とする。決定部316は、基準温度からの温度変化が、±4[℃]以上の場合、予め定められた条件を満たすと判断する。または、温度変化による温度補正を行わずに許容するフォーカスレンズの移動量を許容幅σとする。決定部316は、基準温度におけるフォーカスレンズの基準位置からの移動量が許容幅σ以上の場合、予め定められた条件を満たすと判断する。 For example, as shown in FIG. 10, an allowable temperature range that is allowed without performing temperature correction due to a temperature change is ± 4 [° C.] with respect to the reference temperature. The determining unit 316 determines that a predetermined condition is satisfied when the temperature change from the reference temperature is ± 4 [° C.] or more. Alternatively, the allowable movement amount of the focus lens without performing the temperature correction due to the temperature change is set as the allowable width σ. The determination unit 316 determines that a predetermined condition is satisfied when the amount of movement of the focus lens from the reference position at the reference temperature is equal to or larger than the allowable width σ.
 図11は、撮像装置300による温度補正の実行手順の一例を示すフローチャートである。 FIG. 11 is a flowchart showing an example of a temperature correction execution procedure by the imaging apparatus 300.
 決定部316は、レンズ部401からレンズ部401のレンズ情報を取得する(S100)。レンズ部401は、メモリ340に格納されたレンズ情報を決定部316に提供してよい。メモリ340は、レンズ情報として、F値、焦点距離のほかに、温度補正対応のレンズか否かを示す情報を格納していてよい。決定部316は、レンズ情報に基づいてレンズ部401が温度補正対応のレンズか否かを判断する(S102)。 The determining unit 316 acquires lens information of the lens unit 401 from the lens unit 401 (S100). The lens unit 401 may provide the lens information stored in the memory 340 to the determination unit 316. The memory 340 may store information indicating whether or not the lens is compatible with temperature correction, in addition to the F value and the focal length, as lens information. The determining unit 316 determines whether or not the lens unit 401 is a temperature correction compatible lens based on the lens information (S102).
 レンズ部401が温度補正未対応のレンズであれば、決定部316は、処理を終了する。一方、レンズ部401が温度補正対応のレンズであれば、決定部316は、温度補正を実行する予め定められた条件を満たすか否かを判断する(S104)。決定部316は、撮像装置300が撮像した画像の評価値に関する条件、撮像装置300と被写体との距離に関する条件、撮像装置300の高度に関する条件、撮像装置300の移動速度に関する条件、撮像装置300のフォーカスレンズの移動速度に関する条件、および撮像装置300がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たすか否かを判断してよい。 If the lens unit 401 is a lens that does not support temperature correction, the determination unit 316 ends the process. On the other hand, if the lens unit 401 is a temperature correction compatible lens, the determination unit 316 determines whether or not a predetermined condition for executing temperature correction is satisfied (S104). The determination unit 316 includes a condition related to an evaluation value of an image captured by the imaging apparatus 300, a condition related to the distance between the imaging apparatus 300 and the subject, a condition related to the altitude of the imaging apparatus 300, a condition related to the moving speed of the imaging apparatus 300, It may be determined whether or not a predetermined condition including at least one of a condition relating to a moving speed of the focus lens and a condition relating to whether or not the imaging apparatus 300 is performing contrast AF is satisfied.
 予め定められた条件を満たさない場合、決定部316は、フォーカスレンズの位置を温度に基づいて補正しないと決定し、温度補正の中断をレンズ部401に指示する(S110)。温度補正部412は、温度補正の中断の指示を受けて、温度補正を中断する。 If the predetermined condition is not satisfied, the determination unit 316 determines not to correct the position of the focus lens based on the temperature, and instructs the lens unit 401 to interrupt the temperature correction (S110). The temperature correction unit 412 interrupts temperature correction in response to an instruction to interrupt temperature correction.
 一方、予め定められた条件を満たす場合、決定部316は、フォーカスレンズの位置を温度に基づいて補正すると決定し、温度補正の実行をレンズ部401に指示する(S106)。温度補正部412は、温度補正の実行の指示を受けて、温度補正を中断している場合には、温度補正を開始する。温度補正部412は、温度補正をすでに実行中であれば、温度補正の実行の指示を受けて、そのまま温度補正を継続する(S108)。 On the other hand, when the predetermined condition is satisfied, the determination unit 316 determines to correct the position of the focus lens based on the temperature, and instructs the lens unit 401 to execute the temperature correction (S106). When the temperature correction unit 412 receives an instruction to execute the temperature correction and interrupts the temperature correction, the temperature correction unit 412 starts the temperature correction. If the temperature correction is already being executed, the temperature correction unit 412 receives the instruction to execute the temperature correction and continues the temperature correction as it is (S108).
 撮像装置300は、レンズ部401による撮像処理が終了するまでステップS104からステップS112の処理を繰り返す(S112)。 The imaging apparatus 300 repeats the processing from step S104 to step S112 until the imaging processing by the lens unit 401 is completed (S112).
 以上の通り、本実施形態によれば、温度に応じてフォーカスレンズの位置を補正しないほうが好ましい場合には、撮像装置300は、温度補正を行わない。よって、温度補正の頻度を低減でき、撮像装置300の処理負担を低減できる。温度補正の頻度が抑制されることで、撮像装置300により撮像される画像のちらつきを低減でき、ユーザに不快感を与えることを防止できる。 As described above, according to the present embodiment, when it is preferable not to correct the position of the focus lens according to the temperature, the imaging apparatus 300 does not perform temperature correction. Therefore, the frequency of temperature correction can be reduced, and the processing burden on the imaging apparatus 300 can be reduced. By suppressing the frequency of the temperature correction, it is possible to reduce the flicker of the image captured by the imaging apparatus 300 and to prevent the user from feeling uncomfortable.
 図12は、温度が許容温度範囲を超えて変化した場合に撮像装置300が温度補正を実行する手順の一例を示すフローチャートである。撮像装置300は、予め定められた周期、例えば、1/60secの間隔で、図12に示す手順を実行してよい。 FIG. 12 is a flowchart illustrating an example of a procedure in which the imaging apparatus 300 performs temperature correction when the temperature changes beyond the allowable temperature range. The imaging apparatus 300 may execute the procedure illustrated in FIG. 12 at a predetermined cycle, for example, at an interval of 1/60 sec.
 決定部316は、レンズ制御部410を介して温度センサ450により検知されたレンズ内の温度情報Tcを取得する(S200)。決定部316は、基準温度Toと温度Tcとの差分(Tc-To)を温度変化ΔTとして導出する(S202)。決定部316は、温度変化ΔTの大きさが4℃以上か否かを判定する(S204)。温度変化ΔTの大きさが4℃以内であれば、決定部316は、予め定められた条件を満たさないと判断して処理を終了する。 The determination unit 316 acquires the temperature information Tc in the lens detected by the temperature sensor 450 via the lens control unit 410 (S200). The determination unit 316 derives a difference (Tc−To) between the reference temperature To and the temperature Tc as a temperature change ΔT (S202). The determination unit 316 determines whether or not the magnitude of the temperature change ΔT is 4 ° C. or more (S204). If the magnitude of the temperature change ΔT is within 4 ° C., the determination unit 316 determines that the predetermined condition is not satisfied and ends the process.
 一方、温度変化ΔTの大きさが4℃以上であれば、次いで、決定部316は、コントラストAFを実行中か否かを判断する(S206)。コントラストAFを実行中であれば、決定部316は、基準温度Toを温度Tcに更新して、処理を終了する。 On the other hand, if the magnitude of the temperature change ΔT is 4 ° C. or more, then the determination unit 316 determines whether or not the contrast AF is being performed (S206). If the contrast AF is being executed, the determination unit 316 updates the reference temperature To to the temperature Tc and ends the process.
 コントラストAFを実行中でなければ、決定部316は、予め定められた条件を満たすと判断する。決定部316は、温度補正の実行を指示する。温度補正部412は、温度Tcに基づいてフォーカスレンズのフォーカス位置を補正する(S208)。決定部316は、基準温度Toを温度Tcに更新して、処理を終了する。 If the contrast AF is not being executed, the determination unit 316 determines that a predetermined condition is satisfied. The determination unit 316 instructs execution of temperature correction. The temperature correction unit 412 corrects the focus position of the focus lens based on the temperature Tc (S208). The determination unit 316 updates the reference temperature To to the temperature Tc and ends the process.
 以上の通り、温度の変化が少ない場合には、温度補正が実行されないので、温度補正の頻度を低減でき、撮像装置300の処理負担を低減できる。 As described above, when the temperature change is small, the temperature correction is not executed, so that the frequency of the temperature correction can be reduced and the processing load on the imaging apparatus 300 can be reduced.
 図13は、本発明の複数の態様が全体的または部分的に具現化されてよいコンピュータ1200の一例を示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200に、本発明の実施形態に係る装置に関連付けられるオペレーションまたは当該装置の1または複数の「部」として機能させることができる。または、当該プログラムは、コンピュータ1200に当該オペレーションまたは当該1または複数の「部」を実行させることができる。当該プログラムは、コンピュータ1200に、本発明の実施形態に係るプロセスまたは当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャートおよびブロック図のブロックのうちのいくつかまたはすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。 FIG. 13 illustrates an example of a computer 1200 in which aspects of the present invention may be embodied in whole or in part. A program installed in the computer 1200 can cause the computer 1200 to function as an operation associated with the apparatus according to the embodiment of the present invention or as one or more “units” of the apparatus. Alternatively, the program can cause the computer 1200 to execute the operation or the one or more “units”. The program can cause the computer 1200 to execute a process according to an embodiment of the present invention or a stage of the process. Such a program may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
 本実施形態によるコンピュータ1200は、CPU1212、およびRAM1214を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、入力/出力ユニットを含み、それらは入力/出力コントローラ1220を介してホストコントローラ1210に接続されている。コンピュータ1200はまた、ROM1230を含む。CPU1212は、ROM1230およびRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。 The computer 1200 according to this embodiment includes a CPU 1212 and a RAM 1214, which are connected to each other by a host controller 1210. The computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 via the input / output controller 1220. Computer 1200 also includes ROM 1230. The CPU 1212 operates according to programs stored in the ROM 1230 and the RAM 1214, thereby controlling each unit.
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブが、コンピュータ1200内のCPU1212によって使用されるプログラムおよびデータを格納してよい。ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、および/またはコンピュータ1200のハードウェアに依存するプログラムを格納する。プログラムが、CR-ROM、USBメモリまたはICカードのようなコンピュータ可読記録媒体またはネットワークを介して提供される。プログラムは、コンピュータ可読記録媒体の例でもあるRAM1214、またはROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ1200の使用に従い情報のオペレーションまたは処理を実現することによって構成されてよい。 The communication interface 1222 communicates with other electronic devices via a network. A hard disk drive may store programs and data used by CPU 1212 in computer 1200. The ROM 1230 stores therein a boot program executed by the computer 1200 at the time of activation and / or a program depending on the hardware of the computer 1200. The program is provided via a computer-readable recording medium such as a CR-ROM, a USB memory, or an IC card or a network. The program is installed in the RAM 1214 or the ROM 1230 that is also an example of a computer-readable recording medium, and is executed by the CPU 1212. Information processing described in these programs is read by the computer 1200 to bring about cooperation between the programs and the various types of hardware resources. An apparatus or method may be configured by implementing information operations or processing in accordance with the use of computer 1200.
 例えば、通信がコンピュータ1200および外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、またはUSBメモリのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。 For example, when communication is performed between the computer 1200 and an external device, the CPU 1212 executes a communication program loaded in the RAM 1214 and performs communication processing on the communication interface 1222 based on the processing described in the communication program. You may order. The communication interface 1222 reads transmission data stored in a RAM 1214 or a transmission buffer area provided in a recording medium such as a USB memory under the control of the CPU 1212 and transmits the read transmission data to a network, or The reception data received from the network is written into a reception buffer area provided on the recording medium.
 また、CPU1212は、USBメモリ等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 In addition, the CPU 1212 allows the RAM 1214 to read all or necessary portions of a file or database stored in an external recording medium such as a USB memory, and executes various types of processing on the data on the RAM 1214. Good. The CPU 1212 may then write back the processed data to an external recording medium.
 様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information such as various types of programs, data, tables, and databases may be stored in the recording medium and subjected to information processing. The CPU 1212 describes various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, and information retrieval that are described throughout the present disclosure for data read from the RAM 1214 and specified by the instruction sequence of the program. Various types of processing may be performed, including / replacement, etc., and the result is written back to RAM 1214. In addition, the CPU 1212 may search for information in files, databases, etc. in the recording medium. For example, when a plurality of entries each having an attribute value of the first attribute associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 specifies the attribute value of the first attribute. The entry that matches the condition is searched from the plurality of entries, the attribute value of the second attribute stored in the entry is read, and thereby the first attribute that satisfies the predetermined condition is associated. The attribute value of the obtained second attribute may be acquired.
 上で説明したプログラムまたはソフトウェアモジュールは、コンピュータ1200上またはコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。 The program or software module described above may be stored in a computer-readable storage medium on the computer 1200 or in the vicinity of the computer 1200. In addition, a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program is transferred to the computer 1200 via the network. provide.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
100 UAV
102 UAV本体
110 UAV制御部
150 通信インタフェース
160 メモリ
200 ジンバル
210 回転翼機構
230 撮像装置
240 GPS受信機
260 磁気コンパス
270 気圧高度計
300 撮像装置
301 撮像部
310 撮像制御部
312 AF処理部
316 決定部
330 撮像素子
340 メモリ
401 レンズ部
410 レンズ制御部
412 温度補正部
420 メモリ
430 レンズ移動機構
432 レンズ
440 レンズ位置検出部
450 温度センサ
1200 コンピュータ
1210 ホストコントローラ
1212 CPU
1214 RAM
1220 入力/出力コントローラ
1222 通信インタフェース
1230 ROM
100 UAV
102 UAV main body 110 UAV control unit 150 Communication interface 160 Memory 200 Gimbal 210 Rotor wing mechanism 230 Imaging device 240 GPS receiver 260 Magnetic compass 270 Barometric altimeter 300 Imaging device 301 Imaging unit 310 Imaging control unit 312 AF processing unit 316 Determination unit 330 Imaging Element 340 Memory 401 Lens unit 410 Lens control unit 412 Temperature correction unit 420 Memory 430 Lens movement mechanism 432 Lens 440 Lens position detection unit 450 Temperature sensor 1200 Computer 1210 Host controller 1212 CPU
1214 RAM
1220 Input / output controller 1222 Communication interface 1230 ROM

Claims (17)

  1.  撮像装置が撮像した画像の評価値に関する条件、前記撮像装置と被写体との距離に関する条件、前記撮像装置の高度に関する条件、前記撮像装置の移動速度に関する条件、前記撮像装置のフォーカスレンズの移動速度に関する条件、および前記撮像装置がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たす場合、前記撮像装置のフォーカスレンズの位置を温度に基づいて補正することを決定する決定部と
    を備える制御装置。
    A condition relating to an evaluation value of an image taken by the imaging device, a condition relating to a distance between the imaging device and a subject, a condition relating to an altitude of the imaging device, a condition relating to a moving speed of the imaging device, and a moving speed of a focus lens of the imaging device If a predetermined condition including at least one of a condition and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is corrected based on the temperature. And a control unit.
  2.  前記評価値は、コントラストAF方式で導出されるコントラストに関する評価値であり、
     前記決定部は、前記評価値の単位時間あたりの変化量が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。
    The evaluation value is an evaluation value related to contrast derived by a contrast AF method,
    The determination unit determines that the predetermined condition is satisfied when the amount of change per unit time of the evaluation value is equal to or less than a threshold, and determines to correct the position of the focus lens based on temperature. The control device according to claim 1.
  3.  前記評価値は、位相差AF方式で導出される位相差に関する評価値であり、
     前記決定部は、前記評価値の単位時間あたりの変化量が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。
    The evaluation value is an evaluation value related to a phase difference derived by a phase difference AF method,
    The determination unit determines that the predetermined condition is satisfied when the amount of change per unit time of the evaluation value is equal to or less than a threshold, and determines to correct the position of the focus lens based on temperature. The control device according to claim 1.
  4.  前記評価値は、前記画像内の被写体の大きさに関する評価値であり、
     前記決定部は、前記評価値の単位時間あたりの変化量が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。
    The evaluation value is an evaluation value related to the size of a subject in the image,
    The determination unit determines that the predetermined condition is satisfied when the amount of change per unit time of the evaluation value is equal to or less than a threshold, and determines to correct the position of the focus lens based on temperature. The control device according to claim 1.
  5.  前記決定部は、前記距離の単位時間あたりの変化量が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 The determination unit determines that the predetermined condition is satisfied when a change amount of the distance per unit time is equal to or less than a threshold, and determines to correct the position of the focus lens based on temperature. Item 2. The control device according to Item 1.
  6.  前記決定部は、前記高度の単位時間あたりの変化量が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 The determination unit determines that the predetermined condition is satisfied when the amount of change per unit time of the altitude is equal to or less than a threshold, and determines to correct the position of the focus lens based on temperature. Item 2. The control device according to Item 1.
  7.  前記決定部は、前記撮像装置の移動速度が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 2. The determination unit according to claim 1, wherein the determination unit determines that the predetermined condition is satisfied when the moving speed of the imaging apparatus is equal to or less than a threshold value, and determines to correct the position of the focus lens based on temperature. The control device described.
  8.  前記決定部は、前記撮像装置のフォーカスレンズの移動速度が閾値以下の場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 The determination unit determines that the predetermined condition is satisfied when the moving speed of the focus lens of the imaging apparatus is equal to or less than a threshold, and determines to correct the position of the focus lens based on temperature. Item 2. The control device according to Item 1.
  9.  前記決定部は、前記撮像装置がコントラストAFの実行中でない場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 2. The determination unit according to claim 1, wherein when the imaging apparatus is not performing contrast AF, the determination unit determines that the predetermined condition is satisfied and determines to correct the position of the focus lens based on temperature. The control device described.
  10.  前記決定部は、前記条件の少なくとも1つを満たし、かつ前記撮像装置の温度の基準温度からの変化量が閾値以上であるという他の条件を満たす場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 The determination unit determines that the predetermined condition is satisfied when satisfying another condition that the change amount of the temperature of the imaging apparatus from a reference temperature is equal to or greater than a threshold value, satisfying at least one of the conditions. The control device according to claim 1, wherein the control device determines to correct the position of the focus lens based on temperature.
  11.  前記決定部は、前記基準温度からの変化量が閾値以上であるときの温度に基づいて前記基準温度を更新する、請求項10に記載の制御装置。 The control device according to claim 10, wherein the determination unit updates the reference temperature based on a temperature when an amount of change from the reference temperature is equal to or greater than a threshold value.
  12.  前記決定部は、前記条件の少なくとも1つを満たし、かつ前記フォーカスレンズの基準位置からの温度に応じた移動量が閾値以上であるという他の条件を満たす場合、前記予め定められた条件を満たすと判断し、前記フォーカスレンズの位置を温度に基づいて補正することを決定する、請求項1に記載の制御装置。 The determination unit satisfies the predetermined condition when satisfying at least one of the conditions and satisfying another condition that a movement amount according to a temperature from the reference position of the focus lens is equal to or greater than a threshold value. The control device according to claim 1, wherein the control device determines that the position of the focus lens is to be corrected based on temperature.
  13.  前記決定部は、前記基準位置からの移動量が閾値以上であるときの前記フォーカスレンズの位置に基づいて前記基準位置を更新する、請求項12に記載の制御装置。 The control device according to claim 12, wherein the determination unit updates the reference position based on a position of the focus lens when a movement amount from the reference position is equal to or greater than a threshold value.
  14.  請求項1から13の何れか1つに記載の制御装置と、
     前記フォーカスレンズと、
     前記決定部が前記フォーカスレンズの位置を温度に基づいて補正することを決定することに応じて、前記フォーカスレンズの位置を補正すべく前記フォーカスレンズを制御する制御部と
    を備える撮像装置。
    A control device according to any one of claims 1 to 13,
    The focus lens;
    An imaging apparatus comprising: a control unit that controls the focus lens to correct the position of the focus lens in response to the determination unit determining to correct the position of the focus lens based on temperature.
  15.  前記請求項14に記載の撮像装置を備えて移動する移動体。 A moving body that moves with the imaging device according to claim 14.
  16.  撮像装置が撮像した画像の評価値に関する条件、前記撮像装置と被写体との距離に関する条件、前記撮像装置の高度に関する条件、前記撮像装置の移動速度に関する条件、前記撮像装置のフォーカスレンズの移動速度に関する条件、および前記撮像装置がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たす場合、前記撮像装置のフォーカスレンズの位置を温度に基づいて補正することを決定する段階
    を備える制御方法。
    A condition relating to an evaluation value of an image taken by the imaging device, a condition relating to a distance between the imaging device and a subject, a condition relating to an altitude of the imaging device, a condition relating to a moving speed of the imaging device, and a moving speed of a focus lens of the imaging device If a predetermined condition including at least one of a condition and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is corrected based on the temperature. A control method comprising the step of:
  17.  撮像装置が撮像した画像の評価値に関する条件、前記撮像装置と被写体との距離に関する条件、前記撮像装置の高度に関する条件、前記撮像装置の移動速度に関する条件、前記撮像装置のフォーカスレンズの移動速度に関する条件、および前記撮像装置がコントラストAFの実行中か否かに関する条件の少なくとも1つを含む予め定められた条件を満たす場合、前記撮像装置のフォーカスレンズの位置を温度に基づいて補正することを決定する段階
    をコンピュータに実行させるためのプログラム。
    A condition relating to an evaluation value of an image taken by the imaging device, a condition relating to a distance between the imaging device and a subject, a condition relating to an altitude of the imaging device, a condition relating to a moving speed of the imaging device, and a moving speed of a focus lens of the imaging device If a predetermined condition including at least one of a condition and a condition regarding whether or not the imaging apparatus is performing contrast AF is satisfied, the position of the focus lens of the imaging apparatus is corrected based on the temperature. A program that causes a computer to execute the steps to be performed.
PCT/JP2016/087126 2016-12-13 2016-12-13 Control device, imaging device, mobile body, control method, and program WO2018109847A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/087126 WO2018109847A1 (en) 2016-12-13 2016-12-13 Control device, imaging device, mobile body, control method, and program
JP2017559736A JP6543878B2 (en) 2016-12-13 2016-12-13 CONTROL DEVICE, IMAGING DEVICE, MOBILE OBJECT, CONTROL METHOD, AND PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087126 WO2018109847A1 (en) 2016-12-13 2016-12-13 Control device, imaging device, mobile body, control method, and program

Publications (1)

Publication Number Publication Date
WO2018109847A1 true WO2018109847A1 (en) 2018-06-21

Family

ID=62558246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087126 WO2018109847A1 (en) 2016-12-13 2016-12-13 Control device, imaging device, mobile body, control method, and program

Country Status (2)

Country Link
JP (1) JP6543878B2 (en)
WO (1) WO2018109847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067504A (en) * 2018-10-22 2020-04-30 キヤノン株式会社 Focus control device, imaging apparatus, and focus control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708461B (en) * 2019-09-30 2020-11-17 杭州师范大学 Camera focusing and zooming method suitable for unmanned mobile carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270457A (en) * 2005-03-23 2006-10-05 Nec Saitama Ltd Power-off system, method, and program for mobile terminal equipment
JP2012141436A (en) * 2010-12-28 2012-07-26 Canon Inc Focus detector and control method therefor
JP2013083717A (en) * 2011-10-06 2013-05-09 Canon Inc Focus detector
WO2016158040A1 (en) * 2015-03-30 2016-10-06 富士フイルム株式会社 Focus control device, lens device, imaging device, focus control method, focus control program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270457A (en) * 2005-03-23 2006-10-05 Nec Saitama Ltd Power-off system, method, and program for mobile terminal equipment
JP2012141436A (en) * 2010-12-28 2012-07-26 Canon Inc Focus detector and control method therefor
JP2013083717A (en) * 2011-10-06 2013-05-09 Canon Inc Focus detector
WO2016158040A1 (en) * 2015-03-30 2016-10-06 富士フイルム株式会社 Focus control device, lens device, imaging device, focus control method, focus control program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067504A (en) * 2018-10-22 2020-04-30 キヤノン株式会社 Focus control device, imaging apparatus, and focus control method
JP7191640B2 (en) 2018-10-22 2022-12-19 キヤノン株式会社 FOCUS CONTROL DEVICE, IMAGING DEVICE, AND FOCUS CONTROL METHOD

Also Published As

Publication number Publication date
JPWO2018109847A1 (en) 2018-12-13
JP6543878B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
WO2018185939A1 (en) Imaging control device, imaging device, imaging system, mobile body, imaging control method and program
JP6478177B2 (en) Control device, imaging system, moving body, control method, and program
JP2019216343A (en) Determination device, moving body, determination method, and program
JP2019110462A (en) Control device, system, control method, and program
WO2018109847A1 (en) Control device, imaging device, mobile body, control method, and program
JP6565072B2 (en) Control device, lens device, flying object, control method, and program
JP6630939B2 (en) Control device, imaging device, moving object, control method, and program
JP6496953B2 (en) Control device, imaging device, moving object, control method, and program
US20200068128A1 (en) Control device, imaging device, imaging system, movable object, control method, and program
JP6501091B1 (en) CONTROL DEVICE, IMAGING DEVICE, MOBILE OBJECT, CONTROL METHOD, AND PROGRAM
JP6587006B2 (en) Moving body detection device, control device, moving body, moving body detection method, and program
JP6515423B2 (en) CONTROL DEVICE, MOBILE OBJECT, CONTROL METHOD, AND PROGRAM
JP6790318B2 (en) Unmanned aerial vehicles, control methods, and programs
JP6543875B2 (en) Control device, imaging device, flying object, control method, program
JP6503607B2 (en) Imaging control apparatus, imaging apparatus, imaging system, moving object, imaging control method, and program
WO2018116417A1 (en) Control device, imaging device, moving body, control method, and program
JP6543879B2 (en) Unmanned aerial vehicles, decision methods and programs
JP2020016703A (en) Control device, moving body, control method, and program
JP2020014054A (en) Control arrangement, mobile, control method, and program
JP2019205047A (en) Controller, imaging apparatus, mobile body, control method and program
JP6413170B1 (en) Determination apparatus, imaging apparatus, imaging system, moving object, determination method, and program
JP6409239B1 (en) Imaging apparatus, imaging system, flying object, recording method, and program
JP6459012B1 (en) Control device, imaging device, flying object, control method, and program
JP2020052220A (en) Controller, imaging device, mobile body, method for control, and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559736

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16924149

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载