WO2018193581A1 - Power conversion device - Google Patents
Power conversion device Download PDFInfo
- Publication number
- WO2018193581A1 WO2018193581A1 PCT/JP2017/015897 JP2017015897W WO2018193581A1 WO 2018193581 A1 WO2018193581 A1 WO 2018193581A1 JP 2017015897 W JP2017015897 W JP 2017015897W WO 2018193581 A1 WO2018193581 A1 WO 2018193581A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring member
- mold resin
- fuse portion
- fuse
- power conversion
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 49
- 229920005989 resin Polymers 0.000 claims abstract description 88
- 239000011347 resin Substances 0.000 claims abstract description 88
- 239000004065 semiconductor Substances 0.000 claims abstract description 64
- 238000007789 sealing Methods 0.000 claims abstract description 8
- 239000003566 sealing material Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000011810 insulating material Substances 0.000 description 10
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 239000000779 smoke Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001743 silencing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/50—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/34—Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
- H01L2224/39—Structure, shape, material or disposition of the strap connectors after the connecting process
- H01L2224/40—Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
- H01L2224/401—Disposition
- H01L2224/40151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/40221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/40245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a power converter, and more particularly to a power converter having a function of cutting off a short-circuit current when a component is short-circuited.
- Such a vehicle has an inverter device for driving a motor.
- the motor drive inverter device supplies high-voltage drive power to a motor drive circuit using a battery as a power source.
- a resin-sealed power semiconductor device is used for an inverter device for driving a motor.
- resin-encapsulated semiconductor devices are becoming increasingly important as key devices.
- a power semiconductor element is resin-sealed together with other components.
- a resin-encapsulated semiconductor device when power is supplied from a battery, a short circuit failure occurs in a power semiconductor element or a short circuit failure occurs in a snubber circuit electronic component such as a smoothing capacitor. Current flows. More specifically, for example, when the upper and lower arms of the inverter are short-circuited due to a malfunction of the gate drive circuit in the inverter control circuit, an overcurrent flows through the power semiconductor element, causing a short-circuit failure.
- the resin-encapsulated semiconductor device emits smoke and fires due to a large current. Moreover, it is conceivable that the battery connected to the inverter device is damaged due to an overcurrent exceeding the rating. In order to avoid such a situation, usually, a sensor that detects an excessive current is used to control the switching element at a high speed when the excessive current flows to interrupt the current. However, in order to prevent failures such as smoke as described above more reliably, it is also beneficial to take further measures to cope with unexpected situations.
- Patent Document 1 Conventional semiconductor devices provided with a fuse portion are described in, for example, Patent Document 1 and Patent Document 2.
- the conventional semiconductor device described in Patent Document 1 includes a power lead connected to the main electrode of the power element.
- the power element is sealed with a mold resin, and the power lead protrudes outward from the mold resin portion.
- a fuse portion is provided at one location of the projecting power lead. At this time, if an overcurrent flows through the power lead, the temperature of the power lead rises and the fuse portion is broken. Thereby, an overcurrent is interrupted.
- the conventional semiconductor device described in Patent Document 2 has a main circuit wiring having one end and the other end, joined to the surface of the semiconductor element on one end side, and having an external connection terminal portion on the other end side. It has.
- the semiconductor element and one end of the main circuit wiring are sealed with a sealing resin.
- the external connection terminal portion is exposed to the outside from the sealing resin.
- the external connection terminal portion is attached to the bus bar so that a spring force acts on the main circuit wiring in a direction away from the surface of the semiconductor element.
- the main circuit wiring is easily detached from the sealing resin and separated from the semiconductor element.
- the conventional semiconductor device described in Patent Document 1 has the following problems.
- the semiconductor device described in Patent Document 1 when the semiconductor device described in Patent Document 1 is mounted on a semiconductor module, power leads of the semiconductor device are soldered to bus bars of the semiconductor module. At this time, if an overcurrent flows through the power lead, the fuse portion provided in the power lead is torn. In this way, the overcurrent can be temporarily interrupted, but the torn fuse portion may be melted at a higher temperature and may be in electrical contact with a solder joint or the like. In that case, there existed a subject that the fuse part did not play the role as a fuse function. Further, in Patent Document 1, since the fuse portion is provided outside the semiconductor module, the mounting area of components is increased and the semiconductor device is enlarged.
- the conventional semiconductor device described in Patent Document 2 has the following problems.
- the sealing resin is broken by a spring force to separate the main circuit wiring from the semiconductor element. Therefore, since a member and a mounting area for securing the spring force are necessary, the semiconductor device is increased in size.
- the joint since a force is constantly applied to the joint between the semiconductor element and the main circuit wiring due to the spring force, the joint may be damaged, and it is difficult to ensure long-term reliability.
- the present invention has been made in order to solve such a problem, and it is possible to obtain a power conversion device that can cut off an overcurrent with a simple configuration when the overcurrent flows. It is aimed.
- the present invention is a power conversion device including a power conversion module, wherein the power conversion module includes at least one lead frame provided in a wiring pattern, a semiconductor element provided on the lead frame, A wiring member that connects the lead frame and the semiconductor element; and a mold resin that seals the lead frame, the semiconductor element, and the wiring member.
- the thickness of the mold resin provided on the upper side of the part is thinner than the thickness of the mold resin provided on the lower side of the fuse part.
- the fuse portion is formed in the wiring member, and the thickness of the mold resin provided on the upper side of the fuse portion is reduced, so that when the overcurrent flows, the fuse portion is blown together with the broken fuse portion. Since the mold resin on the upper side of the part pops off, the overcurrent can be reliably interrupted with a simple configuration.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- FIG. 3 is a cross-sectional view taken along the line BB in FIG.
- It is a top view of the fuse part provided in the power converter device which concerns on Embodiment 1 of this invention.
- It is a schematic diagram of the current density of the fuse part provided in the power converter device according to Embodiment 1 of the present invention. It is the figure which showed the analysis result of the fuse part provided in the power converter device which concerns on Embodiment 1 of this invention.
- It is the top view which showed the example of the shape of the fuse part provided in the power converter device which concerns on Embodiment 1 of this invention.
- FIG. 1 is a front view of a power conversion apparatus according to Embodiment 1 of the present invention.
- 2 and FIG. 3 are an AA cross-sectional view and a BB cross-sectional view of FIG. 1, respectively.
- the power conversion apparatus includes a power conversion module 100, an external connection terminal 10, an insulating case 11, and a heat sink 12.
- the power conversion module 100 includes a lead frame 13 formed in a wiring pattern, a switchable semiconductor element 14, a wiring member 15, a conductive bonding material 17, and a mold resin 20.
- the wiring member 15 electrically connects between the terminals of the lead frame 13 and between the lead frame 13 and the semiconductor element 14.
- the wiring member 15 includes a large current wiring member 15a and a control wiring member 15b. These wiring members 15a and 15b will be described later.
- the conductive bonding material 17 bonds the lead frame 13, the semiconductor element 14, and the wiring member 15.
- the mold resin 20 seals the lead frame 13, the semiconductor element 14, the wiring member 15, the conductive bonding material 17, and other mounting components (not shown).
- the power conversion module 100 is provided with a heat sink 12 with an insulating material 18 interposed therebetween. Since the insulating material 18 is provided between the heat sink 12 and the semiconductor element 14, the semiconductor element 14 and the heat sink 12 are electrically insulated. On the other hand, the heat generated in the semiconductor element 14 is conducted to the heat sink 12 through the insulating material 18. Therefore, the semiconductor element 14 and the heat sink 12 are thermally connected. The heat sink 12 efficiently radiates heat generated in the semiconductor element 14 to the outside air.
- the power conversion module 100 is electrically insulated from the heat sink 12 via the insulating material 18 and fixed in a thermally connected state.
- the heat sink 12 may have an insulating layer on the surface facing the fixed portion of the power conversion module 100 and be fixed to the power conversion module 100 via soldering, heat dissipation grease, or the like.
- the lead frame 13 is made of a metal such as copper or copper alloy having good conductivity and high thermal conductivity.
- the control terminal 21 and the power terminal 22 of the power conversion module 100 protrude to the outside of the mold resin 20.
- the control terminal 21 is a gate signal line and a sensor signal line of the semiconductor element 14.
- the control terminal 21 is connected to a control board (not shown) mounted on the power converter.
- the power terminal 22 is provided at the tip of the lead frame 13. A large current of several amperes to several hundred amperes flows through the power terminal 22.
- the power terminal 22 is joined to the external connection terminal 10 inserted and outsert in the insulating case 11 by welding or soldering.
- the power terminal 22 is connected to an external power supply device or a power source such as a battery via the external connection terminal 10.
- the semiconductor element 14 is configured by a power field effect transistor (Power MOSFET: Power Metal-Oxide-Semiconductor Field-Effect Transistor) or an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor). These are used in inverter circuits that drive devices such as motors, and control a rated current of several amperes to several hundred amperes.
- Power MOSFET Power Metal-Oxide-Semiconductor Field-Effect Transistor
- IGBT Insulated Gate Bipolar Transistor
- the conductive bonding material 17 is made of a material having good conductivity and high thermal conductivity, such as solder, silver paste, or conductive adhesive.
- the conductive bonding material 17 is used for electrically and thermally connecting and fixing the semiconductor element 14, the lead frame 13, and the wiring member 15.
- silicon (Si), silicon carbide (SiC), gallium nitride (GaN), or the like may be used as a material of the semiconductor element 14.
- the insulating material 18 interposed between the lead frame 13 and the heat sink 12 is made of a material having high thermal conductivity and high electrical insulation. Therefore, the insulating material 18 is, for example, an adhesive made of a resin material such as a silicone resin, an epoxy resin, or a urethane resin having a thermal conductivity of 1 W / mK to several tens of W / mK and having an insulating property, grease, Or it is comprised with an insulation sheet. Furthermore, the insulating material 18 can be configured by combining other resin materials having low thermal resistance such as a ceramic substrate or a metal substrate and having an insulating property and those resin materials.
- a resin material such as a silicone resin, an epoxy resin, or a urethane resin having a thermal conductivity of 1 W / mK to several tens of W / mK and having an insulating property, grease, Or it is comprised with an insulation sheet.
- the insulating material 18 can be configured by combining other resin materials having low
- a protrusion is provided on the lower surface side of the mold resin 20, that is, on the heat sink 12 side.
- the thickness corresponding to the height of the protrusion can be defined, so that the insulating property of the insulating material 18 can be ensured.
- a creepage distance required to ensure a predetermined withstand voltage is about 10 ⁇ m. Therefore, in the case of a low withstand voltage automobile, the thickness necessary for insulation can be reduced, so that the protrusion of the mold resin 20 can be further shortened, and the power conversion module 100 can be made thinner.
- the heat sink 12 has a role of radiating heat generated in the semiconductor element 14 to the outside air when a current flows through the semiconductor element 14 sealed with the mold resin 20.
- the heat sink 12 is configured using a material having a thermal conductivity of 90 W / m ⁇ K or more, such as aluminum or an aluminum alloy.
- a plurality of fins 19 are arranged on the lower surface of the heat sink 12. These fins 19 are in contact with the outside air, and the heat sink 12 radiates heat from these fins 19 toward the outside air.
- the wiring member 15 includes a large current wiring member 15a for large current and a control wiring member 15b for control.
- the control wiring member 15 b is used, for example, to connect the gate and sensor unit of the semiconductor element 14 and the control terminal 21.
- the control wiring member 15b can be formed by, for example, a wire bond such as gold, copper, or aluminum, or a ribbon bond of aluminum. However, it is not limited to these.
- the large current wiring member 15 a is used for connecting between the terminals of the lead frame 13 or between the semiconductor element 14 and the power terminal 22 of the lead frame 13. As shown in FIG. 3, a fuse portion 16 is formed in the large current wiring member 15a.
- the fuse portion 16 is provided in the energization path of the large current wiring member 15a.
- the fuse portion 16 may be provided at any location as long as it is within the energization path of the large current wiring member 15a. However, the fuse portion 16 is not provided at the junction with the lead frame 13 and the junction with the semiconductor element 14 even in the energization path of the large current wiring member 15a.
- the thickness of the joint portion of the large current wiring member 15a is thicker than the thickness of the fuse portion 16. However, the thickness is not limited to this case, and may be the same. Alternatively, the thickness of the junction portion of the large current wiring member 15 a may be made thinner than the thickness of the fuse portion 16.
- the large current wiring member 15a is made of a metal having good conductivity such as copper, copper alloy, aluminum, and aluminum alloy.
- the large current wiring member 15a can be formed, for example, by punching a metal plate having a thickness of about 0.1 mm to 2 mm.
- the soldering of the joint portion is improved by plating the aluminum with tin or nickel.
- the lower surface side of the fuse portion 16 of the large current wiring member 15a that is, the area on the semiconductor element 14 side
- area R2 the upper surface side of the fuse portion 16
- FIG. 4 is a top view of the high-current wiring member 15a.
- the fuse portion 16 is formed by providing a notch portion 33 in the energization path excluding the joint portion of the large current wiring member 15a.
- the notch 33 is configured by a round hole.
- the fuse part 16 is formed by forming a round hole as the notch 33 in the metal plate constituting the large current wiring member 15a. Is done.
- the fuse part 16 is comprised from a part of large current wiring member 15a. Accordingly, the fuse portion 16 is produced by being integrated with the high current wiring member 15a using the same material. Therefore, it is not necessary to add a new fuse member. Therefore, the number of parts is not added and the cost is not increased.
- the cross-sectional area of the fuse portion 16 is smaller than the other portion of the large current wiring member 15a by the notch portion 33. Therefore, as indicated by the thick arrow C2 in FIG. 5, the current density is locally increased only in the fuse portion 16 as compared with the current C1 flowing in other portions. As a result, when a current flows through the large current wiring member 15a, the temperature of the fuse portion 16 only rises locally due to deterioration in heat dissipation and increase in heat generation density.
- the temperature of the fuse part 16 rises rapidly in a short time.
- the fuse portion 16 is broken by heat and flies away.
- the fuse portion 16 blows away the mold resin 20 in the area R2 where the thickness of the mold resin 20 is thin to the upper surface side, and the fuse portion 16 bounces off the outside of the mold resin 20, whereby the large current wiring member 15a.
- the fuse portion 16 can be separated from each other, thereby preventing the large current wiring member 15a and the fuse portion 16 from coming into contact with each other and energizing again.
- the fuse portion 16 is likely to jump to the outside of the mold resin 20, the separation distance of the tearing portion of the high current wiring member 15 a can be increased, and the overcurrent flowing through the high current wiring member 15 a can be reliably cut off. it can.
- the mold resin 20 has an area R2 on the upper surface side of the wiring member 15 thinner than the area R1 on the lower surface side. Therefore, when the fuse part 16 is torn, the mold resin 20 on the upper surface side together with the fuse part 16 is a power conversion module. Blow away toward the outside of 100. As in the conventional semiconductor device, if the fuse portion 16 is not blown away and remains in the power conversion module 100, the metal of the torn fuse portion 16 is melted by heat, and the lead frame 13 or The semiconductor element 14 is electrically connected, and as a result, the current flows again.
- the mold resin 20 on the upper side of the fuse portion 16 is thinned, and the fuse portion 16 is blown off together with the mold resin 20 so that the current flows again due to the adhesion of the melted fuse portion 16. It can be prevented from flowing. Furthermore, in a low withstand voltage system using a 12V battery for automobiles, when a large current flows, the battery voltage drops to below 10V, so that no arc is generated when the fuse portion 16 is broken, and the structure can be further simplified. Further, the power conversion device can be further reduced in size and cost.
- the cross-sectional area of the fuse portion 16 is reduced by making a round hole in the metal plate, but the cross-sectional area of the fuse portion 16 can also be reduced by locally reducing the thickness of the metal plate by pressing or the like. Needless to say, similar effects can be obtained. Further, the fuse portion 16 may be formed by combining the formation of the round hole and the reduction of the thickness.
- FIG. 6 shows a temperature distribution when a current is passed through the large current wiring member 15a.
- FIG. 6 is a temperature distribution of the large current wiring member 15a when an excessive current flows through the large current wiring member 15a shown in FIG. 4 and the fuse portion 16 reaches the melting point.
- the fuse portion 16 As shown in FIG. 6, in the large current wiring member 15a, only the fuse portion 16 is locally heated, but at this time, there is a temperature gradient toward the joint at both ends of the large current wiring member 15a. I understand that. Therefore, even if the fuse part 16 is torn, the joint part is not destroyed. Further, by changing the size of the round hole constituting the notch 33, it is possible to adjust the current when the melting point is reached and the time until the melting point 16 is reached when the melting point is reached.
- the fuse portion 16 is formed by providing the cutout portion 33 in the large current wiring member 15a used in the power conversion module 100 to locally reduce the cross-sectional area.
- the fuse portion 16 since a part of the large current wiring member 15a is used as the fuse portion 16, it is not necessary to newly add a fuse member. Therefore, the number of parts is not added and the number of mounting steps is not increased, so that productivity is high. In addition, the power converter is not increased in size.
- the thickness of the mold resin 20 is changed between the upper surface side and the lower surface side of the fuse portion 16 of the large current wiring member 15a, and the thickness of the mold resin 20 on the upper surface side is reduced.
- the separation distance of the tearing portion of the high current wiring member 15a can be increased, so that the high current wiring member 15a can be prevented from conducting again, and the overcurrent can be reliably cut off. can do. As a result, smoke and ignition of the power converter can be prevented.
- the fuse portion 16 the cross-sectional area of the high-current wiring member 15a is at least partially reduced and the rigidity is lowered. Therefore, thermal stress due to a temperature change is alleviated, and the reliability of the joint portion is expected to be improved. it can.
- the shape of the notch 33 is a round hole, but other shapes may be used. That is, the shape of the notch 33 may be an ellipse as shown in the examples (a), (b), and (d) shown in FIG. 7, or a triangle as shown in the example (c) shown in FIG. Alternatively, as shown in the example (e) shown in FIG. 7, it may be a rectangle such as a rectangle or a square, or another polygon such as a pentagon and a hexagon. Furthermore, it may be trapezoidal as in example (i) shown in FIG. 7, or may be rhombus or parallelogram as in example (h) shown in FIG.
- the number of notches 33 only one notch 33 is provided as in the examples (a) to (c), (e), (h), and (i) shown in FIG.
- a plurality of notches 33 may be provided as in the examples (d), (f), and (g) shown in FIG.
- the cutout portions 33 may be arranged in the width direction of the large current wiring member 15a as in the example (d) shown in FIG.
- they may be arranged in the length direction, may be arranged alternately such as a staggered arrangement, or may be arranged irregularly.
- the notch 33 is provided at the center position in the width direction of the large current wiring member 15a.
- the present invention is not limited to this example.
- the example (j), ( l), a notch 33 may be provided on one side in the width direction of the large current wiring member 15a, or a large current wiring as in the examples (k) and (m) shown in FIG.
- the notches 33 may be provided on both sides in the width direction of the member 15a. In any case, since the cross-sectional area of the high-current wiring member 15a is reduced by the notch 33, the same effect can be obtained.
- the shape of the cutout portion 33 is not limited to the examples (j) to (m) of FIG. 8, and is a quadrangle such as an ellipse, a rectangle, and a rectangle. Other polygons such as pentagons and hexagons, trapezoids, rhombuses, parallelograms, etc. may be used.
- the number of the notches 33 may be one or plural. That is, the shape and the number of the notches 33 may be any shape and number that locally reduce the cross-sectional area in the high-current wiring member 15a, and are not limited to the shape and number described above.
- FIG. 9 is a cross-sectional view of the power conversion device according to the second embodiment. 9, parts that are the same as or correspond to those in the configuration shown in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted here.
- the second embodiment is basically based on the idea described in the first embodiment.
- the height of the large current wiring member 15a is compared with the height of the control wiring member 15b and other electronic components. Then, the height of the control wiring member 15b and other electronic components is higher than that of the large current wiring member 15a. Therefore, the mold resin 20 has a thickness corresponding to the height of the control wiring member 15b and other electronic components. As a result, there is a limit in reducing the thickness of the mold resin 20 provided on the upper side of the fuse portion 16, which is a design constraint for the fuse portion 16.
- the recess 24 is provided on the upper surface of the mold resin 20 in the area R2 provided on the upper side of the fuse portion 16 of the high current wiring member 15a.
- the position of the recessed portion 24 corresponds to the position of the fuse portion 16 so that it is just above the fuse portion 16. Thereby, the thickness of the mold resin 20 can be partially reduced, and the tall wiring member 15 and the electronic component can be used as they are.
- the number of the recessed parts 24 may be one or plural.
- the recess 24 may be formed at the same time when the power conversion module 100 is sealed with the mold resin 20 using a mold, or after the power conversion module 100 is sealed with the mold resin 20
- the recess 24 may be formed by cutting out a part of the resin 20.
- the power conversion module 100 can be configured by providing the recess 24 so that the mold resin 20 is thinned only on the upper side of the fuse portion 16.
- the temperature of the fuse portion 16 rapidly increases in a short time. Then, when the temperature reaches the melting point of the metal constituting the fuse part 16, the fuse part 16 is torn and flies off. At that time, together with the fuse part 16, the mold resin 20 in the area R2 on the upper side of the fuse part 16 is also simultaneously blown off. In this way, the overcurrent can be surely interrupted by blowing away the fuse portion 16 and the mold resin 20 on the upper side to gain a separation distance.
- the fuse part 16 blows off at the time of the rupture, the remains of the ruptured fuse part 16 do not remain in the power conversion module 100. If it remains, the metal of the torn fuse portion 16 is melted and electrically contacts the lead frame 13, the semiconductor element 14, the control wiring member 15 b, etc. May flow. However, in the second embodiment, since the fuse portion 16 does not remain, it is possible to reliably prevent the current from flowing again.
- the mold resin 20 is present in the area R ⁇ b> 2 above the fuse portion 16.
- the present invention is not limited to this, and as shown in FIG. 10, the depth of the recessed portion 24 is increased.
- the fuse portion 16 may be exposed to the outside. That is, in FIG. 10, the recessed portion 24 is a through hole reaching the upper surface of the fuse portion 16, and the fuse portion 16 is exposed to the outside through the through hole. Therefore, the mold resin 20 is not provided above the fuse portion 16. In the example of FIG. 10, not only the fuse portion 16 part but also a part of the large current wiring member 15 a in the vicinity of the fuse portion 16 is exposed to the outside.
- the recess 24 in FIG. 10 may be filled with a sealing material 26 having a low thermal conductivity and sealed.
- the sealing material 26 is filled in the recess 24 of FIG. 10, but the sealing material 26 may be filled in the recess 24 of FIG. 9.
- the sealing material 26 is made of a material having a thermal conductivity smaller than that of the mold resin 20. For example, if the thermal conductivity of the mold resin 20 is about 0.5 to several W / mK, the thermal conductivity of the sealing material 26 is preferably about 0.2 to 0.5 W / mK.
- the sealing material 26 is made of, for example, a silicone resin having a thermal conductivity in such a range.
- the heat dissipation of the fuse part 16 is deteriorated, and when an overcurrent flows through the fuse part 16, the temperature easily rises, and the fuse part 16. This has the effect of shortening the time until tearing. Furthermore, when the sealing material 26 is made of a silicone resin, an arc extinguishing action can be expected. Further, there is a silencing effect when the fuse portion 16 is broken.
- a lid 25 may be provided on the upper surface of the mold resin 20.
- the lid 25 is added to the configuration of FIG. 10, but the lid 25 may be added to the configuration of FIG. 9 or FIG.
- air is shut off from the power conversion module 100, so that it is difficult for ignition or smoke to occur in the power conversion module 100.
- a material of the lid 25 it is desirable to use a metal having a high melting point such as iron or ceramic.
- the lid 25 is bonded to the mold resin 20 with an adhesive or the like. Note that the material of the lid 25 and the method of creating the gap are not limited to these.
- the large current wiring member 15a has the fuse portion 16 and the thickness of the mold resin 20 on the upper side of the fuse portion 16 is the same as in the first embodiment.
- the mold resin 20 on the upper side of the fuse portion 16 is blown off at the same time to increase the separation distance.
- the debris of the fuse portion 16 contacts other parts. By doing so, it is possible to suppress conduction again, and it is possible to prevent smoke and ignition of the power converter.
- the thickness of the mold resin 20 is further reduced by providing the recess 24 in the mold resin 20 on the upper side of the fuse portion 16. Therefore, regardless of the height of the control wiring member 15b and other electronic components, only the height of the mold resin 20 above the fuse portion 16 can be made thin independently. As a result, the choice of the shape of the fuse portion 16 is widened, and since a tall wiring member and electronic component can be used, the degree of design freedom can be increased. Further, since it is only necessary to provide the recess 24 in the mold resin 20, there is no additional number of parts and the number of mounting steps does not increase, so that productivity is high.
- FIG. 13 is a cross-sectional view of the power conversion device according to the third embodiment.
- the same or corresponding parts as those in the configuration shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted here.
- the third embodiment basically assumes the idea described in the first embodiment.
- the height of the control wiring member 15b and other electronic components is higher than the height of the large current wiring member 15a.
- the height of the control wiring member 15b and other electronic components is configured to be lower than that of the large current wiring member 15a. Therefore, the thickness of the mold resin 20 of the fuse portion 16 can be reduced without providing the recessed portion 24 as in the second embodiment.
- the fuse portion 16 breaks. Then, fly away. At that time, the overcurrent can be surely interrupted by blowing away the thin portion of the mold resin 20 on the upper side of the fuse portion 16 at the same time and increasing the separation distance.
- the mold resin 20 is blown off at the same time when the fuse portion 16 is torn, the torn metal of the fuse portion 16 is electrically connected to the lead frame 13, the semiconductor element 14, or the control wiring member 15b, and again, It is possible to reliably prevent a current from flowing.
- the thickness of the mold resin 20 is reduced as a whole, leading to miniaturization of the power converter.
- the amount of the resin of the mold resin 20 is reduced, the thermal stress due to the temperature change is alleviated, and the reliability of the joint portion between the components can be improved.
- the high-current wiring member 15a has the fuse portion 16 and the mold resin 20 on the upper side of the fuse portion 16 Since the thickness is reduced, it is possible to blow away the upper surface side at the time of the rupture to increase the separation distance, and to suppress the conduction of the fuse portion 16 again after the rupture, thereby preventing smoke and ignition of the power converter.
- the thickness of the mold resin 20 is reduced as a whole, leading to the miniaturization of the power converter. Moreover, since the upper surface of the mold resin 20 can be flattened, the mold used for molding can be simplified.
- the mold resin 20 is present on the upper side of the large current wiring member 15 a provided with the fuse portion 16.
- the present invention is not limited to this, and as shown in FIG.
- the large current wiring member 15a provided with 16 may be exposed to the outside.
- the mold resin 20 is not provided on the upper side of the large current wiring member 15a. Note that only the fuse portion 16 may be exposed to the outside without exposing the entire large-current wiring member 15a.
- the mold resin 20 on the upper side of the large current wiring member 15a and exposing at least a part of the large current wiring member 15a to the outside the heat dissipation of the fuse portion 16 deteriorates, and the fuse portion When an overcurrent flows through 16, the temperature is likely to rise, and there is an effect that it is possible to shorten the time until the fuse portion 16 breaks. Also in this case, since the upper surface of the mold resin 20 can be flattened, the mold used for molding can be simplified.
- External connection terminal 11 Insulation case, 12 Heat sink, 13 Lead frame, 14 Semiconductor element, 15 Wiring member, 15a Wiring member for large current, 15b Wiring member for control, 16 Fuse part, 17 Conductive bonding material, 18 Insulating material , 19 fin, 20 mold resin, 21 control terminal, 22 power terminal, 24 dent, 25 lid, 26 sealing material, 100 power conversion module.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Inverter Devices (AREA)
Abstract
This power conversion device is equipped with a power conversion module 100. The power conversion module 100 comprises a lead frame 13, a semiconductor element 14 provided above the lead frame 13, a wiring member 15 establishing a connection between the lead frame 13 and the semiconductor element 14, and a molded resin 20 sealing the lead frame 13, the semiconductor element 14, and the wiring member 15. The wiring member 15 is provided with a fuse section 16, the thickness of the molded resin 20 on the upper side of the fuse section 16 being thinner than that of the molded resin 20 on the lower side of the fuse section 16.
Description
この発明は電力変換装置に関し、特に、構成部品が短絡故障した際の短絡電流を遮断する機能を有する電力変換装置に関するものである。
The present invention relates to a power converter, and more particularly to a power converter having a function of cutting off a short-circuit current when a component is short-circuited.
自動車業界において、ハイブリッド自動車および電気自動車のように、モータを用いて駆動する車両が近年さかんに開発されている。そのような車両は、モータ駆動用インバータ装置を有している。モータ駆動用インバータ装置は、バッテリを電源として、モータの駆動回路に高電圧の駆動電力を供給する。一般的に、モータ駆動用インバータ装置には、樹脂封止型の電力用半導体装置が用いられている。パワーエレクトロニクスの分野において、樹脂封止型の半導体装置は、キーデバイスとしての重要性がますます高まっている。
In the automobile industry, vehicles driven by motors such as hybrid cars and electric cars have been developed in recent years. Such a vehicle has an inverter device for driving a motor. The motor drive inverter device supplies high-voltage drive power to a motor drive circuit using a battery as a power source. In general, a resin-sealed power semiconductor device is used for an inverter device for driving a motor. In the field of power electronics, resin-encapsulated semiconductor devices are becoming increasingly important as key devices.
モータ駆動用インバータ装置に用いられている半導体装置においては、電力用半導体素子が、他の構成部品と共に樹脂封止されている。そのような樹脂封止型の半導体装置において、バッテリから電力が供給された状態で、電力用半導体素子が短絡故障、または、平滑コンデンサなどのスナバ回路用の電子部品が短絡故障すると、過大な短絡電流が流れる。具体的に説明すると、例えば、インバータ制御回路におけるゲート駆動回路の誤動作で、インバータの上下アームが短絡すると、電力用半導体素子に過電流が流れ、短絡故障が発生する。
In a semiconductor device used for an inverter device for driving a motor, a power semiconductor element is resin-sealed together with other components. In such a resin-encapsulated semiconductor device, when power is supplied from a battery, a short circuit failure occurs in a power semiconductor element or a short circuit failure occurs in a snubber circuit electronic component such as a smoothing capacitor. Current flows. More specifically, for example, when the upper and lower arms of the inverter are short-circuited due to a malfunction of the gate drive circuit in the inverter control circuit, an overcurrent flows through the power semiconductor element, causing a short-circuit failure.
短絡状態で、バッテリと駆動回路とを繋ぐリレーを接続するかまたは接続を継続すると、大電流により樹脂封止型の半導体装置が発煙および発火する。また、定格を超える過電流が流れることにより、インバータ装置に接続されているバッテリが損害を受けることも考えられる。こうした事態を回避するために、通常は、過大な電流を検知するセンサーを用いて、過大な電流が流れたときにスイッチング素子を高速に制御して電流を遮断している。しかしながら、上述のような発煙などの故障をより確実に防ぐために、不測の事態に対応するための更なる対策を施しておくことも有益と考えられる。
When the relay that connects the battery and the drive circuit is connected in the short circuit state or the connection is continued, the resin-encapsulated semiconductor device emits smoke and fires due to a large current. Moreover, it is conceivable that the battery connected to the inverter device is damaged due to an overcurrent exceeding the rating. In order to avoid such a situation, usually, a sensor that detects an excessive current is used to control the switching element at a high speed when the excessive current flows to interrupt the current. However, in order to prevent failures such as smoke as described above more reliably, it is also beneficial to take further measures to cope with unexpected situations.
たとえば、電力用半導体装置とバッテリとの間に過電流遮断用ヒューズを挿入すれば、インバータとバッテリとの間に流れる過電流を阻止することができる。しかしながら、チップ型の過電流遮断用ヒューズは、非常に高価である。そのため、電力用半導体素子が短絡故障した際に、バッテリに流れ得る過電流を確実に遮断できる簡便且つ安価な過電流遮断機構が必要とされている。
For example, if an overcurrent cutoff fuse is inserted between the power semiconductor device and the battery, the overcurrent flowing between the inverter and the battery can be prevented. However, the chip-type overcurrent breaking fuse is very expensive. Therefore, there is a need for a simple and inexpensive overcurrent interrupt mechanism that can reliably interrupt an overcurrent that can flow to a battery when a power semiconductor element has a short circuit failure.
ヒューズ部が設けられた従来の半導体装置は、例えば、特許文献1および特許文献2に記載されている。
Conventional semiconductor devices provided with a fuse portion are described in, for example, Patent Document 1 and Patent Document 2.
特許文献1に記載の従来の半導体装置は、パワー素子の主電極に接続されたパワーリードを備えている。特許文献1では、パワー素子をモールド樹脂で封止すると共に、パワーリードをモールド樹脂部から外部に向けて突設させている。また、突設させたパワーリードの一箇所にヒューズ部を設けている。このとき、パワーリードに過電流が流れると、パワーリードの温度が上昇して、ヒューズ部が断裂する。これにより、過電流が遮断される。
The conventional semiconductor device described in Patent Document 1 includes a power lead connected to the main electrode of the power element. In Patent Document 1, the power element is sealed with a mold resin, and the power lead protrudes outward from the mold resin portion. Also, a fuse portion is provided at one location of the projecting power lead. At this time, if an overcurrent flows through the power lead, the temperature of the power lead rises and the fuse portion is broken. Thereby, an overcurrent is interrupted.
特許文献2に記載の従来の半導体装置は、一方端と他方端とを有し、一方端側にて半導体素子の表面に接合され、かつ、他方端側に外部接続端子部を有する主回路配線を備えている。半導体素子と主回路配線の一方端とは、封止樹脂により封止されている。外部接続端子部は、封止樹脂から外部に露出している。外部接続端子部は、主回路配線に対して半導体素子の表面から離れる方向にバネ力が作用するように、バスバーに取り付けられている。このとき、半導体装置に過電流が流れると、温度が上昇し、封止樹脂が軟らかくなって脆くなるため、上記のバネ力により、封止樹脂が断裂する。その結果、主回路配線が封止樹脂から容易に外れて半導体素子から分離される。
The conventional semiconductor device described in Patent Document 2 has a main circuit wiring having one end and the other end, joined to the surface of the semiconductor element on one end side, and having an external connection terminal portion on the other end side. It has. The semiconductor element and one end of the main circuit wiring are sealed with a sealing resin. The external connection terminal portion is exposed to the outside from the sealing resin. The external connection terminal portion is attached to the bus bar so that a spring force acts on the main circuit wiring in a direction away from the surface of the semiconductor element. At this time, if an overcurrent flows through the semiconductor device, the temperature rises and the sealing resin becomes soft and brittle, so that the sealing resin is broken by the spring force. As a result, the main circuit wiring is easily detached from the sealing resin and separated from the semiconductor element.
しかしながら、特許文献1に記載の従来の半導体装置においては、以下のような課題がある。例えば、特許文献1に記載の半導体装置を半導体モジュールに実装する場合、半導体装置のパワーリードは、半導体モジュールのバスバーに半田接合される。このとき、パワーリードに過電流が流れると、パワーリードに設けられたヒューズ部が断裂する。こうして、一時的に過電流を遮断することができるが、断裂したヒューズ部がさらに高温になって溶融され、半田接合部などに電気的に接触してしまう可能性がある。その場合、ヒューズ部がヒューズ機能としての役目を果たしていないという課題があった。さらに、特許文献1では、半導体モジュールの外部にヒューズ部を設けているため、部品の実装面積が増え、半導体装置が大型化している。
However, the conventional semiconductor device described in Patent Document 1 has the following problems. For example, when the semiconductor device described in Patent Document 1 is mounted on a semiconductor module, power leads of the semiconductor device are soldered to bus bars of the semiconductor module. At this time, if an overcurrent flows through the power lead, the fuse portion provided in the power lead is torn. In this way, the overcurrent can be temporarily interrupted, but the torn fuse portion may be melted at a higher temperature and may be in electrical contact with a solder joint or the like. In that case, there existed a subject that the fuse part did not play the role as a fuse function. Further, in Patent Document 1, since the fuse portion is provided outside the semiconductor module, the mounting area of components is increased and the semiconductor device is enlarged.
また、特許文献2に記載の従来の半導体装置においては、以下のような課題がある。特許文献2に記載の従来の半導体装置においては、バネ力で封止樹脂を断裂させて、主回路配線を半導体素子から分離させる。そのため、バネ力を確保するための部材および実装面積が必要であるため、半導体装置が大型化する。また、バネ力により半導体素子と主回路配線との接合部に常に力が加わり続けるため、接合部が破損する可能性があり、長期信頼性を確保するのが困難であった。
Further, the conventional semiconductor device described in Patent Document 2 has the following problems. In the conventional semiconductor device described in Patent Document 2, the sealing resin is broken by a spring force to separate the main circuit wiring from the semiconductor element. Therefore, since a member and a mounting area for securing the spring force are necessary, the semiconductor device is increased in size. In addition, since a force is constantly applied to the joint between the semiconductor element and the main circuit wiring due to the spring force, the joint may be damaged, and it is difficult to ensure long-term reliability.
この発明は、かかる課題を解決するためになされたものであり、簡易な構成で、過電流が流れたときに、当該過電流を確実に遮断することが可能な、電力変換装置を得ることを目的としている。
The present invention has been made in order to solve such a problem, and it is possible to obtain a power conversion device that can cut off an overcurrent with a simple configuration when the overcurrent flows. It is aimed.
この発明は、電力変換モジュールを備えた電力変換装置であって、前記電力変換モジュールは、配線パターン状に設けられた1以上のリードフレームと、前記リードフレーム上に設けられた半導体素子と、前記リードフレームと前記半導体素子との間を接続する配線部材と、前記リードフレームと前記半導体素子と前記配線部材とを封止するモールド樹脂とを有し、前記配線部材にヒューズ部を設け、前記ヒューズ部の上側に設けられた前記モールド樹脂の厚さは、前記ヒューズ部の下側に設けられた前記モールド樹脂の厚さより薄い、電力変換装置である。
The present invention is a power conversion device including a power conversion module, wherein the power conversion module includes at least one lead frame provided in a wiring pattern, a semiconductor element provided on the lead frame, A wiring member that connects the lead frame and the semiconductor element; and a mold resin that seals the lead frame, the semiconductor element, and the wiring member. In the power conversion device, the thickness of the mold resin provided on the upper side of the part is thinner than the thickness of the mold resin provided on the lower side of the fuse part.
この発明に係る電力変換装置は、配線部材にヒューズ部を形成し、ヒューズ部の上側に設けられたモールド樹脂の厚さを薄くしたので、過電流が流れたときに、断裂したヒューズ部とともにヒューズ部の上側のモールド樹脂がはじけ飛ぶため、簡易な構成で、確実に過電流を遮断することができる。
In the power conversion device according to the present invention, the fuse portion is formed in the wiring member, and the thickness of the mold resin provided on the upper side of the fuse portion is reduced, so that when the overcurrent flows, the fuse portion is blown together with the broken fuse portion. Since the mold resin on the upper side of the part pops off, the overcurrent can be reliably interrupted with a simple configuration.
この発明の実施の形態に係る電力変換装置について、図を参照しながら、以下に説明する。なお、各図において、同一または対応する構成部分については、同じ符号を付している。また、各図において、同一または対応する構成部分のサイズおよび縮尺は共通しておらず、それぞれ互いに独立している。
The power conversion device according to the embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or corresponding components are denoted by the same reference numerals. Moreover, in each figure, the size of the same or corresponding component and the scale are not common, but are mutually independent.
実施の形態1.
図1は、この発明の実施の形態1に係る電力変換装置の正面図である。また、図2及び図3は、それぞれ、図1のA-A断面図、および、B-B断面図である。Embodiment 1 FIG.
1 is a front view of a power conversion apparatus according toEmbodiment 1 of the present invention. 2 and FIG. 3 are an AA cross-sectional view and a BB cross-sectional view of FIG. 1, respectively.
図1は、この発明の実施の形態1に係る電力変換装置の正面図である。また、図2及び図3は、それぞれ、図1のA-A断面図、および、B-B断面図である。
1 is a front view of a power conversion apparatus according to
図1~図3に示されるように、実施の形態1の電力変換装置は、電力変換モジュール100と、外部接続端子10と、絶縁ケース11と、ヒートシンク12とで構成される。
As shown in FIGS. 1 to 3, the power conversion apparatus according to the first embodiment includes a power conversion module 100, an external connection terminal 10, an insulating case 11, and a heat sink 12.
電力変換モジュール100は、配線パターン状に形成されたリードフレーム13と、スイッチング可能な半導体素子14と、配線部材15と、導電性接合材17と、モールド樹脂20とを備えている。配線部材15は、リードフレーム13の端子間およびリードフレーム13と半導体素子14との間を電気的に接続する。配線部材15には、大電流用配線部材15aと制御用配線部材15bとが含まれる。これらの配線部材15a,15bについては後述する。導電性接合材17は、リードフレーム13と半導体素子14と配線部材15とを接合する。モールド樹脂20は、リードフレーム13と半導体素子14と配線部材15と導電性接合材17とその他の実装部品(図示せず)を封止する。
The power conversion module 100 includes a lead frame 13 formed in a wiring pattern, a switchable semiconductor element 14, a wiring member 15, a conductive bonding material 17, and a mold resin 20. The wiring member 15 electrically connects between the terminals of the lead frame 13 and between the lead frame 13 and the semiconductor element 14. The wiring member 15 includes a large current wiring member 15a and a control wiring member 15b. These wiring members 15a and 15b will be described later. The conductive bonding material 17 bonds the lead frame 13, the semiconductor element 14, and the wiring member 15. The mold resin 20 seals the lead frame 13, the semiconductor element 14, the wiring member 15, the conductive bonding material 17, and other mounting components (not shown).
電力変換モジュール100には、絶縁材18を介在させて、ヒートシンク12が設けられている。ヒートシンク12と半導体素子14との間に絶縁材18を設けているため、半導体素子14とヒートシンク12とは電気的に絶縁されている。一方で、半導体素子14で発生する熱は、絶縁材18を介して、ヒートシンク12に伝導する。従って、半導体素子14とヒートシンク12とは熱的に接続されている。ヒートシンク12は、半導体素子14で発生した熱を、外気へ効率よく放熱する。
The power conversion module 100 is provided with a heat sink 12 with an insulating material 18 interposed therebetween. Since the insulating material 18 is provided between the heat sink 12 and the semiconductor element 14, the semiconductor element 14 and the heat sink 12 are electrically insulated. On the other hand, the heat generated in the semiconductor element 14 is conducted to the heat sink 12 through the insulating material 18. Therefore, the semiconductor element 14 and the heat sink 12 are thermally connected. The heat sink 12 efficiently radiates heat generated in the semiconductor element 14 to the outside air.
このように、電力変換モジュール100は、絶縁材18を介して、ヒートシンク12に対して、電気的に絶縁され、熱的に接続された状態で固定されている。あるいは、ヒートシンク12が、電力変換モジュール100の被固定部に対向する面に絶縁層を持ち、はんだ付けや放熱グリスなどを介して、電力変換モジュール100に固定されるようにしてもよい。
Thus, the power conversion module 100 is electrically insulated from the heat sink 12 via the insulating material 18 and fixed in a thermally connected state. Alternatively, the heat sink 12 may have an insulating layer on the surface facing the fixed portion of the power conversion module 100 and be fixed to the power conversion module 100 via soldering, heat dissipation grease, or the like.
リードフレーム13には、導電性が良好で熱伝導率の高い銅または銅合金などの金属を用いる。
The lead frame 13 is made of a metal such as copper or copper alloy having good conductivity and high thermal conductivity.
図1及び図2に示されるように、電力変換モジュール100の制御用端子21とパワー端子22とは、モールド樹脂20の外部に突出している。制御用端子21は、半導体素子14のゲート信号線およびセンサー信号線などである。制御用端子21は、電力変換装置に搭載された制御基板(図示せず)へ接続される。パワー端子22は、リードフレーム13の先端に設けられている。パワー端子22には、数アンペアから数百アンペア程度の大電流が流れる。パワー端子22は、絶縁ケース11にインサートおよびアウトサートされた外部接続端子10に、溶接または半田付けなどにより接合される。パワー端子22は、外部接続端子10を介して、外部に設けられた電力供給装置またはバッテリなどの電源と接続される。
1 and 2, the control terminal 21 and the power terminal 22 of the power conversion module 100 protrude to the outside of the mold resin 20. The control terminal 21 is a gate signal line and a sensor signal line of the semiconductor element 14. The control terminal 21 is connected to a control board (not shown) mounted on the power converter. The power terminal 22 is provided at the tip of the lead frame 13. A large current of several amperes to several hundred amperes flows through the power terminal 22. The power terminal 22 is joined to the external connection terminal 10 inserted and outsert in the insulating case 11 by welding or soldering. The power terminal 22 is connected to an external power supply device or a power source such as a battery via the external connection terminal 10.
半導体素子14は、電力用電界効果トランジスタ(パワーMOSFET:Power Metal-Oxide-Semiconductor Field-Effect Transistor)、または、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)などで構成される。これらは、モータなどの機器を駆動するインバータ回路に用いられるもので、数アンペアから数百アンペアの定格電流を制御するものである。
The semiconductor element 14 is configured by a power field effect transistor (Power MOSFET: Power Metal-Oxide-Semiconductor Field-Effect Transistor) or an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor). These are used in inverter circuits that drive devices such as motors, and control a rated current of several amperes to several hundred amperes.
導電性接合材17は、例えば、半田、銀ペースト、あるいは、導電性接着剤などの、導電性が良好で熱伝導率の高い材料から構成される。導電性接合材17は、半導体素子14とリードフレーム13と配線部材15とを電気的及び熱的に接続し、固着させるために用いられる。
The conductive bonding material 17 is made of a material having good conductivity and high thermal conductivity, such as solder, silver paste, or conductive adhesive. The conductive bonding material 17 is used for electrically and thermally connecting and fixing the semiconductor element 14, the lead frame 13, and the wiring member 15.
半導体素子14の材料として、シリコン(Si)、シリコンカーバイド(SiC)、ガリウムナイトライド(GaN)などを用いてよい。
As a material of the semiconductor element 14, silicon (Si), silicon carbide (SiC), gallium nitride (GaN), or the like may be used.
リードフレーム13とヒートシンク12との間に介在する絶縁材18は、高い熱伝導性を有し、且つ、電気的絶縁性が高い材料から構成される。従って、絶縁材18は、例えば、熱伝導率が1W/mK~数十W/mKで、且つ、絶縁性のある、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂などの樹脂材料から成る接着剤、グリス、または、絶縁シートで構成される。さらに、絶縁材18は、セラミック基板または金属基板などの熱抵抗が低く、且つ、絶縁性を有する他の材料と、それらの樹脂材料とを、組み合わせて構成することも可能である。
The insulating material 18 interposed between the lead frame 13 and the heat sink 12 is made of a material having high thermal conductivity and high electrical insulation. Therefore, the insulating material 18 is, for example, an adhesive made of a resin material such as a silicone resin, an epoxy resin, or a urethane resin having a thermal conductivity of 1 W / mK to several tens of W / mK and having an insulating property, grease, Or it is comprised with an insulation sheet. Furthermore, the insulating material 18 can be configured by combining other resin materials having low thermal resistance such as a ceramic substrate or a metal substrate and having an insulating property and those resin materials.
また、図1~図3では図示していないが、絶縁材18の厚さを規定するために、モールド樹脂20の下面側、すなわち、ヒートシンク12側には、突起が設けられている。モールド樹脂20の突起をヒートシンク12に押し当てることで、突起の高さに相当する厚さを規定できるため、絶縁材18の絶縁性を担保することができる。特に12Vバッテリを使用する低耐圧系の自動車では、予め定められた絶縁耐圧を確保するのに必要な沿面距離は、10μm程度である。従って、低耐圧系の自動車の場合には、絶縁に必要な厚さを薄くできるため、モールド樹脂20の突起をより短くすることができ、電力変換モジュール100の薄型化が可能である。
Although not shown in FIGS. 1 to 3, in order to define the thickness of the insulating material 18, a protrusion is provided on the lower surface side of the mold resin 20, that is, on the heat sink 12 side. By pressing the protrusion of the mold resin 20 against the heat sink 12, the thickness corresponding to the height of the protrusion can be defined, so that the insulating property of the insulating material 18 can be ensured. In particular, in a low withstand voltage vehicle using a 12V battery, a creepage distance required to ensure a predetermined withstand voltage is about 10 μm. Therefore, in the case of a low withstand voltage automobile, the thickness necessary for insulation can be reduced, so that the protrusion of the mold resin 20 can be further shortened, and the power conversion module 100 can be made thinner.
ヒートシンク12は、モールド樹脂20に封止された半導体素子14に電流が流れるときに半導体素子14に発生する熱を外気へ放熱する役割を有する。ヒートシンク12は、例えば、アルミニウム、アルミニウム合金などの90W/m・K以上の熱伝導率を有する材料を用いて構成される。ヒートシンク12の下面には、図3に示すように、複数のフィン19が配列している。これらのフィン19は外気に接触しており、ヒートシンク12はこれらのフィン19から外気に向かって熱を放熱する。
The heat sink 12 has a role of radiating heat generated in the semiconductor element 14 to the outside air when a current flows through the semiconductor element 14 sealed with the mold resin 20. The heat sink 12 is configured using a material having a thermal conductivity of 90 W / m · K or more, such as aluminum or an aluminum alloy. As shown in FIG. 3, a plurality of fins 19 are arranged on the lower surface of the heat sink 12. These fins 19 are in contact with the outside air, and the heat sink 12 radiates heat from these fins 19 toward the outside air.
配線部材15には、上述したように、大電流用の大電流用配線部材15aと制御用の制御用配線部材15bとが含まれる。
As described above, the wiring member 15 includes a large current wiring member 15a for large current and a control wiring member 15b for control.
制御用配線部材15bは、例えば、半導体素子14のゲート及びセンサー部と、制御用端子21とを接続するために使用される。なお、制御用配線部材15bは、例えば、金・銅・アルミニウムなどのワイヤボンド、または、アルミニウムのリボンボンドで形成することができる。但し、これらに限定されない。
The control wiring member 15 b is used, for example, to connect the gate and sensor unit of the semiconductor element 14 and the control terminal 21. The control wiring member 15b can be formed by, for example, a wire bond such as gold, copper, or aluminum, or a ribbon bond of aluminum. However, it is not limited to these.
大電流用配線部材15aは、リードフレーム13の端子間、または、半導体素子14とリードフレーム13のパワー端子22との間などを接続するために使用される。大電流用配線部材15aには、図3に示すように、ヒューズ部16が形成されている。ヒューズ部16は、大電流用配線部材15aの通電経路内に設けられている。ヒューズ部16は、大電流用配線部材15aの通電経路内であれば、いずれの箇所に設けてもよい。但し、大電流用配線部材15aの通電経路であっても、リードフレーム13との接合部、及び、半導体素子14との接合部には、ヒューズ部16は設けない。図3では、大電流用配線部材15aの接合部の厚さがヒューズ部16の厚さよりも厚くなっているが、この場合に限らず、同じ厚さにしてもよい。あるいは、大電流用配線部材15aの接合部の厚さを、ヒューズ部16の厚さよりも薄くしてもよい。
The large current wiring member 15 a is used for connecting between the terminals of the lead frame 13 or between the semiconductor element 14 and the power terminal 22 of the lead frame 13. As shown in FIG. 3, a fuse portion 16 is formed in the large current wiring member 15a. The fuse portion 16 is provided in the energization path of the large current wiring member 15a. The fuse portion 16 may be provided at any location as long as it is within the energization path of the large current wiring member 15a. However, the fuse portion 16 is not provided at the junction with the lead frame 13 and the junction with the semiconductor element 14 even in the energization path of the large current wiring member 15a. In FIG. 3, the thickness of the joint portion of the large current wiring member 15a is thicker than the thickness of the fuse portion 16. However, the thickness is not limited to this case, and may be the same. Alternatively, the thickness of the junction portion of the large current wiring member 15 a may be made thinner than the thickness of the fuse portion 16.
大電流用配線部材15aには、数アンペアから数百アンペア程度の大電流が流れるため、電流値に合わせた断面積を有する必要がある。また、通電時のジュール発熱を抑えるために、大電流用配線部材15aは、例えば、銅、銅合金、アルミニウム、アルミニウム合金などの導電性の良好な金属で構成される。大電流用配線部材15aは、例えば、0.1mm~2mm程度の厚みを有する金属プレートを打ち抜き加工することにより形成することができる。なお、大電流用配線部材15aをアルミニウムで構成する場合、アルミニウムに対し、スズまたはニッケルでメッキを施すことで、接合部の半田付けが良好になる。
Since a large current of about several amperes to several hundred amperes flows through the large current wiring member 15a, it is necessary to have a cross-sectional area corresponding to the current value. Further, in order to suppress Joule heat generation during energization, the large current wiring member 15a is made of a metal having good conductivity such as copper, copper alloy, aluminum, and aluminum alloy. The large current wiring member 15a can be formed, for example, by punching a metal plate having a thickness of about 0.1 mm to 2 mm. In the case where the high-current wiring member 15a is made of aluminum, the soldering of the joint portion is improved by plating the aluminum with tin or nickel.
図3に示すように、大電流用配線部材15aのヒューズ部16の下面側、すなわち、半導体素子14側のエリアを「エリアR1」とし、ヒューズ部16の上面側を「エリアR2」とする。このとき、エリアR1におけるモールド樹脂20の厚さとエリアR2におけるモールド樹脂20の厚さとは互いに異なり、エリアR2におけるモールド樹脂20の厚さの方が、エリアR1よりも薄くなるように構成されている。
3, the lower surface side of the fuse portion 16 of the large current wiring member 15a, that is, the area on the semiconductor element 14 side is referred to as “area R1”, and the upper surface side of the fuse portion 16 is referred to as “area R2”. At this time, the thickness of the mold resin 20 in the area R1 and the thickness of the mold resin 20 in the area R2 are different from each other, and the thickness of the mold resin 20 in the area R2 is configured to be thinner than the area R1. .
次に、大電流用配線部材15aに形成したヒューズ部16について説明する。図4は、大電流用配線部材15aの上面図である。
Next, the fuse part 16 formed in the high-current wiring member 15a will be described. FIG. 4 is a top view of the high-current wiring member 15a.
図4に示すように、ヒューズ部16は、大電流用配線部材15aの接合部を除いた通電経路内に、切り欠き部33を設けることで形成される。図4の例では、切り欠き部33は、丸穴から構成されている。ヒューズ部16の形成方法は、図4に示すように、大電流用配線部材15aを構成している金属プレートに対して、切り欠き部33としての丸穴を空けることで、ヒューズ部16は形成される。このように、ヒューズ部16は、大電流用配線部材15aの一部から構成される。従って、ヒューズ部16は、大電流用配線部材15aと、同一材料で、一体化して、生成される。従って、新たにヒューズ用の部材を追加する必要がない。そのため、部品点数の追加が無く、コストもかからない。また、切り欠き部33を設けたことで、ヒューズ部16の断面積は、切り欠き部33の分だけ、大電流用配線部材15aの他の部分に比べて、小さくなる。そのため、図5の太線の矢印C2で示すように、他の部分に流れる電流C1に比べて、ヒューズ部16のみ局所的に電流密度が増加する。これにより、大電流用配線部材15aに電流が流れた時に、ヒューズ部16のみ、放熱性の悪化と発熱密度の増加とにより、局所的に温度が上昇することとなる。
As shown in FIG. 4, the fuse portion 16 is formed by providing a notch portion 33 in the energization path excluding the joint portion of the large current wiring member 15a. In the example of FIG. 4, the notch 33 is configured by a round hole. As shown in FIG. 4, the fuse part 16 is formed by forming a round hole as the notch 33 in the metal plate constituting the large current wiring member 15a. Is done. Thus, the fuse part 16 is comprised from a part of large current wiring member 15a. Accordingly, the fuse portion 16 is produced by being integrated with the high current wiring member 15a using the same material. Therefore, it is not necessary to add a new fuse member. Therefore, the number of parts is not added and the cost is not increased. Further, by providing the notch portion 33, the cross-sectional area of the fuse portion 16 is smaller than the other portion of the large current wiring member 15a by the notch portion 33. Therefore, as indicated by the thick arrow C2 in FIG. 5, the current density is locally increased only in the fuse portion 16 as compared with the current C1 flowing in other portions. As a result, when a current flows through the large current wiring member 15a, the temperature of the fuse portion 16 only rises locally due to deterioration in heat dissipation and increase in heat generation density.
ヒューズ部16に過大な電流が流れた場合、短時間のうちに急激にヒューズ部16の温度が上昇する。そして、大電流用配線部材15aを構成する金属の溶点まで温度が上昇すると、ヒューズ部16が熱により断裂してはじけ飛ぶ。このとき、ヒューズ部16は、モールド樹脂20の厚さが薄いエリアR2部分のモールド樹脂20を上面側に吹き飛ばし、ヒューズ部16がモールド樹脂20の外側に弾け飛ぶことで、大電流用配線部材15aとヒューズ部16の離間距離を大きくすることができ、大電流用配線部材15aとヒューズ部16が接触して再度通電することを防ぐ。さらにヒューズ部16がモールド樹脂20の外側に弾け飛びやすいことから、大電流用配線部材15aの断裂部の離間距離を大きくすることができ、大電流用配線部材15aに流れる過電流を確実に遮断できる。
When an excessive current flows through the fuse part 16, the temperature of the fuse part 16 rises rapidly in a short time. When the temperature rises to the melting point of the metal constituting the large current wiring member 15a, the fuse portion 16 is broken by heat and flies away. At this time, the fuse portion 16 blows away the mold resin 20 in the area R2 where the thickness of the mold resin 20 is thin to the upper surface side, and the fuse portion 16 bounces off the outside of the mold resin 20, whereby the large current wiring member 15a. And the fuse portion 16 can be separated from each other, thereby preventing the large current wiring member 15a and the fuse portion 16 from coming into contact with each other and energizing again. Further, since the fuse portion 16 is likely to jump to the outside of the mold resin 20, the separation distance of the tearing portion of the high current wiring member 15 a can be increased, and the overcurrent flowing through the high current wiring member 15 a can be reliably cut off. it can.
モールド樹脂20は、配線部材15の上面側のエリアR2が、下面側のエリアR1よりも厚さが薄いため、ヒューズ部16の断裂時には、上面側のモールド樹脂20がヒューズ部16と共に電力変換モジュール100の外部に向かって吹き飛ぶ。従来の半導体装置のように、もし、ヒューズ部16が吹き飛ばずに、電力変換モジュール100内に残留していると、断裂したヒューズ部16の金属が熱で溶解して、再度、リードフレーム13または半導体素子14と電気的に接続してしまい、その結果、電流が再度流れてしまうことになる。そのため、実施の形態1では、ヒューズ部16の上側のモールド樹脂20を薄くしておき、ヒューズ部16をモールド樹脂20と共に外部に向かって吹き飛ばすことで、溶解したヒューズ部16の付着により電流が再び流れることを防ぐことができる。さらに、自動車向けの12Vバッテリを使用する低耐圧系では、大電流が流れると、バッテリ電圧が低下して10Vを下回るため、ヒューズ部16の断裂時にアークが発生しないため、構造をより簡素化でき、電力変換装置のさらなる小型化および低コスト化が可能である。
The mold resin 20 has an area R2 on the upper surface side of the wiring member 15 thinner than the area R1 on the lower surface side. Therefore, when the fuse part 16 is torn, the mold resin 20 on the upper surface side together with the fuse part 16 is a power conversion module. Blow away toward the outside of 100. As in the conventional semiconductor device, if the fuse portion 16 is not blown away and remains in the power conversion module 100, the metal of the torn fuse portion 16 is melted by heat, and the lead frame 13 or The semiconductor element 14 is electrically connected, and as a result, the current flows again. For this reason, in the first embodiment, the mold resin 20 on the upper side of the fuse portion 16 is thinned, and the fuse portion 16 is blown off together with the mold resin 20 so that the current flows again due to the adhesion of the melted fuse portion 16. It can be prevented from flowing. Furthermore, in a low withstand voltage system using a 12V battery for automobiles, when a large current flows, the battery voltage drops to below 10V, so that no arc is generated when the fuse portion 16 is broken, and the structure can be further simplified. Further, the power conversion device can be further reduced in size and cost.
なお、図4の例では、金属プレートに丸穴をあけることでヒューズ部16の断面積を減らしたが、プレス加工などにより局所的に金属プレートの厚さを減らすことでもヒューズ部16の断面積を減らすことができるため、同様の効果が得られることは言うまでもない。また、丸穴の形成と厚さを減らすこととを組み合わせて、ヒューズ部16を形成してもよい。
In the example of FIG. 4, the cross-sectional area of the fuse portion 16 is reduced by making a round hole in the metal plate, but the cross-sectional area of the fuse portion 16 can also be reduced by locally reducing the thickness of the metal plate by pressing or the like. Needless to say, similar effects can be obtained. Further, the fuse portion 16 may be formed by combining the formation of the round hole and the reduction of the thickness.
図6に、大電流用配線部材15aに電流を流した時の温度分布を示す。
FIG. 6 shows a temperature distribution when a current is passed through the large current wiring member 15a.
図6は、図4に示す大電流用配線部材15aに過大な電流が流れてヒューズ部16が融点に達した時の大電流用配線部材15aの温度分布である。図6に示すように、大電流用配線部材15aにおいて、ヒューズ部16のみが局所的に高温になるが、このとき、大電流用配線部材15aの両端の接合部に向かって、温度勾配がついていることがわかる。従って、ヒューズ部16が断裂しても、接合部が破壊することはない。また、切り欠き部33を構成する丸穴の大きさを変えることで、融点に達した時の電流と、融点に達してヒューズ部16が断裂するまでの時間とを調整することができる。
FIG. 6 is a temperature distribution of the large current wiring member 15a when an excessive current flows through the large current wiring member 15a shown in FIG. 4 and the fuse portion 16 reaches the melting point. As shown in FIG. 6, in the large current wiring member 15a, only the fuse portion 16 is locally heated, but at this time, there is a temperature gradient toward the joint at both ends of the large current wiring member 15a. I understand that. Therefore, even if the fuse part 16 is torn, the joint part is not destroyed. Further, by changing the size of the round hole constituting the notch 33, it is possible to adjust the current when the melting point is reached and the time until the melting point 16 is reached when the melting point is reached.
以上のように、実施の形態1では、電力変換モジュール100に用いる大電流用配線部材15aに切り欠き部33を設けて局所的に断面積を減らすことで、ヒューズ部16を形成している。このように、大電流用配線部材15aの一部をヒューズ部16として用いているため、新たにヒューズ用の部材を追加する必要がない。そのため、部品点数の追加が無く、実装工数も増加しないため、生産性が高い。また、電力変換装置が大型化することもない。
As described above, in the first embodiment, the fuse portion 16 is formed by providing the cutout portion 33 in the large current wiring member 15a used in the power conversion module 100 to locally reduce the cross-sectional area. As described above, since a part of the large current wiring member 15a is used as the fuse portion 16, it is not necessary to newly add a fuse member. Therefore, the number of parts is not added and the number of mounting steps is not increased, so that productivity is high. In addition, the power converter is not increased in size.
また、実施の形態1では、大電流用配線部材15aのヒューズ部16の上面側と下面側とでモールド樹脂20の厚さを変え、上面側のモールド樹脂20の厚さを薄くしている。これにより、過電流によりヒューズ部16が断裂した時に、上面側のモールド樹脂20を吹き飛ばすことが可能である。これにより、断裂したヒューズ部16も、モールド樹脂20とともに、外側に吹き飛ぶ。その結果、断裂したヒューズ部16の金属が溶解して、ヒューズ部16の下側にあるリードフレーム13と接触し短絡することを防ぐことができる。また、ヒューズ部16を吹き飛ばすことで、大電流用配線部材15aの断裂部の離間距離が稼げるため、大電流用配線部材15aが再び導通するのを抑制することができ、確実に過電流を遮断することができる。その結果、電力変換装置の発煙および発火が防止できる。
In the first embodiment, the thickness of the mold resin 20 is changed between the upper surface side and the lower surface side of the fuse portion 16 of the large current wiring member 15a, and the thickness of the mold resin 20 on the upper surface side is reduced. Thereby, when the fuse part 16 is torn by an overcurrent, it is possible to blow off the mold resin 20 on the upper surface side. As a result, the torn fuse part 16 is also blown out together with the mold resin 20. As a result, it is possible to prevent the broken metal of the fuse part 16 from melting and coming into contact with the lead frame 13 under the fuse part 16 and short-circuiting. Further, by blowing away the fuse portion 16, the separation distance of the tearing portion of the high current wiring member 15a can be increased, so that the high current wiring member 15a can be prevented from conducting again, and the overcurrent can be reliably cut off. can do. As a result, smoke and ignition of the power converter can be prevented.
また、ヒューズ部16を設けることで、大電流用配線部材15aの断面積が少なくとも部分的に減り、剛性が低くなるため、温度変化による熱応力が緩和され、接合部の信頼性の向上が期待できる。
Further, by providing the fuse portion 16, the cross-sectional area of the high-current wiring member 15a is at least partially reduced and the rigidity is lowered. Therefore, thermal stress due to a temperature change is alleviated, and the reliability of the joint portion is expected to be improved. it can.
また、図4の例では、切り欠き部33の形状を丸穴としたが、他の形状でもよい。すなわち、切り欠き部33の形状は、図7に示す例(a),(b),(d)のように、楕円形でもよく、あるいは、図7に示す例(c)のように、三角形でもよく、あるいは、図7に示す例(e)のように、長方形または正方形などの四角形でもよく、あるいは、五角形および六角形などの他の多角形でもよい。さらに、図7に示す例(i)のように、台形でもよく、あるいは、図7に示す例(h)のように、ひし形でもよく、あるいは、平行四辺形などでもよい。
In the example of FIG. 4, the shape of the notch 33 is a round hole, but other shapes may be used. That is, the shape of the notch 33 may be an ellipse as shown in the examples (a), (b), and (d) shown in FIG. 7, or a triangle as shown in the example (c) shown in FIG. Alternatively, as shown in the example (e) shown in FIG. 7, it may be a rectangle such as a rectangle or a square, or another polygon such as a pentagon and a hexagon. Furthermore, it may be trapezoidal as in example (i) shown in FIG. 7, or may be rhombus or parallelogram as in example (h) shown in FIG.
また、切り欠き部33の個数については、図7に示す例(a)~(c),(e),(h),(i)のように、1個の切り欠き部33のみを設けてもよく、あるいは、図7に示す例(d),(f),(g)のように、複数個の切り欠き部33を設けるようにしてもよい。さらに、切り欠き部33を複数個設ける場合は、それらの切り欠き部33を、図7に示す例(d)のように、大電流用配線部材15aの幅方向に配置しても、あるいは、図7に示す例(f)のように、長さ方向に配置してもよく、あるいは、千鳥配置など互い違いに配置してもよく、あるいは、不規則に配置してもよい。
As for the number of notches 33, only one notch 33 is provided as in the examples (a) to (c), (e), (h), and (i) shown in FIG. Alternatively, a plurality of notches 33 may be provided as in the examples (d), (f), and (g) shown in FIG. Further, when a plurality of cutout portions 33 are provided, the cutout portions 33 may be arranged in the width direction of the large current wiring member 15a as in the example (d) shown in FIG. As in the example (f) shown in FIG. 7, they may be arranged in the length direction, may be arranged alternately such as a staggered arrangement, or may be arranged irregularly.
また、図7に示す例(g)のように、丸と楕円というように形状が異なる複数の切り欠き部33を組み合わせることも可能である。さらに、図7に示す例(g)では、丸穴の方が、楕円の穴よりも大きいが、このように、大きさの異なる複数の切り欠き部33を組み合わせることも可能である。
Further, as in the example (g) shown in FIG. 7, it is possible to combine a plurality of cutout portions 33 having different shapes such as a circle and an ellipse. Further, in the example (g) shown in FIG. 7, the round hole is larger than the elliptical hole, but it is also possible to combine a plurality of cutout portions 33 having different sizes.
また、図4の例においては、大電流用配線部材15aの幅方向の中央位置に切り欠き部33を設けているが、この場合に限らず、例えば、図8に示す例(j),(l)のように、大電流用配線部材15aの幅方向の片側に切り欠き部33を設けてもよく、あるいは、図8に示す例(k),(m)のように、大電流用配線部材15aの幅方向の両側に切り欠き部33を設けてもよい。いずれの場合も、大電流用配線部材15aの断面積が切り欠き部33により低減されているため、同様の効果が得られる。また、片側および両側に切り欠き部33を設ける場合のいずれにおいても、切り欠き部33の形状は、図8の例(j)~(m)に限らず、楕円形、長方形および長方形などの四角形、五角形および六角形などの他の多角形、台形、ひし形、平行四辺形などでもよい。また、それらの切り欠き部33の個数は、1個でも、複数個でもよい。すなわち、切り欠き部33の形状および個数は、大電流用配線部材15aにおいて局所的に断面積を減らす形状および個数であれば何でもよく、上述した形状および個数に限定されるものではない。
In the example of FIG. 4, the notch 33 is provided at the center position in the width direction of the large current wiring member 15a. However, the present invention is not limited to this example. For example, the example (j), ( l), a notch 33 may be provided on one side in the width direction of the large current wiring member 15a, or a large current wiring as in the examples (k) and (m) shown in FIG. The notches 33 may be provided on both sides in the width direction of the member 15a. In any case, since the cross-sectional area of the high-current wiring member 15a is reduced by the notch 33, the same effect can be obtained. Further, in both cases where the cutout portions 33 are provided on one side and both sides, the shape of the cutout portion 33 is not limited to the examples (j) to (m) of FIG. 8, and is a quadrangle such as an ellipse, a rectangle, and a rectangle. Other polygons such as pentagons and hexagons, trapezoids, rhombuses, parallelograms, etc. may be used. Further, the number of the notches 33 may be one or plural. That is, the shape and the number of the notches 33 may be any shape and number that locally reduce the cross-sectional area in the high-current wiring member 15a, and are not limited to the shape and number described above.
実施の形態2.
この発明の実施の形態2に係る電力変換装置を、図9を参照して説明する。図9は、実施の形態2における電力変換装置の断面図である。なお、図9においては、図3に示した構成と同一または対応する部分については、同一の符号を付し、ここでは、その説明を省略する。また、実施の形態2は、基本的に実施の形態1で説明した思想を前提とするものである。Embodiment 2. FIG.
A power conversion apparatus according toEmbodiment 2 of the present invention will be described with reference to FIG. FIG. 9 is a cross-sectional view of the power conversion device according to the second embodiment. 9, parts that are the same as or correspond to those in the configuration shown in FIG. 3 are given the same reference numerals, and descriptions thereof are omitted here. The second embodiment is basically based on the idea described in the first embodiment.
この発明の実施の形態2に係る電力変換装置を、図9を参照して説明する。図9は、実施の形態2における電力変換装置の断面図である。なお、図9においては、図3に示した構成と同一または対応する部分については、同一の符号を付し、ここでは、その説明を省略する。また、実施の形態2は、基本的に実施の形態1で説明した思想を前提とするものである。
A power conversion apparatus according to
上記の実施の形態1の電力変換装置では、図3に示すように、電力変換モジュール100において、大電流用配線部材15aの高さと、制御用配線部材15bおよび他の電子部品の高さとを比較すると、制御用配線部材15bおよび他の電子部品の高さの方が、大電流用配線部材15aよりも高い。そのため、モールド樹脂20は、制御用配線部材15b及び他の電子部品の高さに応じた厚みとなっている。その結果、ヒューズ部16の上側に設けられたモールド樹脂20の厚さを薄くするには限界があり、ヒューズ部16の設計制約となっていた。
In the power conversion device of the first embodiment, as shown in FIG. 3, in the power conversion module 100, the height of the large current wiring member 15a is compared with the height of the control wiring member 15b and other electronic components. Then, the height of the control wiring member 15b and other electronic components is higher than that of the large current wiring member 15a. Therefore, the mold resin 20 has a thickness corresponding to the height of the control wiring member 15b and other electronic components. As a result, there is a limit in reducing the thickness of the mold resin 20 provided on the upper side of the fuse portion 16, which is a design constraint for the fuse portion 16.
そこで、実施の形態2では、図9に示すように、大電流用配線部材15aのヒューズ部16の上側に設けられたエリアR2のモールド樹脂20の上面に凹み部24を設けている。凹み部24の位置は、図9に示すように、ちょうどヒューズ部16の真上になるように、ヒューズ部16の位置に対応している。これにより、部分的にモールド樹脂20の厚さを薄くするが可能となり、背の高い配線部材15や電子部品をそのまま使用できる。
Therefore, in the second embodiment, as shown in FIG. 9, the recess 24 is provided on the upper surface of the mold resin 20 in the area R2 provided on the upper side of the fuse portion 16 of the high current wiring member 15a. As shown in FIG. 9, the position of the recessed portion 24 corresponds to the position of the fuse portion 16 so that it is just above the fuse portion 16. Thereby, the thickness of the mold resin 20 can be partially reduced, and the tall wiring member 15 and the electronic component can be used as they are.
なお、凹み部24の個数は、1個であっても、複数個であってもよい。また、凹み部24は、成形型を用いてモールド樹脂20で電力変換モジュール100を封止するときに同時に形成してもよく、あるいは、モールド樹脂20で電力変換モジュール100を封止した後に、モールド樹脂20の一部を切り欠くことで、凹み部24を形成するようにしてもよい。
In addition, the number of the recessed parts 24 may be one or plural. The recess 24 may be formed at the same time when the power conversion module 100 is sealed with the mold resin 20 using a mold, or after the power conversion module 100 is sealed with the mold resin 20 The recess 24 may be formed by cutting out a part of the resin 20.
実施の形態2においては、凹み部24を設けることで、ヒューズ部16の上側のみモールド樹脂20を薄くして、電力変換モジュール100を構成することができる。これにより、ヒューズ部16に過大な電流が流れた場合、短時間のうちに、急激に、ヒューズ部16の温度が上昇する。そうして、ヒューズ部16を構成している金属の溶点に温度が達すると、ヒューズ部16が断裂して、はじけ飛ぶ。その時に、ヒューズ部16と共に、ヒューズ部16の上側のエリアR2部分のモールド樹脂20も同時にはじけ飛ぶ。このように、ヒューズ部16とその上側のモールド樹脂20とをはじけ飛ばして離間距離を稼ぐことで、過電流を確実に遮断できる。ヒューズ部16は断裂時に吹き飛ぶため、断裂したヒューズ部16の残骸が、電力変換モジュール100内に残留しない。もし、残留している場合には、断裂したヒューズ部16の金属が溶解して、リードフレーム13、半導体素子14、または、制御用配線部材15bなどに電気的に接触してしまい、再度、電流が流れる可能性がある。しかしながら、実施の形態2では、ヒューズ部16が残留しないので、電流が再度流れることを確実に防ぐことができる。
In the second embodiment, the power conversion module 100 can be configured by providing the recess 24 so that the mold resin 20 is thinned only on the upper side of the fuse portion 16. As a result, when an excessive current flows through the fuse portion 16, the temperature of the fuse portion 16 rapidly increases in a short time. Then, when the temperature reaches the melting point of the metal constituting the fuse part 16, the fuse part 16 is torn and flies off. At that time, together with the fuse part 16, the mold resin 20 in the area R2 on the upper side of the fuse part 16 is also simultaneously blown off. In this way, the overcurrent can be surely interrupted by blowing away the fuse portion 16 and the mold resin 20 on the upper side to gain a separation distance. Since the fuse part 16 blows off at the time of the rupture, the remains of the ruptured fuse part 16 do not remain in the power conversion module 100. If it remains, the metal of the torn fuse portion 16 is melted and electrically contacts the lead frame 13, the semiconductor element 14, the control wiring member 15 b, etc. May flow. However, in the second embodiment, since the fuse portion 16 does not remain, it is possible to reliably prevent the current from flowing again.
なお、図9の例では、ヒューズ部16の上側のエリアR2に、モールド樹脂20が存在しているが、その場合に限らず、図10に示すように、凹み部24の深さを深くして、ヒューズ部16を外部に露出させてもよい。すなわち、図10においては、凹み部24が、ヒューズ部16の上面まで達する貫通穴となっており、ヒューズ部16は、貫通穴を通して外部に露出している。従って、ヒューズ部16の上側には、モールド樹脂20が設けられていない。また、図10の例では、ヒューズ部16部分だけでなく、ヒューズ部16の近傍の大電流用配線部材15aの一部も外部に露出している。このように、ヒューズ部16の上側のエリアR2のモールド樹脂20を無くした場合には、ヒューズ部16の放熱性が悪化し、ヒューズ部16に過電流が流れたときに、温度が上昇しやすくなり、ヒューズ部16が断裂するまでの時間を短くすることができる効果がある。
In the example of FIG. 9, the mold resin 20 is present in the area R <b> 2 above the fuse portion 16. However, the present invention is not limited to this, and as shown in FIG. 10, the depth of the recessed portion 24 is increased. Thus, the fuse portion 16 may be exposed to the outside. That is, in FIG. 10, the recessed portion 24 is a through hole reaching the upper surface of the fuse portion 16, and the fuse portion 16 is exposed to the outside through the through hole. Therefore, the mold resin 20 is not provided above the fuse portion 16. In the example of FIG. 10, not only the fuse portion 16 part but also a part of the large current wiring member 15 a in the vicinity of the fuse portion 16 is exposed to the outside. Thus, when the mold resin 20 in the upper area R2 of the fuse part 16 is eliminated, the heat dissipation of the fuse part 16 deteriorates, and the temperature easily rises when an overcurrent flows through the fuse part 16. Thus, there is an effect that the time until the fuse portion 16 is broken can be shortened.
あるいは、図11に示すように、図10の凹み部24部分に対して、熱伝導率の小さい封止材26を充填させて封止してもよい。図11は、図10の凹み部24に対して封止材26を充填させているが、図9の凹み部24に対して封止材26を充填させてもよい。封止材26は、モールド樹脂20の熱伝導率よりも熱伝導率が小さい材料から構成する。例えば、モールド樹脂20の熱伝導率が0.5~数W/mK程度とすると、封止材26の熱伝導率は、0.2~0.5W/mK程度であることが望ましい。封止材26は、例えば、そのような範囲の熱伝導率を有するシリコーン樹脂などから構成する。このように、凹み部24に封止材26を充填させることで、ヒューズ部16の放熱性が悪化し、ヒューズ部16に過電流が流れたときに、温度が上昇しやすくなり、ヒューズ部16が断裂するまでの時間を短くできる効果がある。さらに、封止材26をシリコーン樹脂で構成した場合には、消弧作用が期待できる。また、ヒューズ部16の断裂時の消音効果がある。
Alternatively, as shown in FIG. 11, the recess 24 in FIG. 10 may be filled with a sealing material 26 having a low thermal conductivity and sealed. In FIG. 11, the sealing material 26 is filled in the recess 24 of FIG. 10, but the sealing material 26 may be filled in the recess 24 of FIG. 9. The sealing material 26 is made of a material having a thermal conductivity smaller than that of the mold resin 20. For example, if the thermal conductivity of the mold resin 20 is about 0.5 to several W / mK, the thermal conductivity of the sealing material 26 is preferably about 0.2 to 0.5 W / mK. The sealing material 26 is made of, for example, a silicone resin having a thermal conductivity in such a range. Thus, by filling the recess 24 with the sealing material 26, the heat dissipation of the fuse part 16 is deteriorated, and when an overcurrent flows through the fuse part 16, the temperature easily rises, and the fuse part 16. This has the effect of shortening the time until tearing. Furthermore, when the sealing material 26 is made of a silicone resin, an arc extinguishing action can be expected. Further, there is a silencing effect when the fuse portion 16 is broken.
あるいは、図12に示すように、モールド樹脂20の上面に、フタ25を設けるようにしてもよい。図12は、図10の構成に対してフタ25を追加しているが、図9または図11の構成に対してフタ25を追加してもよい。このように、フタ25を設けることで、電力変換モジュール100から空気を遮断するので、電力変換モジュール100内で発火または発煙がおきにくい。また、たとえ、電力変換モジュール100内で発火または発煙がおきても、電力変換モジュール100の外部が延焼するのを防ぐことができる。フタ25の材料としては、融点の高い例えば鉄などの金属またはセラミックを用いることが望ましい。また、モールド樹脂20とフタ25との隙間を無くすため、フタ25はモールド樹脂20に対して接着剤などで接合される。なお、フタ25の材料および隙間を生める方法は、これらに限定されるものではない。
Alternatively, as shown in FIG. 12, a lid 25 may be provided on the upper surface of the mold resin 20. In FIG. 12, the lid 25 is added to the configuration of FIG. 10, but the lid 25 may be added to the configuration of FIG. 9 or FIG. Thus, by providing the lid 25, air is shut off from the power conversion module 100, so that it is difficult for ignition or smoke to occur in the power conversion module 100. Moreover, even if ignition or smoke occurs in the power conversion module 100, it is possible to prevent the outside of the power conversion module 100 from spreading. As a material of the lid 25, it is desirable to use a metal having a high melting point such as iron or ceramic. Further, in order to eliminate the gap between the mold resin 20 and the lid 25, the lid 25 is bonded to the mold resin 20 with an adhesive or the like. Note that the material of the lid 25 and the method of creating the gap are not limited to these.
以上のように、実施の形態2においても、上記の実施の形態1と同様に、大電流用配線部材15aがヒューズ部16を有し、かつ、ヒューズ部16の上側のモールド樹脂20の厚さを薄くしたので、ヒューズ部16の断裂時に、ヒューズ部16の上側のモールド樹脂20を同時に吹き飛ばして、離間距離を稼ぎ、ヒューズ部16が断裂した後に、ヒューズ部16の残骸が他の部品に接触することで再度導通してしまうことを抑制することができ、電力変換装置の発煙および発火が防止できる。
As described above, also in the second embodiment, the large current wiring member 15a has the fuse portion 16 and the thickness of the mold resin 20 on the upper side of the fuse portion 16 is the same as in the first embodiment. When the fuse portion 16 is torn, the mold resin 20 on the upper side of the fuse portion 16 is blown off at the same time to increase the separation distance. After the fuse portion 16 is torn, the debris of the fuse portion 16 contacts other parts. By doing so, it is possible to suppress conduction again, and it is possible to prevent smoke and ignition of the power converter.
さらに、実施の形態2では、ヒューズ部16の上側のモールド樹脂20に凹み部24を設けることで、モールド樹脂20の厚さをさらに薄くしている。そのため、制御用配線部材15bおよび他の電子部品の高さに係わらず、ヒューズ部16の上側のモールド樹脂20の高さのみを独立して薄くすることができる。これにより、ヒューズ部16の形状の選択肢が広がるとともに、背の高い配線部材および電子部品も使用することができるため、設計自由度を上げることができる。また、モールド樹脂20に単に凹み部24を設けるだけでよいため、部品点数の追加が無く、実装工数も増加しないため、生産性が高い。
Furthermore, in Embodiment 2, the thickness of the mold resin 20 is further reduced by providing the recess 24 in the mold resin 20 on the upper side of the fuse portion 16. Therefore, regardless of the height of the control wiring member 15b and other electronic components, only the height of the mold resin 20 above the fuse portion 16 can be made thin independently. As a result, the choice of the shape of the fuse portion 16 is widened, and since a tall wiring member and electronic component can be used, the degree of design freedom can be increased. Further, since it is only necessary to provide the recess 24 in the mold resin 20, there is no additional number of parts and the number of mounting steps does not increase, so that productivity is high.
実施の形態3.
この発明の実施の形態3に係る電力変換装置を、図13を参照して説明する。図13は、実施の形態3における電力変換装置の断面図である。なお、図13においては、図3に示した構成と同一または対応する部分については、同一の符号を付し、ここでは、その説明を省略する。また、実施の形態3は、基本的に実施の形態1で説明した思想を前提とするものである。 Embodiment 3 FIG.
A power conversion apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 13 is a cross-sectional view of the power conversion device according to the third embodiment. In FIG. 13, the same or corresponding parts as those in the configuration shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted here. Further, the third embodiment basically assumes the idea described in the first embodiment.
この発明の実施の形態3に係る電力変換装置を、図13を参照して説明する。図13は、実施の形態3における電力変換装置の断面図である。なお、図13においては、図3に示した構成と同一または対応する部分については、同一の符号を付し、ここでは、その説明を省略する。また、実施の形態3は、基本的に実施の形態1で説明した思想を前提とするものである。 Embodiment 3 FIG.
A power conversion apparatus according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 13 is a cross-sectional view of the power conversion device according to the third embodiment. In FIG. 13, the same or corresponding parts as those in the configuration shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted here. Further, the third embodiment basically assumes the idea described in the first embodiment.
上記の実施の形態1,2に係る電力変換装置では、電力変換モジュール100において、大電流用配線部材15aの高さよりも、制御用配線部材15b及び他の電子部品の高さの方が高いため、モールド樹脂20の厚さを薄くするには限界があり、ヒューズ部16の設計制約となっていた。
In the power conversion device according to the first and second embodiments, in the power conversion module 100, the height of the control wiring member 15b and other electronic components is higher than the height of the large current wiring member 15a. There is a limit to reducing the thickness of the mold resin 20, which is a design constraint for the fuse portion 16.
そこで、実施の形態3では、図13に示すように、制御用配線部材15bおよび他の電子部品の高さが、大電流用配線部材15aよりも低くなるように構成している。これにより、上記の実施の形態2のように凹み部24を設けなくても、ヒューズ部16のモールド樹脂20の厚さを薄くできる。
Therefore, in the third embodiment, as shown in FIG. 13, the height of the control wiring member 15b and other electronic components is configured to be lower than that of the large current wiring member 15a. Thereby, the thickness of the mold resin 20 of the fuse portion 16 can be reduced without providing the recessed portion 24 as in the second embodiment.
これにより、ヒューズ部16に過大な電流が流れた場合、短時間のうちに急激にヒューズ部16の温度が上昇し、ヒューズ部16を構成する金属の溶点に達すると、ヒューズ部16が断裂して、はじけ飛ぶ。その時に、ヒューズ部16の上側の厚さの薄い部分のモールド樹脂20を同時に吹き飛ばし、離間距離を稼ぐことで、過電流を確実に遮断できる。また、ヒューズ部16の断裂時に、モールド樹脂20が同時に吹き飛ぶため、断裂したヒューズ部16の金属が、リードフレーム13、半導体素子14、あるいは、制御用配線部材15bと電気的に接続し、再度、電流が流れることを確実に防ぐことができる。
As a result, when an excessive current flows through the fuse portion 16, the temperature of the fuse portion 16 suddenly rises within a short time, and when the melting point of the metal constituting the fuse portion 16 is reached, the fuse portion 16 breaks. Then, fly away. At that time, the overcurrent can be surely interrupted by blowing away the thin portion of the mold resin 20 on the upper side of the fuse portion 16 at the same time and increasing the separation distance. In addition, since the mold resin 20 is blown off at the same time when the fuse portion 16 is torn, the torn metal of the fuse portion 16 is electrically connected to the lead frame 13, the semiconductor element 14, or the control wiring member 15b, and again, It is possible to reliably prevent a current from flowing.
また、制御用配線部材15bおよび他の電子部品の高さを低くすることで、全体的に、モールド樹脂20の厚さが減り、電力変換装置の小型化につながる。加えて、モールド樹脂20の樹脂量が減るため、温度変化による熱応力が緩和され、部品どうしの接合部の信頼性の向上が見込める。
In addition, by reducing the height of the control wiring member 15b and other electronic components, the thickness of the mold resin 20 is reduced as a whole, leading to miniaturization of the power converter. In addition, since the amount of the resin of the mold resin 20 is reduced, the thermal stress due to the temperature change is alleviated, and the reliability of the joint portion between the components can be improved.
以上のように、実施の形態3においても、上記の実施の形態1,2と同様に、大電流用配線部材15aがヒューズ部16を有し、かつ、ヒューズ部16の上側のモールド樹脂20の厚さを薄くしたので、断裂時に上面側を吹き飛ばして離間距離を稼ぎ、ヒューズ部16が断裂後に再度、導通するのを抑制することができ、電力変換装置の発煙および発火が防止できる。
As described above, also in the third embodiment, as in the first and second embodiments, the high-current wiring member 15a has the fuse portion 16 and the mold resin 20 on the upper side of the fuse portion 16 Since the thickness is reduced, it is possible to blow away the upper surface side at the time of the rupture to increase the separation distance, and to suppress the conduction of the fuse portion 16 again after the rupture, thereby preventing smoke and ignition of the power converter.
さらに、実施の形態3においては、制御用配線部材15bおよび他の電子部品の高さを低くすることで、全体的にモールド樹脂20の厚さが減り、電力変換装置の小型化につながる。また、モールド樹脂20の上面を平らにできるため、モールド時に使用する成形型を簡素化できる。
Furthermore, in the third embodiment, by reducing the height of the control wiring member 15b and other electronic components, the thickness of the mold resin 20 is reduced as a whole, leading to the miniaturization of the power converter. Moreover, since the upper surface of the mold resin 20 can be flattened, the mold used for molding can be simplified.
なお、図13の例においては、ヒューズ部16が設けられた大電流用配線部材15aの上側にモールド樹脂20が存在しているが、その場合に限らず、図14に示すように、ヒューズ部16が設けられた大電流用配線部材15aを外部に露出させてもよい。図14の例においては、大電流用配線部材15aの上側には、モールド樹脂20が設けられていない。なお、大電流用配線部材15a全体を露出させずに、ヒューズ部16部分だけを外部に露出するようにしてもよい。このように、大電流用配線部材15aの上側のモールド樹脂20を無くして、大電流用配線部材15aの少なくとも一部を外部に露出することで、ヒューズ部16の放熱性が悪化し、ヒューズ部16に過電流が流れたときに、温度が上昇しやすくなり、ヒューズ部16が断裂するまでの時間を短くできる効果がある。また、この場合においても、モールド樹脂20の上面を平らにできるため、モールド時に使用する成形型を簡素化できる。
In the example of FIG. 13, the mold resin 20 is present on the upper side of the large current wiring member 15 a provided with the fuse portion 16. However, the present invention is not limited to this, and as shown in FIG. The large current wiring member 15a provided with 16 may be exposed to the outside. In the example of FIG. 14, the mold resin 20 is not provided on the upper side of the large current wiring member 15a. Note that only the fuse portion 16 may be exposed to the outside without exposing the entire large-current wiring member 15a. Thus, by eliminating the mold resin 20 on the upper side of the large current wiring member 15a and exposing at least a part of the large current wiring member 15a to the outside, the heat dissipation of the fuse portion 16 deteriorates, and the fuse portion When an overcurrent flows through 16, the temperature is likely to rise, and there is an effect that it is possible to shorten the time until the fuse portion 16 breaks. Also in this case, since the upper surface of the mold resin 20 can be flattened, the mold used for molding can be simplified.
10 外部接続端子、11 絶縁ケース、12 ヒートシンク、13 リードフレーム、14 半導体素子、15 配線部材、15a 大電流用配線部材、15b 制御用配線部材、16 ヒューズ部、17 導電性接合材、18 絶縁材、19 フィン、20 モールド樹脂、21 制御用端子、22 パワー端子、24 凹み部、25 フタ、26 封止材、100 電力変換モジュール。
10 External connection terminal, 11 Insulation case, 12 Heat sink, 13 Lead frame, 14 Semiconductor element, 15 Wiring member, 15a Wiring member for large current, 15b Wiring member for control, 16 Fuse part, 17 Conductive bonding material, 18 Insulating material , 19 fin, 20 mold resin, 21 control terminal, 22 power terminal, 24 dent, 25 lid, 26 sealing material, 100 power conversion module.
Claims (8)
- 電力変換モジュールを備えた電力変換装置であって、
前記電力変換モジュールは、
配線パターン状に設けられた1以上のリードフレームと、
前記リードフレーム上に設けられた半導体素子と、
前記リードフレームと前記半導体素子との間を接続する配線部材と、
前記リードフレームと前記半導体素子と前記配線部材とを封止するモールド樹脂と
を有し、
前記配線部材にヒューズ部を設け、
前記ヒューズ部の上側に設けられた前記モールド樹脂の厚さは、前記ヒューズ部の下側に設けられた前記モールド樹脂の厚さより薄い、
電力変換装置。 A power conversion device including a power conversion module,
The power conversion module includes:
One or more lead frames provided in a wiring pattern,
A semiconductor element provided on the lead frame;
A wiring member for connecting between the lead frame and the semiconductor element;
A mold resin for sealing the lead frame, the semiconductor element, and the wiring member;
A fuse portion is provided in the wiring member,
The thickness of the mold resin provided on the upper side of the fuse portion is thinner than the thickness of the mold resin provided on the lower side of the fuse portion,
Power conversion device. - 前記ヒューズ部は、
前記配線部材の少なくとも1箇所以上に設けられ、前記配線部材の他の部位よりも断面積が小さくなるように形成された部位から構成されている、
請求項1に記載の電力変換装置。 The fuse portion is
It is provided in at least one place of the wiring member, and is composed of a portion formed so that a cross-sectional area is smaller than other portions of the wiring member
The power conversion device according to claim 1. - 前記ヒューズ部の上側に設けられた前記モールド樹脂の上面に凹み部を設けた、
請求項1または2に記載の電力変換装置。 A recess was provided on the upper surface of the mold resin provided on the upper side of the fuse part,
The power converter according to claim 1 or 2. - 前記凹み部は、前記ヒューズ部の上面に達する貫通穴から構成され、
前記ヒューズ部は、前記貫通穴を通して外部に露出している、
請求項3に記載の電力変換装置。 The recessed portion is composed of a through hole reaching the upper surface of the fuse portion,
The fuse portion is exposed to the outside through the through hole,
The power conversion device according to claim 3. - 前記凹み部は、前記モールド樹脂の熱伝導率よりも小さい熱伝導率を有する封止材が充填され封止されている、
請求項3または4に記載の電力変換装置。 The recess is filled and sealed with a sealing material having a thermal conductivity smaller than that of the mold resin,
The power converter according to claim 3 or 4. - 前記モールド樹脂の上面に、前記凹み部を覆うフタを設けた、
請求項3から5までのいずれか1項に記載の電力変換装置。 On the upper surface of the mold resin, a lid that covers the recess is provided.
The power converter according to any one of claims 3 to 5. - 前記モールド樹脂で封止される部品のうち、前記配線部材の高さが最も高い、
請求項1または2に記載の電力変換装置。 Of the components sealed with the mold resin, the wiring member has the highest height,
The power converter according to claim 1 or 2. - 前記ヒューズ部が設けられた前記配線部材の上面の少なくとも一部が、前記モールド樹脂から外部に露出している、
請求項7に記載の電力変換装置。 At least a part of the upper surface of the wiring member provided with the fuse portion is exposed to the outside from the mold resin,
The power conversion device according to claim 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019513163A JP6797289B2 (en) | 2017-04-20 | 2017-04-20 | Power converter |
PCT/JP2017/015897 WO2018193581A1 (en) | 2017-04-20 | 2017-04-20 | Power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015897 WO2018193581A1 (en) | 2017-04-20 | 2017-04-20 | Power conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193581A1 true WO2018193581A1 (en) | 2018-10-25 |
Family
ID=63856549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015897 WO2018193581A1 (en) | 2017-04-20 | 2017-04-20 | Power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6797289B2 (en) |
WO (1) | WO2018193581A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022108830A (en) * | 2021-01-14 | 2022-07-27 | 三菱電機株式会社 | Semiconductor device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102693501B1 (en) * | 2022-11-02 | 2024-08-09 | (주)태원하이텍 | Power distribution unit for electric vehicle with synthetic resins |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005175439A (en) * | 2003-11-20 | 2005-06-30 | Toyota Motor Corp | Semiconductor device and automobile equipped with the same |
JP2008027993A (en) * | 2006-07-18 | 2008-02-07 | Mitsubishi Electric Corp | Power semiconductor device |
JP2008118010A (en) * | 2006-11-07 | 2008-05-22 | Fuji Electric Device Technology Co Ltd | Semiconductor device |
JP2008198661A (en) * | 2007-02-08 | 2008-08-28 | Mitsubishi Electric Corp | Semiconductor device |
JP2008235502A (en) * | 2007-03-20 | 2008-10-02 | Mitsubishi Electric Corp | Resin-sealed semiconductor device |
JP2012204576A (en) * | 2011-03-25 | 2012-10-22 | Aisin Aw Co Ltd | Semiconductor device |
WO2013118275A1 (en) * | 2012-02-09 | 2013-08-15 | 三菱電機株式会社 | Semiconductor device |
-
2017
- 2017-04-20 WO PCT/JP2017/015897 patent/WO2018193581A1/en active Application Filing
- 2017-04-20 JP JP2019513163A patent/JP6797289B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005175439A (en) * | 2003-11-20 | 2005-06-30 | Toyota Motor Corp | Semiconductor device and automobile equipped with the same |
JP2008027993A (en) * | 2006-07-18 | 2008-02-07 | Mitsubishi Electric Corp | Power semiconductor device |
JP2008118010A (en) * | 2006-11-07 | 2008-05-22 | Fuji Electric Device Technology Co Ltd | Semiconductor device |
JP2008198661A (en) * | 2007-02-08 | 2008-08-28 | Mitsubishi Electric Corp | Semiconductor device |
JP2008235502A (en) * | 2007-03-20 | 2008-10-02 | Mitsubishi Electric Corp | Resin-sealed semiconductor device |
JP2012204576A (en) * | 2011-03-25 | 2012-10-22 | Aisin Aw Co Ltd | Semiconductor device |
WO2013118275A1 (en) * | 2012-02-09 | 2013-08-15 | 三菱電機株式会社 | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022108830A (en) * | 2021-01-14 | 2022-07-27 | 三菱電機株式会社 | Semiconductor device |
JP7444084B2 (en) | 2021-01-14 | 2024-03-06 | 三菱電機株式会社 | semiconductor equipment |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018193581A1 (en) | 2019-11-07 |
JP6797289B2 (en) | 2020-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6824422B2 (en) | Power converter | |
JP6815524B2 (en) | Power converter | |
JP2007234690A (en) | Power semiconductor module | |
CN103871989B (en) | Semiconductor device | |
JP6486526B1 (en) | Power converter | |
JP6395164B1 (en) | Power converter | |
JP5781185B1 (en) | Resin-sealed semiconductor device | |
JP6461264B1 (en) | Power converter | |
WO2018193581A1 (en) | Power conversion device | |
JP2008118010A (en) | Semiconductor device | |
JP6479115B1 (en) | Power converter | |
US20210126513A1 (en) | Power conversion device and power conversion device-integrated rotary electric machine | |
JP7337214B1 (en) | power converter | |
JP6660278B2 (en) | Resin-sealed semiconductor device | |
US20250031310A1 (en) | Power semiconductor module | |
US20220223511A1 (en) | Semiconductor device | |
US20070200194A1 (en) | Apparatus And Method For Temperature-Interrupting Protection Of An Electric Device | |
CN111725191B (en) | Semiconductor devices | |
JP7218564B2 (en) | semiconductor equipment | |
JP2024003917A (en) | power converter | |
CN110459516A (en) | semiconductor device | |
JP2005158871A (en) | Packaged semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906334 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019513163 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906334 Country of ref document: EP Kind code of ref document: A1 |