WO2018190282A1 - Light adjusting device - Google Patents
Light adjusting device Download PDFInfo
- Publication number
- WO2018190282A1 WO2018190282A1 PCT/JP2018/014824 JP2018014824W WO2018190282A1 WO 2018190282 A1 WO2018190282 A1 WO 2018190282A1 JP 2018014824 W JP2018014824 W JP 2018014824W WO 2018190282 A1 WO2018190282 A1 WO 2018190282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- phase difference
- region
- film
- retardation
- Prior art date
Links
- 239000012071 phase Substances 0.000 description 158
- 239000004973 liquid crystal related substance Substances 0.000 description 88
- 230000005540 biological transmission Effects 0.000 description 74
- 239000000203 mixture Substances 0.000 description 59
- 230000010287 polarization Effects 0.000 description 52
- 238000000034 method Methods 0.000 description 49
- 150000001875 compounds Chemical class 0.000 description 48
- 238000000576 coating method Methods 0.000 description 15
- 238000006116 polymerization reaction Methods 0.000 description 15
- -1 polyethylene terephthalate Polymers 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 239000003505 polymerization initiator Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 238000010538 cationic polymerization reaction Methods 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000003999 initiator Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 125000002091 cationic group Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 125000003700 epoxy group Chemical group 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000005268 rod-like liquid crystal Substances 0.000 description 6
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 238000001723 curing Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000005264 High molar mass liquid crystal Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000003566 oxetanyl group Chemical group 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- WNIBOEDSTLUPQG-UHFFFAOYSA-N 2-[2-[4-(2-phenylethenyl)phenyl]ethenyl]-5-(trichloromethyl)-1,3,4-oxadiazole Chemical compound O1C(C(Cl)(Cl)Cl)=NN=C1C=CC(C=C1)=CC=C1C=CC1=CC=CC=C1 WNIBOEDSTLUPQG-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- UWHCZFSSKUSDNV-UHFFFAOYSA-N 3-(aziridin-1-yl)propanoic acid;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound OC(=O)CCN1CC1.OC(=O)CCN1CC1.OC(=O)CCN1CC1.CCC(CO)(CO)CO UWHCZFSSKUSDNV-UHFFFAOYSA-N 0.000 description 1
- LMIOYAVXLAOXJI-UHFFFAOYSA-N 3-ethyl-3-[[4-[(3-ethyloxetan-3-yl)methoxymethyl]phenyl]methoxymethyl]oxetane Chemical compound C=1C=C(COCC2(CC)COC2)C=CC=1COCC1(CC)COC1 LMIOYAVXLAOXJI-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 101100042630 Caenorhabditis elegans sin-3 gene Proteins 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 150000001851 cinnamic acid derivatives Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- 125000000466 oxiranyl group Chemical group 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 229920000765 poly(2-oxazolines) Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M trans-cinnamate Chemical group [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical class C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B9/00—Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
- E06B9/24—Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a light control device that adjusts incident light using a polarizer and a pattern retardation film to obtain transmitted light, and more particularly, to a light control device that can continuously control the gradation. To do.
- Japanese Patent Application Laid-Open No. 9-310567 discloses that two planar materials are provided with a plurality of polarization regions in a pattern in which regions having different polarization axes are arranged adjacent to each other, and the two planar materials are relatively slid. Dimming is done. In other words, when the polarization region of the other planar material overlaps the polarization region of one planar material, the polarization regions with different polarization axes are superimposed from the state where the polarization regions having the same polarization axis are superimposed. And the translucency of the incident light is changed accordingly. Therefore, it is configured to perform dimming from the brightest state to the darkest state by sliding by the width of the polarization region.
- the stripe of the conventional light control device has a width in the range of mm to cm and the width of the stripe is wide. End up.
- an object of the present invention is to provide a light control device for realizing continuous gradation from the brightest state to the darkest state.
- the light control device includes a first polarizer, a first pattern retardation film, a second pattern retardation film, and a second polarizer stacked in this order, and a pattern retardation of one.
- a light control device capable of adjusting the entire transmitted light amount by moving the relative position of a film and a second pattern retardation film along a uniaxial direction, wherein the first pattern retardation film and the second pattern retardation film
- the pattern phase difference film is formed in a stripe pattern in which two phase difference regions different in at least one of the phase difference value and the slow axis direction are alternately arranged with the same width, and the width is 1 ⁇ m or more to 500 ⁇ m or less.
- the long side direction of the striped pattern has an inclination in a range larger than 0 ° and smaller than 90 ° with respect to the uniaxial direction.
- the angle ⁇ formed by the long-side direction and the uniaxial direction of the stripe pattern of the first pattern retardation film and the second pattern retardation film, and the width w of the stripe pattern are 0.5 mm ⁇ w Those satisfying the relationship of / sin ⁇ ⁇ 100 mm are desirable.
- At least one of the first pattern retardation film and the second pattern retardation film is a phase difference area having a phase difference value of zero and a phase difference area having a phase difference value other than zero. It may be a pattern retardation film having a formed stripe pattern.
- At least one of the first pattern retardation film and the second pattern retardation film is a retardation region in which an angle formed by the slow axes of adjacent retardation regions is 40 ° or more and 50 ° or less. It may be a patterned retardation film having a formed stripe pattern.
- the light control device includes a first polarizer, a first pattern retardation film, a second pattern retardation film, and a second polarizer stacked in this order, and a stripe pattern is formed.
- the total amount of transmitted light is adjusted by relatively moving the formed first pattern retardation film and second pattern retardation film.
- continuous gradation can be achieved by setting the pattern width of the pattern retardation film to 1 ⁇ m or more to 500 ⁇ m or less.
- the stripe-shaped pattern is changed in the moving direction of the pattern retardation film. Therefore, the gradation can be finely adjusted by increasing the distance for adjustment for alignment.
- FIG. 1st pattern phase contrast film is a schematic block diagram which shows the light modulation apparatus of 1st Embodiment of this invention
- FIG. 2nd pattern phase contrast film is the relationship between the polarizer and pattern retardation film which comprise the light modulation apparatus of 1st Embodiment of this invention.
- FIG. It is a top view of the 1st pattern phase contrast film and the 2nd pattern phase contrast film of the light modulation apparatus of a 1st embodiment. It is a figure for demonstrating the light control method of the light modulation apparatus of 1st Embodiment. It is a figure for demonstrating the mechanism of the light control of the light control apparatus of 1st Embodiment.
- ⁇ indicating a numerical range includes numerical values written on both sides.
- the numerical value ⁇ to the numerical value ⁇ are ranges including the numerical value ⁇ and the numerical value ⁇ , and ⁇ ⁇ ⁇ ⁇ ⁇ in mathematical symbols.
- Angles such as 45 °, 90 °, 135 °, parallel, vertical and orthogonal mean that the difference from the exact angle is within a range of less than 5 ° unless otherwise specified.
- the difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
- “same” includes an error range generally allowed in the technical field.
- “100%”, “all”, “any” or “entire surface” includes an error range generally allowed in the technical field, for example, 99% or more, 95% or more, or The case of 90% or more is included.
- Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively.
- Re ( ⁇ ) is measured by making light having a wavelength of ⁇ nm incident in the normal direction of the film in an AxoScan manufactured by Axometrics.
- FIG. 1A shows a light control device according to the first embodiment of the present invention.
- the light control device 10 adjusts the transmittance of the incident light Li and adjusts the amount of the transmitted light Lo.
- the light control device 10 includes a light control unit 12, a moving unit 14, and a control unit 16.
- the moving unit 14 is controlled by the control unit 16.
- the light control unit 12 includes a first polarizer 20, a phase difference unit 24, and a second polarizer 22.
- the retardation part 24 includes two retardation films, a first pattern retardation film 30a and a second pattern retardation film 30b.
- the first polarizer 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 are stacked in this order.
- the direction l 2 of the transmission axis of the first direction l 1 of the transmission axis of the polarizer 20 and second polarizer 22 are arranged to be orthogonal, a first polarizer Due to the change in the relative position of the first pattern retardation film 30a and the second pattern retardation film 30b provided between the first polarizer 20 and the second polarizer 22, the incident light incident from the first polarizer 20 is The amount of outgoing light that passes through and exits the second polarizer 22 is adjusted.
- the first polarizer 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 are all arranged in parallel, and the laminated surfaces are They are stacked in the same shape and size so that the length and width of the faces coincide.
- the moving unit 14 includes a mechanism for relatively transferring the first pattern phase difference film 30a and the second pattern phase difference film 30b, and according to a signal from the control unit 16, the first pattern phase difference film 30a and the second pattern phase difference film 30a. It is possible to move any one of the two pattern retardation films 30b in the direction t of the movable axis. Or you may perform a relative movement by moving both the 1st pattern phase difference film 30a and the 2nd pattern phase difference film 30b to the direction t of a movable axis.
- the normal direction of the upper surface of the first polarizer 20 is referred to as a Z axis, and two axes parallel to the upper surface of the first polarizer 20 are referred to as an X axis and a Y axis.
- the first pattern retardation film 30a and the second pattern retardation film 30b are configured by a pattern retardation film having a predetermined stripe pattern, and the first pattern retardation film 30a and the second pattern retardation film 30b. Dimming is performed according to the relative position of the phase difference film 30b.
- the inventors reduce the stripe width. I found out that it would be possible. However, when the stripe width is narrowed, there is a problem that it is difficult to accurately align the stripe patterns of the two pattern retardation films.
- the stripe pattern is tilted with respect to the moving direction of the movable axis so that the moving direction of the movable axis extends across the stripe pattern, thereby changing from a bright state to a dark state.
- the first polarizer 20 is an absorptive polarizer that transmits the first linearly polarized light and absorbs or reflects the second linearly polarized light orthogonal to the first linearly polarized light.
- the second polarizer 22 is an absorptive polarizer that transmits the second linearly polarized light and absorbs or reflects the first linearly polarized light.
- the polarizer it is preferable to use a polymer film in which iodine is adsorbed and oriented.
- the polymer film is not particularly limited, and various types can be used.
- polyvinyl alcohol films, polyethylene terephthalate films, ethylene / vinyl acetate copolymer films, partially saponified films of these, hydrophilic polymer films such as cellulose films, polyvinyl alcohol dehydrated products and polychlorinated Examples include polyene-based oriented films such as vinyl dehydrochlorinated products.
- the wavelength range of the light transmitted or reflected by the first polarizer 20 and the second polarizer 22 is not particularly limited, and even within the wavelength range of infrared light or within the wavelength range of visible light, It may be within the wavelength range of ultraviolet light, and is a wavelength range that spans the wavelength range of infrared light and visible light, the wavelength range of visible light and ultraviolet light, or the wavelength range of infrared light, visible light, and ultraviolet light. May be. In particular, from the viewpoint that the heat shielding property and durability of the light control device are more excellent, it is preferably in the wavelength range of visible light or near infrared light.
- infrared rays are electromagnetic waves in a wavelength region longer than visible rays and shorter than radio waves.
- Near-infrared light is generally an electromagnetic wave having a wavelength range of more than 750 nm and not more than 2500 nm.
- Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 750 nm.
- Ultraviolet rays are electromagnetic waves in a wavelength range shorter than visible light and longer than X-rays. The ultraviolet light may be light in a wavelength region that can be distinguished from visible light and X-rays, and is, for example, light in a wavelength range of 10 nm or more and less than 380 nm.
- FIG. 2 is a plan view of the first pattern retardation film 30a and the second pattern retardation film 30b of the light control device according to the first embodiment of the present invention.
- the first pattern retardation film 30a includes a first retardation region 31 and a second retardation region 32 having different retardation values, and the first retardation region 31 and the second retardation region 32 are surfaces. They are alternately arranged in stripes.
- the second pattern retardation film 30 b includes a third retardation region 33 and a fourth retardation region 34 having different retardation values, and the third retardation region 33 and the fourth retardation region 34. 34 are alternately arranged in stripes in the plane. Specifically, for example, the first phase difference region 31 and the second phase difference region 32 (or the third phase difference region 33 and the fourth phase difference region 34) having different phase difference values are combined.
- the first phase difference region 31 and the second phase difference region 32, and the third phase difference region 33 and the fourth phase difference region 34 are each composed of a region in which liquid crystal is aligned, and the ellipse in FIG. Indicates the respective orientations as a model.
- the first retardation region 31 is shown in gray to distinguish the first retardation region 31 and the second retardation region 32 of the first pattern retardation film 30a.
- a stripe pattern in which the first retardation region 31 and the second retardation region 32 are alternately arranged is formed, and the stripe width w 1 of the first retardation region 31 and the first retardation region 31 are changed.
- the stripe widths w 2 of the two retardation regions 32 are the same.
- the stripe widths w 1 and w 2 of the first retardation region 31 and the second retardation region 32 are, for example, 1 ⁇ m to 500 ⁇ m, and are alternately arranged in the width direction with a period of 2 ⁇ m to 1 mm.
- the long side direction of the striped pattern is arranged in a state having an inclination ⁇ with respect to the direction t of the movable axis.
- the stripe widths w 1 and w 2 are 5 ⁇ m to 350 ⁇ m, and are alternately arranged in the width direction with a period of 10 ⁇ m to 700 ⁇ m. More preferably, the stripe widths w 1 and w 2 are 30 ⁇ m to 250 ⁇ m, and are alternately arranged in the width direction at a period of 60 ⁇ m to 500 ⁇ m.
- the third retardation region 33 is shown in gray to distinguish the third retardation region 33 and the fourth retardation region 34 of the second pattern retardation film 30b.
- Third stripe width w 4 of the stripe width w 3 of the retardation region 33 fourth retardation region 34 is the same, the third retardation region 33 stripe width w 3 of the fourth retardation region 34 , w 4 are arranged alternately in a first pattern retardation film 30a and the width and period of the same as the first retardation region 31 and the second retardation region 32.
- the stripe pattern of the second pattern retardation film 30b is arranged with the same inclination as the stripe pattern of the first pattern retardation film 30a.
- the first retardation region 31 and the third retardation region 33 are optical anisotropy regions that give a phase difference of ⁇ / 2 before the light incident on the pattern retardation film 30a or 30b is emitted.
- the first retardation region 31 is a ⁇ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °.
- the third retardation region 33 is a ⁇ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the third retardation region 33 is 135 °. Therefore, when the incident light is linearly polarized light, the emitted light has a polarization axis that makes an inclination of 90 ° with respect to the polarization axis at the time of incidence.
- the first retardation region 31 and the third retardation region 33 are not limited in their constituent materials, but can be formed using, for example, a liquid crystal material (polymerizable liquid crystal composition). Specifically, it can be composed of a region where a rod-like liquid crystal compound or a disk-like liquid crystal compound is fixed.
- the second retardation region 32 and the fourth retardation region 34 are optically isotropic regions, they are emitted without affecting the polarization state of the light passing therethrough.
- the constituent material of the first retardation region 31 and the third retardation region 33 is not limited as long as the second retardation region 32 and the fourth retardation region 34 are optically isotropic. It is preferable that it is comprised with the same liquid crystal material.
- the first retardation region in the pattern retardation film has a function of giving a ⁇ / 2 retardation, and whether or not the second retardation region is isotropic is determined by, for example, AxoStep high accuracy. It can be confirmed by a known method such as measurement using a Mueller matrix imaging polarimeter or the like. (Moving part and control part)
- the moving unit 14 moves the relative positions of the two pattern phase difference films (the first pattern phase difference film 30a and the second pattern phase difference film 30b) of the phase difference unit 24 according to the control of the control unit 16 with respect to the movable axis.
- a mechanism for moving in the direction t is provided, and any one of the two pattern phase difference films (the first pattern phase difference film 30a and the second pattern phase difference film 30b) is moved.
- a configuration in which the two sheets are relatively moved may be employed.
- the moving unit 14 By changing the relative position of the two pattern retardation films (first pattern retardation film 30a and second pattern retardation film 30b) by the moving unit 14, the first polarizer 20 or the second polarization It is possible to change the transmittance of incident light incident from the child 22.
- the moving unit 14 moves the second pattern retardation film 30b in the direction of the movable axis will be described.
- the direction l 1 of the transmission axis of the first polarizer 20 is a 135 ° direction inclined relative to the X axis
- the direction l 2 of the transmission axis of the second polarizer 22 is a 135 ° direction inclined relative to the X axis
- the direction l 2 of the transmission axis of the second polarizer 22 is a 135 ° direction inclined relative to the X axis
- the direction l 2 of the transmission axis of the second polarizer 22 the X-axis
- a case where the direction is inclined by 45 ° will be described.
- 3 (a) and 3 (b) are diagrams for explaining a light control method of the light control device according to the embodiment of the present invention.
- 3 (a) and 3 (b) the same components as those of the light control device 10 shown in FIGS. 1 (a) and 1 (b) are denoted by the same reference numerals.
- FIG. 3 (a) and 3 (b) are schematic views before and after the second pattern retardation film 30b is slid.
- the first retardation region 31 and the third retardation region 33 overlap (or the second retardation region 32 and the fourth retardation region 33).
- the phase difference region 34 overlaps, the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. That is, the state of FIG. 3A is a light shielding state (“dark state”).
- FIG. 3B is a diagram in which the second pattern retardation film 30b is slid (moved) by the relative movement amount D from FIG. 3A.
- the first retardation region 31 and the fourth retardation region 34 overlap (or the second retardation region 32 and the third retardation region 33 overlap)
- the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 3B passes through the light control device 10 and is emitted as light Lo. That is, the state of FIG. 3B is a transmission state (“bright state”).
- a polarization axis with an inclination of 0 ° is represented as P 0
- a polarization axis with an inclination of 90 ° is represented as P 90
- a polarization axis with an inclination of 45 ° is represented as P 45
- a polarization axis with an inclination of 135 ° is represented as P 135
- a slow axis having a slow axis inclination ⁇ with respect to the + X axis in the XY plane will be described below as P ⁇ .
- the transmission axis direction l 1 of the first polarizer 20 is P 135
- the transmission axis direction l 2 of the second polarizer 22 is P 45 .
- the direction of the slow axis in the first phase difference region is P 90
- the direction of the slow axis in the third phase difference region is P 0 .
- the second and fourth phase difference regions are isotropic regions and are expressed as “iso”.
- the state shown in FIG. 3A will be described with reference to FIG.
- the linearly polarized light L1 that only the transmission axis parallel to the linear polarization of the first polarizer 20 has a polarization axis P 135 Is emitted.
- the linearly polarized light L1 is polarization axis is emitted as linearly polarized light L2 having a 90 ° inclined polarization axis P 45 by the first retardation region 31.
- linearly polarized light L2 the polarization axis is emitted as linearly polarized light L3 having a polarization axis P 135 which is inclined 90 ° by the third retardation region 33. Since the polarization axis P 135 of the linearly polarized light L 3 and the transmission axis direction P 45 of the second polarizer 22 are orthogonal, the linearly polarized light L 3 is absorbed by the second polarizer 22.
- the linearly polarized light L4 having a polarization axis P 135 that has passed through the first polarizer 20 linearly with polarization axis P 135 passes through the second retardation region 32 while maintaining the polarization axis is emitted as polarization L5, is emitted as linearly polarized light L6 having a polarization axis P 135 then passes through the fourth retardation region 34. Since the polarization axis P 135 to the direction P 45 of the transmission axis of the second polarizer 22 of the linearly polarized light L6 are orthogonal, linearly polarized light L6 is absorbed by the second polarizer 22.
- the first polarizer when the first phase difference region 31 and the third phase difference region 33 overlap (or when the second phase difference region 32 and the fourth phase difference region 34 overlap), the first polarizer.
- the light incident on 20 is not emitted from the second polarizer 22 and cannot pass through the light control device 10.
- the linearly polarized light only transmission axis parallel to the linear polarization of the first polarizer 20 has a polarization axis P 135 L11 Is emitted.
- the linearly polarized light L11 is polarization axis is emitted as linearly polarized light L12 having a 90 ° inclined polarization axis P 45 by the first retardation region 31.
- linearly polarized light L12 reaches the polarization axis linearly polarized light L13 next passes through the fourth retardation region 34 while keeping P 45, the second polarizer 22. Since the direction P 45 of the transmission axis of the polarizing axis P 45 of the linearly polarized light L13 the second polarizer 22 coincides linearly polarized light L13 is directly transmitted through the second polarizer 22.
- the linearly polarized light L14 having a polarization axis P 135 that has passed through the first polarizer 20 becomes linearly polarized light L15 is transmitted through the second retardation region 32 while maintaining the polarization axis P 135 .
- the linearly polarized light L15 is polarization axis is emitted as linearly polarized light L16 having a 90 ° inclined polarization axis P 45 by the third retardation region 33. Since the direction P 45 of the polarizing axis P 45 of the linearly polarized light L16 transmission axis of the second polarizer 22 coincides linearly polarized light L16 is directly transmitted through the second polarizer 22.
- the first polarizer 20 when the first retardation region 31 and the fourth retardation region 34 overlap (or when the second retardation region 32 and the third retardation region 33 overlap), the first polarizer 20. Is emitted from the second polarizer 22 and passes through the light control device 10.
- the transmission axis direction l 1 of the first polarizer 20 is the direction P 135 tilted by 135 ° with respect to the X axis
- the transmission axis direction l 2 of the second polarizer 22 is the X axis. If a 45 ° direction P 45 inclined has been described with respect to, the first retardation region 31 and the third retardation region 33 is not limited to this n ⁇ ⁇ / 2 (n is an odd number Of the first polarizer 20 when the second phase difference region 32 and the fourth phase difference region 34 are isotropic regions (iso).
- the optical element 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 may be disposed.
- the relationship between the relative movement amount of the two pattern retardation films and the multi-tone light control will be described.
- the first phase difference region 31 and the third phase difference region 33 overlap or when the second phase difference region 32 and the fourth phase difference region 34 overlap
- the transmission state is set.
- the second pattern retardation film is moved in the direction t of the movable axis from the state where it overlaps the first retardation region 31 and the third retardation region 33.
- the overlap between the first phase difference region 31 and the third phase difference region 33 decreases, and the overlap between the first phase difference region 31 and the fourth phase difference region 34 increases.
- the light is gradually brightened from the light-shielded state and reaches the transmissive state.
- the smaller the angle ⁇ formed between the direction t of the movable axis and the long side direction of the stripe the more the first retardation region 31 and the third retardation region 33 overlap,
- the schematic configuration of the light control device of this embodiment is the same as that of the first embodiment.
- the moving unit 14 and the control unit 16 are the same as those in the first embodiment.
- the first pattern phase difference film 30a and the second pattern phase difference film 30b have a stripe shape in which two regions having the same phase difference value but different slow axis directions are alternately arranged. It is composed of patterns.
- the first polarizer 20 and the second polarizer 22 are the same members as in the first embodiment.
- FIG. 6 is a plan view of the first pattern retardation film 30a and the second pattern retardation film 30b of the light control device according to the second embodiment of the present invention.
- the first pattern retardation film 30a includes a first retardation region 31 and a second retardation region 32 having different slow axis directions, and the first retardation region 31 and the second retardation region 32 are The stripes are alternately arranged in the plane.
- the second pattern retardation film 30b is the same as the first pattern retardation film 30a, detailed description thereof is omitted.
- the third phase difference region 33 of the second pattern phase difference film 30b is arranged in the same manner as the first phase difference region 31 of the first pattern phase difference film 30a and has the same function.
- the fourth retardation region 34 of the retardation film 30b is arranged in the same manner as the second retardation region 32 of the first pattern retardation film 30a and has the same function.
- the first retardation region 31 and the second retardation region 32 are each composed of a region in which liquid crystals are aligned, and the ellipses in FIG. 6 indicate the respective alignments as a model.
- the numerical values and preferable numerical ranges of the stripe widths w 1 to w 4 in FIG. 6 are the same as those in the first embodiment, and the preferable constituent materials for forming the respective retardation regions are also the same as those in the first embodiment. .
- Both the first retardation region 31 and the second retardation region 32 are optical anisotropy regions that give a retardation of the slow axis to ⁇ / 4 before the light incident on the pattern retardation film 30 is emitted. is there.
- the first retardation region 31 is a ⁇ / 4 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °.
- the second retardation region 32 is a ⁇ / 4 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the second retardation region 32 is 135 °. Therefore, if the incident light is linearly polarized light, the emitted light is changed to circularly polarized light. If the incident light is circularly polarized light, the emitted light is changed to linearly polarized light.
- the direction l 1 of the transmission axis of the first polarizer 20 is the direction P 135 inclined 135 ° with respect to the X axis
- the direction of the transmission axis of the second polarizer 22 A case where l 2 is a direction P 45 inclined by 45 ° with respect to the X axis will be described.
- FIG. 7 (a) and 7 (b) are schematic views before and after the second pattern retardation film 30b is slid.
- FIG. 7A when viewed from the XZ plane, the first phase difference region 31 and the third phase difference region 33 overlap (or the second phase difference region 32 and the fourth position).
- the phase difference region 34 overlaps
- the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 7A passes through the light control device 10 and is emitted as light Lo. That is, the state of FIG. 7A is a transmission state (“bright state”).
- FIG. 7B is a diagram in which the second pattern retardation film 30b is slid by the relative movement amount D from FIG. 7A.
- the first retardation region 31 and the fourth retardation region 34 overlap (or the second retardation region 32 and the third retardation region 33 overlap)
- the light Li that enters the first polarizer 20 from the direction of the arrow in FIG. 7B does not pass through the light control device 10. That is, the state of FIG. 7B is a light shielding state (“dark state”).
- FIGS. 8A and 8B show a mechanism in which light is transmitted or blocked by the light control device 10 of the second embodiment.
- the ⁇ / 4 regions (the first phase difference region 31 and the third phase difference region 33, the second phase difference region 32 and the fourth phase difference region are the same in the slow axis direction.
- the phase difference region 34 is overlapped (see FIG. 7A)
- the incident light Li passes through the polarizer 20 and then becomes linearly polarized light L 21 having the polarization axis P 135 and passes through the first phase difference region 31.
- clockwise circularly polarized light L22 is obtained.
- the circularly polarized light L ⁇ b> 22 passes through the third phase difference region 33, thereby becoming linearly polarized light L ⁇ b> 23 having a polarization axis P ⁇ b> 45 and transmitted through the polarizer 22.
- FIG. 8B since the combination of the phase difference regions is different, incident light is absorbed.
- the transmission axis direction l 1 of the first polarizer 20 is the direction P 135 tilted by 135 ° with respect to the X axis
- the transmission axis direction l 2 of the second polarizer 22 is the X axis.
- the transmission axis direction l 2 is orthogonal to the first direction l 1 of the transmission axis of the polarizer 20 and second polarizer 22, and first The angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 (or the third retardation region 33) is 45 °, and the transmission axis of the first polarizer 20
- the first polarizer 20 and the first filter are set so that the angle formed by the slow axes of the two retardation regions 32 (or the fourth retardation region 34) is 135 °.
- the turn retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 may be disposed.
- the second pattern position is changed from the state where the first phase difference region 31 and the third phase difference region 33 overlap.
- the overlap between the first phase difference region 31 and the third phase difference region 33 is reduced, and the first phase difference region 31 and the fourth phase difference are reduced.
- the overlap of the region 34 increases.
- the transmission state gradually becomes darker and reaches a shielding state.
- the schematic configuration of the light control device according to the present embodiment is that the first pattern retardation film 30a and the second pattern retardation film 30b alternate between two regions having a retardation value of ⁇ / 2 and different slow axis directions.
- the second embodiment is the same as the first embodiment except that it is configured by a stripe pattern arranged in the first embodiment.
- the first retardation region 31 and the second retardation region 32, and the third retardation region 33 and the fourth retardation region 34 are each composed of a region in which liquid crystal is aligned,
- the ellipse in FIG. 9 represents the slow axis by showing the respective orientations as a model.
- the first phase difference region 31, the second phase difference region 32, the third phase difference region 33, and the fourth phase difference region 34 all have a slow axis phase difference before the incident light is emitted. Is an optically anisotropic region giving ⁇ / 2.
- the first retardation region 31 is a ⁇ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °.
- the second retardation region 32 is a ⁇ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the second retardation region 32 is 0 °.
- the phase difference region 33 is a ⁇ / 2 phase difference region where the angle between the transmission axis of the first polarizer 20 and the slow axis of the third phase difference region 33 is 135 °, and the fourth phase difference region.
- Reference numeral 34 denotes a ⁇ / 2 phase difference region where the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the fourth phase difference region 34 is 90 °.
- the direction l 1 of the transmission axis of the first polarizer 20 is the direction P 135 inclined 135 ° with respect to the X axis
- transmission of the second polarizer 22 The case where the axial direction l 2 is a direction P 45 inclined by 45 ° with respect to the X axis will be described.
- FIGS. 10A and 10B are schematic views before and after sliding the second pattern retardation film 30b.
- the first phase difference region 31 and the third phase difference region 33 overlap (or the second phase difference region 32 and the fourth position).
- the phase difference region 34 overlaps
- the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 10A does not pass through the light control device 10. That is, the state of FIG. 10A is a light shielding state (“dark state”).
- FIG. 10B is a diagram in which the second pattern retardation film 30b is slid by the relative movement amount D from FIG. 10A.
- the first retardation region 31 and the fourth retardation region 34 overlap (or the second retardation region 32 and the third retardation region 33 overlap)
- the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 10B passes through the light control device 10 and is emitted as light Lo. That is, the state of FIG. 10B is a transmission state (“bright state”).
- FIGS. 10 (a) a mechanism in which light is transmitted or blocked by the light control device 10 of the third embodiment is shown in FIGS.
- the ⁇ / 2 regions the first phase difference region 31 and the third phase difference region 33, the second phase difference region 32, and the If repeated 4 retardation region 34 reference (FIG. 10 (a)
- the linearly polarized light L41 incident light Li having a polarization axis P 135 after passing through the polarizer 20
- the first retardation region 31 by passing the linearly polarized light L42 having a polarization axis P 45.
- Linearly polarized light L42 is than passing through the third retardation region 33, becomes linearly polarized light L43 having a polarization axis P 135, is absorbed by the polarizer 22.
- the incident light is transmitted.
- the transmission axis direction l 1 of the first polarizer 20 is the direction P 135 tilted by 135 ° with respect to the X axis
- the transmission axis direction l 2 of the second polarizer 22 is the X axis.
- the first to fourth retardation region 33 is n ⁇ ⁇ / 2 of the (n is a natural number of odd) when configured in retardation region
- the direction l 1 of the transmission axis of the first polarizer 20 transmission axis l 2 is orthogonal to the second polarizer 22, and the first polarizer 20
- the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °
- the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the second retardation region 32 is 0 °.
- the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the third retardation region 33 is 135 °, and the transmission axis of the first polarizer 20 and the fourth phase difference.
- the first polarizer 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 are arranged so that the angle formed by the slow axis of the region 34 is 90 °. Just do it.
- the second pattern position is changed from the state where the first phase difference region 31 and the third phase difference region 33 overlap.
- the overlap between the first phase difference region 31 and the third phase difference region 33 is reduced, and the first phase difference region 31 and the fourth phase difference are reduced.
- the overlap of the region 34 increases.
- the light shielding state gradually becomes brighter and reaches the transmission state.
- the patterned pattern retardation films 30a and 30b are patterned in a predetermined direction by forming a patterned alignment film on a support, and then uniformly applying the polymerizable liquid crystal composition and then fixing it. Or after forming an alignment film on a support, a polymerizable liquid crystal composition is uniformly applied, mask exposure is performed using a pattern mask, and regions for anisotropic regions are exposed to ultraviolet rays. To fix the liquid crystal compound in a predetermined alignment direction, and then heat-expose the entire surface in the absence of a pattern mask to make the non-fixed region an isotropic region. It is produced by a method of forming a pattern of regions and anisotropic regions.
- the alignment film can be produced using a known method such as a photo-alignment method or a rubbing method.
- a method for providing an alignment film by the photo-alignment method an alignment film composition is applied as an example, and is aligned by irradiating ultraviolet rays while being arranged in the direction of the transmission axis of the wire grid polarizer in the direction of the slow axis.
- a film is formed.
- an alignment film is formed by applying a PVA aqueous solution and rubbing the surface of the coating film several times in a predetermined direction using a cloth or the like.
- the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but a rod-like liquid crystal compound is preferred.
- a rod-like liquid crystal compound not only a low-molecular liquid crystal compound but also a polymer liquid crystal compound can be used.
- the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
- the polymerizable group include an unsaturated polymerizable group, an epoxy group, an oxetanyl group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group.
- the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
- the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem.
- the polymerizable liquid crystal compound it is also preferable to use a liquid crystal compound having two or more reactive groups having different polymerization conditions in the same molecule.
- examples of combinations of reactive groups with different polymerization conditions include combinations of radical photopolymerizable reactive groups and cationic photopolymerizable reactive groups.
- a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound described in JP-A-2008-127336 can be suitably used.
- the liquid crystal composition preferably contains a polymerization initiator.
- the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
- the photopolymerization initiator include a radical polymerization initiator and a cationic polymerization initiator.
- an acyl phosphine oxide compound or an oxime compound is preferably used.
- the acylphosphine oxide compound for example, IRGACURE819 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used.
- Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
- Examples of the cationic polymerization initiator include organic sulfonium salt systems, iodonium salt systems, phosphonium salt systems, and the like.
- Organic sulfonium salt systems are preferable, and triphenylsulfonium salts are particularly preferable.
- As counter ions of these compounds hexafluoroantimonate, hexafluorophosphate, and the like are preferably used.
- the content of the polymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass with respect to the content of the polymerizable liquid crystal compound.
- the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
- a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
- the crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyfunctionality such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, etc.
- Epoxy compounds such as glycidyl (meth) acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) )
- Aziridine compounds such as diphenylmethane; isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysila And N-(2-aminoethyl) 3-aminopropyltrimethoxysilane alkoxysilane compounds may be mentioned.
- polyfunctional acrylate compounds are preferred.
- the polyfunctional acrylate compound is preferably a 3-6 functional acrylate compound, and more preferably a 4-6 functional acrylate compound.
- a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
- the content of the cross-linking agent in the liquid crystal composition is preferably 0 to 8.0 parts by mass, and 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound in the liquid crystal composition. Is more preferable, and 0.2 to 5.5 parts by mass is even more preferable.
- Orientation control agent An alignment control agent that contributes to stable or rapid planar alignment may be added to the liquid crystal composition.
- the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
- 1 type may be used independently and 2 or more types may be used together.
- the addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass and more preferably 0.01% by mass to 5.0% by mass with respect to the total mass of the polymerizable liquid crystal compound. .
- the liquid crystal composition may contain at least one selected from a surfactant for adjusting the surface tension of the coating film to make the thickness uniform, and various additives such as a polymerizable monomer.
- a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
- solvent there is no restriction
- the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers and the like. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
- a known method such as a photo-alignment method or a rubbing method can be used for the alignment film.
- the alignment film composition is applied, and the alignment film is formed by irradiating with ultraviolet rays after being arranged in the direction of the transmission axis of the wire grid polarizer in the direction of the slow axis. What to do is desirable.
- an alignment film may be provided by rubbing. In this case, the alignment film is formed by applying a PVA aqueous solution and rubbing the surface of the coating film several times in a predetermined direction using a cloth or the like. To do.
- a polymerizable liquid crystal composition is uniformly applied on the surface of the support 35 provided with the alignment film (or on the alignment film provided on the support) to form a coating film 30A (S1).
- the polymerizable liquid crystal composition is performed by appropriately applying a liquid crystal composition such as a roll coating method, a gravure printing method, or a spin coating method in which the polymerizable liquid crystal composition is made into a solution state with a solvent or a liquid material such as a melt by heating. It can be performed by a method that develops by various methods. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. In addition, a coating film can be formed by discharging a liquid crystal composition from a nozzle using an inkjet apparatus.
- a liquid crystal composition such as a roll coating method, a gravure printing method, or a spin coating method in which the polymerizable liquid crystal composition is made into a solution state with a solvent or a liquid material such as a melt by heating. It can be performed by a method that develops by various methods. Furthermore, it can be performed by various methods such
- the coating film 30A is held at the film surface temperature for a predetermined time (aged) to become the coating film 30B in a state where the liquid crystal is aligned (S2).
- the aging temperature and aging time may be determined according to the liquid crystal compound.
- UV curing process After the aging step, ultraviolet curing is performed to fix the alignment state of the molecules of the liquid crystal compound.
- a polymerization reaction by a photocationic polymerization group photocationic polymerization reaction
- a polymerization reaction by a photoradical polymerization group photoradical polymerization reaction
- the coating film after the first polymerization process in the two-stage polymerization in the ultraviolet curing process is referred to as a liquid crystal semi-fixed film. The procedure of the curing process will be described.
- “Semi-fixed” refers to a state in which the liquid crystal composition has lost fluidity in the present invention, and refers to a state before the heat treatment step. For example, it means that only one side functional group of a bifunctional liquid crystal is cross-linked and is in a polymer liquid crystal state.
- a polymerizable liquid crystal compound having a cationic polymerization group and a radical photopolymerization group one of the cationic polymerization group and the radical photopolymerization group is selectively crosslinked.
- a state in which the cationic polymerization group is selectively cross-linked is indicated, but a part of the photo-radical polymerization group may be cross-linked.
- Initiator application step An initiator supply liquid containing a photoradical polymerization initiator is applied to the surface of the liquid crystal semi-fixed film 30C and dried.
- the whole substrate is heated at a temperature of 100 to 2000 mJ / hour while being heated for a predetermined time at an optical isotropic region forming temperature of the liquid crystal compound (a temperature higher than a phase transition temperature to the optical isotropic region) under nitrogen.
- the substrate is exposed to ultraviolet rays having an exposure amount of cm 2 so that the liquid crystal forms an optically isotropic region in the region not exposed to the mask, and the alignment of the liquid crystal is maintained in the region exposed to the mask.
- the pattern retardation film 30D has a fixed alignment state of the entire liquid crystal.
- the film 30a can be obtained (S5).
- the retardation film 30b can be obtained.
- the pattern alignment films having different alignment control capabilities are formed so as to correspond to the first pattern retardation film 30a or the second pattern retardation film 30b.
- a liquid crystalline compound is disposed thereon, and the liquid crystalline compound is aligned.
- the liquid crystalline compounds achieve different alignment states depending on the alignment control ability of the pattern alignment film.
- the band-like regions (or the third retardation region 33 and the fourth retardation region) of the first retardation region 31 and the second retardation region 32 according to the alignment film pattern.
- a pattern of a band-like region of the phase difference region 34 is formed.
- the pattern alignment film can be obtained using a photo-alignment method, a rubbing method, a printing method, or the like, as described above.
- the photo-alignment film is subjected to mask exposure using a mask corresponding to the stripe pattern
- the rubbing method the rubbing alignment film is subjected to mask rubbing using the mask to form a pattern alignment film.
- a method using a method using mask exposure on the photo-alignment film is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in paragraphs [0166] to [0181] of JP2012-032661A, the contents of which are incorporated herein by reference.
- Whether the pattern retardation films 30a and 30b are ⁇ / 2 plates or ⁇ / 4 plates is determined according to the film thickness of the polymerizable liquid crystal composition applied on the alignment film.
- the first pattern retardation film 30a and the second pattern retardation film 30b may be provided with a support, and the support is preferably a transparent support, such as a polyacrylic resin film such as polymethyl methacrylate. , Cellulose resin films such as cellulose triacetate, and cycloolefin polymer films [for example, trade name “ARTON”, manufactured by JSR Corporation, trade name “ZEONOR”, manufactured by Nippon Zeon Co., Ltd.], and the like.
- the support is not limited to a flexible film but may be a non-flexible substrate such as a glass substrate.
- the pattern retardation film of the present invention may be used while being supported by the support when forming the film, or the support when forming the film is a temporary support, and other support. It may be transferred to the body and peeled off from the temporary support.
- the epoxy group-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
- reaction solution was diluted with an equal amount (mass) of butyl acetate and washed with water three times.
- the rod-like liquid crystal (LC-1-1) was synthesized based on the method described in JP-A No. 2004-12382.
- the rod-like liquid crystal (LC-1-1) is a liquid crystal compound having two reactive groups, one of the two reactive groups is an acrylic group which is a radical reactive group, and the other is a cationic reactive group. It is a certain oxetane group.
- the horizontal alignment agent (LC-1-2) was prepared by Tetrahedron Lett. It was synthesized according to the method described in Journal, Vol. 43, page 6793 (202).
- the retardation films of the examples and comparative examples were produced according to the following procedure. This will be described below using the directions of the X, Y, and Z axes in FIG.
- Example 1 ⁇ Formation of two anisotropic regions with different orientation directions ( ⁇ / 4 + ⁇ / 4)>
- the transmission axis of the wire grid polarizer (product code # 46-636 manufactured by Edmond) is the reference axis (Y).
- the photo-alignment treatment was performed by irradiating with 30 mJ / cm 2 of ultraviolet rays using a PLA-501F exposure machine manufactured by Canon Inc. at 25 ° C. in air at 25 ° C.
- a wire grid polarizer, a mask masked with a stripe pattern with a stripe width of 50 ⁇ m, and a glass substrate are arranged in this order, and a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. in air at 25 ° C. And is exposed at an exposure amount of 50 mJ / cm 2 .
- the liquid crystal composition LC-2 was applied on the alignment layer thus obtained.
- the film was heated and aged at a film surface temperature of 90 ° C. for 60 seconds.
- an air-cooled metal halide lamp manufactured by Eye Graphics Co., Ltd.
- ultraviolet rays of 500 mJ / cm 2 were applied. The entire surface will be irradiated.
- a pattern divided into two phase difference regions having a major axis direction angle ⁇ of 1 ° of the mask stripe pattern is formed, the front phase difference is 137.5 nm ( ⁇ / 4), and The first phase difference region whose slow axis direction is 0 ° with respect to the reference axis, the front phase difference is 137.5 nm ( ⁇ / 4), and the slow axis direction is 90 ° with respect to the reference axis.
- a patterned phase difference film fractionated into a second phase difference region that was ° was produced.
- the film thickness of the pattern retardation film was 1.1 ⁇ m. Two of these were used as a first pattern retardation film and a second pattern retardation film.
- the first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer are laminated in this order.
- the same pattern retardation film was used for the first pattern retardation film and the second pattern retardation film.
- the pattern retardation film was arranged so that the angle formed between the reference axis and the slow axis was 0 °, and the angle ⁇ in the major axis direction of the stripe pattern was 1 °.
- the angle formed by the transmission axis of the first polarizer and the slow axis of the first retardation region of the first pattern retardation film is 45 °
- the transmission axis of the first polarizer and the second axis A light control device was manufactured so that the angle formed with the transmission axis of the polarizer was 90 ° (crossed Nicols).
- the second pattern retardation film is moved in the direction of the movable axis.
- the direction of the movable axis coincides with the direction of the X axis.
- Example 2 ⁇ Formation of two anisotropic regions with different orientation directions ( ⁇ / 2 + ⁇ / 2)> (Preparation of First Pattern Retardation Film)
- a wire grid polarizer product code # 46-636 Edmond
- a wire grid polarizer a mask masked with a stripe pattern with a stripe width of 50 ⁇ m, and a glass substrate are arranged in this order, and a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. in air at 25 ° C. And is exposed at an exposure amount of 50 mJ / cm 2 .
- the wire grid polarizer is arranged so that the transmission axis is inclined by 45 ° with respect to the reference axis, and the angle ⁇ in the major axis direction of the stripe pattern of the mask is 1 °.
- the liquid crystal composition LC-2 was applied on the alignment layer thus obtained.
- the film was heated and aged at a film surface temperature of 90 ° C. for 60 seconds.
- an air-cooled metal halide lamp manufactured by Eye Graphics Co., Ltd.
- ultraviolet rays 500 mJ / cm 2 were applied. Irradiate.
- a pattern divided into two phase difference regions having an angle ⁇ of 1 ° in the major axis direction of the stripe pattern of the mask is formed.
- the film thickness of the pattern retardation film was 2.1 ⁇ m.
- the transmission axis of the wire grid polarizer is arranged so as to be inclined by 315 ° with respect to the reference axis, and in the third retardation region, the slow axis direction is 90 ° with respect to the reference axis.
- a second pattern retardation film was produced in the same manner as the first pattern retardation film except that the slow axis direction was 315 ° with respect to the reference axis.
- Example 1 the first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer are stacked in this order.
- the angle formed by the direction of the reference axis of the first pattern retardation film and the slow axis of the second retardation region is 0 °, and the retardation of the reference axis of the second pattern retardation film and the third retardation region
- the angle formed by the axis directions is 90 °
- the angle ⁇ in the major axis direction of the stripe pattern is 1 °.
- the angle formed by the transmission axis of the first polarizer and the slow axis of the first retardation region of the first pattern retardation film is 45 °
- the transmission axis of the first polarizer and the second pattern position is 135 °
- the angle formed by the transmission axis of the first polarizer and the transmission axis of the second polarizer is 90 ° (crossed Nicols).
- the second pattern retardation film is moved in the direction of the movable axis as in the first embodiment.
- the direction of the movable axis coincides with the direction of the X axis.
- Example 3 ⁇ Formation of isotropic and anisotropic regions (iso + ⁇ / 2)> (Preparation of first pattern retardation film)
- the alignment film composition A prepared above was uniformly applied on the glass substrate in the Y-axis direction using a slit coater, and then in an oven at 100 ° C. It was dried for 2 minutes to obtain a glass substrate with an alignment film having a thickness of 0.5 ⁇ m.
- a rubbing treatment was performed in parallel with the reference axis, and the liquid crystal composition LC-1 was coated on the rubbing surface.
- the film surface was aged for 60 seconds at a film surface temperature of 80 ° C., and then immediately irradiated with 500 mJ / cm 2 of ultraviolet light using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at a film surface temperature of 70 ° C. did.
- the liquid crystal material thus obtained was coated with the protective layer composition AD-1 prepared above, dried at a film surface temperature of 80 ° C. for 60 seconds, and then air-laminated at 25 ° C. by Canon Inc.
- the long axis of the stripe pattern of the mask is obtained by exposing the whole substrate at 200 ° C. with an exposure amount of 500 mJ / cm 2 for 5 minutes under nitrogen with an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.).
- a pattern divided into two phase difference regions having a direction angle ⁇ of 1 ° is formed.
- a first pattern retardation film in which a pattern fractionated into two was formed was produced.
- the thickness of the retardation film was 2.1 ⁇ m.
- the first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer were laminated in this order.
- the angle formed by the transmission axis of the first polarizer and the slow axis of the retardation region (first retardation region) of the first pattern retardation film is 45 °
- the transmission axis of the first polarizer and the second The angle between the retardation layer (third retardation region) of the pattern retardation film and the slow axis of the pattern retardation film is 135 °
- the major axis direction angle ⁇ is 1 °.
- a light control device was manufactured in which the angle formed by the transmission axis of the first polarizer and the transmission axis of the second polarizer was 90 ° (crossed Nicols).
- the second pattern retardation film is moved in the direction of the movable axis.
- the direction of the movable axis coincides with the direction of the X axis.
- Example 3 is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 200 ⁇ m and the angle ⁇ in the major axis direction of the stripe pattern is 10 °. 4 dimmers were produced.
- Example 5 In the same manner as in Example 3, a first pattern retardation film and a second pattern retardation film are produced. However, the light control device of Example 5 was manufactured in the same manner as Example 3 except that the pattern width of the stripe pattern was 500 ⁇ m and the angle ⁇ in the major axis direction of the stripe pattern was 10 °.
- Example 3 is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 5 ⁇ m and the angle ⁇ in the major axis direction of the stripe pattern is 0.5 °.
- the light control device of Example 6 was produced.
- Example 3 a comparative example is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 1000 ⁇ m and the angle ⁇ in the major axis direction of the stripe pattern is 90 °. 1 light control device was produced.
- Example 3 a comparative example is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 50 ⁇ m and the angle ⁇ in the major axis direction of the stripe pattern is 90 °.
- the light control device of 2 was produced.
- the relative movement amount is a relative movement amount necessary for moving the pattern retardation film before changing from a bright state to a dark state. The longer this distance, the easier the alignment. Further, as the pattern width becomes narrower, it is possible to realize a continuous gradation.
- Table 1 summarizes the configuration and evaluation results of each example.
- Examples 1, 3, and 4 have a sufficiently narrow pattern width and good gradation change, and can perform continuous light control.
- Example 5 since the pattern width is slightly wide, it is presumed that the gradation change is slightly good. However, even if ⁇ is 10 °, a sufficient amount of movement can be secured.
- Comparative Example 1 the pattern width is wide and the tone of two gradations is obtained, but it can be inferred that continuous light control is possible by setting the pattern width to 200 ⁇ m or less. From the above, the pattern width is 500 ⁇ m or less, more preferably the pattern width is 200 ⁇ m or less.
- Example 2 it is more preferable to use a combination of an iso region and a ⁇ / 2 region or a combination of two ⁇ / 4 regions as a method for producing a pattern retardation film.
- the slow axis direction of the liquid crystal rotates by 90 ° between two adjacent phase difference regions, so that a liquid crystal alignment defect occurs at the boundary portion of the phase difference region. Therefore, it is presumed that the gradation change is B evaluation.
- Example 2 On the other hand, in the combination of the ⁇ / 4 regions of Example 1, it is surmised that the slow axis direction rotates only 45 ° between the phase difference regions, so that an alignment defect at the boundary portion hardly occurs and a good result is obtained.
- Comparative Example 2 continuous light control is possible with a narrow pattern width, but it is difficult to control the movement amount for light control with a small relative movement amount. Even with the same pattern width, a sufficient amount of movement can be ensured by setting ⁇ to 1 ° as in the third embodiment. In Example 6, the pattern width is considerably narrow, and continuous light control can be performed. Thus, even when the pattern width is quite narrow, the amount of movement can be secured by tilting ⁇ to 0.5 °.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Polarising Elements (AREA)
Abstract
Provided is a light adjusting device capable of adjusting light in a continuum. A first polarizer (20), a first pattern phase difference film (30a) and a second pattern phase difference film (30b) and a second polarizer (22) are stacked in this order, and the relative positions of the first pattern phase difference film (30a) and the second pattern phase difference film (30b) are moved in a uniaxial direction (t). The first pattern phase difference film (30a) and the second pattern phase difference film (30b) are formed with a stripe-shaped pattern in which two phase difference regions, of which at least one of a phase difference value and a slow axis direction differ from one another, are disposed alternately with the same width, where said width is at least equal to 1 μm and at most equal to 500 μm, wherein a long-side direction of the stripe-shaped pattern has an inclination relative to the uniaxial direction (t) in a range greater than 0° and less than 90°.
Description
本発明は、偏光子とパターン位相差膜を用いて入射光を調光して透過光を得る調光装置に関し、特に、階調を連続的に調光ができる調光装置に関する。
する。 The present invention relates to a light control device that adjusts incident light using a polarizer and a pattern retardation film to obtain transmitted light, and more particularly, to a light control device that can continuously control the gradation.
To do.
する。 The present invention relates to a light control device that adjusts incident light using a polarizer and a pattern retardation film to obtain transmitted light, and more particularly, to a light control device that can continuously control the gradation.
To do.
現在、偏光子を利用した調光方法が種々提案されている。偏光子を利用した調光方法については、建物用窓から入射する太陽光の調光に利用することも期待されている。
Currently, various dimming methods using a polarizer have been proposed. About the light control method using a polarizer, utilizing for the light control of the sunlight which injects from the window for buildings is also anticipated.
特開平9-310567号公報は、2枚の面状材に、偏光軸が異なる領域が隣接するように配列したパターンにして複数の偏光領域を設け、2つの面状材を相対的にスライドさせることで調光を行っている。つまり、一方の面状材の偏光領域に対する他方の面状材の偏光領域が重なったとき、偏光軸が同じ偏光領域同士を重ね合わせた状態から偏光軸を異ならせる偏光領域同士を重ね合わせた状態に変化させ、これに応じて入射光の透光性を変化させている。したがって、偏光領域の幅だけスライドさせることで最も明るい状態から最も暗い状態までの調光を行なうように構成されている。
Japanese Patent Application Laid-Open No. 9-310567 discloses that two planar materials are provided with a plurality of polarization regions in a pattern in which regions having different polarization axes are arranged adjacent to each other, and the two planar materials are relatively slid. Dimming is done. In other words, when the polarization region of the other planar material overlaps the polarization region of one planar material, the polarization regions with different polarization axes are superimposed from the state where the polarization regions having the same polarization axis are superimposed. And the translucency of the incident light is changed accordingly. Therefore, it is configured to perform dimming from the brightest state to the darkest state by sliding by the width of the polarization region.
しかしながら、特許文献1のように従来の調光装置のストライプは幅がmmからcmの範囲であり、ストライプの幅が広いため、連続的な調光を行うことが難しく2段階の階調に見えてしまう。
However, as disclosed in Patent Document 1, the stripe of the conventional light control device has a width in the range of mm to cm and the width of the stripe is wide. End up.
本発明は、上記事情に鑑みて、最も明るい状態から最も暗い状態まで連続的な階調を実現するための調光装置を提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide a light control device for realizing continuous gradation from the brightest state to the darkest state.
本発明の調光装置は、第1の偏光子と、第1のパターン位相差膜と、第2のパターン位相差膜と、第2の偏光子とをこの順に積層し、1のパターン位相差膜と第2のパターン位相差膜の相対位置を一軸方向に沿って移動させることにより全体の透過光量を調節することができる調光装置であって、第1のパターン位相差膜および第2のパターン位相差膜が、位相差値および遅相軸の向きのうち少なくとも一方が異なる2つの位相差領域を同じ幅で交互に配置した該幅が1μm以上から500μm以下のストライプ状のパターンで形成され、一軸方向に対して、ストライプ状のパターンの長辺方向が0°より大きく90°より小さい範囲の傾きを有することを特徴とする。
The light control device according to the present invention includes a first polarizer, a first pattern retardation film, a second pattern retardation film, and a second polarizer stacked in this order, and a pattern retardation of one. A light control device capable of adjusting the entire transmitted light amount by moving the relative position of a film and a second pattern retardation film along a uniaxial direction, wherein the first pattern retardation film and the second pattern retardation film The pattern phase difference film is formed in a stripe pattern in which two phase difference regions different in at least one of the phase difference value and the slow axis direction are alternately arranged with the same width, and the width is 1 μm or more to 500 μm or less. The long side direction of the striped pattern has an inclination in a range larger than 0 ° and smaller than 90 ° with respect to the uniaxial direction.
また、第1のパターン位相差膜および第2のパターン位相差膜のストライプ状のパターンの長辺方向と一軸方向とがなす角度θと、ストライプ状のパターンの幅wが、0.5mm≦ w/sinθ≦100mmの関係を満たすものが望ましい。
Further, the angle θ formed by the long-side direction and the uniaxial direction of the stripe pattern of the first pattern retardation film and the second pattern retardation film, and the width w of the stripe pattern are 0.5 mm ≦ w Those satisfying the relationship of / sin θ ≦ 100 mm are desirable.
また、第1のパターン位相差膜および第2のパターン位相差膜のうち少なくとも一方が、位相差値がゼロである位相差領域と位相差値がゼロ以外の位相差値を有する位相差領域で形成されたストライプ状のパターンを有するパターン位相差膜であるであってもよい。
In addition, at least one of the first pattern retardation film and the second pattern retardation film is a phase difference area having a phase difference value of zero and a phase difference area having a phase difference value other than zero. It may be a pattern retardation film having a formed stripe pattern.
さらに、第1のパターン位相差膜および第2のパターン位相差膜のうち少なくとも一方が、互いに隣接する位相差領域の遅相軸のなす角が40°以上から50°以下である位相差領域で形成されたストライプ状のパターンを有するパターン位相差膜であってもよい。
Further, at least one of the first pattern retardation film and the second pattern retardation film is a retardation region in which an angle formed by the slow axes of adjacent retardation regions is 40 ° or more and 50 ° or less. It may be a patterned retardation film having a formed stripe pattern.
本発明の調光装置は、第1の偏光子と、第1のパターン位相差膜と、第2のパターン位相差膜と、第2の偏光子とをこの順に積層し、ストライプ状のパターンが形成された第1のパターン位相差膜と第2のパターン位相差膜を相対的に移動させることにより全体の透過光量を調節する。この時、パターン位相差膜のパターン幅を1μm以上から500μm以下にすることで連続的な階調が可能になる。また、パターン幅が細くなるにしたがって調光するために2枚のパターン位相差膜の相対位置の微細な調整が必要になるが、本発明では、ストライプ状のパターンをパターン位相差膜の移動方向に対して斜めに傾けたので、位置合わせための調整のための距離を長くすることで階調の微調整が可能になる。
The light control device according to the present invention includes a first polarizer, a first pattern retardation film, a second pattern retardation film, and a second polarizer stacked in this order, and a stripe pattern is formed. The total amount of transmitted light is adjusted by relatively moving the formed first pattern retardation film and second pattern retardation film. At this time, continuous gradation can be achieved by setting the pattern width of the pattern retardation film to 1 μm or more to 500 μm or less. Further, in order to adjust the light as the pattern width becomes narrower, it is necessary to finely adjust the relative position of the two pattern retardation films. In the present invention, the stripe-shaped pattern is changed in the moving direction of the pattern retardation film. Therefore, the gradation can be finely adjusted by increasing the distance for adjustment for alignment.
以下、本発明の調光装置の実施形態について図面を参照して説明する。
Hereinafter, embodiments of the light control device of the present invention will be described with reference to the drawings.
なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、数値α~数値βとは、数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
In the following, “~” indicating a numerical range includes numerical values written on both sides. For example, the numerical value α to the numerical value β are ranges including the numerical value α and the numerical value β, and α ≦ ε ≦ β in mathematical symbols.
45°、90°、135°、平行、垂直および直交等の角度は、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であることが好ましく、3°未満であることがより好ましい。
Angles such as 45 °, 90 °, 135 °, parallel, vertical and orthogonal mean that the difference from the exact angle is within a range of less than 5 ° unless otherwise specified. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
また、「同一」とは、技術分野で一般的に許容される誤差範囲を含むものとする。また、「全部」、「いずれも」または「全面」等は、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば、99%以上、95%以上、または90%以上である場合を含むものとする。
In addition, “same” includes an error range generally allowed in the technical field. In addition to “100%”, “all”, “any” or “entire surface” includes an error range generally allowed in the technical field, for example, 99% or more, 95% or more, or The case of 90% or more is included.
本明細書において、Re(λ)、Rth(λ)はそれぞれ、波長λにおける面内のレタデーションおよび厚み方向のレタデーションを表す。Re(λ)はAxometrics社製AxoScanにおいて波長λnmの光をフィルム法線方向に入射させて測定される。
In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at wavelength λ, respectively. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in an AxoScan manufactured by Axometrics.
なお、各図面においては、視認しやすくするため、構成要素の縮尺は実際のものとは適宜異ならせてある。
In each drawing, the scale of the components is appropriately changed from the actual one for easy visual recognition.
<第1の実施形態>
図1(a)に、本発明の第1の実施形態の調光装置を示す。調光装置10は、入射光Liの透過率を調節し、透過光Loの光量を調節する。 <First Embodiment>
FIG. 1A shows a light control device according to the first embodiment of the present invention. Thelight control device 10 adjusts the transmittance of the incident light Li and adjusts the amount of the transmitted light Lo.
図1(a)に、本発明の第1の実施形態の調光装置を示す。調光装置10は、入射光Liの透過率を調節し、透過光Loの光量を調節する。 <First Embodiment>
FIG. 1A shows a light control device according to the first embodiment of the present invention. The
調光装置10は、調光部12と、移動部14と、制御部16とを有する。移動部14は、制御部16に制御される。
The light control device 10 includes a light control unit 12, a moving unit 14, and a control unit 16. The moving unit 14 is controlled by the control unit 16.
調光部12は、第1の偏光子20と位相差部24と第2の偏光子22で構成される。位相差部24は第1のパターン位相差膜30aと第2のパターン位相差膜30bの2枚の位相差膜を備える。第1の偏光子20と第1のパターン位相差膜30aと第2のパターン位相差膜30bと第2の偏光子22は、この順に積層される。
The light control unit 12 includes a first polarizer 20, a phase difference unit 24, and a second polarizer 22. The retardation part 24 includes two retardation films, a first pattern retardation film 30a and a second pattern retardation film 30b. The first polarizer 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 are stacked in this order.
図1(b)に示すように、第1の偏光子20の透過軸の方向l1と第2の偏光子22の透過軸の方向l2は直交するように配置され、第1の偏光子20と第2の偏光子22の間に設けられる第1のパターン位相差膜30aと第2のパターン位相差膜30bの相対位置の変化によって、第1の偏光子20から入射した入射光が第2の偏光子22を透過して出射する出射光の光量を調整する。なお、第1の偏光子20、第1のパターン位相差膜30a、第2のパターン位相差膜30b、および第2の偏光子22は全ての面が平行に配置され、積層された各面は同一の形状およびサイズであって面の縦および横が一致するように重ねられる。
As shown in FIG. 1 (b), the direction l 2 of the transmission axis of the first direction l 1 of the transmission axis of the polarizer 20 and second polarizer 22 are arranged to be orthogonal, a first polarizer Due to the change in the relative position of the first pattern retardation film 30a and the second pattern retardation film 30b provided between the first polarizer 20 and the second polarizer 22, the incident light incident from the first polarizer 20 is The amount of outgoing light that passes through and exits the second polarizer 22 is adjusted. The first polarizer 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 are all arranged in parallel, and the laminated surfaces are They are stacked in the same shape and size so that the length and width of the faces coincide.
移動部14は、第1のパターン位相差膜30aと第2のパターン位相差膜30bを相対的に移送させる機構を備え、制御部16からの信号に従って、第1のパターン位相差膜30aおよび第2のパターン位相差膜30bのいずれかを可動軸の方向tに移動させることが可能である。あるいは、第1のパターン位相差膜30aおよび第2のパターン位相差膜30bの両方を可動軸の方向tに移動させることで相対的な移動を行うものであってもよい。
The moving unit 14 includes a mechanism for relatively transferring the first pattern phase difference film 30a and the second pattern phase difference film 30b, and according to a signal from the control unit 16, the first pattern phase difference film 30a and the second pattern phase difference film 30a. It is possible to move any one of the two pattern retardation films 30b in the direction t of the movable axis. Or you may perform a relative movement by moving both the 1st pattern phase difference film 30a and the 2nd pattern phase difference film 30b to the direction t of a movable axis.
以下、第1の偏光子20の上面の法線方向をZ軸とし、第1の偏光子20の上面に平行な2軸をX軸とY軸として説明する。
Hereinafter, the normal direction of the upper surface of the first polarizer 20 is referred to as a Z axis, and two axes parallel to the upper surface of the first polarizer 20 are referred to as an X axis and a Y axis.
第1のパターン位相差膜30aと第2のパターン位相差膜30bは、所定のストライプ状のパターンを有したパターン位相差膜で構成され、第1のパターン位相差膜30aと第2のパターン位相差膜30bの相対位置に応じ調光を行う。本発明者らは、入射光に対して透過状態(「明の状態」)から遮光状態(「暗の状態」)まで連続的な階調の変化を実現するためには、ストライプ幅を細くすることで可能になることを見出した。しかし、ストライプ幅を細くすると、2枚のパターン位相差膜のストライプパターンを正確に位置合わせすることが難しくなるという問題がある。
The first pattern retardation film 30a and the second pattern retardation film 30b are configured by a pattern retardation film having a predetermined stripe pattern, and the first pattern retardation film 30a and the second pattern retardation film 30b. Dimming is performed according to the relative position of the phase difference film 30b. In order to realize a continuous gradation change from a transmission state (“bright state”) to a light-shielding state (“dark state”) with respect to incident light, the inventors reduce the stripe width. I found out that it would be possible. However, when the stripe width is narrowed, there is a problem that it is difficult to accurately align the stripe patterns of the two pattern retardation films.
そこで、本発明では、可動軸の移動方向がストライプパターンを横切る距離が長くなるようにストライプパターンを可動軸の移動方向に対して傾けるように構成することで、明の状態から暗の状態に変化させるまでの可動軸の移動量を大きくした。
以下、調光装置10を構成する各部材について説明する。 Therefore, in the present invention, the stripe pattern is tilted with respect to the moving direction of the movable axis so that the moving direction of the movable axis extends across the stripe pattern, thereby changing from a bright state to a dark state. The amount of movement of the movable shaft until it was made larger.
Hereinafter, each member which comprises thelight modulation apparatus 10 is demonstrated.
以下、調光装置10を構成する各部材について説明する。 Therefore, in the present invention, the stripe pattern is tilted with respect to the moving direction of the movable axis so that the moving direction of the movable axis extends across the stripe pattern, thereby changing from a bright state to a dark state. The amount of movement of the movable shaft until it was made larger.
Hereinafter, each member which comprises the
<第1の偏光子20および第2の偏光子22>
第1の偏光子20は第1の直線偏光を透過し、第1の直線偏光に直交する第2の直線偏光を吸収もしくは反射する吸収型の偏光子である。第2の偏光子22は第2の直線偏光を透過し、第1の直線偏光を吸収もしくは反射する吸収型の偏光子である。 <First polarizer 20 and second polarizer 22>
Thefirst polarizer 20 is an absorptive polarizer that transmits the first linearly polarized light and absorbs or reflects the second linearly polarized light orthogonal to the first linearly polarized light. The second polarizer 22 is an absorptive polarizer that transmits the second linearly polarized light and absorbs or reflects the first linearly polarized light.
第1の偏光子20は第1の直線偏光を透過し、第1の直線偏光に直交する第2の直線偏光を吸収もしくは反射する吸収型の偏光子である。第2の偏光子22は第2の直線偏光を透過し、第1の直線偏光を吸収もしくは反射する吸収型の偏光子である。 <
The
偏光子としては、ポリマーフィルムにヨウ素が吸着配向されたものを用いることが好ましい。ポリマーフィルムとしては、特に限定されず各種のものを使用できる。例えば、ポリビニルアルコール系フィルム、ポリエチレンテレフタレート系フィルム、エチレン・酢酸ビニル共重合体系フィルムや、これらの部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルムに、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、偏光子としてのヨウ素による染色性に優れたポリビニルアルコール系フィルムを用いることが好ましい。
As the polarizer, it is preferable to use a polymer film in which iodine is adsorbed and oriented. The polymer film is not particularly limited, and various types can be used. For example, polyvinyl alcohol films, polyethylene terephthalate films, ethylene / vinyl acetate copolymer films, partially saponified films of these, hydrophilic polymer films such as cellulose films, polyvinyl alcohol dehydrated products and polychlorinated Examples include polyene-based oriented films such as vinyl dehydrochlorinated products. Among these, it is preferable to use a polyvinyl alcohol film excellent in dyeability with iodine as a polarizer.
第1の偏光子20および第2の偏光子22により透過または反射される光の波長域は特に制限されず、赤外光の波長域内であっても、可視光の波長域内であっても、紫外光の波長域内であってもよく、赤外光および可視光の波長域、可視光および紫外光の波長域、または、赤外光、可視光および紫外光の波長域にまたがる波長域であってもよい。特に、調光装置の遮熱性および耐久性がより優れる点からは、可視光、または近赤外光の波長域にあることが好ましい。
なお、赤外線(赤外光)は可視光線より長く電波より短い波長域電磁波である。近赤外光とは一般的に750nm超2500nm以下の波長域の電磁波である。可視光線は電磁波のうち、ヒトの目で見える波長の光であり、380nm~750nmの波長域の光を示す。紫外線は、可視光線より短くX線より長い波長域電磁波である。紫外線は可視光線およびX線と区別される波長領域の光であればよく、例えば、波長10nm以上380nm未満の範囲の光である。 The wavelength range of the light transmitted or reflected by thefirst polarizer 20 and the second polarizer 22 is not particularly limited, and even within the wavelength range of infrared light or within the wavelength range of visible light, It may be within the wavelength range of ultraviolet light, and is a wavelength range that spans the wavelength range of infrared light and visible light, the wavelength range of visible light and ultraviolet light, or the wavelength range of infrared light, visible light, and ultraviolet light. May be. In particular, from the viewpoint that the heat shielding property and durability of the light control device are more excellent, it is preferably in the wavelength range of visible light or near infrared light.
In addition, infrared rays (infrared light) are electromagnetic waves in a wavelength region longer than visible rays and shorter than radio waves. Near-infrared light is generally an electromagnetic wave having a wavelength range of more than 750 nm and not more than 2500 nm. Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 750 nm. Ultraviolet rays are electromagnetic waves in a wavelength range shorter than visible light and longer than X-rays. The ultraviolet light may be light in a wavelength region that can be distinguished from visible light and X-rays, and is, for example, light in a wavelength range of 10 nm or more and less than 380 nm.
なお、赤外線(赤外光)は可視光線より長く電波より短い波長域電磁波である。近赤外光とは一般的に750nm超2500nm以下の波長域の電磁波である。可視光線は電磁波のうち、ヒトの目で見える波長の光であり、380nm~750nmの波長域の光を示す。紫外線は、可視光線より短くX線より長い波長域電磁波である。紫外線は可視光線およびX線と区別される波長領域の光であればよく、例えば、波長10nm以上380nm未満の範囲の光である。 The wavelength range of the light transmitted or reflected by the
In addition, infrared rays (infrared light) are electromagnetic waves in a wavelength region longer than visible rays and shorter than radio waves. Near-infrared light is generally an electromagnetic wave having a wavelength range of more than 750 nm and not more than 2500 nm. Visible light is light having a wavelength visible to the human eye among electromagnetic waves, and indicates light having a wavelength range of 380 nm to 750 nm. Ultraviolet rays are electromagnetic waves in a wavelength range shorter than visible light and longer than X-rays. The ultraviolet light may be light in a wavelength region that can be distinguished from visible light and X-rays, and is, for example, light in a wavelength range of 10 nm or more and less than 380 nm.
<第1のパターン位相差膜および第2のパターン位相差膜>
図2は、本発明の第1の実施形態の調光装置の第1のパターン位相差膜30aと第2のパターン位相差膜30bの平面図である。 <First Pattern Retardation Film and Second Pattern Retardation Film>
FIG. 2 is a plan view of the firstpattern retardation film 30a and the second pattern retardation film 30b of the light control device according to the first embodiment of the present invention.
図2は、本発明の第1の実施形態の調光装置の第1のパターン位相差膜30aと第2のパターン位相差膜30bの平面図である。 <First Pattern Retardation Film and Second Pattern Retardation Film>
FIG. 2 is a plan view of the first
第1のパターン位相差膜30aは、位相差値が異なる第1の位相差領域31と第2の位相差領域32を含み、第1の位相差領域31および第2の位相差領域32が面内においてストライプ状に交互に配置されている。同様に、第2のパターン位相差膜30bは、位相差値が異なる第3の位相差領域33と第4の位相差領域34を含み、第3の位相差領域33および第4の位相差領域34が面内においてストライプ状に交互に配置されている。具体的には、例えば、位相差値が異なる第1の位相差領域31と第2の位相差領域32(または、第3の位相差領域33と第4の位相差領域34)は、その組合せによって、パターン位相差膜30aおよび30bを通過する位相差値がゼロである等方性位相差領域と、位相差値がゼロ以外の位相差値を有する異方性位相差領域となるように形成される。第1の位相差領域31と第2の位相差領域32、および、第3の位相差領域33と第4の位相差領域34は、それぞれ、液晶を配向させた領域からなり、図2の楕円はそれぞれの配向をモデル的に示している。
The first pattern retardation film 30a includes a first retardation region 31 and a second retardation region 32 having different retardation values, and the first retardation region 31 and the second retardation region 32 are surfaces. They are alternately arranged in stripes. Similarly, the second pattern retardation film 30 b includes a third retardation region 33 and a fourth retardation region 34 having different retardation values, and the third retardation region 33 and the fourth retardation region 34. 34 are alternately arranged in stripes in the plane. Specifically, for example, the first phase difference region 31 and the second phase difference region 32 (or the third phase difference region 33 and the fourth phase difference region 34) having different phase difference values are combined. Are formed so as to be an isotropic phase difference region having a phase difference value of zero passing through the pattern phase difference films 30a and 30b and an anisotropic phase difference region having a phase difference value other than zero. Is done. The first phase difference region 31 and the second phase difference region 32, and the third phase difference region 33 and the fourth phase difference region 34 are each composed of a region in which liquid crystal is aligned, and the ellipse in FIG. Indicates the respective orientations as a model.
図2の平面図において、第1のパターン位相差膜30aの第1の位相差領域31および第2の位相差領域32を区別するために第1の位相差領域31をグレーで示している。図2に示すように、第1の位相差領域31および第2の位相差領域32を交互に配置されたストライプ状のパターンを形成し、第1の位相差領域31のストライプ幅w1と第2の位相差領域32のストライプ幅w2は同一である。第1の位相差領域31と第2の位相差領域32のストライプ幅w1、w2は、例えば、1μm~500μmとし、その幅方向に、2μm~1mmの周期で交互に配置される。また、可動軸の方向tに対してストライプ状のパターンの長辺方向が傾きθを持つ状態で配置される。好ましくは、ストライプ幅w1、w2は、5μm~350μmとし、その幅方向に、10μm~700μmの周期で交互に配置される。より好ましくは、ストライプ幅w1、w2は、30μm~250μmとし、その幅方向に、60μm~500μmの周期で交互に配置される。
In the plan view of FIG. 2, the first retardation region 31 is shown in gray to distinguish the first retardation region 31 and the second retardation region 32 of the first pattern retardation film 30a. As shown in FIG. 2, a stripe pattern in which the first retardation region 31 and the second retardation region 32 are alternately arranged is formed, and the stripe width w 1 of the first retardation region 31 and the first retardation region 31 are changed. The stripe widths w 2 of the two retardation regions 32 are the same. The stripe widths w 1 and w 2 of the first retardation region 31 and the second retardation region 32 are, for example, 1 μm to 500 μm, and are alternately arranged in the width direction with a period of 2 μm to 1 mm. Further, the long side direction of the striped pattern is arranged in a state having an inclination θ with respect to the direction t of the movable axis. Preferably, the stripe widths w 1 and w 2 are 5 μm to 350 μm, and are alternately arranged in the width direction with a period of 10 μm to 700 μm. More preferably, the stripe widths w 1 and w 2 are 30 μm to 250 μm, and are alternately arranged in the width direction at a period of 60 μm to 500 μm.
同様に、第2のパターン位相差膜30bの第3の位相差領域33および第4の位相差領域34を区別するために第3の位相差領域33をグレーで示している。第3の位相差領域33のストライプ幅w3と第4の位相差領域34のストライプ幅w4は同一であり、第3の位相差領域33と第4の位相差領域34のストライプ幅w3、w4は、第1のパターン位相差膜30aと第1の位相差領域31と第2の位相差領域32と同一の幅と周期で交互に配置される。また、第2のパターン位相差膜30bのストライプ状のパターンは、第1のパターン位相差膜30aのストライプ状のパターンと同一の傾きを持つ状態で配置される。
Similarly, the third retardation region 33 is shown in gray to distinguish the third retardation region 33 and the fourth retardation region 34 of the second pattern retardation film 30b. Third stripe width w 4 of the stripe width w 3 of the retardation region 33 fourth retardation region 34 is the same, the third retardation region 33 stripe width w 3 of the fourth retardation region 34 , w 4 are arranged alternately in a first pattern retardation film 30a and the width and period of the same as the first retardation region 31 and the second retardation region 32. The stripe pattern of the second pattern retardation film 30b is arranged with the same inclination as the stripe pattern of the first pattern retardation film 30a.
第1のパターン位相差膜30aおよび第2のパターン位相差膜30bのストライプ状のパターンの長辺方向と可動軸の方向tがなす角度θは、0°より大きく90°より小さい範囲であればよいが、ストライプ幅wに応じて決められる。具体的には、角度θと、ストライプ幅w(=w1=w2=w3=w4)が、
0.5mm≦ w/sinθ≦100mm
の関係を満たすように配置するのが望ましい。この関係を満たすように配置する理由については後述する。 The angle θ formed by the long-side direction of the stripe pattern of the first patternphase difference film 30a and the second pattern phase difference film 30b and the direction t of the movable axis is within a range larger than 0 ° and smaller than 90 °. Although it is good, it is determined according to the stripe width w. Specifically, the angle θ and the stripe width w (= w 1 = w 2 = w 3 = w 4 ) are
0.5mm ≦ w / sinθ ≦ 100mm
It is desirable to arrange so as to satisfy the relationship. The reason for arranging so as to satisfy this relationship will be described later.
0.5mm≦ w/sinθ≦100mm
の関係を満たすように配置するのが望ましい。この関係を満たすように配置する理由については後述する。 The angle θ formed by the long-side direction of the stripe pattern of the first pattern
0.5mm ≦ w / sinθ ≦ 100mm
It is desirable to arrange so as to satisfy the relationship. The reason for arranging so as to satisfy this relationship will be described later.
第1の位相差領域31および第3の位相差領域33はそれぞれ、パターン位相差膜30aあるいは30bに入射した光が出射するまでに位相差をλ/2与える光学異方性領域である。図2の例では、第1の位相差領域31は、第1の偏光子20の透過軸と第1の位相差領域31の遅相軸のなす角が45°のλ/2位相差領域であり、第3の位相差領域33は、第1の偏光子20の透過軸と第3の位相差領域33の遅相軸のなす角が135°のλ/2位相差領域である。したがって、入射光が直線偏光である場合、出射光は、入射時の偏光軸に対して90°の傾きをなす偏光軸を有するものとなる。
The first retardation region 31 and the third retardation region 33 are optical anisotropy regions that give a phase difference of λ / 2 before the light incident on the pattern retardation film 30a or 30b is emitted. In the example of FIG. 2, the first retardation region 31 is a λ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °. The third retardation region 33 is a λ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the third retardation region 33 is 135 °. Therefore, when the incident light is linearly polarized light, the emitted light has a polarization axis that makes an inclination of 90 ° with respect to the polarization axis at the time of incidence.
第1の位相差領域31および第3の位相差領域33は、その構成材料に制限はないが、例えば、液晶材料(重合性液晶組成物)を用いて形成することができる。具体的には、棒状液晶化合物、あるいは円盤状液晶化合物が固定化されてなる領域から構成することができる。
The first retardation region 31 and the third retardation region 33 are not limited in their constituent materials, but can be formed using, for example, a liquid crystal material (polymerizable liquid crystal composition). Specifically, it can be composed of a region where a rod-like liquid crystal compound or a disk-like liquid crystal compound is fixed.
第2の位相差領域32および第4の位相差領域34は、光学等方性領域であるので、通過する光の偏光状態に対して影響を与えることなく出射させる。第2の位相差領域32および第4の位相差領域34は光学的に等方性であれば構成材料は限定されないが、第1の位相差領域31および第3の位相差領域33の構成材料と同じ液晶材料で構成されていることが好ましい。
Since the second retardation region 32 and the fourth retardation region 34 are optically isotropic regions, they are emitted without affecting the polarization state of the light passing therethrough. The constituent material of the first retardation region 31 and the third retardation region 33 is not limited as long as the second retardation region 32 and the fourth retardation region 34 are optically isotropic. It is preferable that it is comprised with the same liquid crystal material.
なお、パターン位相差膜における第1の位相差領域がλ/2位相差を与える機能を有し、第2の位相差領域が等方性を有するかどうかは、例えば、Axometrics社のAxoStep高精度ミュラー行列イメージングポラリメータ等を用いて測定するなどの公知の方法で確認することができる。
(移動部および制御部) The first retardation region in the pattern retardation film has a function of giving a λ / 2 retardation, and whether or not the second retardation region is isotropic is determined by, for example, AxoStep high accuracy. It can be confirmed by a known method such as measurement using a Mueller matrix imaging polarimeter or the like.
(Moving part and control part)
(移動部および制御部) The first retardation region in the pattern retardation film has a function of giving a λ / 2 retardation, and whether or not the second retardation region is isotropic is determined by, for example, AxoStep high accuracy. It can be confirmed by a known method such as measurement using a Mueller matrix imaging polarimeter or the like.
(Moving part and control part)
移動部14は、制御部16の制御に従って位相差部24の2枚の各パターン位相差膜(第1のパターン位相差膜30a、第2のパターン位相差膜30b)の相対位置を可動軸の方向tに移動させる機構を備え、2枚のパターン位相差膜(第1のパターン位相差膜30a、第2のパターン位相差膜30b)のうち、いずれか1枚を移動させるものであってもよく、2枚を相対的に移動させる構成でもよい。
The moving unit 14 moves the relative positions of the two pattern phase difference films (the first pattern phase difference film 30a and the second pattern phase difference film 30b) of the phase difference unit 24 according to the control of the control unit 16 with respect to the movable axis. A mechanism for moving in the direction t is provided, and any one of the two pattern phase difference films (the first pattern phase difference film 30a and the second pattern phase difference film 30b) is moved. Alternatively, a configuration in which the two sheets are relatively moved may be employed.
移動部14により、2枚のパターン位相差膜(第1のパターン位相差膜30a、第2のパターン位相差膜30b)の相対位置を変えることで、第1の偏光子20または第2の偏光子22から入射される入射光の透過率を変えることが可能である。以下、移動部14が、第2のパターン位相差膜30bを可動軸の方向に移動させる場合について説明する。
By changing the relative position of the two pattern retardation films (first pattern retardation film 30a and second pattern retardation film 30b) by the moving unit 14, the first polarizer 20 or the second polarization It is possible to change the transmittance of incident light incident from the child 22. Hereinafter, a case where the moving unit 14 moves the second pattern retardation film 30b in the direction of the movable axis will be described.
<調光機構>
次に、調光装置10を用いて透過状態から遮光状態まで段階的に調光する仕組みについて説明する。なお、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向である場合について説明する。 <Light control mechanism>
Next, a mechanism for dimming in steps from the transmission state to the light shielding state using thelight control device 10 will be described. The direction l 1 of the transmission axis of the first polarizer 20 is a 135 ° direction inclined relative to the X axis, the direction l 2 of the transmission axis of the second polarizer 22, the X-axis A case where the direction is inclined by 45 ° will be described.
次に、調光装置10を用いて透過状態から遮光状態まで段階的に調光する仕組みについて説明する。なお、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向である場合について説明する。 <Light control mechanism>
Next, a mechanism for dimming in steps from the transmission state to the light shielding state using the
図3(a)、(b)は本発明の実施形態の調光装置の調光方法を説明するための図である。図3(a)、(b)において、図1(a)、(b)に示す調光装置10と同一の構成には同一符号を付す。
3 (a) and 3 (b) are diagrams for explaining a light control method of the light control device according to the embodiment of the present invention. 3 (a) and 3 (b), the same components as those of the light control device 10 shown in FIGS. 1 (a) and 1 (b) are denoted by the same reference numerals.
図3(a)(b)は、第2のパターン位相差膜30bをスライドさせる前後の概略図を示す。図3(a)に示すように、XZ平面から見た際、第1の位相差領域31と第3の位相差領域33とが重なる場合(または、第2の位相差領域32と第4の位相差領域34とが重なる場合)は、図3(a)中の矢印方向から第1の偏光子20に入射する光Liは、調光装置10を透過しない。つまり、図3(a)の状態は、遮光状態(「暗の状態」)となる。
3 (a) and 3 (b) are schematic views before and after the second pattern retardation film 30b is slid. As shown in FIG. 3A, when viewed from the XZ plane, the first retardation region 31 and the third retardation region 33 overlap (or the second retardation region 32 and the fourth retardation region 33). In the case where the phase difference region 34 overlaps, the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. That is, the state of FIG. 3A is a light shielding state (“dark state”).
一方、図3(b)は、図3(a)から第2のパターン位相差膜30bを相対移動量Dだけスライド(移動)させた図である。この場合、XZ平面から見た際に、第1の位相差領域31と第4の位相差領域34が重なり(または、第2の位相差領域32と第3の位相差領域33が重なる)、図3(b)中の矢印方向から第1の偏光子20に入射する光Liは調光装置10を透過して光Loとして出射される。つまり、図3(b)の状態は、透過状態(「明の状態」)となる。
On the other hand, FIG. 3B is a diagram in which the second pattern retardation film 30b is slid (moved) by the relative movement amount D from FIG. 3A. In this case, when viewed from the XZ plane, the first retardation region 31 and the fourth retardation region 34 overlap (or the second retardation region 32 and the third retardation region 33 overlap), The light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 3B passes through the light control device 10 and is emitted as light Lo. That is, the state of FIG. 3B is a transmission state (“bright state”).
以下、調光装置10により光が透過する、または、遮光されるメカニズムについて、図3(a)(b)と併せて図4(a)(b)を用いて、より詳細に説明する。なお、入射光が直線偏光であるときのXY面における+X軸に対する偏光軸の傾きαを持つ直線偏光の偏光軸をPαと表す。つまり、傾きが0°の偏光軸をP0、傾きが90°の偏光軸をP90、傾きが45°の偏光軸をP45、および傾きが135°の偏光軸をP135として表す。同様に、XY面における+X軸に対する遅相軸の傾きαを持つ遅相軸をPαとして以下説明する。
Hereinafter, the mechanism in which light is transmitted or blocked by the light control device 10 will be described in more detail with reference to FIGS. 4A and 4B in conjunction with FIGS. Note that the polarization axis of linearly polarized light having a polarization axis inclination α with respect to the + X axis in the XY plane when the incident light is linearly polarized light is represented as P α . That is, a polarization axis with an inclination of 0 ° is represented as P 0 , a polarization axis with an inclination of 90 ° is represented as P 90 , a polarization axis with an inclination of 45 ° is represented as P 45 , and a polarization axis with an inclination of 135 ° is represented as P 135 . Similarly, a slow axis having a slow axis inclination α with respect to the + X axis in the XY plane will be described below as P α .
図4(a)(b)に示すように、第1の偏光子20の透過軸の方向l1がP135であり、第2の偏光子22の透過軸の方向l2がP45である場合について説明する。この時、第1の位相差領域の遅相軸の方向はP90、第3の位相差領域の遅相軸の方向はP0となる。また、第2および第4の位相差領域は等方性領域であり「iso」と表記する。
As shown in FIGS. 4A and 4B, the transmission axis direction l 1 of the first polarizer 20 is P 135 , and the transmission axis direction l 2 of the second polarizer 22 is P 45 . The case will be described. At this time, the direction of the slow axis in the first phase difference region is P 90 , and the direction of the slow axis in the third phase difference region is P 0 . The second and fourth phase difference regions are isotropic regions and are expressed as “iso”.
図3(a)に示す状態について、図4(a)を用いて説明する。
図3(a)の領域R1では、第1の偏光子20へと入射された光のうち、第1の偏光子20の透過軸と平行な直線偏光のみが偏光軸P135を有する直線偏光L1として出射される。次に、直線偏光L1は、第1の位相差領域31によって偏光軸が90°傾いた偏光軸P45を有する直線偏光L2として出射される。さらに、直線偏光L2は、第3の位相差領域33によって偏光軸が90°傾いた偏光軸P135を有する直線偏光L3として出射される。直線偏光L3の偏光軸P135と第2の偏光子22の透過軸の方向P45は直交するため、直線偏光L3は第2の偏光子22によって吸収される。 The state shown in FIG. 3A will be described with reference to FIG.
In the region R1 in FIG. 3 (a), first of the incident light to thepolarizer 20, the linearly polarized light L1 that only the transmission axis parallel to the linear polarization of the first polarizer 20 has a polarization axis P 135 Is emitted. Then, the linearly polarized light L1 is polarization axis is emitted as linearly polarized light L2 having a 90 ° inclined polarization axis P 45 by the first retardation region 31. Furthermore, linearly polarized light L2, the polarization axis is emitted as linearly polarized light L3 having a polarization axis P 135 which is inclined 90 ° by the third retardation region 33. Since the polarization axis P 135 of the linearly polarized light L 3 and the transmission axis direction P 45 of the second polarizer 22 are orthogonal, the linearly polarized light L 3 is absorbed by the second polarizer 22.
図3(a)の領域R1では、第1の偏光子20へと入射された光のうち、第1の偏光子20の透過軸と平行な直線偏光のみが偏光軸P135を有する直線偏光L1として出射される。次に、直線偏光L1は、第1の位相差領域31によって偏光軸が90°傾いた偏光軸P45を有する直線偏光L2として出射される。さらに、直線偏光L2は、第3の位相差領域33によって偏光軸が90°傾いた偏光軸P135を有する直線偏光L3として出射される。直線偏光L3の偏光軸P135と第2の偏光子22の透過軸の方向P45は直交するため、直線偏光L3は第2の偏光子22によって吸収される。 The state shown in FIG. 3A will be described with reference to FIG.
In the region R1 in FIG. 3 (a), first of the incident light to the
一方、領域R2では、第1の偏光子20を透過した偏光軸P135を有する直線偏光L4は、偏光軸を維持したまま第2の位相差領域32を透過して偏光軸P135を有する直線偏光L5として出射され、次いで第4の位相差領域34を透過して偏光軸P135を有する直線偏光L6として出射される。直線偏光L6の偏光軸P135と第2の偏光子22の透過軸の方向P45は直交するため、直線偏光L6は第2の偏光子22によって吸収される。
On the other hand, in the region R2, the linearly polarized light L4 having a polarization axis P 135 that has passed through the first polarizer 20 linearly with polarization axis P 135 passes through the second retardation region 32 while maintaining the polarization axis is emitted as polarization L5, is emitted as linearly polarized light L6 having a polarization axis P 135 then passes through the fourth retardation region 34. Since the polarization axis P 135 to the direction P 45 of the transmission axis of the second polarizer 22 of the linearly polarized light L6 are orthogonal, linearly polarized light L6 is absorbed by the second polarizer 22.
つまり、第1の位相差領域31と第3の位相差領域33と重なる場合(または、第2の位相差領域32と第4の位相差領域34とが重なる場合)では、第1の偏光子20に入射した光は、第2の偏光子22より出射されず、調光装置10を透過できない。
That is, when the first phase difference region 31 and the third phase difference region 33 overlap (or when the second phase difference region 32 and the fourth phase difference region 34 overlap), the first polarizer. The light incident on 20 is not emitted from the second polarizer 22 and cannot pass through the light control device 10.
次に、図3(b)に示すように、図3(a)から第2のパターン位相差膜30bを相対移動量Dだけスライドさせた状態について、図4(b)を用いて説明する。
Next, as shown in FIG. 3B, a state where the second pattern retardation film 30b is slid by the relative movement amount D from FIG. 3A will be described with reference to FIG. 4B.
図3(b)の領域R1では、第1の偏光子20へと入射された光のうち、第1の偏光子20の透過軸と平行な直線偏光のみが偏光軸P135を有する直線偏光L11として出射される。次に、直線偏光L11は、第1の位相差領域31によって偏光軸が90°傾いた偏光軸P45を有する直線偏光L12として出射される。さらに、直線偏光L12は偏光軸をP45維持したまま第4の位相差領域34を透過して直線偏光L13となり、第2の偏光子22に到達する。直線偏光L13の偏光軸P45と第2の偏光子22の透過軸の方向P45は一致するため、直線偏光L13は第2の偏光子22をそのまま透過する。
In the region R1 in FIG. 3 (b), the first of the incident light to the polarizer 20, the linearly polarized light only transmission axis parallel to the linear polarization of the first polarizer 20 has a polarization axis P 135 L11 Is emitted. Then, the linearly polarized light L11 is polarization axis is emitted as linearly polarized light L12 having a 90 ° inclined polarization axis P 45 by the first retardation region 31. Furthermore, linearly polarized light L12 reaches the polarization axis linearly polarized light L13 next passes through the fourth retardation region 34 while keeping P 45, the second polarizer 22. Since the direction P 45 of the transmission axis of the polarizing axis P 45 of the linearly polarized light L13 the second polarizer 22 coincides linearly polarized light L13 is directly transmitted through the second polarizer 22.
一方、領域R2では、第1の偏光子20を透過した偏光軸P135を有する直線偏光L14は、偏光軸P135を維持したまま第2の位相差領域32を透過して直線偏光L15となる。次に、直線偏光L15は、第3の位相差領域33によって偏光軸が90°傾いた偏光軸P45を有する直線偏光L16として出射される。直線偏光L16の偏光軸P45と第2の偏光子22の透過軸の方向P45は一致するため、直線偏光L16は第2の偏光子22をそのまま透過する。
On the other hand, in the region R2, the linearly polarized light L14 having a polarization axis P 135 that has passed through the first polarizer 20 becomes linearly polarized light L15 is transmitted through the second retardation region 32 while maintaining the polarization axis P 135 . Then, the linearly polarized light L15 is polarization axis is emitted as linearly polarized light L16 having a 90 ° inclined polarization axis P 45 by the third retardation region 33. Since the direction P 45 of the polarizing axis P 45 of the linearly polarized light L16 transmission axis of the second polarizer 22 coincides linearly polarized light L16 is directly transmitted through the second polarizer 22.
つまり、第1の位相差領域31と第4の位相差領域34が重なる場合(または、第2の位相差領域32と第3の位相差領域33が重なる場合)では、第1の偏光子20に入射した光は、第2の偏光子22より出射され、調光装置10を透過する。
That is, when the first retardation region 31 and the fourth retardation region 34 overlap (or when the second retardation region 32 and the third retardation region 33 overlap), the first polarizer 20. Is emitted from the second polarizer 22 and passes through the light control device 10.
上述では、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向P135であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向P45である場合について説明したが、これに限定するものではなく第1の位相差領域31および第3の位相差領域33がn×λ/2(nは奇数の自然数)の位相差領域であり、かつ、第2の位相差領域32および第4の位相差領域34が等方性領域(iso)で構成されている場合に、第1の偏光子20の透過軸の方向l1と第2の偏光子22の透過軸の方向l2が直交し、かつ、第1の偏光子20の透過軸と第1の位相差領域31の遅相軸のなす角が45°となり、第1の偏光子20の透過軸と第3の位相差領域33の遅相軸のなす角が135°となるように第1の偏光子20、第1のパターン位相差膜30a、第2のパターン位相差膜30b、第2の偏光子22が配置されればよい。
In the above description, the transmission axis direction l 1 of the first polarizer 20 is the direction P 135 tilted by 135 ° with respect to the X axis, and the transmission axis direction l 2 of the second polarizer 22 is the X axis. If a 45 ° direction P 45 inclined has been described with respect to, the first retardation region 31 and the third retardation region 33 is not limited to this n × λ / 2 (n is an odd number Of the first polarizer 20 when the second phase difference region 32 and the fourth phase difference region 34 are isotropic regions (iso). direction of the transmission axis l 1 and the transmission axis direction l 2 is orthogonal to the second polarizer 22, and the angle of the slow axis of the transmission axis of the first retardation region 31 of the first polarizer 20 Is 45 °, and the first polarization is so formed that the angle between the transmission axis of the first polarizer 20 and the slow axis of the third retardation region 33 is 135 °. The optical element 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 may be disposed.
次に、2枚のパターン位相差膜の相対移動量と多階調の調光の関係について説明する。上述の通り、第1の位相差領域31と第3の位相差領域33と重なる場合(または、第2の位相差領域32と第4の位相差領域34とが重なる場合)は、遮光状態となり、第1の位相差領域31と第4の位相差領域34が重なる場合(または、第2の位相差領域32と第3の位相差領域33が重なる場合)は、透過状態となる。図5の(1)から(5)に示すように、第1の位相差領域31と第3の位相差領域33と重なった状態から、第2のパターン位相差膜を可動軸の方向tに徐々に移動させることで、第1の位相差領域31と第3の位相差領域33の重なりが少なくなり、第1の位相差領域31と第4の位相差領域34の重なりが増えていく。この重なりが増えていくに従って、遮光状態から徐々に明るくなり透過状態に達する。図2に示すように、可動軸の方向tとストライプの長辺方向のなす角θが小さいほど、第1の位相差領域31と第3の位相差領域33が重なった状態から、第1の位相差領域31と第4の位相差領域34が重なった状態に変化させるまでの相対移動量D(=w/sinθ)が大きくなり、多階調の調整が容易になり連続的な階調変化を実現できる。
Next, the relationship between the relative movement amount of the two pattern retardation films and the multi-tone light control will be described. As described above, when the first phase difference region 31 and the third phase difference region 33 overlap (or when the second phase difference region 32 and the fourth phase difference region 34 overlap), the light shielding state occurs. When the first phase difference region 31 and the fourth phase difference region 34 overlap (or when the second phase difference region 32 and the third phase difference region 33 overlap), the transmission state is set. As shown in (1) to (5) of FIG. 5, the second pattern retardation film is moved in the direction t of the movable axis from the state where it overlaps the first retardation region 31 and the third retardation region 33. By gradually moving, the overlap between the first phase difference region 31 and the third phase difference region 33 decreases, and the overlap between the first phase difference region 31 and the fourth phase difference region 34 increases. As this overlap increases, the light is gradually brightened from the light-shielded state and reaches the transmissive state. As shown in FIG. 2, the smaller the angle θ formed between the direction t of the movable axis and the long side direction of the stripe, the more the first retardation region 31 and the third retardation region 33 overlap, The relative movement amount D (= w / sin θ) until the phase difference region 31 and the fourth phase difference region 34 are changed to the overlapped state is increased, and multi-tone adjustment is facilitated, and continuous tone change is performed. Can be realized.
例えば、ストライプ幅wが200μmで可動軸の方向tに対してストライプの長辺方向が垂直(θ=90°)になっている場合には、遮光状態から透過状態になるまでの相対移動量Dは200μmしかないが、例えば、θが3°である場合には、遮光状態から透過状態になるまでの相対移動量Dは、
D=200μm/sin3°≒3821μm
となる。相対移動量Dはなるべく大きいほうが良いが、θが小さくなるほど可動軸方向tに対するストライプの傾きを正確に設定することが難しくなる。これらを考慮すると、上述の式(1)のように、0.5mm≦w/sinθ(=D)≦100mmを満足するようにストライプの傾きを決定するのが望ましい。 For example, when the stripe width w is 200 μm and the long side direction of the stripe is perpendicular (θ = 90 °) to the direction t of the movable axis (θ = 90 °), the relative movement amount D from the light shielding state to the transmission state D For example, when θ is 3 °, the relative movement amount D from the light shielding state to the transmission state is
D = 200 μm /sin 3 ° ≈3821 μm
It becomes. The relative movement amount D is preferably as large as possible. However, as θ decreases, it becomes difficult to accurately set the stripe inclination with respect to the movable axis direction t. Considering these, it is desirable to determine the inclination of the stripe so as to satisfy 0.5 mm ≦ w / sin θ (= D) ≦ 100 mm as in the above formula (1).
D=200μm/sin3°≒3821μm
となる。相対移動量Dはなるべく大きいほうが良いが、θが小さくなるほど可動軸方向tに対するストライプの傾きを正確に設定することが難しくなる。これらを考慮すると、上述の式(1)のように、0.5mm≦w/sinθ(=D)≦100mmを満足するようにストライプの傾きを決定するのが望ましい。 For example, when the stripe width w is 200 μm and the long side direction of the stripe is perpendicular (θ = 90 °) to the direction t of the movable axis (θ = 90 °), the relative movement amount D from the light shielding state to the transmission state D For example, when θ is 3 °, the relative movement amount D from the light shielding state to the transmission state is
D = 200 μm /
It becomes. The relative movement amount D is preferably as large as possible. However, as θ decreases, it becomes difficult to accurately set the stripe inclination with respect to the movable axis direction t. Considering these, it is desirable to determine the inclination of the stripe so as to satisfy 0.5 mm ≦ w / sin θ (= D) ≦ 100 mm as in the above formula (1).
なお、第1のパターン位相差膜30aと第2のパターン位相差膜30bが離れた状態にするとモアレが生じやすくなるため、第1のパターン位相差膜30aと第2のパターン位相差膜30bは互いに接した状態で配置するのが望ましい。
Note that moire tends to occur when the first pattern retardation film 30a and the second pattern retardation film 30b are separated from each other, and therefore the first pattern retardation film 30a and the second pattern retardation film 30b are It is desirable to arrange them in contact with each other.
<第2の実施形態>
次に、第2の実施形態について説明する。本実施形態の調光装置の概略構成は第1の実施形態と同一である。また、移動部14と制御部16は第1の実施形態と同じである。第2の実施形態では、第1のパターン位相差膜30aおよび第2のパターン位相差膜30bは、同一の位相差値を持つが遅相軸方向が異なる2つの領域を交互に配置したストライプ状のパターンで構成される。なお、第1の偏光子20および第2の偏光子22は、第1の実施形態と同一の部材である。 <Second Embodiment>
Next, a second embodiment will be described. The schematic configuration of the light control device of this embodiment is the same as that of the first embodiment. The movingunit 14 and the control unit 16 are the same as those in the first embodiment. In the second embodiment, the first pattern phase difference film 30a and the second pattern phase difference film 30b have a stripe shape in which two regions having the same phase difference value but different slow axis directions are alternately arranged. It is composed of patterns. The first polarizer 20 and the second polarizer 22 are the same members as in the first embodiment.
次に、第2の実施形態について説明する。本実施形態の調光装置の概略構成は第1の実施形態と同一である。また、移動部14と制御部16は第1の実施形態と同じである。第2の実施形態では、第1のパターン位相差膜30aおよび第2のパターン位相差膜30bは、同一の位相差値を持つが遅相軸方向が異なる2つの領域を交互に配置したストライプ状のパターンで構成される。なお、第1の偏光子20および第2の偏光子22は、第1の実施形態と同一の部材である。 <Second Embodiment>
Next, a second embodiment will be described. The schematic configuration of the light control device of this embodiment is the same as that of the first embodiment. The moving
<第1のパターン位相差膜および第2のパターン位相差膜>
図6は、本発明の第2の実施形態の調光装置の第1のパターン位相差膜30aおよび第2のパターン位相差膜30bの平面図である。 <First Pattern Retardation Film and Second Pattern Retardation Film>
FIG. 6 is a plan view of the firstpattern retardation film 30a and the second pattern retardation film 30b of the light control device according to the second embodiment of the present invention.
図6は、本発明の第2の実施形態の調光装置の第1のパターン位相差膜30aおよび第2のパターン位相差膜30bの平面図である。 <First Pattern Retardation Film and Second Pattern Retardation Film>
FIG. 6 is a plan view of the first
第1のパターン位相差膜30aは、遅相軸方向が異なる第1の位相差領域31と第2の位相差領域32を含み、第1の位相差領域31および第2の位相差領域32が面内においてストライプ状に交互に配置されている。本実施形態では、第2のパターン位相差膜30bは第1のパターン位相差膜30aと同じであるため詳細な説明は省略する。なお、第2のパターン位相差膜30bの第3の位相差領域33が第1のパターン位相差膜30aの第1の位相差領域31と同様に配置され同じ機能を有し、第2のパターン位相差膜30bの第4の位相差領域34が第1のパターン位相差膜30aの第2の位相差領域32と同様に配置され同じ機能を有している。第1の位相差領域31と第2の位相差領域32は、それぞれ、液晶を配向させた領域からなり、図6の楕円はそれぞれの配向をモデル的に示している。
The first pattern retardation film 30a includes a first retardation region 31 and a second retardation region 32 having different slow axis directions, and the first retardation region 31 and the second retardation region 32 are The stripes are alternately arranged in the plane. In the present embodiment, since the second pattern retardation film 30b is the same as the first pattern retardation film 30a, detailed description thereof is omitted. The third phase difference region 33 of the second pattern phase difference film 30b is arranged in the same manner as the first phase difference region 31 of the first pattern phase difference film 30a and has the same function. The fourth retardation region 34 of the retardation film 30b is arranged in the same manner as the second retardation region 32 of the first pattern retardation film 30a and has the same function. The first retardation region 31 and the second retardation region 32 are each composed of a region in which liquid crystals are aligned, and the ellipses in FIG. 6 indicate the respective alignments as a model.
図6中のストライプ幅w1~w4の数値および、好ましい数値範囲は第1の実施形態と同様であり、それぞれの位相差領域を形成する好ましい構成材料も第1の実施形態と同様である。
The numerical values and preferable numerical ranges of the stripe widths w 1 to w 4 in FIG. 6 are the same as those in the first embodiment, and the preferable constituent materials for forming the respective retardation regions are also the same as those in the first embodiment. .
第1の位相差領域31、第2の位相差領域32はいずれも、パターン位相差膜30に入射した光が出射するまでに遅相軸の位相差をλ/4与える光学異方性領域である。図6の例では、第1の位相差領域31は、第1の偏光子20の透過軸と第1の位相差領域31の遅相軸のなす角が45°のλ/4位相差領域であり、第2の位相差領域32は、第1の偏光子20の透過軸と第2の位相差領域32の遅相軸のなす角が135°のλ/4位相差領域である。したがって、入射した光が直線偏光であれば出射する光を円偏光に変え、入射した光が円偏光であれば出射する光を直線偏光に変える機能を有する。
Both the first retardation region 31 and the second retardation region 32 are optical anisotropy regions that give a retardation of the slow axis to λ / 4 before the light incident on the pattern retardation film 30 is emitted. is there. In the example of FIG. 6, the first retardation region 31 is a λ / 4 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °. In addition, the second retardation region 32 is a λ / 4 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the second retardation region 32 is 135 °. Therefore, if the incident light is linearly polarized light, the emitted light is changed to circularly polarized light. If the incident light is circularly polarized light, the emitted light is changed to linearly polarized light.
次に、調光装置10を用いて透過状態から遮光状態まで段階的に調光する仕組みについて説明する。第1の実施形態と同様に、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向P135であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向P45である場合について説明する。
Next, a mechanism for dimming in steps from the transmission state to the light shielding state using the light control device 10 will be described. Like the first embodiment, the direction l 1 of the transmission axis of the first polarizer 20 is the direction P 135 inclined 135 ° with respect to the X axis, the direction of the transmission axis of the second polarizer 22 A case where l 2 is a direction P 45 inclined by 45 ° with respect to the X axis will be described.
図7(a)(b)は、第2のパターン位相差膜30bをスライドさせる前後の概略図である。図7(a)に示すように、XZ平面から見た際、第1の位相差領域31と第3の位相差領域33と重なる場合(または、第2の位相差領域32と第4の位相差領域34とが重なる場合)、図7(a)中の矢印方向から第1の偏光子20に入射する光Liが調光装置10を透過して、光Loとして出射される。つまり、図7(a)の状態は、透過状態(「明の状態」)となる。
7 (a) and 7 (b) are schematic views before and after the second pattern retardation film 30b is slid. As shown in FIG. 7A, when viewed from the XZ plane, the first phase difference region 31 and the third phase difference region 33 overlap (or the second phase difference region 32 and the fourth position). When the phase difference region 34 overlaps), the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 7A passes through the light control device 10 and is emitted as light Lo. That is, the state of FIG. 7A is a transmission state (“bright state”).
一方、図7(b)は、図7(a)から第2のパターン位相差膜30bを相対移動量Dだけスライドさせた図である。この場合、XZ平面から見た際に、第1の位相差領域31と第4の位相差領域34が重なり(または、第2の位相差領域32と第3の位相差領域33が重なる)、図7(b)中の矢印方向から第1の偏光子20に入射する光Liは、調光装置10を透過しない。つまり、図7(b)の状態は、遮光状態(「暗の状態」)となる。
On the other hand, FIG. 7B is a diagram in which the second pattern retardation film 30b is slid by the relative movement amount D from FIG. 7A. In this case, when viewed from the XZ plane, the first retardation region 31 and the fourth retardation region 34 overlap (or the second retardation region 32 and the third retardation region 33 overlap), The light Li that enters the first polarizer 20 from the direction of the arrow in FIG. 7B does not pass through the light control device 10. That is, the state of FIG. 7B is a light shielding state (“dark state”).
第2の実施形態の調光装置10により光を透過する、または、遮光されるメカニズムを図8(a)(b)に示す。図8(a)のR1に示すように、遅相軸方向が同じλ/4領域(第1の位相差領域31と第3の位相差領域33、第2の位相差領域32と第4の位相差領域34)を重ねた場合は(図7(a)参照)、入射光Liが偏光子20を透過した後偏光軸P135を有する直線偏光L21となり、第1の位相差領域31を通過することで、時計回りの円偏光L22となる。円偏光L22は第3の位相差領域33を通過することで、偏光軸P45を有する直線偏光L23となり、偏光子22透過する。図8(a)のR2、図8(b)のR1およびR2も同様である。ただし、図8(b)においては位相差領域の組合せが異なるため、入射光は吸収される。
FIGS. 8A and 8B show a mechanism in which light is transmitted or blocked by the light control device 10 of the second embodiment. As indicated by R1 in FIG. 8A, the λ / 4 regions (the first phase difference region 31 and the third phase difference region 33, the second phase difference region 32 and the fourth phase difference region are the same in the slow axis direction. When the phase difference region 34) is overlapped (see FIG. 7A), the incident light Li passes through the polarizer 20 and then becomes linearly polarized light L 21 having the polarization axis P 135 and passes through the first phase difference region 31. As a result, clockwise circularly polarized light L22 is obtained. The circularly polarized light L <b> 22 passes through the third phase difference region 33, thereby becoming linearly polarized light L <b> 23 having a polarization axis P <b> 45 and transmitted through the polarizer 22. The same applies to R2 in FIG. 8A and R1 and R2 in FIG. 8B. However, in FIG. 8B, since the combination of the phase difference regions is different, incident light is absorbed.
上述では、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向P135であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向P45である場合について説明したが、これに限定するものではなく、第1の位相差領域31および第2の位相差領域32がn×λ/4(nは奇数の自然数)の位相差領域で構成されている場合に、第1の偏光子20の透過軸の方向l1と第2の偏光子22の透過軸の方向l2が直交し、かつ、第1の偏光子20の透過軸と第1の位相差領域31(または、第3の位相差領域33)の遅相軸のなす角が45°となり、第1の偏光子20の透過軸と第2の位相差領域32(または、第4の位相差領域34)の遅相軸のなす角が135°となるように第1の偏光子20、第1のパターン位相差膜30a、第2のパターン位相差膜30b、第2の偏光子22が配置されればよい。
In the above description, the transmission axis direction l 1 of the first polarizer 20 is the direction P 135 tilted by 135 ° with respect to the X axis, and the transmission axis direction l 2 of the second polarizer 22 is the X axis. If a 45 ° direction P 45 inclined has been described with respect to, not limited to this, the first retardation region 31 and the second retardation region 32 is n × λ / 4 (n is when configured in retardation region of the odd natural number), the transmission axis direction l 2 is orthogonal to the first direction l 1 of the transmission axis of the polarizer 20 and second polarizer 22, and first The angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 (or the third retardation region 33) is 45 °, and the transmission axis of the first polarizer 20 The first polarizer 20 and the first filter are set so that the angle formed by the slow axes of the two retardation regions 32 (or the fourth retardation region 34) is 135 °. The turn retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 may be disposed.
次に、2枚のパターン位相差膜の相対移動量と多階調の調光の関係について説明する。第1の実施形態と同様に、図5の(1)から(5)に示すように、第1の位相差領域31と第3の位相差領域33と重なった状態から、第2のパターン位相差膜を可動軸の方向tに徐々に移動させることで、第1の位相差領域31と第3の位相差領域33の重なりが少なくなり、第1の位相差領域31と第4の位相差領域34の重なりが増えていく。本実施形態では、この重なりが増えていくに従って、透過状態から徐々に暗くなり遮蔽状態に達する。
Next, the relationship between the relative movement amount of the two pattern retardation films and the multi-tone light control will be described. As in the first embodiment, as shown in (1) to (5) of FIG. 5, the second pattern position is changed from the state where the first phase difference region 31 and the third phase difference region 33 overlap. By gradually moving the phase difference film in the direction t of the movable axis, the overlap between the first phase difference region 31 and the third phase difference region 33 is reduced, and the first phase difference region 31 and the fourth phase difference are reduced. The overlap of the region 34 increases. In this embodiment, as the overlap increases, the transmission state gradually becomes darker and reaches a shielding state.
<第3の実施形態>
次に、第3の実施形態について説明する。本実施形態の調光装置の概略構成は第1のパターン位相差膜30aおよび第2のパターン位相差膜30bは、位相差値がλ/2であり遅相軸方向が異なる2つの領域を交互に配置したストライプ状のパターンで構成される点以外は、第1の実施形態と同一である。 <Third Embodiment>
Next, a third embodiment will be described. The schematic configuration of the light control device according to the present embodiment is that the firstpattern retardation film 30a and the second pattern retardation film 30b alternate between two regions having a retardation value of λ / 2 and different slow axis directions. The second embodiment is the same as the first embodiment except that it is configured by a stripe pattern arranged in the first embodiment.
次に、第3の実施形態について説明する。本実施形態の調光装置の概略構成は第1のパターン位相差膜30aおよび第2のパターン位相差膜30bは、位相差値がλ/2であり遅相軸方向が異なる2つの領域を交互に配置したストライプ状のパターンで構成される点以外は、第1の実施形態と同一である。 <Third Embodiment>
Next, a third embodiment will be described. The schematic configuration of the light control device according to the present embodiment is that the first
<第1のパターン位相差膜および第2のパターン位相差膜>
図9において、第1の位相差領域31と第2の位相差領域32、および、第3の位相差領域33と第4の位相差領域34は、それぞれ、液晶を配向させた領域からなり、図9の楕円はそれぞれの配向をモデル的に示すことで、遅相軸を表している。 <First Pattern Retardation Film and Second Pattern Retardation Film>
In FIG. 9, thefirst retardation region 31 and the second retardation region 32, and the third retardation region 33 and the fourth retardation region 34 are each composed of a region in which liquid crystal is aligned, The ellipse in FIG. 9 represents the slow axis by showing the respective orientations as a model.
図9において、第1の位相差領域31と第2の位相差領域32、および、第3の位相差領域33と第4の位相差領域34は、それぞれ、液晶を配向させた領域からなり、図9の楕円はそれぞれの配向をモデル的に示すことで、遅相軸を表している。 <First Pattern Retardation Film and Second Pattern Retardation Film>
In FIG. 9, the
図9中のストライプ幅w1~w4の数値、および、好ましい数値範囲は第1の実施形態と同様であり、それぞれの位相差領域を形成する好ましい構成材料も第1の実施形態と同様である。
The numerical values of stripe widths w 1 to w 4 and the preferable numerical range in FIG. 9 are the same as those of the first embodiment, and the preferable constituent materials for forming the respective retardation regions are also the same as those of the first embodiment. is there.
第1の位相差領域31、第2の位相差領域32、第3の位相差領域33、および第4の位相差領域34はいずれも、入射した光が出射するまでに遅相軸の位相差をλ/2与える光学異方性領域である。図9の例では、第1の位相差領域31は、第1の偏光子20の透過軸と第1の位相差領域31の遅相軸のなす角が45°のλ/2位相差領域であり、第2の位相差領域32は、第1の偏光子20の透過軸と第2の位相差領域32の遅相軸のなす角が0°のλ/2位相差領域であり、第3の位相差領域33は、第1の偏光子20の透過軸と第3の位相差領域33の遅相軸のなす角が135°のλ/2位相差領域であり、第4の位相差領域34は、第1の偏光子20の透過軸と第4の位相差領域34の遅相軸のなす角が90°のλ/2位相差領域である。入射光が直線偏光であれば、入射光の偏光軸と各領域の遅相軸の方向が一致する場合には、出射光は、入射光の偏光軸を維持したままとなり、入射光の偏光軸と遅相軸の方向が一致しない場合には、出射光は、入射時の偏光軸に対して90°の傾きをなす偏光軸を有するものとなる。
The first phase difference region 31, the second phase difference region 32, the third phase difference region 33, and the fourth phase difference region 34 all have a slow axis phase difference before the incident light is emitted. Is an optically anisotropic region giving λ / 2. In the example of FIG. 9, the first retardation region 31 is a λ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °. The second retardation region 32 is a λ / 2 retardation region in which the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the second retardation region 32 is 0 °. The phase difference region 33 is a λ / 2 phase difference region where the angle between the transmission axis of the first polarizer 20 and the slow axis of the third phase difference region 33 is 135 °, and the fourth phase difference region. Reference numeral 34 denotes a λ / 2 phase difference region where the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the fourth phase difference region 34 is 90 °. If the incident light is linearly polarized light, and the direction of the polarization axis of the incident light coincides with the direction of the slow axis of each region, the outgoing light remains the polarization axis of the incident light, and the polarization axis of the incident light. When the direction of the slow axis does not coincide with that of the slow axis, the emitted light has a polarization axis that is inclined by 90 ° with respect to the polarization axis at the time of incidence.
調光装置10を用いて透過状態から遮光状態まで段階的に調光する仕組みについて説明する。第1および第2の実施形態と同様に、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向P135であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向P45である場合について説明する。
A mechanism for dimming in steps from the transmission state to the light shielding state using the light control device 10 will be described. Similar to the first and second embodiments, the direction l 1 of the transmission axis of the first polarizer 20 is the direction P 135 inclined 135 ° with respect to the X axis, transmission of the second polarizer 22 The case where the axial direction l 2 is a direction P 45 inclined by 45 ° with respect to the X axis will be described.
図10(a)(b)は、第2のパターン位相差膜30bをスライドさせる前後の概略図を示す。図10(a)に示すように、XZ平面から見た際、第1の位相差領域31と第3の位相差領域33と重なる場合(または、第2の位相差領域32と第4の位相差領域34とが重なる場合)、図10(a)中の矢印方向から第1の偏光子20に入射する光Liは、調光装置10を透過しない。つまり、図10(a)の状態は、遮光状態(「暗の状態」)となる。
FIGS. 10A and 10B are schematic views before and after sliding the second pattern retardation film 30b. As shown in FIG. 10A, when viewed from the XZ plane, the first phase difference region 31 and the third phase difference region 33 overlap (or the second phase difference region 32 and the fourth position). When the phase difference region 34 overlaps), the light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 10A does not pass through the light control device 10. That is, the state of FIG. 10A is a light shielding state (“dark state”).
一方、図10(b)は、図10(a)から第2のパターン位相差膜30bを相対移動量Dだけスライドさせた図である。この場合、XZ平面から見た際に、第1の位相差領域31と第4の位相差領域34が重なり(または、第2の位相差領域32と第3の位相差領域33が重なる)、図10(b)中の矢印方向から第1の偏光子20に入射する光Liは調光装置10を透過して、光Loとして出射される。つまり、図10(b)の状態は、透過状態(「明の状態」)となる。
On the other hand, FIG. 10B is a diagram in which the second pattern retardation film 30b is slid by the relative movement amount D from FIG. 10A. In this case, when viewed from the XZ plane, the first retardation region 31 and the fourth retardation region 34 overlap (or the second retardation region 32 and the third retardation region 33 overlap), The light Li incident on the first polarizer 20 from the direction of the arrow in FIG. 10B passes through the light control device 10 and is emitted as light Lo. That is, the state of FIG. 10B is a transmission state (“bright state”).
以下、第3の実施形態の調光装置10により光が透過する、または、遮光されるメカニズムを図11(a)(b)に示す。図11(a)のR1に示すように、遅相軸方向が90°異なるλ/2領域(第1の位相差領域31と第3の位相差領域33、第2の位相差領域32と第4の位相差領域34)を重ねた場合は(図10(a)参照)、入射光Liが偏光子20を透過した後偏光軸P135を有する直線偏光L41となり、第1の位相差領域31を通過することで、偏光軸P45を有する直線偏光L42となる。直線偏光L42は、は第3の位相差領域33を通過することで、偏光軸P135を有する直線偏光L43となり、偏光子22により吸収される。図11(a)のR2、図11(b)のR1およびR2も同様である。ただし、図11(b)においては位相差領域の組合せが異なるため、入射光は透過する。
Hereinafter, a mechanism in which light is transmitted or blocked by the light control device 10 of the third embodiment is shown in FIGS. As indicated by R1 in FIG. 11A, the λ / 2 regions (the first phase difference region 31 and the third phase difference region 33, the second phase difference region 32, and the If repeated 4 retardation region 34) reference (FIG. 10 (a)), next to the linearly polarized light L41 incident light Li having a polarization axis P 135 after passing through the polarizer 20, the first retardation region 31 by passing, the linearly polarized light L42 having a polarization axis P 45. Linearly polarized light L42 is than passing through the third retardation region 33, becomes linearly polarized light L43 having a polarization axis P 135, is absorbed by the polarizer 22. The same applies to R2 in FIG. 11 (a) and R1 and R2 in FIG. 11 (b). However, in FIG. 11B, since the combination of the phase difference regions is different, the incident light is transmitted.
上述では、第1の偏光子20の透過軸の方向l1が、X軸に対して135°傾いた方向P135であり、第2の偏光子22の透過軸の方向l2が、X軸に対して45°傾いた方向P45である場合について説明したが、これに限定するものではなく、第1~第4の位相差領域33がn×λ/2(nは奇数の自然数)の位相差領域で構成されている場合に、第1の偏光子20の透過軸の方向l1と第2の偏光子22の透過軸の方向l2が直交し、かつ、第1の偏光子20の透過軸と第1の位相差領域31の遅相軸のなす角が45°となり、第1の偏光子20の透過軸と第2の位相差領域32の遅相軸のなす角が0°となり、第1の偏光子20の透過軸と第3の位相差領域33の遅相軸のなす角が135°となり、第1の偏光子20の透過軸と第4の位相差領域34の遅相軸のなす角が90°となるように第1の偏光子20、第1のパターン位相差膜30a、第2のパターン位相差膜30b、第2の偏光子22が配置されればよい。
In the above description, the transmission axis direction l 1 of the first polarizer 20 is the direction P 135 tilted by 135 ° with respect to the X axis, and the transmission axis direction l 2 of the second polarizer 22 is the X axis. If a 45 ° direction P 45 inclined has been described with respect to, not limited to this, the first to fourth retardation region 33 is n × λ / 2 of the (n is a natural number of odd) when configured in retardation region, the direction l 1 of the transmission axis of the first polarizer 20 transmission axis l 2 is orthogonal to the second polarizer 22, and the first polarizer 20 The angle formed by the transmission axis of the first polarizer 20 and the slow axis of the first retardation region 31 is 45 °, and the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the second retardation region 32 is 0 °. Thus, the angle formed by the transmission axis of the first polarizer 20 and the slow axis of the third retardation region 33 is 135 °, and the transmission axis of the first polarizer 20 and the fourth phase difference. The first polarizer 20, the first pattern retardation film 30a, the second pattern retardation film 30b, and the second polarizer 22 are arranged so that the angle formed by the slow axis of the region 34 is 90 °. Just do it.
次に、2枚のパターン位相差膜の相対移動量と多階調の調光の関係について説明する。第1の実施形態と同様に、図5の(1)から(5)に示すように、第1の位相差領域31と第3の位相差領域33と重なった状態から、第2のパターン位相差膜を可動軸の方向tに徐々に移動させることで、第1の位相差領域31と第3の位相差領域33の重なりが少なくなり、第1の位相差領域31と第4の位相差領域34の重なりが増えていく。本実施形態では、この重なりが増えていくに従って、遮光状態から徐々に明るくなり透過状態に達する。
Next, the relationship between the relative movement amount of the two pattern retardation films and the multi-tone light control will be described. As in the first embodiment, as shown in (1) to (5) of FIG. 5, the second pattern position is changed from the state where the first phase difference region 31 and the third phase difference region 33 overlap. By gradually moving the phase difference film in the direction t of the movable axis, the overlap between the first phase difference region 31 and the third phase difference region 33 is reduced, and the first phase difference region 31 and the fourth phase difference are reduced. The overlap of the region 34 increases. In the present embodiment, as the overlap increases, the light shielding state gradually becomes brighter and reaches the transmission state.
次に、パターン位相差膜30aの第1の位相差領域31および第2の位相差領域32とパターン位相差膜30bの第3の位相差領域33および第4の位相差領域34の材料および製造方法を説明する。
Next, materials and manufacturing of the first retardation region 31 and the second retardation region 32 of the pattern retardation film 30a and the third retardation region 33 and the fourth retardation region 34 of the pattern retardation film 30b. A method will be described.
パターン化したパターン位相差膜30aおよび30bは、支持体上にパターン化した配向膜を形成した後に、重合性液晶組成物を一様に塗布した後に固定化することで所定の方向に配向したパターンを形成する方法、または、支持体上に配向膜を形成した後に、重合性液晶組成物を一様に塗布して、パターンマスクを用いてマスク露光を行って異方性領域に対する領域については紫外線を照射して所定の配向方向に液晶化合物を固定化し、その後、パターンマスクがない状態で全面を加熱露光することにより、固定化されていない領域を等方性領域とすることで、等方性領域と異方性領域のパターンを形成する方法により作製する。
The patterned pattern retardation films 30a and 30b are patterned in a predetermined direction by forming a patterned alignment film on a support, and then uniformly applying the polymerizable liquid crystal composition and then fixing it. Or after forming an alignment film on a support, a polymerizable liquid crystal composition is uniformly applied, mask exposure is performed using a pattern mask, and regions for anisotropic regions are exposed to ultraviolet rays. To fix the liquid crystal compound in a predetermined alignment direction, and then heat-expose the entire surface in the absence of a pattern mask to make the non-fixed region an isotropic region. It is produced by a method of forming a pattern of regions and anisotropic regions.
配向膜は、光配向法またはラビング法など公知の方法を用いて作製することができる。光配向法によって配向膜を設ける方法としては、一例として、配向膜組成物の塗布を行い、遅相軸の方向にワイヤーグリッド偏光子の透過軸の方向に配置して紫外線を照射することにより配向膜を形成する。ラビングによって配向膜を設ける方法としては、一例として、PVA水溶液の塗布を行い、塗布膜の表面を布等を用い、所定の方向に数回こすることにより配向膜を形成する。
The alignment film can be produced using a known method such as a photo-alignment method or a rubbing method. As an example of a method for providing an alignment film by the photo-alignment method, an alignment film composition is applied as an example, and is aligned by irradiating ultraviolet rays while being arranged in the direction of the transmission axis of the wire grid polarizer in the direction of the slow axis. A film is formed. As an example of a method of providing an alignment film by rubbing, an alignment film is formed by applying a PVA aqueous solution and rubbing the surface of the coating film several times in a predetermined direction using a cloth or the like.
次にパターン位相差膜30aおよび30bの形成に用いられる重合性液晶化合物を含む液晶組成物について説明する。液晶組成物中には、重合性液晶化合物以外にも、必要に応じて、さらに重合開始剤、架橋剤、配向制御剤等を添加することができる。
(重合性液晶化合物)
重合性液晶化合物としては、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物が好ましい。
棒状の重合性液晶化合物の例としては、低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。 Next, a liquid crystal composition containing a polymerizable liquid crystal compound used for forming the pattern retardation films 30a and 30b will be described. In addition to the polymerizable liquid crystal compound, a polymerization initiator, a crosslinking agent, an alignment control agent, and the like can be further added to the liquid crystal composition as necessary.
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but a rod-like liquid crystal compound is preferred.
As an example of the rod-like polymerizable liquid crystal compound, not only a low-molecular liquid crystal compound but also a polymer liquid crystal compound can be used.
(重合性液晶化合物)
重合性液晶化合物としては、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物が好ましい。
棒状の重合性液晶化合物の例としては、低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。 Next, a liquid crystal composition containing a polymerizable liquid crystal compound used for forming the
(Polymerizable liquid crystal compound)
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but a rod-like liquid crystal compound is preferred.
As an example of the rod-like polymerizable liquid crystal compound, not only a low-molecular liquid crystal compound but also a polymer liquid crystal compound can be used.
重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、オキセタニル基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基が特に好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586、WO95/24455、WO97/00600号公報、WO98/23580、WO98/52905、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報、特開2009-69793号公報、特開2010-113249号公報、および特開2011-203636号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, an oxetanyl group, and an aziridinyl group, preferably an unsaturated polymerizable group, and particularly preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. No. 4,683,327, US Pat. No. 5,622,648, US Pat. No. 5,770,107, International Publication WO 95/22586, WO 95 / 24455, WO 97/00600, WO 98/23580, WO 98/52905, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469, JP-A-11-80081, and JP-A-2001. The compounds described in JP-A No. -328973, JP-A 2009-69793, JP-A 2010-113249, JP-A 2011-203636, and the like are included. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
重合性液晶化合物としては、重合条件の異なる2種類以上の反応性基を同一分子内に有する液晶化合物を用いることも好ましい。重合条件の異なる反応性基の組み合わせとしてはラジカル光重合性反応性基およびカチオン光重合性反応性基の組み合わせが挙げられる。特に特開2008-127336号公報に記載の重合性液晶化合物を含む重合性液晶組成物を好適に利用することができる。
As the polymerizable liquid crystal compound, it is also preferable to use a liquid crystal compound having two or more reactive groups having different polymerization conditions in the same molecule. Examples of combinations of reactive groups with different polymerization conditions include combinations of radical photopolymerizable reactive groups and cationic photopolymerizable reactive groups. In particular, a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound described in JP-A-2008-127336 can be suitably used.
(重合開始剤)
液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例としては、ラジカル重合開始剤およびカチオン重合開始剤が挙げられる。 (Polymerization initiator)
The liquid crystal composition preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of the photopolymerization initiator include a radical polymerization initiator and a cationic polymerization initiator.
液晶組成物は、重合開始剤を含有していることが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であることが好ましい。光重合開始剤の例としては、ラジカル重合開始剤およびカチオン重合開始剤が挙げられる。 (Polymerization initiator)
The liquid crystal composition preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of the photopolymerization initiator include a radical polymerization initiator and a cationic polymerization initiator.
ラジカル重合開始剤としては、アシルフォスフィンオキシド化合物またはオキシム化合物を用いることが好ましい。
アシルフォスフィンオキシド化合物としては、例えば、市販品のBASFジャパン(株)製のIRGACURE819(化合物名:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)を用いることができる。オキシム化合物としては、IRGACURE OXE01(BASF社製)、IRGACURE OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等の市販品を用いることができる。 As the radical polymerization initiator, an acyl phosphine oxide compound or an oxime compound is preferably used.
As the acylphosphine oxide compound, for example, IRGACURE819 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used. Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
アシルフォスフィンオキシド化合物としては、例えば、市販品のBASFジャパン(株)製のIRGACURE819(化合物名:ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)を用いることができる。オキシム化合物としては、IRGACURE OXE01(BASF社製)、IRGACURE OXE02(BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等の市販品を用いることができる。 As the radical polymerization initiator, an acyl phosphine oxide compound or an oxime compound is preferably used.
As the acylphosphine oxide compound, for example, IRGACURE819 (compound name: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) manufactured by BASF Japan Ltd. can be used. Examples of the oxime compounds include IRGACURE OXE01 (manufactured by BASF), IRGACURE OXE02 (manufactured by BASF), TR-PBG-304 (manufactured by Changzhou Strong Electronic New Materials Co., Ltd.), Adeka Arcles NCI-831, Adeka Arcles NCI-930 Commercial products such as (ADEKA) and Adeka Arcles NCI-831 (ADEKA) can be used.
カチオン重合開始剤としては、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系等を例示することができ、有機スルフォニウム塩系が好ましく、トリフェニルスルフォニウム塩が特に好ましい。これら化合物の対イオンとしては、ヘキサフルオロアンチモネート、ヘキサフルオロフォスフェートなどが好ましく用いられる。
Examples of the cationic polymerization initiator include organic sulfonium salt systems, iodonium salt systems, phosphonium salt systems, and the like. Organic sulfonium salt systems are preferable, and triphenylsulfonium salts are particularly preferable. As counter ions of these compounds, hexafluoroantimonate, hexafluorophosphate, and the like are preferably used.
重合開始剤は、1種のみ用いてもよいし、2種以上を併用してもよい。
液晶組成物中の重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましい。 Only one type of polymerization initiator may be used, or two or more types may be used in combination.
The content of the polymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass with respect to the content of the polymerizable liquid crystal compound.
液晶組成物中の重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であることが好ましい。 Only one type of polymerization initiator may be used, or two or more types may be used in combination.
The content of the polymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass with respect to the content of the polymerizable liquid crystal compound.
(架橋剤)
液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。これらのうち、多官能アクリレート化合物が好ましい。多官能アクリレート化合物としては、3~6官能アクリレート化合物が好ましく、4~6官能アクリレート化合物がより好ましい。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 (Crosslinking agent)
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
The crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyfunctionality such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, etc. Acrylate compounds; Epoxy compounds such as glycidyl (meth) acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) ) Aziridine compounds such as diphenylmethane; isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysila And N-(2-aminoethyl) 3-aminopropyltrimethoxysilane alkoxysilane compounds may be mentioned. Of these, polyfunctional acrylate compounds are preferred. The polyfunctional acrylate compound is preferably a 3-6 functional acrylate compound, and more preferably a 4-6 functional acrylate compound. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。これらのうち、多官能アクリレート化合物が好ましい。多官能アクリレート化合物としては、3~6官能アクリレート化合物が好ましく、4~6官能アクリレート化合物がより好ましい。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 (Crosslinking agent)
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
The crosslinking agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyfunctionality such as trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, etc. Acrylate compounds; Epoxy compounds such as glycidyl (meth) acrylate and ethylene glycol diglycidyl ether; 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) ) Aziridine compounds such as diphenylmethane; isocyanate compounds such as hexamethylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysila And N-(2-aminoethyl) 3-aminopropyltrimethoxysilane alkoxysilane compounds may be mentioned. Of these, polyfunctional acrylate compounds are preferred. The polyfunctional acrylate compound is preferably a 3-6 functional acrylate compound, and more preferably a 4-6 functional acrylate compound. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
液晶組成物中の架橋剤の含有量は、液晶組成物中の重合性液晶化合物100質量部に対し、0質量部~8.0質量部が好ましく、0.1質量部~7.0質量部がより好ましく、0.2質量部~5.5質量部がさらに好ましい。
The content of the cross-linking agent in the liquid crystal composition is preferably 0 to 8.0 parts by mass, and 0.1 to 7.0 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound in the liquid crystal composition. Is more preferable, and 0.2 to 5.5 parts by mass is even more preferable.
(配向制御剤)
液晶組成物中には、安定的にまたは迅速にプレーナー配向するために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物などが挙げられる。
なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。 (Orientation control agent)
An alignment control agent that contributes to stable or rapid planar alignment may be added to the liquid crystal composition. Examples of the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
In addition, as an orientation control agent, 1 type may be used independently and 2 or more types may be used together.
液晶組成物中には、安定的にまたは迅速にプレーナー配向するために寄与する配向制御剤を添加してもよい。配向制御剤の例としては特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、特開2012-203237号公報の段落〔0031〕~〔0034〕等に記載の式(I)~(IV)で表される化合物などが挙げられる。
なお、配向制御剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。 (Orientation control agent)
An alignment control agent that contributes to stable or rapid planar alignment may be added to the liquid crystal composition. Examples of the alignment control agent include fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and paragraphs [0031] to [0034] of JP-A-2012-203237. And compounds represented by the formulas (I) to (IV) as described above.
In addition, as an orientation control agent, 1 type may be used independently and 2 or more types may be used together.
液晶組成物中における、配向制御剤の添加量は、重合性液晶化合物の全質量に対して0.01質量%~10質量%が好ましく、0.01質量%~5.0質量%がより好ましい。
The addition amount of the alignment control agent in the liquid crystal composition is preferably 0.01% by mass to 10% by mass and more preferably 0.01% by mass to 5.0% by mass with respect to the total mass of the polymerizable liquid crystal compound. .
(その他の添加剤)
その他、液晶組成物は、塗膜の表面張力を調整し厚みを均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。 (Other additives)
In addition, the liquid crystal composition may contain at least one selected from a surfactant for adjusting the surface tension of the coating film to make the thickness uniform, and various additives such as a polymerizable monomer. Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
その他、液晶組成物は、塗膜の表面張力を調整し厚みを均一にするための界面活性剤、および重合性モノマー等の種々の添加剤から選ばれる少なくとも1種を含有していてもよい。また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能を低下させない範囲で添加することができる。 (Other additives)
In addition, the liquid crystal composition may contain at least one selected from a surfactant for adjusting the surface tension of the coating film to make the thickness uniform, and various additives such as a polymerizable monomer. Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, and the like may be added as long as the optical performance is not deteriorated. Can be added.
(溶媒)
液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。 (solvent)
There is no restriction | limiting in particular as a solvent used for preparation of a liquid-crystal composition, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers and the like. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
液晶組成物の調製に使用する溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が特に好ましい。 (solvent)
There is no restriction | limiting in particular as a solvent used for preparation of a liquid-crystal composition, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, ethers and the like. Can be mentioned. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are particularly preferable in consideration of environmental load.
<等方性領域と異方性領域を備えたパターン位相差膜の形成>
まず、等方性領域と異方性領域をパターン化したパターン位相差膜30aおよび30bの作製工程について説明する。
この作製工程では、支持体上に配向膜を形成した後に、重合性液晶組成物を一様に塗布して、パターンマスクを用いてマスク露光を行って異方性領域に対する領域については紫外線を照射して所定の配向方向に液晶化合物を固定化し、その後、パターンマスクがない状態で全面を加熱露光することにより、固定化されていない領域を等方性領域とすることで、等方性領域と異方性領域を備えたパターン位相差膜30aおよび30bを形成する。図12に示す作製工程を参照して、各工程を詳細に説明する。 <Formation of pattern retardation film with isotropic region and anisotropic region>
First, the manufacturing process of the pattern retardation films 30a and 30b in which the isotropic region and the anisotropic region are patterned will be described.
In this production process, after forming an alignment film on the support, a polymerizable liquid crystal composition is uniformly applied, mask exposure is performed using a pattern mask, and the region with respect to the anisotropic region is irradiated with ultraviolet rays. Then, the liquid crystal compound is fixed in a predetermined alignment direction, and then the entire surface is heated and exposed without a pattern mask, thereby making the non-fixed region an isotropic region. Pattern retardation films 30a and 30b having anisotropic regions are formed. Each step will be described in detail with reference to the manufacturing steps shown in FIG.
まず、等方性領域と異方性領域をパターン化したパターン位相差膜30aおよび30bの作製工程について説明する。
この作製工程では、支持体上に配向膜を形成した後に、重合性液晶組成物を一様に塗布して、パターンマスクを用いてマスク露光を行って異方性領域に対する領域については紫外線を照射して所定の配向方向に液晶化合物を固定化し、その後、パターンマスクがない状態で全面を加熱露光することにより、固定化されていない領域を等方性領域とすることで、等方性領域と異方性領域を備えたパターン位相差膜30aおよび30bを形成する。図12に示す作製工程を参照して、各工程を詳細に説明する。 <Formation of pattern retardation film with isotropic region and anisotropic region>
First, the manufacturing process of the
In this production process, after forming an alignment film on the support, a polymerizable liquid crystal composition is uniformly applied, mask exposure is performed using a pattern mask, and the region with respect to the anisotropic region is irradiated with ultraviolet rays. Then, the liquid crystal compound is fixed in a predetermined alignment direction, and then the entire surface is heated and exposed without a pattern mask, thereby making the non-fixed region an isotropic region.
<<配向工程>>
配向膜は光配向法またはラビング法など公知の方法を用いることが出来る。光配向法によって配向膜を設ける場合には、配向膜組成物の塗布を行い、遅相軸の方向にワイヤーグリッド偏光子の透過軸の方向に配置して紫外線を照射することにより配向膜を形成するものが望ましい。あるいは、ラビングによって配向膜を設けるようにしてもよく、この場合には、PVA水溶液の塗布を行い、塗布膜の表面を布等を用い、所定の方向に数回こすることにより配向膜を形成する。 << Orientation process >>
A known method such as a photo-alignment method or a rubbing method can be used for the alignment film. When an alignment film is provided by the photo-alignment method, the alignment film composition is applied, and the alignment film is formed by irradiating with ultraviolet rays after being arranged in the direction of the transmission axis of the wire grid polarizer in the direction of the slow axis. What to do is desirable. Alternatively, an alignment film may be provided by rubbing. In this case, the alignment film is formed by applying a PVA aqueous solution and rubbing the surface of the coating film several times in a predetermined direction using a cloth or the like. To do.
配向膜は光配向法またはラビング法など公知の方法を用いることが出来る。光配向法によって配向膜を設ける場合には、配向膜組成物の塗布を行い、遅相軸の方向にワイヤーグリッド偏光子の透過軸の方向に配置して紫外線を照射することにより配向膜を形成するものが望ましい。あるいは、ラビングによって配向膜を設けるようにしてもよく、この場合には、PVA水溶液の塗布を行い、塗布膜の表面を布等を用い、所定の方向に数回こすることにより配向膜を形成する。 << Orientation process >>
A known method such as a photo-alignment method or a rubbing method can be used for the alignment film. When an alignment film is provided by the photo-alignment method, the alignment film composition is applied, and the alignment film is formed by irradiating with ultraviolet rays after being arranged in the direction of the transmission axis of the wire grid polarizer in the direction of the slow axis. What to do is desirable. Alternatively, an alignment film may be provided by rubbing. In this case, the alignment film is formed by applying a PVA aqueous solution and rubbing the surface of the coating film several times in a predetermined direction using a cloth or the like. To do.
<<塗布工程>>
配向膜を設けた支持体35の表面(もしくは支持体上に設けられた配向膜上)に重合性液晶組成物を一様に塗布して塗布膜30Aを形成する(S1)。 << Application process >>
A polymerizable liquid crystal composition is uniformly applied on the surface of thesupport 35 provided with the alignment film (or on the alignment film provided on the support) to form a coating film 30A (S1).
配向膜を設けた支持体35の表面(もしくは支持体上に設けられた配向膜上)に重合性液晶組成物を一様に塗布して塗布膜30Aを形成する(S1)。 << Application process >>
A polymerizable liquid crystal composition is uniformly applied on the surface of the
重合性液晶組成物の塗布は、重合性液晶組成物を溶媒により溶液状態としたり、加熱による溶融液等の液状物としたりしたものを、ロールコーティング方式やグラビア印刷方式、スピンコート方式などの適宜な方式で展開する方法などにより行うことができる。さらにワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、等の種々の方法によって行うことができる。また、インクジェット装置を用いて、液晶組成物をノズルから吐出して、塗布膜を形成することもできる。
Application of the polymerizable liquid crystal composition is performed by appropriately applying a liquid crystal composition such as a roll coating method, a gravure printing method, or a spin coating method in which the polymerizable liquid crystal composition is made into a solution state with a solvent or a liquid material such as a melt by heating. It can be performed by a method that develops by various methods. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. In addition, a coating film can be formed by discharging a liquid crystal composition from a nozzle using an inkjet apparatus.
<<熟成工程>>
塗布膜30Aを膜面温度で一定時間保持して(熟成して)、液晶が配向した状態の塗布膜30Bになる(S2)。熟成温度および熟成時間は、液晶化合物に応じて定めればよい。 << Aging process >>
Thecoating film 30A is held at the film surface temperature for a predetermined time (aged) to become the coating film 30B in a state where the liquid crystal is aligned (S2). The aging temperature and aging time may be determined according to the liquid crystal compound.
塗布膜30Aを膜面温度で一定時間保持して(熟成して)、液晶が配向した状態の塗布膜30Bになる(S2)。熟成温度および熟成時間は、液晶化合物に応じて定めればよい。 << Aging process >>
The
<<紫外線硬化工程>>
熟成工程後、液晶化合物の分子の配向状態を固定するために紫外線硬化を行う。紫外線硬化工程では、光カチオン重合基による重合反応(光カチオン重合反応)と光ラジカル重合基による重合反応(光ラジカル重合反応)を別々に進行させる。本明細書においては、紫外線硬化工程における二段階の重合のうちの最初の重合工程後の塗布膜を液晶半固定膜と称する。硬化工程の手順を説明する。 << UV curing process >>
After the aging step, ultraviolet curing is performed to fix the alignment state of the molecules of the liquid crystal compound. In the ultraviolet curing step, a polymerization reaction by a photocationic polymerization group (photocationic polymerization reaction) and a polymerization reaction by a photoradical polymerization group (photoradical polymerization reaction) are separately performed. In the present specification, the coating film after the first polymerization process in the two-stage polymerization in the ultraviolet curing process is referred to as a liquid crystal semi-fixed film. The procedure of the curing process will be described.
熟成工程後、液晶化合物の分子の配向状態を固定するために紫外線硬化を行う。紫外線硬化工程では、光カチオン重合基による重合反応(光カチオン重合反応)と光ラジカル重合基による重合反応(光ラジカル重合反応)を別々に進行させる。本明細書においては、紫外線硬化工程における二段階の重合のうちの最初の重合工程後の塗布膜を液晶半固定膜と称する。硬化工程の手順を説明する。 << UV curing process >>
After the aging step, ultraviolet curing is performed to fix the alignment state of the molecules of the liquid crystal compound. In the ultraviolet curing step, a polymerization reaction by a photocationic polymerization group (photocationic polymerization reaction) and a polymerization reaction by a photoradical polymerization group (photoradical polymerization reaction) are separately performed. In the present specification, the coating film after the first polymerization process in the two-stage polymerization in the ultraviolet curing process is referred to as a liquid crystal semi-fixed film. The procedure of the curing process will be described.
1)全面露光工程
上記液晶相が配向した状態の塗布膜30Bの全面に露光量100~2000mJ/cm2の紫外線を大気下にて照射して、塗布膜30Bの全面にほぼ均一な露光を行う(S3)。このとき、塗布膜30Bに含まれるカチオン重合開始剤の作用により主にはカチオン重合が進行する。なお、一部ラジカル重合が生じていてもよい。この全面露光により、全面に亘って一部が架橋(一部硬化)して液晶の配向状態が半固定された液晶半固定膜30Cを得る。「半固定」とは、本発明において液晶組成物が流動性を失っている状態を指し、熱処理工程前の状態を指す。例えば、二官能性液晶の片側官能基のみが架橋し、高分子液晶状態になっている事を指す。カチオン重合基および光ラジカル重合基を備えた重合性液晶化合物の場合は、カチオン重合基あるいは光ラジカル重合基のうちの一方が選択的に架橋された状態を指す。本全面露光工程においては、カチオン重合基が選択的に架橋された状態を指すが、一部に光ラジカル重合基による架橋が生じていてもよい。 1) Whole surface exposure process The entire surface of thecoating film 30B in the state where the liquid crystal phase is aligned is irradiated with ultraviolet rays having an exposure amount of 100 to 2000 mJ / cm 2 in the atmosphere to perform almost uniform exposure on the entire surface of the coating film 30B. (S3). At this time, cationic polymerization mainly proceeds by the action of the cationic polymerization initiator contained in the coating film 30B. In addition, a part of radical polymerization may occur. By this entire surface exposure, a liquid crystal semi-fixed film 30C in which part of the entire surface is crosslinked (partially cured) and the alignment state of the liquid crystal is semi-fixed is obtained. “Semi-fixed” refers to a state in which the liquid crystal composition has lost fluidity in the present invention, and refers to a state before the heat treatment step. For example, it means that only one side functional group of a bifunctional liquid crystal is cross-linked and is in a polymer liquid crystal state. In the case of a polymerizable liquid crystal compound having a cationic polymerization group and a radical photopolymerization group, one of the cationic polymerization group and the radical photopolymerization group is selectively crosslinked. In the entire surface exposure step, a state in which the cationic polymerization group is selectively cross-linked is indicated, but a part of the photo-radical polymerization group may be cross-linked.
上記液晶相が配向した状態の塗布膜30Bの全面に露光量100~2000mJ/cm2の紫外線を大気下にて照射して、塗布膜30Bの全面にほぼ均一な露光を行う(S3)。このとき、塗布膜30Bに含まれるカチオン重合開始剤の作用により主にはカチオン重合が進行する。なお、一部ラジカル重合が生じていてもよい。この全面露光により、全面に亘って一部が架橋(一部硬化)して液晶の配向状態が半固定された液晶半固定膜30Cを得る。「半固定」とは、本発明において液晶組成物が流動性を失っている状態を指し、熱処理工程前の状態を指す。例えば、二官能性液晶の片側官能基のみが架橋し、高分子液晶状態になっている事を指す。カチオン重合基および光ラジカル重合基を備えた重合性液晶化合物の場合は、カチオン重合基あるいは光ラジカル重合基のうちの一方が選択的に架橋された状態を指す。本全面露光工程においては、カチオン重合基が選択的に架橋された状態を指すが、一部に光ラジカル重合基による架橋が生じていてもよい。 1) Whole surface exposure process The entire surface of the
2)開始剤塗布工程
上記の液晶半固定膜30Cの表面に、光ラジカル重合開始剤を含む開始剤供給液を塗布し、乾燥させる。 2) Initiator application step An initiator supply liquid containing a photoradical polymerization initiator is applied to the surface of the liquid crystalsemi-fixed film 30C and dried.
上記の液晶半固定膜30Cの表面に、光ラジカル重合開始剤を含む開始剤供給液を塗布し、乾燥させる。 2) Initiator application step An initiator supply liquid containing a photoradical polymerization initiator is applied to the surface of the liquid crystal
3)マスク露光工程
その後、液晶半固定膜30C上にストライプパターンのマスク40を配置した状態で、室温大気下にて露光量30~100mJ/cm2の紫外線をストライプパターンのマスク40を介して液晶半固定膜30Cに照射する(S4)。ストライプパターンのマスク40は第1の位相差領域および第2の位相差領域を得るために、第1の位相差領域に応じた開口部42と、第2の位相差領域に応じた非開口部44が形成されたものである。これにより、液晶半固定膜30Cの、マスク開口部42に露出する領域は露光され、マスク非開口部44で覆われた部分は露光されないパターン露光がなされる。このとき、露光された領域では、光ラジカル重合開始剤の作用による光ラジカル重合が進行して位相差領域となる。 3) Mask exposure step After that, with thestripe pattern mask 40 disposed on the liquid crystal semi-fixed film 30C, UV light having an exposure amount of 30 to 100 mJ / cm 2 is applied to the liquid crystal through the stripe pattern mask 40 at room temperature. Irradiate the semi-fixed film 30C (S4). In order to obtain a first retardation region and a second retardation region, the stripe pattern mask 40 has an opening 42 corresponding to the first retardation region and a non-opening portion corresponding to the second retardation region. 44 is formed. Thereby, a region of the liquid crystal semi-fixed film 30 </ b> C that is exposed to the mask opening 42 is exposed, and a pattern exposure that does not expose the portion covered by the mask non-opening 44 is performed. At this time, in the exposed area | region, radical photopolymerization by the effect | action of radical photopolymerization initiator advances and it becomes a phase difference area | region.
その後、液晶半固定膜30C上にストライプパターンのマスク40を配置した状態で、室温大気下にて露光量30~100mJ/cm2の紫外線をストライプパターンのマスク40を介して液晶半固定膜30Cに照射する(S4)。ストライプパターンのマスク40は第1の位相差領域および第2の位相差領域を得るために、第1の位相差領域に応じた開口部42と、第2の位相差領域に応じた非開口部44が形成されたものである。これにより、液晶半固定膜30Cの、マスク開口部42に露出する領域は露光され、マスク非開口部44で覆われた部分は露光されないパターン露光がなされる。このとき、露光された領域では、光ラジカル重合開始剤の作用による光ラジカル重合が進行して位相差領域となる。 3) Mask exposure step After that, with the
4)加熱露光工程
さらに、基板全体を窒素下で液晶化合物の光学的等方性領域形成温度(光学的等方性領域への相転移温度以上の温度)で所定時間加熱しながら100~2000mJ/cm2の露光量の紫外線で露光することにより、マスク露光されていない領域において液晶が光学的等方性領域を形成し、かつ、マスク露光された領域においては液晶の配向を維持したまま、基板全体の液晶の配向状態が固定されたパターン位相差膜30Dとなる。 4) Heat exposure step Further, the whole substrate is heated at a temperature of 100 to 2000 mJ / hour while being heated for a predetermined time at an optical isotropic region forming temperature of the liquid crystal compound (a temperature higher than a phase transition temperature to the optical isotropic region) under nitrogen. The substrate is exposed to ultraviolet rays having an exposure amount of cm 2 so that the liquid crystal forms an optically isotropic region in the region not exposed to the mask, and the alignment of the liquid crystal is maintained in the region exposed to the mask. Thepattern retardation film 30D has a fixed alignment state of the entire liquid crystal.
さらに、基板全体を窒素下で液晶化合物の光学的等方性領域形成温度(光学的等方性領域への相転移温度以上の温度)で所定時間加熱しながら100~2000mJ/cm2の露光量の紫外線で露光することにより、マスク露光されていない領域において液晶が光学的等方性領域を形成し、かつ、マスク露光された領域においては液晶の配向を維持したまま、基板全体の液晶の配向状態が固定されたパターン位相差膜30Dとなる。 4) Heat exposure step Further, the whole substrate is heated at a temperature of 100 to 2000 mJ / hour while being heated for a predetermined time at an optical isotropic region forming temperature of the liquid crystal compound (a temperature higher than a phase transition temperature to the optical isotropic region) under nitrogen. The substrate is exposed to ultraviolet rays having an exposure amount of cm 2 so that the liquid crystal forms an optically isotropic region in the region not exposed to the mask, and the alignment of the liquid crystal is maintained in the region exposed to the mask. The
以上の工程により光学的異方性領域からなる第1の位相差領域31と光学的等方性領域からなる第2の位相差領域32とがパターン状に形成されてなる第1のパターン位相差膜30aを得ることができる(S5)。同様の工程によりに、光学的異方性領域からなる第3の位相差領域33と光学的等方性領域からなる第4の位相差領域34とがパターン状に形成されてなる第2のパターン位相差膜30bを得ることができる。
The first pattern phase difference in which the first phase difference region 31 formed of the optically anisotropic region and the second phase difference region 32 formed of the optically isotropic region are formed in a pattern by the above steps. The film 30a can be obtained (S5). A second pattern in which a third retardation region 33 made of an optically anisotropic region and a fourth retardation region 34 made of an optically isotropic region are formed in a pattern by the same process. The retardation film 30b can be obtained.
なお、上記においては、カチオン重合基と光ラジカル重合基とを有する重合性液晶化合物のカチオン重合基を先に重合させ、その後光ラジカル重合基を重合させる場合について説明したが、光ラジカル重合基を先に重合させ、その後カチオン重合基を重合させる手順でも同様の光学的異方性領域と光学的等方性領域とを有するパターン位相差膜を形成することができる。この場合には、上記の重合性液晶組成物は、カチオン重合開始剤に代えて、光ラジカル重合開始剤を含むものを用いればよい。そして、光ラジカル重合開始剤塗布工程は不要となり、別途カチオン重合させる前に、カチオン開始剤塗布工程を設ければよい。
In the above description, the case where the cationic polymerizable group of the polymerizable liquid crystal compound having a cationic polymerizable group and a radical photopolymerizable group is polymerized first and then the radical photopolymerizable group is polymerized has been described. A patterned phase difference film having a similar optically anisotropic region and an optically isotropic region can also be formed by a procedure of polymerizing first and then polymerizing a cationic polymerizable group. In this case, what contains a radical photopolymerization initiator should just be used for said polymeric liquid crystal composition instead of a cationic polymerization initiator. And the radical photopolymerization initiator application | coating process becomes unnecessary, What is necessary is just to provide a cation initiator application | coating process before carrying out cationic polymerization separately.
<配向方向が異なる異方性領域を備えたパターン位相差膜の形成>
次に、異なる配向方向の異方性領域をパターン化したパターン位相差膜30aおよび30bの作製工程について説明する。 <Formation of pattern retardation film having anisotropic regions with different orientation directions>
Next, a manufacturing process of the patterned phase difference films 30a and 30b in which anisotropic regions having different orientation directions are patterned will be described.
次に、異なる配向方向の異方性領域をパターン化したパターン位相差膜30aおよび30bの作製工程について説明する。 <Formation of pattern retardation film having anisotropic regions with different orientation directions>
Next, a manufacturing process of the patterned
第1のパターン位相差膜30aまたは第2のパターン位相差膜30bに対応するように、互いに異なる配向制御能を有するパターン配向膜を形成する。その上に、液晶性化合物を配置し、液晶性化合物を配向させる。液晶性化合物は、パターン配向膜のそれぞれの配向制御能によって、互いに異なる配向状態を達成する。それぞれの配向状態を固定することで、配向膜のパターンに応じて第1の位相差領域31および第2の位相差領域32の帯状領域(または、第3の位相差領域33および第4の位相差領域34の帯状領域)のパターンが形成される。パターン配向膜は、前述と同様に、光配向法またはラビング法、さらに印刷法等を用いて得ることができる。光配向法では光配向膜に対してストライプパターンに対応したマスクを用いたマスク露光し、ラビング法ではラビング配向膜に対してマスクを用いたマスクラビングを行うことで、パターン配向膜を形成することができる。大掛かりな設備が不要である点や製造容易な点で、光配向膜に対するマスク露光を利用する方法を利用する方法が好ましい。この方法の詳細については、特開2012-032661号公報の段落[0166]~[0181]に記載があり、その内容は本明細書に参照として取り込まれる。
The pattern alignment films having different alignment control capabilities are formed so as to correspond to the first pattern retardation film 30a or the second pattern retardation film 30b. A liquid crystalline compound is disposed thereon, and the liquid crystalline compound is aligned. The liquid crystalline compounds achieve different alignment states depending on the alignment control ability of the pattern alignment film. By fixing the respective alignment states, the band-like regions (or the third retardation region 33 and the fourth retardation region) of the first retardation region 31 and the second retardation region 32 according to the alignment film pattern. A pattern of a band-like region of the phase difference region 34 is formed. The pattern alignment film can be obtained using a photo-alignment method, a rubbing method, a printing method, or the like, as described above. In the photo-alignment method, the photo-alignment film is subjected to mask exposure using a mask corresponding to the stripe pattern, and in the rubbing method, the rubbing alignment film is subjected to mask rubbing using the mask to form a pattern alignment film. Can do. A method using a method using mask exposure on the photo-alignment film is preferable in that large-scale equipment is not required and manufacturing is easy. Details of this method are described in paragraphs [0166] to [0181] of JP2012-032661A, the contents of which are incorporated herein by reference.
パターン位相差膜30aおよび30bが、λ/2板であるかλ/4板であるかは、配向膜上に塗布した重合性液晶組成物の膜厚に応じて決められる。
Whether the pattern retardation films 30a and 30b are λ / 2 plates or λ / 4 plates is determined according to the film thickness of the polymerizable liquid crystal composition applied on the alignment film.
次に、パターン位相差膜を構成する、パターン層以外の要素について説明する。
Next, elements other than the pattern layer constituting the pattern retardation film will be described.
[支持体]
第1のパターン位相差膜30aおよび第2のパターン位相差膜30bには支持体が備えられていてもよく、支持体としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、およびシクロオレフィンポリマー系フィルム[例えば、商品名「アートン」、JSR社製、商品名「ゼオノア」、日本ゼオン社製]等を挙げることができる。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。 [Support]
The firstpattern retardation film 30a and the second pattern retardation film 30b may be provided with a support, and the support is preferably a transparent support, such as a polyacrylic resin film such as polymethyl methacrylate. , Cellulose resin films such as cellulose triacetate, and cycloolefin polymer films [for example, trade name “ARTON”, manufactured by JSR Corporation, trade name “ZEONOR”, manufactured by Nippon Zeon Co., Ltd.], and the like. The support is not limited to a flexible film but may be a non-flexible substrate such as a glass substrate.
第1のパターン位相差膜30aおよび第2のパターン位相差膜30bには支持体が備えられていてもよく、支持体としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、およびシクロオレフィンポリマー系フィルム[例えば、商品名「アートン」、JSR社製、商品名「ゼオノア」、日本ゼオン社製]等を挙げることができる。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。 [Support]
The first
なお、本発明のパターン位相差膜は、製膜する際の支持体に支持されたまま使用されるものであってもよいし、製膜する際の支持体は仮支持体とし、他の支持体に転写され、仮支持体を剥離して用いられるものであってもよい。
In addition, the pattern retardation film of the present invention may be used while being supported by the support when forming the film, or the support when forming the film is a temporary support, and other support. It may be transferred to the body and peeled off from the temporary support.
以下、本発明のパターン位相差膜の実施例および比較例について説明する。
Hereinafter, examples and comparative examples of the pattern retardation film of the present invention will be described.
まず、実施例および比較例のパターン位相差膜の作製に用いた各種組成物の調製について説明する。
First, preparation of various compositions used for the production of the pattern retardation films of Examples and Comparative Examples will be described.
(配向膜組成物Aの調製)
下記に示す組成物を、80℃に保温された容器中にて攪拌、溶解させ、配向膜組成物Aを調製した。
----------------------------------
配向膜組成物A(質量部)
----------------------------------
純水 97.2
PVA-205 (クラレ製) 2.8
---------------------------------- (Preparation of alignment film composition A)
The composition shown below was stirred and dissolved in a container kept at 80 ° C. to prepare an alignment film composition A.
---------------------------------
Alignment film composition A (parts by mass)
---------------------------------
Pure water 97.2
PVA-205 (Kuraray) 2.8
---------------------------------
下記に示す組成物を、80℃に保温された容器中にて攪拌、溶解させ、配向膜組成物Aを調製した。
----------------------------------
配向膜組成物A(質量部)
----------------------------------
純水 97.2
PVA-205 (クラレ製) 2.8
---------------------------------- (Preparation of alignment film composition A)
The composition shown below was stirred and dissolved in a container kept at 80 ° C. to prepare an alignment film composition A.
---------------------------------
Alignment film composition A (parts by mass)
---------------------------------
Pure water 97.2
PVA-205 (Kuraray) 2.8
---------------------------------
(配向膜組成物Bの調製)
<配向膜組成物用重合体の合成>
撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10質量部を仕込み、室温で混合した。 (Preparation of alignment film composition B)
<Synthesis of polymer for alignment film composition>
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100 parts by mass of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 parts by mass of methyl isobutyl ketone, and 10 parts by mass of triethylamine Were mixed at room temperature.
<配向膜組成物用重合体の合成>
撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10質量部を仕込み、室温で混合した。 (Preparation of alignment film composition B)
<Synthesis of polymer for alignment film composition>
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 100 parts by mass of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 500 parts by mass of methyl isobutyl ketone, and 10 parts by mass of triethylamine Were mixed at room temperature.
次いで、脱イオン水100質量部を滴下漏斗より30分かけて反応容器内の溶液に滴下した後、得られた溶液を還流下で混合しつつ、80℃で6時間反応させた。反応終了後、溶液から有機相を取り出し、0.2質量%硝酸アンモニウム水溶液により有機相を洗浄後の水が中性になるまで、有機相を洗浄した。その後、減圧下で溶媒および水を留去することにより、エポキシ基含有ポリオルガノシロキサンを粘調な透明液体として得た。
Next, 100 parts by mass of deionized water was added dropwise from the dropping funnel to the solution in the reaction vessel over 30 minutes, and then the resulting solution was reacted at 80 ° C. for 6 hours while mixing under reflux. After completion of the reaction, the organic phase was taken out of the solution, and the organic phase was washed with 0.2% by mass ammonium nitrate aqueous solution until the water after washing was neutral. Thereafter, the solvent and water were distilled off under reduced pressure to obtain an epoxy group-containing polyorganosiloxane as a viscous transparent liquid.
このエポキシ基含有ポリオルガノシロキサンについて、1H-NMR(Nuclear Magnetic Resonance)分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ基含有ポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
This epoxy group-containing polyorganosiloxane was analyzed by 1H-NMR (Nuclear Magnetic Resonance). As a result, a peak based on the oxiranyl group was obtained in the vicinity of the chemical shift (δ) = 3.2 ppm according to the theoretical intensity. It was confirmed that no side reaction of the epoxy group occurred. The epoxy group-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
次に、100mLの三口フラスコに、上記で得たエポキシ基含有ポリオルガノシロキサン10.1質量部、アクリル基含有カルボン酸(東亜合成株式会社、商品名「アロニックスM-5300」、アクリル酸ω-カルボキシポリカプロラクトン(重合度n≒2))0.5質量部、酢酸ブチル20質量部、特開2015-26050号公報の合成例1の方法で得られた桂皮酸誘導体1.5質量部、および、テトラブチルアンモニウムブロミド0.3質量部を仕込み、得られ反応溶液を90℃で12時間撹拌した。
Next, in a 100 mL three-necked flask, 10.1 parts by mass of the epoxy group-containing polyorganosiloxane obtained above, acrylic group-containing carboxylic acid (trade name “Aronix M-5300”, acrylic acid ω-carboxyl, Toa Gosei Co., Ltd.) 0.5 parts by mass of polycaprolactone (degree of polymerization n≈2), 20 parts by mass of butyl acetate, 1.5 parts by mass of cinnamic acid derivative obtained by the method of Synthesis Example 1 of JP-A-2015-26050, and Tetrabutylammonium bromide (0.3 parts by mass) was charged, and the resulting reaction solution was stirred at 90 ° C. for 12 hours.
反応終了後、反応溶液と等量(質量)の酢酸ブチルで希釈し、3回水洗した。
After completion of the reaction, the reaction solution was diluted with an equal amount (mass) of butyl acetate and washed with water three times.
得られた溶液を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、最終的に、光配向性基を有するポリオルガノシロキサン(重合体)を含む溶液を得た。この重合体の重量平均分子量Mwは9,000であった。また、1H-NMR分析の結果、重合体中のシンナメート基を有する成分は23.7質量%であった。
The operation of concentrating the obtained solution and diluting with butyl acetate was repeated twice to finally obtain a solution containing a polyorganosiloxane (polymer) having a photoalignable group. The weight average molecular weight Mw of this polymer was 9,000. As a result of 1H-NMR analysis, the content of cinnamate groups in the polymer was 23.7% by mass.
<配向膜組成物Bの調製>
酢酸ブチルを溶媒として、先に作製した重合体、ならびに、下記の化合物D1および化合物D2を、以下の量で添加し、配向膜組成物Bを調製した。
----------------------------------
配向膜組成物B(質量部)
----------------------------------
酢酸ブチル 100
配向膜組成物用重合体 4.35
化合物D1 0.48
化合物D2 1.15
----------------------------------
<Preparation of alignment film composition B>
Using butyl acetate as a solvent, the previously prepared polymer and the following compounds D1 and D2 were added in the following amounts to prepare an alignment film composition B.
---------------------------------
Alignment film composition B (parts by mass)
---------------------------------
Butyl acetate 100
Polymer for alignment film composition 4.35
Compound D1 0.48
Compound D2 1.15
---------------------------------
酢酸ブチルを溶媒として、先に作製した重合体、ならびに、下記の化合物D1および化合物D2を、以下の量で添加し、配向膜組成物Bを調製した。
----------------------------------
配向膜組成物B(質量部)
----------------------------------
酢酸ブチル 100
配向膜組成物用重合体 4.35
化合物D1 0.48
化合物D2 1.15
----------------------------------
Using butyl acetate as a solvent, the previously prepared polymer and the following compounds D1 and D2 were added in the following amounts to prepare an alignment film composition B.
---------------------------------
Alignment film composition B (parts by mass)
---------------------------------
Butyl acetate 100
Polymer for alignment film composition 4.35
Compound D1 0.48
Compound D2 1.15
---------------------------------
(重合性液晶組成物LC-1の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、重合性液晶組成物LC-1として用いた。 (Preparation of polymerizable liquid crystal composition LC-1)
After preparing the following composition, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as the polymerizable liquid crystal composition LC-1.
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、重合性液晶組成物LC-1として用いた。 (Preparation of polymerizable liquid crystal composition LC-1)
After preparing the following composition, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as the polymerizable liquid crystal composition LC-1.
棒状液晶(LC-1-1)は特開2004-12382号公報に記載の方法を元に合成した。棒状液晶(LC-1-1)は2つの反応性基を有する液晶化合物であり、2つの反応性基の片方はラジカル性の反応性基であるアクリル基、他方はカチオン性の反応性基であるオキセタン基である。水平配向剤(LC-1-2)はTetrahedron Lett.誌、第43巻、6793頁(202)に記載の方法に準じて合成した。
----------------------------------
重合性液晶組成物LC-1(質量部)
----------------------------------
棒状液晶(LC-1-1) 19.57
水平配向剤(LC-1-2) 0.01
カチオン系モノマー(OXT-121、東亞合成(株)製) 0.98
カチオン重合開始剤
(Curacure UVI6974、ダウ・ケミカル製) 0.4
重合制御剤(IRGANOX1076、BASF製) 0.02
メチルエチルケトン 80.0
----------------------------------
The rod-like liquid crystal (LC-1-1) was synthesized based on the method described in JP-A No. 2004-12382. The rod-like liquid crystal (LC-1-1) is a liquid crystal compound having two reactive groups, one of the two reactive groups is an acrylic group which is a radical reactive group, and the other is a cationic reactive group. It is a certain oxetane group. The horizontal alignment agent (LC-1-2) was prepared by Tetrahedron Lett. It was synthesized according to the method described in Journal, Vol. 43, page 6793 (202).
---------------------------------
Polymerizable liquid crystal composition LC-1 (parts by mass)
---------------------------------
Rod-shaped liquid crystal (LC-1-1) 19.57
Horizontal alignment agent (LC-1-2) 0.01
Cationic monomer (OXT-121, manufactured by Toagosei Co., Ltd.) 0.98
Cationic polymerization initiator (Cureure UVI6974, manufactured by Dow Chemical) 0.4
Polymerization control agent (IRGANOX1076, manufactured by BASF) 0.02
Methyl ethyl ketone 80.0
---------------------------------
----------------------------------
重合性液晶組成物LC-1(質量部)
----------------------------------
棒状液晶(LC-1-1) 19.57
水平配向剤(LC-1-2) 0.01
カチオン系モノマー(OXT-121、東亞合成(株)製) 0.98
カチオン重合開始剤
(Curacure UVI6974、ダウ・ケミカル製) 0.4
重合制御剤(IRGANOX1076、BASF製) 0.02
メチルエチルケトン 80.0
----------------------------------
---------------------------------
Polymerizable liquid crystal composition LC-1 (parts by mass)
---------------------------------
Rod-shaped liquid crystal (LC-1-1) 19.57
Horizontal alignment agent (LC-1-2) 0.01
Cationic monomer (OXT-121, manufactured by Toagosei Co., Ltd.) 0.98
Cationic polymerization initiator (Cureure UVI6974, manufactured by Dow Chemical) 0.4
Polymerization control agent (IRGANOX1076, manufactured by BASF) 0.02
Methyl ethyl ketone 80.0
---------------------------------
(重合性液晶組成物LC-2の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、液晶組成物LC-2として用いた。
----------------------------------
重合性液晶組成物LC-2(質量部)
----------------------------------
下記の棒状液晶性化合物の混合物 19.57
下記のモノマー 0.98
下記の重合開始剤 1.17
下記の界面活性剤 0.049
メチルエチルケトン 80
---------------------------------- (Preparation of polymerizable liquid crystal composition LC-2)
After preparing the following composition, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as the liquid crystal composition LC-2.
---------------------------------
Polymerizable liquid crystal composition LC-2 (parts by mass)
---------------------------------
A mixture of the following rod-like liquid crystal compounds 19.57
The following monomers 0.98
The following polymerization initiator 1.17
The following surfactant 0.049
Methyl ethyl ketone 80
---------------------------------
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、液晶組成物LC-2として用いた。
----------------------------------
重合性液晶組成物LC-2(質量部)
----------------------------------
下記の棒状液晶性化合物の混合物 19.57
下記のモノマー 0.98
下記の重合開始剤 1.17
下記の界面活性剤 0.049
メチルエチルケトン 80
---------------------------------- (Preparation of polymerizable liquid crystal composition LC-2)
After preparing the following composition, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as the liquid crystal composition LC-2.
---------------------------------
Polymerizable liquid crystal composition LC-2 (parts by mass)
---------------------------------
A mixture of the following rod-like liquid crystal compounds 19.57
The following monomers 0.98
The following polymerization initiator 1.17
The following surfactant 0.049
---------------------------------
(保護層組成物AD-1の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、保護層組成物AD-1として用いた。
----------------------------------
保護層組成物AD-1(質量部)
----------------------------------
メタクリル酸/メタクリル酸アリル
=20/80モル比のランダム共重合物
(重量平均分子量1.8万) 8.05質量部
ラジカル光重合開始剤(2-トリクロロメチル-5-(p-スチリルスチリル)1,3,4-オキサジアゾール)
0.12質量部
ハイドロキノンモノメチルエーテル 0.002質量部
メガファックF-176PF(大日本インキ化学工業(株)製)
0.05質量部
プロピレングリコールモノメチルエーテルアセテート 34.80質量部
メチルエチルケトン 50.54質量部
メタノール 1.61質量部
---------------------------------- (Preparation of protective layer composition AD-1)
After preparing the following composition, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as the protective layer composition AD-1.
---------------------------------
Protective layer composition AD-1 (parts by mass)
---------------------------------
Random copolymer of methacrylic acid / allyl methacrylate = 20/80 molar ratio (weight average molecular weight 18,000) 8.05 parts by mass radical photopolymerization initiator (2-trichloromethyl-5- (p-styrylstyryl) 1,3,4-oxadiazole)
0.12 parts by mass Hydroquinone monomethyl ether 0.002 parts by mass MegaFuck F-176PF (manufactured by Dainippon Ink & Chemicals, Inc.)
0.05 parts by weight Propylene glycol monomethyl ether acetate 34.80 parts by weight Methyl ethyl ketone 50.54 parts by weight Methanol 1.61 parts by weight ---------------------- -----------
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、保護層組成物AD-1として用いた。
----------------------------------
保護層組成物AD-1(質量部)
----------------------------------
メタクリル酸/メタクリル酸アリル
=20/80モル比のランダム共重合物
(重量平均分子量1.8万) 8.05質量部
ラジカル光重合開始剤(2-トリクロロメチル-5-(p-スチリルスチリル)1,3,4-オキサジアゾール)
0.12質量部
ハイドロキノンモノメチルエーテル 0.002質量部
メガファックF-176PF(大日本インキ化学工業(株)製)
0.05質量部
プロピレングリコールモノメチルエーテルアセテート 34.80質量部
メチルエチルケトン 50.54質量部
メタノール 1.61質量部
---------------------------------- (Preparation of protective layer composition AD-1)
After preparing the following composition, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as the protective layer composition AD-1.
---------------------------------
Protective layer composition AD-1 (parts by mass)
---------------------------------
Random copolymer of methacrylic acid / allyl methacrylate = 20/80 molar ratio (weight average molecular weight 18,000) 8.05 parts by mass radical photopolymerization initiator (2-trichloromethyl-5- (p-styrylstyryl) 1,3,4-oxadiazole)
0.12 parts by mass Hydroquinone monomethyl ether 0.002 parts by mass MegaFuck F-176PF (manufactured by Dainippon Ink & Chemicals, Inc.)
0.05 parts by weight Propylene glycol monomethyl ether acetate 34.80 parts by weight Methyl ethyl ketone 50.54 parts by weight Methanol 1.61 parts by weight ---------------------- -----------
実施例および比較例の位相差膜の作製は以下の手順で行った。図1のX軸、Y軸およびZ軸の方向を用いて以下説明する。
The retardation films of the examples and comparative examples were produced according to the following procedure. This will be described below using the directions of the X, Y, and Z axes in FIG.
[実施例1]
<配向方向が異なる2つの異方性領域の形成(λ/4+λ/4)>
配向膜組成物Bをガラス基板上にスリットコーターを用いて均一にY軸方向に塗布した後、ワイヤーグリッド偏光子(商品コード#46-636 エドモンド製)の透過軸が塗布方向の基準軸(Y軸)と平行となるように配置し、25℃空気下にて、キヤノン(株)製PLA-501F露光機を用いて、紫外線を30mJ/cm2照射して光配向処理を行なった。 [Example 1]
<Formation of two anisotropic regions with different orientation directions (λ / 4 + λ / 4)>
After the alignment film composition B is uniformly applied on the glass substrate in the Y-axis direction using a slit coater, the transmission axis of the wire grid polarizer (product code # 46-636 manufactured by Edmond) is the reference axis (Y The photo-alignment treatment was performed by irradiating with 30 mJ / cm 2 of ultraviolet rays using a PLA-501F exposure machine manufactured by Canon Inc. at 25 ° C. in air at 25 ° C.
<配向方向が異なる2つの異方性領域の形成(λ/4+λ/4)>
配向膜組成物Bをガラス基板上にスリットコーターを用いて均一にY軸方向に塗布した後、ワイヤーグリッド偏光子(商品コード#46-636 エドモンド製)の透過軸が塗布方向の基準軸(Y軸)と平行となるように配置し、25℃空気下にて、キヤノン(株)製PLA-501F露光機を用いて、紫外線を30mJ/cm2照射して光配向処理を行なった。 [Example 1]
<Formation of two anisotropic regions with different orientation directions (λ / 4 + λ / 4)>
After the alignment film composition B is uniformly applied on the glass substrate in the Y-axis direction using a slit coater, the transmission axis of the wire grid polarizer (product code # 46-636 manufactured by Edmond) is the reference axis (Y The photo-alignment treatment was performed by irradiating with 30 mJ / cm 2 of ultraviolet rays using a PLA-501F exposure machine manufactured by Canon Inc. at 25 ° C. in air at 25 ° C.
続いて、ワイヤーグリッド偏光子、ストライプ幅が50μmのストライプパターンがマスキングされたマスク、ガラス基板の順に並べて、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、50mJ/cm2の露光量で露光する。なお、この時、ワイヤーグリッド偏光子の透過軸が基準軸に対して垂直となるように配置し、かつ、基準軸とストライプパターンの長軸方向とのなす角が、89°(-X軸から+Y軸に向かう角度θ=1°)となるように配置する。
Subsequently, a wire grid polarizer, a mask masked with a stripe pattern with a stripe width of 50 μm, and a glass substrate are arranged in this order, and a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. in air at 25 ° C. And is exposed at an exposure amount of 50 mJ / cm 2 . At this time, the transmission axis of the wire grid polarizer is arranged so as to be perpendicular to the reference axis, and the angle formed by the reference axis and the major axis direction of the stripe pattern is 89 ° (from −X axis). It is arranged so that the angle θ toward the + Y axis θ = 1 °.
こうして得られた配向層の上に、上記液晶組成物LC-2を塗布した。次いで、膜面温度90℃で60秒間加熱熟成し、その後ただちに、膜面温度60℃で空気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、500mJ/cm2の紫外線を全面に照射することにする。これにより、マスクのストライプパターンの長軸方向の角度θが1°の2つの位相差領域に分画されたパターンを形成し、正面位相差が137.5nm(λ/4)であり、かつ、基準軸に対して遅相軸方向が0°である第1の位相差領域と、正面位相差が137.5nm(λ/4)であり、かつ、基準軸に対して遅相軸方向が90°である第2の位相差領域とに分画されたパターン位相差膜を作製した。パターン位相差膜の膜厚は1.1μmであった。これを2枚用い、第1のパターン位相差膜、第2のパターン位相差膜とした。
The liquid crystal composition LC-2 was applied on the alignment layer thus obtained. Next, the film was heated and aged at a film surface temperature of 90 ° C. for 60 seconds. Immediately after that, using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) in the air at a film surface temperature of 60 ° C., ultraviolet rays of 500 mJ / cm 2 were applied. The entire surface will be irradiated. As a result, a pattern divided into two phase difference regions having a major axis direction angle θ of 1 ° of the mask stripe pattern is formed, the front phase difference is 137.5 nm (λ / 4), and The first phase difference region whose slow axis direction is 0 ° with respect to the reference axis, the front phase difference is 137.5 nm (λ / 4), and the slow axis direction is 90 ° with respect to the reference axis. A patterned phase difference film fractionated into a second phase difference region that was ° was produced. The film thickness of the pattern retardation film was 1.1 μm. Two of these were used as a first pattern retardation film and a second pattern retardation film.
(調光装置の作製)
第1の偏光子、第1のパターン位相差膜、第2のパターン位相差膜、および、第2の偏光子の順に積層する。第1のパターン位相差膜および第2のパターン位相差膜は、同じパターン位相差膜を用いた。このパターン位相差膜の基準軸と遅相軸の方向がなす角が0°、かつ、ストライプパターンの長軸方向の角度θが1°であるとなるように配置した。さらに、第1の偏光子の透過軸と第1のパターン位相差膜の第1の位相差領域の遅相軸のなす角が45°、かつ、第1の偏光子の透過軸と第2の偏光子の透過軸との成す角度が90°(クロスニコル)となるように配置した調光装置を作製した。 (Production of light control device)
The first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer are laminated in this order. The same pattern retardation film was used for the first pattern retardation film and the second pattern retardation film. The pattern retardation film was arranged so that the angle formed between the reference axis and the slow axis was 0 °, and the angle θ in the major axis direction of the stripe pattern was 1 °. Furthermore, the angle formed by the transmission axis of the first polarizer and the slow axis of the first retardation region of the first pattern retardation film is 45 °, and the transmission axis of the first polarizer and the second axis A light control device was manufactured so that the angle formed with the transmission axis of the polarizer was 90 ° (crossed Nicols).
第1の偏光子、第1のパターン位相差膜、第2のパターン位相差膜、および、第2の偏光子の順に積層する。第1のパターン位相差膜および第2のパターン位相差膜は、同じパターン位相差膜を用いた。このパターン位相差膜の基準軸と遅相軸の方向がなす角が0°、かつ、ストライプパターンの長軸方向の角度θが1°であるとなるように配置した。さらに、第1の偏光子の透過軸と第1のパターン位相差膜の第1の位相差領域の遅相軸のなす角が45°、かつ、第1の偏光子の透過軸と第2の偏光子の透過軸との成す角度が90°(クロスニコル)となるように配置した調光装置を作製した。 (Production of light control device)
The first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer are laminated in this order. The same pattern retardation film was used for the first pattern retardation film and the second pattern retardation film. The pattern retardation film was arranged so that the angle formed between the reference axis and the slow axis was 0 °, and the angle θ in the major axis direction of the stripe pattern was 1 °. Furthermore, the angle formed by the transmission axis of the first polarizer and the slow axis of the first retardation region of the first pattern retardation film is 45 °, and the transmission axis of the first polarizer and the second axis A light control device was manufactured so that the angle formed with the transmission axis of the polarizer was 90 ° (crossed Nicols).
なお、本実施例では、第2のパターン位相差膜を可動軸の方向に移動させる。また、可動軸の方向はX軸の方向と一致する。
In this embodiment, the second pattern retardation film is moved in the direction of the movable axis. The direction of the movable axis coincides with the direction of the X axis.
[実施例2]
<配向方向が異なる2つの異方性領域の形成(λ/2+λ/2)>
(第1のパターン位相差膜の作製) 実施例1と同様に配向膜組成物Bをガラス基板上にスリットコーターを用いて均一にY軸方向に塗布した後、ワイヤーグリッド偏光子(商品コード#46-636 エドモンド製)の透過軸が塗布方向の基準軸(Y軸)と平行となるように配置し、25℃空気下にて、キヤノン(株)製PLA-501F露光機を用いて、紫外線を30mJ/cm2照射して光配向処理を行なった。 [Example 2]
<Formation of two anisotropic regions with different orientation directions (λ / 2 + λ / 2)>
(Preparation of First Pattern Retardation Film) After applying the alignment film composition B on the glass substrate uniformly in the Y-axis direction using a slit coater as in Example 1, a wire grid polarizer (product code #) 46-636 Edmond) is arranged so that its transmission axis is parallel to the reference axis (Y-axis) in the coating direction, and is exposed to ultraviolet rays using a PLA-501F exposure machine manufactured by Canon Inc. in air at 25 ° C. Was irradiated with 30 mJ / cm 2 for photo-alignment treatment.
<配向方向が異なる2つの異方性領域の形成(λ/2+λ/2)>
(第1のパターン位相差膜の作製) 実施例1と同様に配向膜組成物Bをガラス基板上にスリットコーターを用いて均一にY軸方向に塗布した後、ワイヤーグリッド偏光子(商品コード#46-636 エドモンド製)の透過軸が塗布方向の基準軸(Y軸)と平行となるように配置し、25℃空気下にて、キヤノン(株)製PLA-501F露光機を用いて、紫外線を30mJ/cm2照射して光配向処理を行なった。 [Example 2]
<Formation of two anisotropic regions with different orientation directions (λ / 2 + λ / 2)>
(Preparation of First Pattern Retardation Film) After applying the alignment film composition B on the glass substrate uniformly in the Y-axis direction using a slit coater as in Example 1, a wire grid polarizer (product code #) 46-636 Edmond) is arranged so that its transmission axis is parallel to the reference axis (Y-axis) in the coating direction, and is exposed to ultraviolet rays using a PLA-501F exposure machine manufactured by Canon Inc. in air at 25 ° C. Was irradiated with 30 mJ / cm 2 for photo-alignment treatment.
続いて、ワイヤーグリッド偏光子、ストライプ幅が50μmのストライプパターンがマスキングされたマスク、ガラス基板の順に並べて、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、50mJ/cm2の露光量で露光する。なお、この時、ワイヤーグリッド偏光子の透過軸が基準軸に対して45°傾くように配置し、かつ、マスクのストライプパターンの長軸方向の角度θが1°となるように配置する。
Subsequently, a wire grid polarizer, a mask masked with a stripe pattern with a stripe width of 50 μm, and a glass substrate are arranged in this order, and a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. in air at 25 ° C. And is exposed at an exposure amount of 50 mJ / cm 2 . At this time, the wire grid polarizer is arranged so that the transmission axis is inclined by 45 ° with respect to the reference axis, and the angle θ in the major axis direction of the stripe pattern of the mask is 1 °.
こうして得られた配向層の上に、上記液晶組成物LC-2を塗布した。次いで、膜面温度90℃で60秒間加熱熟成し、その後ただちに、膜面温度60℃で空気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、500mJ/cm2の紫外線を照射する。これにより、マスクのストライプパターンの長軸方向の角度θが1°の2つの位相差領域に分画されたパターンを形成する。正面位相差が275nm(λ/2)で、かつ、基準軸に対して遅相軸方向が0°である第1の位相差領域と、正面位相差が275nm(λ/2)で、かつ、基準軸に対して遅相軸方向が45°傾いた第2の位相差領域で構成される第1のパターン位相差膜を作製した。パターン位相差膜の膜厚は2.1μmであった。
The liquid crystal composition LC-2 was applied on the alignment layer thus obtained. Next, the film was heated and aged at a film surface temperature of 90 ° C. for 60 seconds. Immediately after that, using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) in the air at a film surface temperature of 60 ° C., ultraviolet rays of 500 mJ / cm 2 were applied. Irradiate. As a result, a pattern divided into two phase difference regions having an angle θ of 1 ° in the major axis direction of the stripe pattern of the mask is formed. A first phase difference region having a front phase difference of 275 nm (λ / 2) and a slow axis direction of 0 ° with respect to the reference axis; a front phase difference of 275 nm (λ / 2); and A first pattern retardation film composed of a second retardation region having a slow axis direction inclined by 45 ° with respect to the reference axis was produced. The film thickness of the pattern retardation film was 2.1 μm.
(第2のパターン位相差膜の作製)
第1のパターン位相差膜において、ワイヤーグリッド偏光子の透過軸が基準軸に対して315°傾くように配置し、第3の位相差領域において、基準軸に対して遅相軸方向を90°とし、第4の位相差領域において、基準軸に対して遅相軸方向を315°とした以外は、第1のパターン位相差膜と同様にして、第2のパターン位相差膜を作製した。 (Preparation of second pattern retardation film)
In the first pattern retardation film, the transmission axis of the wire grid polarizer is arranged so as to be inclined by 315 ° with respect to the reference axis, and in the third retardation region, the slow axis direction is 90 ° with respect to the reference axis. In the fourth retardation region, a second pattern retardation film was produced in the same manner as the first pattern retardation film except that the slow axis direction was 315 ° with respect to the reference axis.
第1のパターン位相差膜において、ワイヤーグリッド偏光子の透過軸が基準軸に対して315°傾くように配置し、第3の位相差領域において、基準軸に対して遅相軸方向を90°とし、第4の位相差領域において、基準軸に対して遅相軸方向を315°とした以外は、第1のパターン位相差膜と同様にして、第2のパターン位相差膜を作製した。 (Preparation of second pattern retardation film)
In the first pattern retardation film, the transmission axis of the wire grid polarizer is arranged so as to be inclined by 315 ° with respect to the reference axis, and in the third retardation region, the slow axis direction is 90 ° with respect to the reference axis. In the fourth retardation region, a second pattern retardation film was produced in the same manner as the first pattern retardation film except that the slow axis direction was 315 ° with respect to the reference axis.
(調光装置の作製)
実施例1と同様に、第1の偏光子、第1のパターン位相差膜、第2のパターン位相差膜、および、第2の偏光子の順に積層する。第1のパターン位相差膜の基準軸と第2の位相差領域の遅相軸の方向がなす角が0°、第2のパターン位相差膜の基準軸と第3の位相差領域の遅相軸の方向がなす角が90°、かつ、ストライプパターンの長軸方向の角度θが1°であるとなるように配置した。さらに、第1の偏光子の透過軸と第1のパターン位相差膜の第1の位相差領域の遅相軸のなす角が45°、第1の偏光子の透過軸と第2のパターン位相差膜の第3の位相差領域の遅相軸のなす角が135°、かつ、第1の偏光子の透過軸と第2の偏光子の透過軸との成す角度が90°(クロスニコル)となるように配置した調光装置を作製した。 (Production of light control device)
As in Example 1, the first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer are stacked in this order. The angle formed by the direction of the reference axis of the first pattern retardation film and the slow axis of the second retardation region is 0 °, and the retardation of the reference axis of the second pattern retardation film and the third retardation region The angle formed by the axis directions is 90 °, and the angle θ in the major axis direction of the stripe pattern is 1 °. Furthermore, the angle formed by the transmission axis of the first polarizer and the slow axis of the first retardation region of the first pattern retardation film is 45 °, the transmission axis of the first polarizer and the second pattern position. The angle formed by the slow axis of the third retardation region of the retardation film is 135 °, and the angle formed by the transmission axis of the first polarizer and the transmission axis of the second polarizer is 90 ° (crossed Nicols). A light control device arranged so as to be was prepared.
実施例1と同様に、第1の偏光子、第1のパターン位相差膜、第2のパターン位相差膜、および、第2の偏光子の順に積層する。第1のパターン位相差膜の基準軸と第2の位相差領域の遅相軸の方向がなす角が0°、第2のパターン位相差膜の基準軸と第3の位相差領域の遅相軸の方向がなす角が90°、かつ、ストライプパターンの長軸方向の角度θが1°であるとなるように配置した。さらに、第1の偏光子の透過軸と第1のパターン位相差膜の第1の位相差領域の遅相軸のなす角が45°、第1の偏光子の透過軸と第2のパターン位相差膜の第3の位相差領域の遅相軸のなす角が135°、かつ、第1の偏光子の透過軸と第2の偏光子の透過軸との成す角度が90°(クロスニコル)となるように配置した調光装置を作製した。 (Production of light control device)
As in Example 1, the first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer are stacked in this order. The angle formed by the direction of the reference axis of the first pattern retardation film and the slow axis of the second retardation region is 0 °, and the retardation of the reference axis of the second pattern retardation film and the third retardation region The angle formed by the axis directions is 90 °, and the angle θ in the major axis direction of the stripe pattern is 1 °. Furthermore, the angle formed by the transmission axis of the first polarizer and the slow axis of the first retardation region of the first pattern retardation film is 45 °, the transmission axis of the first polarizer and the second pattern position. The angle formed by the slow axis of the third retardation region of the retardation film is 135 °, and the angle formed by the transmission axis of the first polarizer and the transmission axis of the second polarizer is 90 ° (crossed Nicols). A light control device arranged so as to be was prepared.
なお、本実施例では、第1の実施例と同様に第2のパターン位相差膜を可動軸の方向に移動させる。また、可動軸の方向はX軸の方向と一致する。
In the present embodiment, the second pattern retardation film is moved in the direction of the movable axis as in the first embodiment. The direction of the movable axis coincides with the direction of the X axis.
[実施例3]
<等方性領域と異方性領域の形成(iso+λ/2)>
(第1のパターン位相差膜の作製)
実施例1で使用した配向膜組成物Bの代わりに上記で調製した配向膜組成物Aを、ガラス基板上にスリットコーターを用いて均一にY軸方向に塗布した後、100℃のオーブン内で2分乾燥し、膜厚0.5μmの配向膜付きガラス基板を得た。 [Example 3]
<Formation of isotropic and anisotropic regions (iso + λ / 2)>
(Preparation of first pattern retardation film)
In place of the alignment film composition B used in Example 1, the alignment film composition A prepared above was uniformly applied on the glass substrate in the Y-axis direction using a slit coater, and then in an oven at 100 ° C. It was dried for 2 minutes to obtain a glass substrate with an alignment film having a thickness of 0.5 μm.
<等方性領域と異方性領域の形成(iso+λ/2)>
(第1のパターン位相差膜の作製)
実施例1で使用した配向膜組成物Bの代わりに上記で調製した配向膜組成物Aを、ガラス基板上にスリットコーターを用いて均一にY軸方向に塗布した後、100℃のオーブン内で2分乾燥し、膜厚0.5μmの配向膜付きガラス基板を得た。 [Example 3]
<Formation of isotropic and anisotropic regions (iso + λ / 2)>
(Preparation of first pattern retardation film)
In place of the alignment film composition B used in Example 1, the alignment film composition A prepared above was uniformly applied on the glass substrate in the Y-axis direction using a slit coater, and then in an oven at 100 ° C. It was dried for 2 minutes to obtain a glass substrate with an alignment film having a thickness of 0.5 μm.
基準軸と平行にラビング処理を施し、ラビング処理した面上に上記液晶組成物LC-1を塗布した。次いで、膜面温度80℃で60秒間加熱熟成し、その後ただちに、膜面温度70℃空気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、500mJ/cm2の紫外線を照射した。
こうして得られた液晶材料上に、上記で調製した保護層組成物AD-1を塗布し、膜面温度80℃で60秒間乾燥した後に、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、50mJ/cm2の露光量で、50μmストライプパターンがマスキングされたマスクを用いて露光した。この時、基準軸とストライプパターンの長軸方向のなす角が89°(-X軸から+Y軸に向かう角度θ=1°)となるように配置した。 A rubbing treatment was performed in parallel with the reference axis, and the liquid crystal composition LC-1 was coated on the rubbing surface. Next, the film surface was aged for 60 seconds at a film surface temperature of 80 ° C., and then immediately irradiated with 500 mJ / cm 2 of ultraviolet light using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at a film surface temperature of 70 ° C. did.
The liquid crystal material thus obtained was coated with the protective layer composition AD-1 prepared above, dried at a film surface temperature of 80 ° C. for 60 seconds, and then air-laminated at 25 ° C. by Canon Inc. PLA- Using a 501F exposure machine (extra-high pressure mercury lamp), exposure was performed using a mask with a 50 μm stripe pattern masked at an exposure amount of 50 mJ / cm 2 . At this time, the angle formed between the reference axis and the major axis direction of the stripe pattern was 89 ° (angle θ = 1 ° from −X axis to + Y axis).
こうして得られた液晶材料上に、上記で調製した保護層組成物AD-1を塗布し、膜面温度80℃で60秒間乾燥した後に、25℃空気下にて、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、50mJ/cm2の露光量で、50μmストライプパターンがマスキングされたマスクを用いて露光した。この時、基準軸とストライプパターンの長軸方向のなす角が89°(-X軸から+Y軸に向かう角度θ=1°)となるように配置した。 A rubbing treatment was performed in parallel with the reference axis, and the liquid crystal composition LC-1 was coated on the rubbing surface. Next, the film surface was aged for 60 seconds at a film surface temperature of 80 ° C., and then immediately irradiated with 500 mJ / cm 2 of ultraviolet light using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) at a film surface temperature of 70 ° C. did.
The liquid crystal material thus obtained was coated with the protective layer composition AD-1 prepared above, dried at a film surface temperature of 80 ° C. for 60 seconds, and then air-laminated at 25 ° C. by Canon Inc. PLA- Using a 501F exposure machine (extra-high pressure mercury lamp), exposure was performed using a mask with a 50 μm stripe pattern masked at an exposure amount of 50 mJ / cm 2 . At this time, the angle formed between the reference axis and the major axis direction of the stripe pattern was 89 ° (angle θ = 1 ° from −X axis to + Y axis).
その後、基板全体を200℃で加熱しながら500mJ/cm2の露光量で空冷メタルハライドランプ(アイグラフィックス(株)製)にて窒素下で5分間露光することにより、マスクのストライプパターンの長軸方向の角度θが1°の2つの位相差領域に分画されたパターンを形成する。正面位相差が275nm(λ/2)で、かつ、基準軸に対して遅相軸方向が0°である第1の位相差領域と、光学的等方領域である第2の位相差領域とに分画されたパターンが形成された第1のパターン位相差膜を作製した。位相差膜の膜厚は、2.1μmであった。
Then, the long axis of the stripe pattern of the mask is obtained by exposing the whole substrate at 200 ° C. with an exposure amount of 500 mJ / cm 2 for 5 minutes under nitrogen with an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.). A pattern divided into two phase difference regions having a direction angle θ of 1 ° is formed. A first phase difference region having a front phase difference of 275 nm (λ / 2) and a slow axis direction of 0 ° with respect to the reference axis; and a second phase difference region being an optically isotropic region; A first pattern retardation film in which a pattern fractionated into two was formed was produced. The thickness of the retardation film was 2.1 μm.
(第2のパターン位相差膜の作製)
第1のパターン位相差膜において、第1の位相差領域の遅相軸の方向を90°として、第3の位相差領域とし、光学的等方領域を第4の位相差領域とした以外は、第1のパターン位相差膜と同様にして、第2のパターン位相差膜を作製した。 (Preparation of second pattern retardation film)
In the first pattern retardation film, except that the direction of the slow axis of the first retardation region is 90 °, the third retardation region, and the optically isotropic region is the fourth retardation region. A second pattern retardation film was produced in the same manner as the first pattern retardation film.
第1のパターン位相差膜において、第1の位相差領域の遅相軸の方向を90°として、第3の位相差領域とし、光学的等方領域を第4の位相差領域とした以外は、第1のパターン位相差膜と同様にして、第2のパターン位相差膜を作製した。 (Preparation of second pattern retardation film)
In the first pattern retardation film, except that the direction of the slow axis of the first retardation region is 90 °, the third retardation region, and the optically isotropic region is the fourth retardation region. A second pattern retardation film was produced in the same manner as the first pattern retardation film.
(調光装置の作製)
第1の偏光子、第1のパターン位相差膜、第2のパターン位相差膜、および、第2の偏光子の順に積層した。第1の偏光子の透過軸と第1のパターン位相差膜の位相差領域(第1の位相差領域)の遅相軸の成す角度が45°、第1の偏光子の透過軸と第2のパターン位相差膜の位相差領域(第3の位相差領域)の遅層軸との成す角度が135°、かつ、第1のパターン位相差膜と第2のパターン位相差膜のストライプパターンの長軸方向の角θが1°となるように配置した。さらに、第1の偏光子の透過軸と第2の偏光子の透過軸との成す角度が90°(クロスニコル)となるように配置した調光装置を作製した。 (Production of light control device)
The first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer were laminated in this order. The angle formed by the transmission axis of the first polarizer and the slow axis of the retardation region (first retardation region) of the first pattern retardation film is 45 °, the transmission axis of the first polarizer and the second The angle between the retardation layer (third retardation region) of the pattern retardation film and the slow axis of the pattern retardation film is 135 °, and the stripe pattern of the first pattern retardation film and the second pattern retardation film The major axis direction angle θ is 1 °. Furthermore, a light control device was manufactured in which the angle formed by the transmission axis of the first polarizer and the transmission axis of the second polarizer was 90 ° (crossed Nicols).
第1の偏光子、第1のパターン位相差膜、第2のパターン位相差膜、および、第2の偏光子の順に積層した。第1の偏光子の透過軸と第1のパターン位相差膜の位相差領域(第1の位相差領域)の遅相軸の成す角度が45°、第1の偏光子の透過軸と第2のパターン位相差膜の位相差領域(第3の位相差領域)の遅層軸との成す角度が135°、かつ、第1のパターン位相差膜と第2のパターン位相差膜のストライプパターンの長軸方向の角θが1°となるように配置した。さらに、第1の偏光子の透過軸と第2の偏光子の透過軸との成す角度が90°(クロスニコル)となるように配置した調光装置を作製した。 (Production of light control device)
The first polarizer, the first pattern retardation film, the second pattern retardation film, and the second polarizer were laminated in this order. The angle formed by the transmission axis of the first polarizer and the slow axis of the retardation region (first retardation region) of the first pattern retardation film is 45 °, the transmission axis of the first polarizer and the second The angle between the retardation layer (third retardation region) of the pattern retardation film and the slow axis of the pattern retardation film is 135 °, and the stripe pattern of the first pattern retardation film and the second pattern retardation film The major axis direction angle θ is 1 °. Furthermore, a light control device was manufactured in which the angle formed by the transmission axis of the first polarizer and the transmission axis of the second polarizer was 90 ° (crossed Nicols).
なお、本実施例では、第2のパターン位相差膜を可動軸の方向に移動させる。また、可動軸の方向はX軸の方向と一致する。
In this embodiment, the second pattern retardation film is moved in the direction of the movable axis. The direction of the movable axis coincides with the direction of the X axis.
[実施例4]
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を200μmとし、ストライプパターンの長軸方向の角θを10°とした以外は、実施例3と同様として実施例4の調光装置を作製した。 [Example 4]
Example 3 Example 3 is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 200 μm and the angle θ in the major axis direction of the stripe pattern is 10 °. 4 dimmers were produced.
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を200μmとし、ストライプパターンの長軸方向の角θを10°とした以外は、実施例3と同様として実施例4の調光装置を作製した。 [Example 4]
Example 3 Example 3 is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 200 μm and the angle θ in the major axis direction of the stripe pattern is 10 °. 4 dimmers were produced.
[実施例5]
実施例3と同様にして第1のパターン位相差膜、第2のパターン位相差膜を作製する。ただし、ストライプパターンのパターン幅を500μmとし、ストライプパターンの長軸方向の角θを10°とした以外は、実施例3と同様として実施例5の調光装置を作製した。 [Example 5]
In the same manner as in Example 3, a first pattern retardation film and a second pattern retardation film are produced. However, the light control device of Example 5 was manufactured in the same manner as Example 3 except that the pattern width of the stripe pattern was 500 μm and the angle θ in the major axis direction of the stripe pattern was 10 °.
実施例3と同様にして第1のパターン位相差膜、第2のパターン位相差膜を作製する。ただし、ストライプパターンのパターン幅を500μmとし、ストライプパターンの長軸方向の角θを10°とした以外は、実施例3と同様として実施例5の調光装置を作製した。 [Example 5]
In the same manner as in Example 3, a first pattern retardation film and a second pattern retardation film are produced. However, the light control device of Example 5 was manufactured in the same manner as Example 3 except that the pattern width of the stripe pattern was 500 μm and the angle θ in the major axis direction of the stripe pattern was 10 °.
[実施例6]
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を5μmとし、ストライプパターンの長軸方向の角θを0.5°とした以外は、実施例3と同様として実施例6の調光装置を作製した。 [Example 6]
Example 3 is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 5 μm and the angle θ in the major axis direction of the stripe pattern is 0.5 °. The light control device of Example 6 was produced.
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を5μmとし、ストライプパターンの長軸方向の角θを0.5°とした以外は、実施例3と同様として実施例6の調光装置を作製した。 [Example 6]
Example 3 is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 5 μm and the angle θ in the major axis direction of the stripe pattern is 0.5 °. The light control device of Example 6 was produced.
[比較例1]
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を1000μmとし、ストライプパターンの長軸方向の角θを90°とした以外は、実施例3と同様として比較例1の調光装置を作製した。 [Comparative Example 1]
In Example 3, a comparative example is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 1000 μm and the angle θ in the major axis direction of the stripe pattern is 90 °. 1 light control device was produced.
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を1000μmとし、ストライプパターンの長軸方向の角θを90°とした以外は、実施例3と同様として比較例1の調光装置を作製した。 [Comparative Example 1]
In Example 3, a comparative example is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 1000 μm and the angle θ in the major axis direction of the stripe pattern is 90 °. 1 light control device was produced.
[比較例2]
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を50μmとし、ストライプパターンの長軸方向の角θを90°とした以外は、実施例3と同様として比較例2の調光装置を作製した。 [Comparative Example 2]
In Example 3, a comparative example is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 50 μm and the angle θ in the major axis direction of the stripe pattern is 90 °. The light control device of 2 was produced.
実施例3において、第1、第2のパターン位相差膜のストライプパターンのパターン幅を50μmとし、ストライプパターンの長軸方向の角θを90°とした以外は、実施例3と同様として比較例2の調光装置を作製した。 [Comparative Example 2]
In Example 3, a comparative example is the same as Example 3 except that the pattern width of the stripe pattern of the first and second pattern retardation films is 50 μm and the angle θ in the major axis direction of the stripe pattern is 90 °. The light control device of 2 was produced.
(評価基準)
測定された階調変化について、官能評価により下の基準にて評価した。 (Evaluation criteria)
The measured gradation change was evaluated based on the following criteria by sensory evaluation.
測定された階調変化について、官能評価により下の基準にて評価した。 (Evaluation criteria)
The measured gradation change was evaluated based on the following criteria by sensory evaluation.
A:良好(階調の変化は連続的である)
B:やや良好(階調の変化は連続的と見なせ、許容できる)
C:不良(階調の変化が場所によって異なる) A: Good (gradation change is continuous)
B: Slightly good (change in gradation can be regarded as continuous and acceptable)
C: Defect (change in gradation varies depending on location)
B:やや良好(階調の変化は連続的と見なせ、許容できる)
C:不良(階調の変化が場所によって異なる) A: Good (gradation change is continuous)
B: Slightly good (change in gradation can be regarded as continuous and acceptable)
C: Defect (change in gradation varies depending on location)
なお、相対移動量は、明の状態から暗の状態に変化するまでにパターン位相差膜を移動させるために必要な相対移動量である。この距離が長いほど位置合わせが容易になる。また、パターン幅が細くなるほど階調が連続的な階調を実現することが可能になる。
The relative movement amount is a relative movement amount necessary for moving the pattern retardation film before changing from a bright state to a dark state. The longer this distance, the easier the alignment. Further, as the pattern width becomes narrower, it is possible to realize a continuous gradation.
表1に示す通り、実施例1~5の調光装置は、連続的な調光を行うための十分な移動量を確保することができた。このうち実施例1,3,4はパターン幅が十分に細く階調変化も良好で連続的な調光を行うことができる。実施例5はパターン幅がやや広いため、階調変化がやや良好となっていると推測されるが、θが10°でもあっても十分な移動量を確保することができた。比較例1ではパターン幅が広く2階調の調子になるが、パターン幅が200μm以下にすることで連続的な調光が可能であることが推察できる。
以上より、パターン幅が500μm以下、より好ましくはパターン幅が200μm以下である。 As shown in Table 1, the light control devices of Examples 1 to 5 were able to ensure a sufficient amount of movement for performing continuous light control. Among these, Examples 1, 3, and 4 have a sufficiently narrow pattern width and good gradation change, and can perform continuous light control. In Example 5, since the pattern width is slightly wide, it is presumed that the gradation change is slightly good. However, even if θ is 10 °, a sufficient amount of movement can be secured. In Comparative Example 1, the pattern width is wide and the tone of two gradations is obtained, but it can be inferred that continuous light control is possible by setting the pattern width to 200 μm or less.
From the above, the pattern width is 500 μm or less, more preferably the pattern width is 200 μm or less.
以上より、パターン幅が500μm以下、より好ましくはパターン幅が200μm以下である。 As shown in Table 1, the light control devices of Examples 1 to 5 were able to ensure a sufficient amount of movement for performing continuous light control. Among these, Examples 1, 3, and 4 have a sufficiently narrow pattern width and good gradation change, and can perform continuous light control. In Example 5, since the pattern width is slightly wide, it is presumed that the gradation change is slightly good. However, even if θ is 10 °, a sufficient amount of movement can be secured. In Comparative Example 1, the pattern width is wide and the tone of two gradations is obtained, but it can be inferred that continuous light control is possible by setting the pattern width to 200 μm or less.
From the above, the pattern width is 500 μm or less, more preferably the pattern width is 200 μm or less.
なお、実施例1~3を比較すると、パターン位相差膜の製法としては、isoの領域とλ/2の領域の組み合わせ、または、2つのλ/4の領域の組み合わせを用いるのがより好ましい。実施例2の2つのλ/2の領域の組み合わせでは、隣接する2つの位相差領域間で液晶の遅相軸方向が90°回転するため、位相差領域の境界部分で液晶の配向欠陥が生じるため、階調変化がB評価になったものと推察される。一方、実施例1のλ/4の領域の組み合わせでは位相差領域間で遅相軸方向が45°しか回転しないため境界部分での配向欠陥が生じにくく良好な結果になったと推察される。比較例2では、パターン幅が狭く連続的な調光は可能であるが、相対移動量が小さく調光するための移動量の制御が難しい。同じパターン幅であっても、実施例3のようにθを1°にすることにより十分な移動量を確保することができる。実施例6では、パターン幅がかなり狭く連続的な調光を行うことが可能である。このようにパターン幅がかなり狭い場合であっても、θを0.5°まで傾けることにより移動量を確保することができた。
In addition, comparing Examples 1 to 3, it is more preferable to use a combination of an iso region and a λ / 2 region or a combination of two λ / 4 regions as a method for producing a pattern retardation film. In the combination of the two λ / 2 regions in Example 2, the slow axis direction of the liquid crystal rotates by 90 ° between two adjacent phase difference regions, so that a liquid crystal alignment defect occurs at the boundary portion of the phase difference region. Therefore, it is presumed that the gradation change is B evaluation. On the other hand, in the combination of the λ / 4 regions of Example 1, it is surmised that the slow axis direction rotates only 45 ° between the phase difference regions, so that an alignment defect at the boundary portion hardly occurs and a good result is obtained. In Comparative Example 2, continuous light control is possible with a narrow pattern width, but it is difficult to control the movement amount for light control with a small relative movement amount. Even with the same pattern width, a sufficient amount of movement can be ensured by setting θ to 1 ° as in the third embodiment. In Example 6, the pattern width is considerably narrow, and continuous light control can be performed. Thus, even when the pattern width is quite narrow, the amount of movement can be secured by tilting θ to 0.5 °.
10 調光装置
12 調光部
14 移動部
16 制御部
20 第1の偏光子
22 第2の偏光子
24 位相差部
30a 第1のパターン位相差膜
30b 第2のパターン位相差膜
31 第1の位相差領域
32 第2の位相差領域
33 第3の位相差領域
34 第4の位相差領域
40 パターンマスク
42 開口部
44 非開口部 DESCRIPTION OFSYMBOLS 10 Light control apparatus 12 Light control part 14 Moving part 16 Control part 20 1st polarizer 22 2nd polarizer 24 Phase difference part 30a 1st pattern phase difference film 30b 2nd pattern phase difference film 31 1st Phase difference region 32 Second phase difference region 33 Third phase difference region 34 Fourth phase difference region 40 Pattern mask 42 Opening 44 Non-opening
12 調光部
14 移動部
16 制御部
20 第1の偏光子
22 第2の偏光子
24 位相差部
30a 第1のパターン位相差膜
30b 第2のパターン位相差膜
31 第1の位相差領域
32 第2の位相差領域
33 第3の位相差領域
34 第4の位相差領域
40 パターンマスク
42 開口部
44 非開口部 DESCRIPTION OF
Claims (4)
- 第1の偏光子と、第1のパターン位相差膜と、第2のパターン位相差膜と、第2の偏光子とをこの順に積層し、前記第1のパターン位相差膜と前記第2のパターン位相差膜の相対位置を一軸方向に沿って移動させることにより全体の透過光量を調節することができる調光装置であって、
前記第1のパターン位相差膜および前記第2のパターン位相差膜が、位相差値および遅相軸の向きのうち少なくとも一方が異なる2つの位相差領域を同じ幅で交互に配置した該幅が1μm以上から500μm以下のストライプ状のパターンで形成され、
前記一軸方向に対して、前記ストライプ状のパターンの長辺方向が0°より大きく90°より小さい範囲の傾きを有する調光装置。 A first polarizer, a first pattern retardation film, a second pattern retardation film, and a second polarizer are stacked in this order, and the first pattern retardation film and the second pattern retardation film are stacked in this order. A light control device capable of adjusting the entire transmitted light amount by moving the relative position of the pattern retardation film along a uniaxial direction,
The first pattern phase difference film and the second pattern phase difference film have two widths in which at least one of the phase difference value and the direction of the slow axis is alternately arranged with the same width. Formed in a stripe pattern of 1 μm or more to 500 μm or less,
The light control apparatus which has the inclination of the range whose long side direction of the said striped pattern is larger than 0 degree and smaller than 90 degrees with respect to the said uniaxial direction. - 前記第1のパターン位相差膜および前記第2のパターン位相差膜のストライプ状のパターンの長辺方向と前記一軸方向とがなす角度θと、前記ストライプ状のパターンの幅wが、
0.5mm≦ w/sinθ≦100mm
の関係を満たす請求項1に記載の調光装置。 The angle θ formed by the long-side direction of the stripe pattern of the first pattern retardation film and the second pattern retardation film and the uniaxial direction, and the width w of the stripe pattern are
0.5mm ≦ w / sinθ ≦ 100mm
The light control device according to claim 1, satisfying the relationship: - 前記第1のパターン位相差膜および前記第2のパターン位相差膜のうち少なくとも一方が、前記位相差値がゼロである位相差領域と位相差値がゼロ以外の位相差値を有する位相差領域で形成された前記ストライプ状のパターンを有するパターン位相差膜である請求項1または2に記載の調光装置。 At least one of the first pattern retardation film and the second pattern retardation film has a retardation area where the retardation value is zero and a retardation area where the retardation value has a retardation value other than zero. The light control device according to claim 1, wherein the light control device is a pattern retardation film having the stripe-like pattern formed in step (1).
- 前記第1のパターン位相差膜および前記第2のパターン位相差膜のうち少なくとも一方が、互いに隣接する位相差領域の遅相軸のなす角が40°以上から50°以下である位相差領域で形成された前記ストライプ状のパターンを有するパターン位相差膜である請求項1または2に記載の調光装置。 At least one of the first pattern phase difference film and the second pattern phase difference film is a phase difference region in which an angle formed by the slow axes of the phase difference regions adjacent to each other is 40 ° to 50 °. The light control device according to claim 1, wherein the light control device is a patterned phase difference film having the formed stripe pattern.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-078079 | 2017-04-11 | ||
JP2017078079 | 2017-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190282A1 true WO2018190282A1 (en) | 2018-10-18 |
Family
ID=63792587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014824 WO2018190282A1 (en) | 2017-04-11 | 2018-04-06 | Light adjusting device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018190282A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201900005460A1 (en) | 2019-04-09 | 2020-10-09 | Paolo Michele Soggiu | DOOR OF A LOW TEMPERATURE STORAGE EQUIPMENT IN THE FOOD SECTOR |
WO2022034322A3 (en) * | 2020-08-11 | 2022-06-16 | Vladimir Bodrozic | Light modification apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150071655A1 (en) * | 2012-01-23 | 2015-03-12 | Smartershade, Inc. | Mechanical translation of a variable radiation transmission device |
WO2015033932A1 (en) * | 2013-09-03 | 2015-03-12 | 富士フイルム株式会社 | Optical filter and optical-filter-equipped display device |
JP2016028301A (en) * | 2014-01-24 | 2016-02-25 | 大日本印刷株式会社 | Light control sheet and light control board |
JP2016506533A (en) * | 2013-09-30 | 2016-03-03 | エルジー・ケム・リミテッド | Optical element |
JP2017021124A (en) * | 2015-07-09 | 2017-01-26 | 大日本印刷株式会社 | Dimmer and dimming plate |
JP2018072518A (en) * | 2016-10-27 | 2018-05-10 | 大日本印刷株式会社 | Dimming device, dimming plate, and phase difference plate |
-
2018
- 2018-04-06 WO PCT/JP2018/014824 patent/WO2018190282A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150071655A1 (en) * | 2012-01-23 | 2015-03-12 | Smartershade, Inc. | Mechanical translation of a variable radiation transmission device |
WO2015033932A1 (en) * | 2013-09-03 | 2015-03-12 | 富士フイルム株式会社 | Optical filter and optical-filter-equipped display device |
JP2016506533A (en) * | 2013-09-30 | 2016-03-03 | エルジー・ケム・リミテッド | Optical element |
JP2016028301A (en) * | 2014-01-24 | 2016-02-25 | 大日本印刷株式会社 | Light control sheet and light control board |
JP2017021124A (en) * | 2015-07-09 | 2017-01-26 | 大日本印刷株式会社 | Dimmer and dimming plate |
JP2018072518A (en) * | 2016-10-27 | 2018-05-10 | 大日本印刷株式会社 | Dimming device, dimming plate, and phase difference plate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201900005460A1 (en) | 2019-04-09 | 2020-10-09 | Paolo Michele Soggiu | DOOR OF A LOW TEMPERATURE STORAGE EQUIPMENT IN THE FOOD SECTOR |
WO2022034322A3 (en) * | 2020-08-11 | 2022-06-16 | Vladimir Bodrozic | Light modification apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6719558B2 (en) | Optical device and display device | |
JP6667983B2 (en) | Laminate and manufacturing method thereof, polarizing plate, liquid crystal display, organic EL display | |
US9122013B2 (en) | Variable transmission window | |
JP4553769B2 (en) | Optical element manufacturing method | |
JP6713062B2 (en) | Optical film and manufacturing method thereof | |
JP6641005B2 (en) | Viewing angle control film and image display device | |
EP3491434A1 (en) | Method for generating alignment on top of a liquid crystal polymer material | |
JP6038036B2 (en) | Manufacturing method of optical retardation element | |
US10998528B2 (en) | Organic EL image display device | |
WO2018190282A1 (en) | Light adjusting device | |
US10585223B2 (en) | Depolarizing film, depolarizing member, and method for producing depolarizing film | |
JP2011075817A (en) | Birefringence control in-cell color filter substrate, method for producing the same and stereoscopic video display apparatus | |
JP2013076851A (en) | Liquid crystal composition | |
JPWO2018016549A1 (en) | Patterned optically anisotropic layer and optical laminate | |
KR101740768B1 (en) | Optical member | |
WO2013077295A1 (en) | Pattern phase difference film, method for producing same, and stereoscopic image display device | |
JP5516024B2 (en) | Manufacturing method of retardation substrate | |
US20200020888A1 (en) | Organic el image display device | |
JP2020052411A (en) | Laminate and manufacturing method of the same, polarization plate, liquid crystal display device, and organic el display device | |
JP5516023B2 (en) | Method of manufacturing retardation substrate, retardation substrate, and transflective liquid crystal display device | |
JP2014126581A (en) | Optical retardation element and method for manufacturing the same | |
JP2015018075A (en) | Phase difference element and manufacturing method thereof | |
JPWO2019142856A1 (en) | A method for producing a composition, a retardation film for an organic electroluminescence display element, and a retardation film for an organic electroluminescence display element. | |
JP2011169933A (en) | Liquid crystal display device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18785052 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18785052 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |