WO2018186478A1 - Rare earth sintered magnet, method for producing rare earth sintered body, method for producing rare earth sintered magnet, and linear motor using rare earth sintered magnet - Google Patents
Rare earth sintered magnet, method for producing rare earth sintered body, method for producing rare earth sintered magnet, and linear motor using rare earth sintered magnet Download PDFInfo
- Publication number
- WO2018186478A1 WO2018186478A1 PCT/JP2018/014632 JP2018014632W WO2018186478A1 WO 2018186478 A1 WO2018186478 A1 WO 2018186478A1 JP 2018014632 W JP2018014632 W JP 2018014632W WO 2018186478 A1 WO2018186478 A1 WO 2018186478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- earth sintered
- magnet
- producing
- magnetic flux
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/02—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
- H02K15/03—Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
Definitions
- the method for producing a rare earth sintered magnet according to the present invention is characterized in that the method for producing a rare earth sintered body further includes a step of magnetizing the rare earth sintered body.
- the surface magnetic flux density distribution is highly consistent even when the measurement line 10 is moved along the B-side direction. That is, the surface magnetic flux density distribution having substantially the same shape can be obtained regardless of whether the measurement line 10 is set near the A side or near the center away from the A side. Further, the surface magnetic flux density distribution has high symmetry (line symmetry) about an axis passing through the center of the measurement line 10 (axis passing through the maximum value of the surface magnetic flux density).
- the orientation direction ⁇ of the easy magnetization axis is Includes areas that are 0 ° ⁇ 20 °.
- Example 1 A neodymium / iron / boron alloy is pulverized with a jet mill pulverizer so that the center particle diameter becomes 3 ⁇ m, and styrene / isoprene block copolymer (SIS resin: Q3390 manufactured by Nippon Zeon Co., Ltd.) is mixed with the pulverized magnet powder. And it filled and shape
- die of A side x B side x C side 19mmx14mmx4mm. Specifically, 4 parts by weight of SBS resin, 1.5 parts of 1-octadecene and 4.5 parts of 1-octadecene are mixed with 100 parts by weight of magnet powder to prepare a compound comprising magnetic powder and a binder component.
- SBS resin 1.5 parts of 1-octadecene and 4.5 parts of 1-octadecene are mixed with 100 parts by weight of magnet powder to prepare a compound comprising magnetic powder and a binder component.
- the measurement point moved from the center in the width direction by one distance x to the end of one magnet Is expressed as Fc (x), and the surface magnetic flux density at the measurement point moved by the distance x from the center in the width direction to the other magnet end is expressed as Fd (x).
- the sex Q is represented by the following formula (2). In the formula, N is the number of measurement points in each direction (9.5 mm / 0.004 mm).
- the content of the thermoplastic part in the resin is preferably 80% or less, more preferably 60% or less. Further, it is necessary to uniformly disperse the magnetic powder in the compound, and it is desirable to add a hydrocarbon-based material having a triple bond at the terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Linear Motors (AREA)
Abstract
Description
先ず、本発明に係る希土類焼結磁石1の構成の一例について説明する。図1は希土類焼結磁石1の第1の例を示した全体図である。また、図2は希土類焼結磁石1の第2の例を示した全体図である。図1及び図2に示すように、本発明に係る希土類焼結磁石1は、長さ方向の長さ寸法(B辺)と、該長さ方向に直交する幅方向(A辺)とからなる第一の表面2を備える。また、当該第一の表面2と対向する位置(裏側)にある第二の表面3と、第一の表面2との間において、厚み方向の厚み寸法(C辺)を有する。 [Configuration of rare earth sintered magnet]
First, an example of the configuration of the rare earth sintered
次に、上述した希土類焼結磁石1を用いたリニアモータ15について説明する。リニアモータ15は、図11に示すように固定子16と、固定子16の上面側に対向して配置され、固定子16上を磁極の配列方向(図11の左右方向)に沿って相対移動する可動子17とから基本的に構成される。特に図11では図2に示す希土類焼結磁石1を用いた例を示す。尚、図11では、特にリニアモータとして電機子可動形リニア直流モータを例に挙げて説明するが、他のリニアモータ(例えばリニア誘導モータ、リニア同期モータ、コイル可動形リニア直流モータ、磁石可動形リニア直流モータ)に対しても本発明は適用可能である。 [Configuration of linear motor]
Next, the
次に、本発明に係る希土類焼結磁石1及びその前駆体である希土類焼結体の製造方法の一実施形態について説明する。 [Method of manufacturing rare earth sintered body and rare earth sintered magnet]
Next, an embodiment of a method for producing a rare earth sintered
ネオジム・鉄・ボロン系合金をジェットミル粉砕装置で中心粒子径が3μmとなるように粉砕し、粉砕後の磁石粉末に、スチレン・イソプレンブロックコポリマー(SIS樹脂:日本ゼオン株式会社製 Q3390)を混合し、A辺×B辺×C辺=19mm×14mm×4mmの金型に充填して成形した。具体的には、磁石粉末100重量部に対して、SBS樹脂を4重量部、1-オクタデシンを1.5部、1-オクタデセンを4.5部混合し、磁粉とバインダー成分からなるコンパウンドを調製した。この成形体に、多層コイルと高容量コンデンサーとを備えるパルス磁場発生装置を用いて、環状磁場の一部を0.7ミリ秒以下で、A辺とC辺からなる面に対して平行方向に印加し、これを3回繰り返して、磁石材料粒子の磁化容易軸を図2のように極異方性配向させた。なお、環状磁場を印加した時のコンパウンドの温度は120℃であった。極異方性配向した成形体は、0.8MPaの加圧水素雰囲気下で、500℃で仮焼した。この仮焼体をグラファイト型に収めて、B辺と平行方向に加圧しながら、1000℃で焼結して、A辺が19mm、B辺が6.8mm、C辺(厚み)が4mmの希土類焼結体(磁石前駆体)を得た。この希土類焼結体を、パルス磁場発生装置を着磁器として用いて、最大磁束密度がほぼ飽和するまで着磁し、希土類焼結磁石を得た。 Example 1
A neodymium / iron / boron alloy is pulverized with a jet mill pulverizer so that the center particle diameter becomes 3 μm, and styrene / isoprene block copolymer (SIS resin: Q3390 manufactured by Nippon Zeon Co., Ltd.) is mixed with the pulverized magnet powder. And it filled and shape | molded the metal mold | die of A side x B side x C side = 19mmx14mmx4mm. Specifically, 4 parts by weight of SBS resin, 1.5 parts of 1-octadecene and 4.5 parts of 1-octadecene are mixed with 100 parts by weight of magnet powder to prepare a compound comprising magnetic powder and a binder component. did. Using this pulsed magnetic field generator having a multilayer coil and a high-capacitance capacitor, a part of the annular magnetic field is 0.7 milliseconds or less in a direction parallel to the surface composed of the A side and the C side. This was repeated three times, and the easy axis of magnetization of the magnet material particles was polar-anisotropically oriented as shown in FIG. The temperature of the compound when applying the annular magnetic field was 120 ° C. The polar anisotropically oriented compact was calcined at 500 ° C. under a pressurized hydrogen atmosphere of 0.8 MPa. This calcined body is placed in a graphite mold and sintered at 1000 ° C. while being pressed in a direction parallel to the B side, and a rare earth having an A side of 19 mm, a B side of 6.8 mm and a C side (thickness) of 4 mm. A sintered body (magnet precursor) was obtained. This rare earth sintered body was magnetized until the maximum magnetic flux density was almost saturated using a pulsed magnetic field generator as a magnetizer to obtain a rare earth sintered magnet.
A辺が20mm、B辺が20mm、C辺(厚み)が4mmの寸法であり、磁化容易軸の配向方向がC辺と平行な焼結ネオジム磁石(材質N40)をネオマグ株式会社より購入した。 (Comparative Example 1)
A sintered neodymium magnet (material N40) having a dimension of 20 mm on the A side, 20 mm on the B side, and 4 mm on the C side (thickness) and the orientation direction of the easy magnetization axis parallel to the C side was purchased from Neomag Co., Ltd.
C辺が10mmである、比較例1と同様の焼結ネオジム磁石をネオマグ株式会社より購入した。 (Comparative Example 2)
A sintered neodymium magnet similar to Comparative Example 1 having a C side of 10 mm was purchased from Neomag Co., Ltd.
コンパウンドの成形寸法を変更した以外は実施例1と同様にして実験を行った。なお、実施例2では19mm×14mm×2mmの金型、実施例3では19mm×14mm×6mmの金型を用いて成形を行った。それに伴い、希土類焼結体のC辺(厚み)はそれぞれ2mm、6mmとなった。 (Examples 2 and 3)
The experiment was performed in the same manner as in Example 1 except that the molding dimensions of the compound were changed. In Example 2, molding was performed using a 19 mm × 14 mm × 2 mm mold, and in Example 3, a 19 mm × 14 mm × 6 mm mold was used. Accordingly, the C side (thickness) of the rare earth sintered body was 2 mm and 6 mm, respectively.
実施例1とは異なり、バインダー成分として、スチレン・ブタジエンエラストマー(SBS樹脂 JSR株式会社製 TR2250)を使用した。具体的には、磁石粉末100重量部に対して、SBS樹脂を5重量部、1-オクタデシンを1.2部、1-オクタデセンを3.6部混合し、磁粉とバインダー成分からなるコンパウンドを調製した。 Example 4
Unlike Example 1, styrene-butadiene elastomer (SBS resin, TR2250 manufactured by JSR Corporation) was used as a binder component. Specifically, 5 parts by weight of SBS resin, 1.2 parts of 1-octadecene and 3.6 parts of 1-octadecene are mixed with 100 parts by weight of magnet powder to prepare a compound comprising magnetic powder and a binder component. did.
実施例1とは異なり、バインダー成分として、スチレン・ブタジエンエラストマー(SBS樹脂 JSR株式会社製 TR2003)を使用した。具体的には、磁石粉末100重量部に対して、SBS樹脂を4.9重量部、1-オクタデシンを1.2部、1-オクタデセンを3.6部を混合し、磁粉とバインダー成分からなるコンパウンドを調製した。 (Example 5)
Unlike Example 1, styrene-butadiene elastomer (SBS resin TR2003, manufactured by JSR Corporation) was used as a binder component. Specifically, 4.9 parts by weight of SBS resin, 1.2 parts of 1-octadecene and 3.6 parts of 1-octadecene are mixed with 100 parts by weight of magnet powder, and consist of magnetic powder and a binder component. A compound was prepared.
実施例1とは異なり、バインダー成分として、スチレン・ブタジエンエラストマー(SBS樹脂 JSR株式会社製 TR2003)を使用した。具体的には、磁石粉末100重量部に対して、SBS樹脂を4重量部、1-オクタデシンを1.5部、1-オクタデセンを4.5部を混合し、磁粉とバインダー成分からなるコンパウンドを調製した。 (Example 6)
Unlike Example 1, styrene-butadiene elastomer (SBS resin TR2003, manufactured by JSR Corporation) was used as a binder component. Specifically, 4 parts by weight of SBS resin, 1.5 parts of 1-octadecene and 4.5 parts of 1-octadecene are mixed with 100 parts by weight of magnet powder, and a compound comprising magnetic powder and a binder component is mixed. Prepared.
コンパウンドの成形寸法を変更した以外は実施例1と同様にして実験を行った。なお、比較例3では19mm×14mm×10mmの金型を用いて成形を行った。それに伴い、希土類焼結体のC辺(厚み)は10mmとなった。 (Reference example)
The experiment was performed in the same manner as in Example 1 except that the molding dimensions of the compound were changed. In Comparative Example 3, molding was performed using a 19 mm × 14 mm × 10 mm mold. Accordingly, the C side (thickness) of the rare earth sintered body was 10 mm.
[表面磁束波高値]
上記実施例及び比較例1、2の希土類焼結磁石を、アイエムエス製の三次元磁界ベクトル分布測定装置(MTX-5R)により、表面磁束密度を測定した。測定は、非磁性体の固定治具を用いて磁石単体の表面磁束密度を測定した。また、図12に示すように第一の表面2から1mmの距離における表面磁束密度を、B辺中心を通るA辺と平行に設定した測定ライン10に沿って測定を行った。尚、測定は、磁束密度が高い第一の表面2以外に、その反対側にある磁束密度が低い第二の表面3に対しても行った。 <Evaluation>
[Surface flux peak value]
The surface magnetic flux density of the rare earth sintered magnets of Examples and Comparative Examples 1 and 2 was measured with a three-dimensional magnetic field vector distribution measuring device (MTX-5R) manufactured by IMS. The measurement was performed by measuring the surface magnetic flux density of a single magnet using a non-magnetic fixing jig. Also, as shown in FIG. 12, the surface magnetic flux density at a distance of 1 mm from the
更に、第一の表面2の測定ラインに沿った磁束密度分布について、測定ラインをB辺方向に沿って移動させた場合における一致性について評価を行った。先ず、図14に示すように、B辺を4等分し、中央の第1の測定ライン10以外に、手前側の第2の測定ライン11と奥側の第3の測定ライン12について、それぞれ第1の測定ライン10と同様にA辺と平行な方向に磁石表面から1mm離れた位置に設定した。そして、第2の測定ライン11及び第3の測定ライン12の各端部からもう一方の端部まで0.004mm毎にサンプリングする設定とし、磁石表面から法線方向に対する磁束密度を測定した。そして、第2の測定ライン11で得られた表面磁束密度aと第3の測定ライン12で得られた表面磁束密度bを用いて、磁束密度分布の一致性を算出した。 [B-side direction consistency]
Furthermore, about the magnetic flux density distribution along the measurement line of the
更に、第一の表面2の測定ラインに沿った磁束密度分布について、測定ラインに沿った対称性について評価を行った。先ず、図12に示す測定ライン10の端部からもう一方の端部まで0.004mm毎にサンプリングする設定とし、磁石表面から1mm離れた位置の表面磁束を測定した。得られた表面磁束密度の絶対値に対して、表面磁束密度の対称性を算出した。 [Symmetry along the measurement line]
Furthermore, the symmetry along the measurement line was evaluated for the magnetic flux density distribution along the measurement line of the
東洋精機製作所製のキャピログラフ1DPMD―Cにより、溶融粘度を測定した。加熱したシリンダー中で溶融した樹脂を、一定速度で押し出し、その荷重をロードセルによって検出した。また、下記の(3)式~(6)式に基づき溶融粘度η(Pa・s)を算出した。 [Compound melt viscosity]
The melt viscosity was measured with a Capillograph 1DPMD-C manufactured by Toyo Seiki Seisakusho. The resin melted in the heated cylinder was extruded at a constant speed, and the load was detected by a load cell. The melt viscosity η (Pa · s) was calculated based on the following formulas (3) to (6).
上島製作所製のショアA硬度計(HD―1100)により、ショアA硬度を測定した。金型を用いた圧縮成形で作製した厚み4mm程度のコンパウンドを2枚重ねた試料の面内で6mm以上離れた位置5点で硬度計を押し込み、押し込んでから15秒後に目盛の指す値を読み取った。測定した5点の中央値をコンパウンドのショアA硬度とした。
実施例1~6では、室温でのショアA硬度がA30以上となっていることが分かった。この硬度以上とすることで室温での金型からの離型性が向上し、生産性を向上することが可能である。 [Compound Shore A hardness]
The Shore A hardness was measured with a Shore A hardness meter (HD-1100) manufactured by Ueshima Seisakusho. Press the hardness meter at five points at a distance of 6 mm or more in the surface of the sample where two 4 mm thick compounds produced by compression molding using a mold were stacked, and read the value indicated on the
In Examples 1 to 6, it was found that the Shore A hardness at room temperature was A30 or more. By setting it as this hardness or more, the releasability from the metal mold | die at room temperature improves, and it is possible to improve productivity.
コンパウンドに印加するパルス磁場をC辺(厚み)方向に平行な一様なパラレル磁場に変更し、コンパウンド組成と配向条件を表3のように変更した以外は実施例1と同様にして実験を行った。なお、焼結は加圧力を作用させることなく、減圧雰囲気にて1000℃で焼結させることで行った。配向度は希土類焼結磁石に対して80kOeの磁場を印加したときのJsに対する、Brの割合(Br/Js×100[%])を示す。 (Reference example: Degree of orientation of parallel oriented magnet)
The experiment was carried out in the same manner as in Example 1 except that the pulse magnetic field applied to the compound was changed to a uniform parallel magnetic field parallel to the C side (thickness) direction, and the compound composition and orientation conditions were changed as shown in Table 3. It was. Sintering was performed by sintering at 1000 ° C. in a reduced pressure atmosphere without applying pressure. The degree of orientation indicates the ratio of Br to Br (Jr / Js × 100 [%]) when a magnetic field of 80 kOe is applied to the rare earth sintered magnet.
配向時の温度におけるコンパウンド溶融粘度が低くなるほど配向度は向上するが、金型からのコンパウンド離型性は悪くなる傾向にある。つまり、低粘度化されたコンパウンドは金型表面への濡れ性が向上するとともに、タック性が発現するため、配向後のコンパウンドを金型から取り出すことが困難となり、生産性が大きく低下する。
The degree of orientation improves as the compound melt viscosity at the orientation temperature decreases, but the compound releasability from the mold tends to deteriorate. That is, the compound having a reduced viscosity improves the wettability to the mold surface and exhibits tackiness, making it difficult to take out the oriented compound from the mold, and the productivity is greatly reduced.
2 第一の表面
3 第二の表面
10~12 測定ライン
15 リニアモータ
16 固定子
17 可動子
18 可動子コア
19 巻線 DESCRIPTION OF
Claims (14)
- 複数の磁石材料粒子が焼結された希土類焼結磁石であって、
表面磁束密度の最大値が350mT~600mTの範囲にあって、
厚みが1.5mm~6mmの範囲にあって、
前記厚み方向に平行な断面が非円形であり、
前記断面において前記磁石材料粒子の磁化容易軸が極異方性配向した領域を有する希土類焼結磁石。 A rare earth sintered magnet in which a plurality of magnet material particles are sintered,
The maximum value of the surface magnetic flux density is in the range of 350 mT to 600 mT,
The thickness is in the range of 1.5 mm to 6 mm,
The cross section parallel to the thickness direction is non-circular,
A rare earth sintered magnet having a region in which the easy axis of magnetization of the magnetic material particles has a polar anisotropic orientation in the cross section. - 前記非円形の断面の前記厚み方向と交差する方向の長さに対する前記厚みの比率が0.1~0.3の範囲にある請求項1に記載の希土類焼結磁石。 The rare earth sintered magnet according to claim 1, wherein a ratio of the thickness to a length in a direction intersecting the thickness direction of the non-circular cross section is in a range of 0.1 to 0.3.
- 厚み方向に平行な断面が非円形である、極異方性配向された領域を有する希土類焼結体の製造方法であって、
磁石粉末および高分子樹脂を含む混合物を成形することにより得られた成形体に対してパルス磁場を印加することにより成形体における少なくとも一部領域を極異方性配向する工程と、
極異方性配向された前記成形体を焼結する工程と、を有する希土類焼結体の製造方法。 A method for producing a rare earth sintered body having a region with polar anisotropy having a non-circular cross section parallel to the thickness direction,
Applying a pulsed magnetic field to a molded body obtained by molding a mixture containing magnet powder and a polymer resin to polar anisotropy at least a part of the molded body;
And a step of sintering the molded body having polar anisotropy orientation. - 希土類焼結体の製造方法であって、
磁石粉末および高分子樹脂を含む混合物を成形することにより得られた成形体に対してパルス磁場を印加することにより、成形体における少なくとも一部領域を配向する工程と、
配向された前記成形体を焼結する工程と、
を有し、
前記混合物の室温でのショアA硬度がA30以上であり、
前記配向する工程は、前記混合物の溶融粘度が900Pa・s以下になる温度で実施される、希土類焼結体の製造方法。 A method for producing a rare earth sintered body,
Applying a pulsed magnetic field to a molded body obtained by molding a mixture containing magnet powder and a polymer resin, thereby orienting at least a part of the molded body;
Sintering the oriented molded body;
Have
The Shore A hardness of the mixture at room temperature is A30 or more,
The method for producing a rare earth sintered body, wherein the step of orienting is performed at a temperature at which the melt viscosity of the mixture becomes 900 Pa · s or less. - 前記配向する工程は、成形体における少なくとも一部領域を極異方性配向する工程を有する、請求項4に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to claim 4, wherein the step of orienting includes a step of orienting at least a part of the molded body in a polar anisotropic manner.
- パルス磁場を印加する成形体の厚みが1.5mm~6mmの範囲である、請求項3~4の何れか1項に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to any one of claims 3 to 4, wherein the thickness of the compact to which the pulse magnetic field is applied is in the range of 1.5 mm to 6 mm.
- 前記混合物の室温でのショアA硬度がA30以上である、請求項3に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to claim 3, wherein the mixture has a Shore A hardness of A30 or more at room temperature.
- 前記極異方性配向する工程は、前記混合物の溶融粘度が900Pa・s以下になる温度で行う、請求項3または5に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to claim 3 or 5, wherein the polar anisotropic orientation step is performed at a temperature at which the melt viscosity of the mixture is 900 Pa · s or less.
- 前記極異方性配向する工程は、前記混合物の溶融粘度が300Pa・s以下になる温度で行う、請求項3または5に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to claim 3 or 5, wherein the step of polar anisotropic orientation is performed at a temperature at which the melt viscosity of the mixture becomes 300 Pa · s or less.
- 焼結する工程は、前記成形体を加圧下で焼結する請求項3~9の何れか1項に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to any one of claims 3 to 9, wherein in the sintering step, the molded body is sintered under pressure.
- 前記高分子樹脂はヘテロ原子を含まない炭化水素系樹脂である、請求項3~10の何れか1項に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to any one of claims 3 to 10, wherein the polymer resin is a hydrocarbon resin containing no hetero atom.
- 前記混合物における磁粉粉末の含有量が50~60体積%である、請求項3~11の何れか1項に記載の希土類焼結体の製造方法。 The method for producing a rare earth sintered body according to any one of claims 3 to 11, wherein the content of the magnetic powder in the mixture is 50 to 60% by volume.
- 前記成形体を焼結する工程の後、さらに、
焼結体を着磁する工程
を有する、請求項3~12の何れか1項に記載の希土類焼結体の製造方法。 After the step of sintering the molded body,
The method for producing a rare earth sintered body according to any one of claims 3 to 12, further comprising a step of magnetizing the sintered body. - 直線方向に配列された一又は複数の請求項1又は請求項2に記載の希土類焼結磁石と、
前記希土類焼結磁石とエアギャップを介して対向する電機子と、を備え、
前記希土類焼結磁石と前記電機子の一方を固定子とし、他方を可動子として、前記固定子と前記可動子が相対移動するリニアモータ。 One or more rare earth sintered magnets according to claim 1 or 2 arranged in a linear direction;
An armature opposed to the rare earth sintered magnet through an air gap,
A linear motor in which one of the rare earth sintered magnet and the armature is a stator and the other is a mover, and the stator and the mover are relatively moved.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019511311A JP7223686B2 (en) | 2017-04-07 | 2018-04-05 | Rare earth sintered magnet, manufacturing method of rare earth sintered body, manufacturing method of rare earth sintered magnet, and linear motor using rare earth sintered magnet |
US16/500,174 US20220044852A1 (en) | 2017-04-07 | 2018-04-05 | Rare earth-sintered magnet, method of manufacturing a rare earth-sintered body, method of manufacturing a rare earth-sintered magnet, and linear motor using a rare earth-sintered magnet |
CN201880020872.0A CN110622262B (en) | 2017-04-07 | 2018-04-05 | Rare earth sintered magnet, method for producing same, and linear motor |
KR1020197028344A KR20190131502A (en) | 2017-04-07 | 2018-04-05 | Rare earth sintered magnet, rare earth sintered magnet manufacturing method, rare earth sintered magnet manufacturing method, linear motor using rare earth sintered magnet |
EP18781747.3A EP3608926A4 (en) | 2017-04-07 | 2018-04-05 | Rare earth sintered magnet, method for producing rare earth sintered body, method for producing rare earth sintered magnet, and linear motor using rare earth sintered magnet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-076612 | 2017-04-07 | ||
JP2017076612 | 2017-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186478A1 true WO2018186478A1 (en) | 2018-10-11 |
Family
ID=63712870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014632 WO2018186478A1 (en) | 2017-04-07 | 2018-04-05 | Rare earth sintered magnet, method for producing rare earth sintered body, method for producing rare earth sintered magnet, and linear motor using rare earth sintered magnet |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220044852A1 (en) |
EP (1) | EP3608926A4 (en) |
JP (1) | JP7223686B2 (en) |
KR (1) | KR20190131502A (en) |
CN (1) | CN110622262B (en) |
WO (1) | WO2018186478A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112768170B (en) * | 2020-12-30 | 2022-11-01 | 烟台正海磁性材料股份有限公司 | Rare earth permanent magnet and preparation method thereof |
DE102021201414A1 (en) | 2021-02-15 | 2022-08-18 | Mimplus Technologies Gmbh & Co. Kg | Process for producing a raw magnet from a magnetic raw material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427208A (en) * | 1987-04-07 | 1989-01-30 | Hitachi Metals Ltd | Cylindrical permanent magnet, motor using same and manufacture thereof |
JP2004297843A (en) | 2003-03-25 | 2004-10-21 | Hitachi Metals Ltd | Linear motor |
JP2005317845A (en) * | 2004-04-30 | 2005-11-10 | Minebea Co Ltd | Anisotropic bond magnet and its manufacturing method |
JP2010104136A (en) * | 2008-10-23 | 2010-05-06 | Mitsubishi Electric Corp | Linear motor |
JP2010166703A (en) | 2009-01-15 | 2010-07-29 | Toshiba Corp | Permanent magnet rotating electrical machine |
WO2015121917A1 (en) * | 2014-02-12 | 2015-08-20 | 日東電工株式会社 | Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor |
JP2017076612A (en) | 2015-10-13 | 2017-04-20 | 三井金属鉱業株式会社 | Lithium air secondary battery |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6304162B1 (en) * | 1999-06-22 | 2001-10-16 | Toda Kogyo Corporation | Anisotropic permanent magnet |
JP3865351B2 (en) * | 1999-08-31 | 2007-01-10 | 株式会社Neomax | Magnetic circuit for actuator |
JP2002325421A (en) | 2001-02-23 | 2002-11-08 | Canon Inc | Linear motor, stage apparatus using the same aligner, and device manufacturing method |
CN1228794C (en) * | 2001-07-30 | 2005-11-23 | 株式会社新王磁材 | Rare earth magnet and method of magnetizing same |
WO2005008862A1 (en) * | 2003-07-22 | 2005-01-27 | Aichi Steel Corporation Ltd. | Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor |
JP2006237067A (en) | 2005-02-22 | 2006-09-07 | Tdk Corp | Ring-like rare earth sintered magnet and manufacturing method thereof |
KR100981218B1 (en) * | 2006-11-27 | 2010-09-10 | 파나소닉 주식회사 | Permanent magnet rotor and motor using it |
JP5443718B2 (en) | 2008-08-28 | 2014-03-19 | Thk株式会社 | Linear motor system and control device |
JP6556984B2 (en) | 2014-07-29 | 2019-08-07 | 日東電工株式会社 | Method for manufacturing permanent magnet and method for manufacturing rotating electrical machine |
TWI682409B (en) * | 2015-03-24 | 2020-01-11 | 日商日東電工股份有限公司 | Rare earth magnet and linear motor using the magnet |
TWI679658B (en) * | 2015-03-24 | 2019-12-11 | 日商日東電工股份有限公司 | Rare earth permanent magnet and rotating machine with rare earth permanent magnet |
-
2018
- 2018-04-05 WO PCT/JP2018/014632 patent/WO2018186478A1/en active Application Filing
- 2018-04-05 JP JP2019511311A patent/JP7223686B2/en active Active
- 2018-04-05 CN CN201880020872.0A patent/CN110622262B/en active Active
- 2018-04-05 US US16/500,174 patent/US20220044852A1/en not_active Abandoned
- 2018-04-05 KR KR1020197028344A patent/KR20190131502A/en active Pending
- 2018-04-05 EP EP18781747.3A patent/EP3608926A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6427208A (en) * | 1987-04-07 | 1989-01-30 | Hitachi Metals Ltd | Cylindrical permanent magnet, motor using same and manufacture thereof |
JP2004297843A (en) | 2003-03-25 | 2004-10-21 | Hitachi Metals Ltd | Linear motor |
JP2005317845A (en) * | 2004-04-30 | 2005-11-10 | Minebea Co Ltd | Anisotropic bond magnet and its manufacturing method |
JP2010104136A (en) * | 2008-10-23 | 2010-05-06 | Mitsubishi Electric Corp | Linear motor |
JP2010166703A (en) | 2009-01-15 | 2010-07-29 | Toshiba Corp | Permanent magnet rotating electrical machine |
WO2015121917A1 (en) * | 2014-02-12 | 2015-08-20 | 日東電工株式会社 | Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor |
JP2017076612A (en) | 2015-10-13 | 2017-04-20 | 三井金属鉱業株式会社 | Lithium air secondary battery |
Non-Patent Citations (1)
Title |
---|
See also references of EP3608926A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20190131502A (en) | 2019-11-26 |
JP7223686B2 (en) | 2023-02-16 |
EP3608926A4 (en) | 2021-01-13 |
EP3608926A1 (en) | 2020-02-12 |
CN110622262B (en) | 2022-11-15 |
JPWO2018186478A1 (en) | 2020-05-14 |
CN110622262A (en) | 2019-12-27 |
US20220044852A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6648111B2 (en) | Sintered body for forming rare earth magnet and rare earth sintered magnet | |
KR102421822B1 (en) | Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet | |
US10629348B2 (en) | Permanent magnet unit, rotating machine having permanent magnet unit, and method for manufacturing permanent magnet unit | |
US9646751B2 (en) | Arcuate magnet having polar-anisotropic orientation, and method and molding die for producing it | |
WO2012000294A1 (en) | Neodymium-iron-boron magnet having gradient coercive force and method for producing the same | |
US20190228888A1 (en) | Rare-earth sintered magnet-forming sintered body, and production method therefor | |
CN107430935A (en) | Method for producing sintered body for forming rare earth permanent magnet having non-parallel easy magnetization axis orientation | |
CN107408877B (en) | Rare earth magnet and linear motor using the same | |
JP7223686B2 (en) | Rare earth sintered magnet, manufacturing method of rare earth sintered body, manufacturing method of rare earth sintered magnet, and linear motor using rare earth sintered magnet | |
US20180221951A1 (en) | Sintered body for forming a rare-earth magnet and rare-earth sintered magnet | |
JP2017050396A (en) | Rare-earth magnet and manufacturing method therefor | |
JP2016042763A (en) | Permanent magnet for rotating electrical machine, method for manufacturing permanent magnet for rotating electrical machine, rotating electrical machine, and method for manufacturing rotating electrical machine | |
WO2020071446A1 (en) | Plurality of motor products, motor, motor group, drive device, and magnet group | |
JP2016042531A (en) | PERMANENT MAGNET, PERMANENT MAGNET MANUFACTURING METHOD, Rotating Electric Machine, and Rotating Electric Machine Manufacturing Method | |
JP2020078231A (en) | Multiple motor products, motors, motors, drives, and magnets | |
JP2015207687A (en) | Permanent magnet, and method for manufacturing permanent magnet | |
WO2017022685A1 (en) | Sintered body for forming rare earth magnet, and rare earth sintered magnet | |
JP6638051B2 (en) | Permanent magnet for rotating electric machine, method for producing permanent magnet for rotating electric machine, rotating electric machine, and method for producing rotating electric machine | |
JP2018152526A (en) | Method for manufacturing rare earth-iron-boron based sintered magnet | |
JP2016032025A (en) | Permanent magnet and method of manufacturing permanent magnet | |
JP2015176978A (en) | nanocomposite magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781747 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511311 Country of ref document: JP Kind code of ref document: A Ref document number: 20197028344 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018781747 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018781747 Country of ref document: EP Effective date: 20191107 |