+

WO2018182006A1 - Diaphragm, electrolytic bath, and method for producing hydrogen - Google Patents

Diaphragm, electrolytic bath, and method for producing hydrogen Download PDF

Info

Publication number
WO2018182006A1
WO2018182006A1 PCT/JP2018/013957 JP2018013957W WO2018182006A1 WO 2018182006 A1 WO2018182006 A1 WO 2018182006A1 JP 2018013957 W JP2018013957 W JP 2018013957W WO 2018182006 A1 WO2018182006 A1 WO 2018182006A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
less
ptfe
electrolysis
mass
Prior art date
Application number
PCT/JP2018/013957
Other languages
French (fr)
Japanese (ja)
Inventor
稔幸 平野
悠介 鈴木
一洋 大海
則和 藤本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019509422A priority Critical patent/JPWO2018182006A1/en
Publication of WO2018182006A1 publication Critical patent/WO2018182006A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type

Definitions

  • the present invention relates to a diaphragm, an electrolytic cell, and a hydrogen production method.
  • Separation membranes are used in various fields such as concentration, purification, filtration, and dialysis, and are being actively developed to optimize their materials, pore size, thickness, and the like.
  • concentration concentration
  • purification purification
  • filtration dialysis
  • dialysis dialysis
  • both safety and performance have been achieved, particularly in new energy fields such as fuel cells and renewable energy, and storage battery fields such as lithium ion secondary batteries.
  • the demand for diaphragms is increasing day by day.
  • Hydrogen is widely used industrially, such as petroleum refining, chemical synthesis materials, metal refining, and stationary fuel cells.
  • FCVs fuel cell vehicles
  • electrolysis of water One of the industrial methods for producing hydrogen is electrolysis of water (hereinafter sometimes simply referred to as “electrolysis”). This method has an advantage that high-purity hydrogen can be obtained as compared with a hydrogen production method for reforming fossil fuels.
  • electrolysis of water an aqueous solution to which an electrolyte such as sodium hydroxide or potassium hydroxide is added is generally used as an electrolytic solution in order to increase conductivity. Water is electrolyzed by applying a direct current to the electrolytic solution through a cathode and an anode.
  • the electrolytic cell for performing electrolysis is divided into an anode chamber and a cathode chamber through a diaphragm.
  • Oxygen gas is generated in the anode chamber, and hydrogen gas is generated in the cathode chamber.
  • the diaphragm is required to have a gas barrier property so that the oxygen gas and the hydrogen gas are not mixed.
  • Patent Document 1 proposes a diaphragm having a diaphragm structure as a diaphragm that exhibits high ion permeability.
  • the diaphragm is required to satisfy both gas barrier properties and high ion permeability using a material having excellent durability.
  • polyethersulfone and polysulfone which are widely used as a diaphragm, have an ether group in the repeating unit, and therefore are gradually hydrolyzed in an acidic or alkaline environment.
  • the pore size and porosity change which may cause a decrease in function as a diaphragm and a decrease in mechanical strength.
  • the hydrolysis rate increases, and this problem becomes more remarkable.
  • the ion transmission efficiency is expressed in terms of conductivity and is closely related to the concentration and temperature of the electrolyte. For example, in a high temperature range of 80 ° C. or higher, the conductivity of the potassium hydroxide aqueous solution is maximum at a concentration of about 30% by mass. For this reason, the use of a diaphragm under high electrical conductivity conditions for the purpose of improving ion transmission efficiency may cause the problem of the hydrolysis rate.
  • PTFE polytetrafluoroethylene
  • ePTFE porous PTFE
  • EPTFE can be produced, for example, by the method described in International Publication No. 1997/20881, that is, extrusion, rolling and stretching of PTFE fine powder mixed with a lubricant.
  • PTFE is a hydrophobic material and there is still no diaphragm suitable for use in alkaline water electrolysis.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a diaphragm having a high function stably for a long period of time.
  • an object of the present invention is to provide a diaphragm that has high hydrolysis resistance in a high temperature and high concentration acidic or alkaline environment and that has both high separation ability and ion permeability.
  • a material containing a hydrophilic inorganic compound and polytetrafluoroethylene (PTFE) has an appropriate average water-permeable pore diameter, maximum pore diameter, porosity, thickness.
  • PTFE polytetrafluoroethylene
  • the present invention is as follows.
  • PTFE polytetrafluoroethylene
  • the average water permeable pore diameter is 0.02 ⁇ m or more and 1.0 ⁇ m or less
  • the maximum pore size is 0.2 ⁇ m or more and 2.0 ⁇ m or less
  • Porosity is 30% or more and 90% or less
  • the thickness is 100 ⁇ m or more and 600 ⁇ m or less
  • the content of the inorganic compound is 70% by mass or more and 95% by mass or less, where the total amount of the PTFE and the inorganic compound is 100% by mass, diaphragm.
  • PTFE polytetrafluoroethylene
  • the average water permeable pore diameter is 0.02 ⁇ m or more and 1.0 ⁇ m or less
  • the maximum pore size is 0.2 ⁇ m or more and 2.0 ⁇ m or less
  • Porosity is 30% or more and 90% or less
  • the thickness is 100 ⁇ m or more and 600 ⁇ m or less
  • the content of the inorganic compound is 70% by mass or more and 95% by mass or less, where the total amount of the PTFE and the inorganic compound is 100% by mass, A diaphragm for alkaline water electrolysis.
  • the hydrophilic inorganic particles include at least one of TiO 2 , Ti (OH) 4 , ZrO 2 , and Zr (OH) 4 , according to any one of [1] to [5] diaphragm.
  • Any of [1] to [7], wherein the tensile breaking strength in the flow (MD) direction is 10 MPa or more and 30 MPa or less and the tensile breaking strength in the (TD) direction orthogonal to the flow direction is 10 MPa or more and 30 MPa or less The diaphragm according to the above.
  • the electrolytic cell has a diaphragm at least between an anode and a cathode,
  • the diaphragm is At least polytetrafluoroethylene (PTFE) and an inorganic compound
  • PTFE polytetrafluoroethylene
  • the average water permeable pore diameter is 0.02 ⁇ m or more and 1.0 ⁇ m or less
  • the maximum pore size is 0.2 ⁇ m or more and 2.0 ⁇ m or less
  • Porosity is 30% or more and 90% or less
  • the thickness is 100 ⁇ m or more and 600 ⁇ m or less
  • Content of the said inorganic compound is 70 mass% or more and 95 mass% or less characterized by the total amount of the said PTFE and the said inorganic compound being 100 mass%
  • the hydrogen manufacturing method characterized by the above-mentioned.
  • a diaphragm for alkaline water electrolysis that has good gas barrier properties and ion permeability, and has high electrolysis efficiency even in high-temperature and long-term electrolysis.
  • the alkaline water electrolysis diaphragm of this embodiment contains at least polytetrafluoroethylene (PTFE) and a hydrophilic inorganic compound, and has an average water-permeable pore diameter of 0.02 ⁇ m to 1.0 ⁇ m and a maximum pore diameter of 0.2 ⁇ m to 2.0 ⁇ m.
  • PTFE polytetrafluoroethylene
  • the porosity is 30% or more and 90% or less
  • the thickness is 100 ⁇ m or more and 600 ⁇ m or less
  • the content of the hydrophilic inorganic compound is 70% by mass or more and 95% by mass, where the total amount of PTFE and hydrophilic inorganic compound is 100% by mass. It is characterized by being not more than mass%.
  • the diaphragm for alkaline water electrolysis in the present embodiment is a porous film containing polytetrafluoroethylene.
  • the PTFE contained in the diaphragm may be appropriately selected from various PTFEs, and among them, PTFE fine powder is preferable.
  • PTFE fine powder By using PTFE fine powder, the tensile strength of the diaphragm can be increased.
  • PTFE fine powder is obtained by coagulating and drying an aqueous dispersion (PTFE dispersion) of PTFE fine particles (for example, PTFE fine particles having an average particle size of 0.1 to 0.5 ⁇ m) obtained by emulsion polymerization of tetrafluoroethylene.
  • PTFE powder produced by The average particle size of the PTFE powder is, for example, 200 to 1000 ⁇ m.
  • PTFE pure PTFE made of a homopolymer obtained by polymerizing only tetrafluoroethylene can be used, or modified PTFE which is a copolymer containing a small amount of other monomers can also be used.
  • a component to be copolymerized with tetrafluoroethylene for example, one or both of hexafluoropropylene and perfluoropropyl vinyl ether can be used.
  • PTFE used in the present embodiment one of these may be used alone, or two or more may be used in combination.
  • PTFE fine powder examples include “Algoflon (trademark, the same applies hereinafter)” of SOLVAY, “Teflon (trademark; same applies hereinafter)” of Mitsui DuPont Fluorochemical Co., “Polyflon” of Daikin (Trademark, the same shall apply hereinafter) ".
  • a PTFE porous film can be produced by using a known general production method as described in, for example, Japanese Patent No. 2810869.
  • the standard specific gravity of the PTFE of the present invention is preferably 2.00 or more and 2.30 or less. If the specific gravity is 2.00 or more, the mechanical strength can be ensured in a wide temperature range, and the function of the diaphragm can be stably expressed. If the specific gravity is 2.30 or less, the workability is good and the pore diameter during film formation can be easily controlled.
  • PTFE may be subjected to a crosslinking treatment.
  • the method for the crosslinking treatment is not particularly limited, and examples thereof include crosslinking by irradiation with radiation such as electron beams and ⁇ rays and thermal crosslinking using a crosslinking agent. These crosslinking treatments are more preferably performed after imparting a porous structure.
  • the diaphragm for alkaline water electrolysis in the present embodiment contains an inorganic compound in order to exhibit high electrolyte solution permeability, high ion permeability, and high gas barrier properties.
  • the inorganic compound may adhere to the surface of the diaphragm, or a part thereof may be buried in a polymer material constituting the porous film.
  • a hydrophilic inorganic compound is preferable, and a hydrophilic inorganic particle or a hydrophilic inorganic porous body in the form of fine particles is more preferable.
  • hydrophilic inorganic particles include zirconium, titanium, bismuth, cerium oxide or hydroxide; periodic table group IV element oxide; periodic table group IV element nitride, and periodic table. And at least one inorganic substance selected from the group consisting of carbides of Group IV elements.
  • oxides of zirconium, titanium, bismuth, cerium, oxides or hydroxides of group IV elements of the periodic table are preferable, and zirconium oxide (ZrO 2 ), zirconium hydroxide (Zr (OH) 4 ), titanium oxide (TiO 2 ), and titanium hydroxide (Ti (OH) 4 ) are more preferable.
  • hydrophilic inorganic particles may be used alone or in combination of two or more.
  • alkaline solutions such as NaOH aqueous solution and KOH aqueous solution are often used.
  • titanate may be used in advance as the hydrophilic inorganic particles.
  • the particle surface of the hydrophilic inorganic particles is polar. Considering the affinity between oxygen molecules and hydrogen molecules with a small polarity and water molecules with a large polarity in an electrolyte solution that is an aqueous solution, water molecules with a large polarity are more easily adsorbed to hydrophilic inorganic particles.
  • the average primary particle size of the hydrophilic inorganic particles is not particularly limited, but is preferably 10 nm or more and 300 nm or less, and more preferably 25.0 nm or more and 250 nm or less.
  • the average primary particle size of the hydrophilic inorganic particles is within this range, when the particles are taken into the pores of the membrane, the particle size of the secondary particles formed by aggregation is larger than the pore size of the membrane, so Of the inorganic particles can be suppressed.
  • the surface area of the secondary particles of the hydrophilic inorganic particles can be increased to make the pores of the diaphragm more hydrophilic.
  • the average primary particle size of the hydrophilic inorganic particles in the diaphragm can be determined by the following method.
  • the measurement sample is observed with a scanning electron microscope (SEM) from the direction perpendicular to the diaphragm surface, and is imaged at a magnification at which the hydrophilic inorganic particles can be observed.
  • the image is binarized using image analysis software, the absolute maximum length is measured for each of the 10 non-aggregated inorganic particles, and the number average is obtained.
  • the average secondary particle size of the hydrophilic inorganic particles is not particularly limited, but is preferably 0.2 ⁇ m or more and 10 ⁇ m or less, and preferably 0.5 ⁇ m or more, from the viewpoint of preventing falling off from the diaphragm and hydrophilization in the pores of the porous membrane. More preferably, it is 8.0 ⁇ m or less.
  • the average secondary particle size is an average particle size in a state of secondary particles formed by hydrophilic inorganic particles in the diaphragm.
  • the average secondary particle size can be measured from the volume distribution by laser diffraction / scattering method using the hydrophilic inorganic particles remaining after dissolving and removing the polymer resin from the diaphragm as a measurement sample. it can. More specifically, it can be determined by the method described in Examples described later.
  • hydrophilic inorganic porous material examples include oxides or hydroxides of zirconium, titanium, bismuth, and cerium; oxides of group IV elements of the periodic table; nitrides of group IV elements of the periodic table; and periodic rules Examples include at least one inorganic substance selected from the group consisting of carbides of Group IV elements.
  • oxides of zirconium, titanium, bismuth, cerium, oxides or hydroxides of group IV elements of the periodic table are preferable, and zirconium oxide (ZrO 2 ), zirconium hydroxide (Zr (OH) 4), titanium oxide (TiO 2), titanium hydroxide (Ti (OH) 4) is more preferable.
  • zirconium oxide (ZrO 2 ), zirconium hydroxide (Zr (OH) 4), titanium oxide (TiO 2), titanium hydroxide (Ti (OH) 4) is more preferable.
  • These hydrophilic inorganic porous materials may be used alone or in combination of two or more.
  • alkaline solutions such as NaOH aqueous solution and KOH aqueous solution are often used.
  • titanium oxide When titanium oxide is exposed to such an environment, it may change to a titanate such as sodium titanate or potassium titanate.
  • titanate may be used in advance as the hydrophilic inorganic porous body.
  • the surface of the hydrophilic inorganic porous body is polar. Considering the affinity between oxygen molecules and hydrogen molecules with a small polarity and water molecules with a large polarity in an electrolyte solution that is an aqueous solution, water molecules with a large polarity are more easily adsorbed to the hydrophilic inorganic porous material. it is conceivable that. Therefore, when such a hydrophilic inorganic porous material exists on the surface of the diaphragm, water molecules are preferentially adsorbed on the surface of the diaphragm, and bubbles such as oxygen molecules and hydrogen molecules are not adsorbed on the surface of the diaphragm. As a result, it is possible to effectively suppress the adhesion of bubbles to the diaphragm surface.
  • the average pore size of the hydrophilic inorganic porous material is not particularly limited, but is preferably 10 nm or more and 500 nm or less, and more preferably 20 nm or more and 300 nm or less. When the average pore size of the hydrophilic inorganic porous material is within this range, both high gas barrier properties and high ion permeability can be achieved. *
  • the total amount of PTFE and hydrophilic inorganic compound contained in the diaphragm is 100% by mass, and the content of the hydrophilic inorganic compound is 70% by mass to 95% by mass.
  • the content of the hydrophilic inorganic compound is 70% by mass or more, for example, the hydrophilicity inside the diaphragm can be increased even during electrolysis, and it is easy to prevent the generated gas from passing through the diaphragm to the opposite electrode chamber. Furthermore, since the electrolytic solution can permeate into the diaphragm, the voltage loss of the diaphragm can be kept lower.
  • the content of the hydrophilic inorganic particles is 95% by mass or less, it is easy to control the porosity of the diaphragm higher.
  • the diaphragm preferably has high hydrolysis resistance from the viewpoint of obtaining stable performance for a long period of time.
  • diaphragm electrolysis since it is always immersed in a high-temperature and high-concentration alkaline solution, if the hydrolyzability is insufficient, the diaphragm may gradually deteriorate and become brittle.
  • the fragile diaphragm is eroded by the circulating electrolyte and generated gas, and the pores become larger and the porosity becomes larger. As a result, the gas barrier property is lowered, and the gas generated from both electrodes is mixed to easily reduce the gas purity.
  • the diaphragm in the present embodiment may contain a substance other than PTFE as long as the function of the diaphragm is not inhibited for the purpose of imparting further functions.
  • a substance other than PTFE for example, an additive such as an antioxidant or a heat stabilizer may be contained, or a coating such as a fluorine resin may be applied.
  • the pore diameter must be controlled in order to obtain appropriate membrane properties such as separation ability and strength.
  • the pore diameter of the diaphragm In alkaline water electrolysis, the pore diameter of the diaphragm must be controlled from the viewpoint of preventing mixing of oxygen gas generated from the anode and hydrogen gas generated from the cathode and reducing voltage loss in electrolysis.
  • the maximum pore size of the diaphragm must be controlled to increase the separation accuracy of the diaphragm. Specifically, the separation performance tends to be higher as the difference between the average water-permeable pore diameter and the maximum pore diameter is smaller. In particular, in electrolysis, since the variation in the hole diameter in the diaphragm can be kept small, it is possible to reduce the possibility that the purity of the gas generated from both electrode chambers due to the generation of pinholes is lowered.
  • the average water-permeable pore diameter of the diaphragm must be in the range of 0.02 ⁇ m to 1.0 ⁇ m and the maximum pore diameter is in the range of 0.2 ⁇ m to 2.0 ⁇ m. If the pore diameter is within this range, both excellent gas barrier properties and high ion permeability can be achieved. Further, the pore diameter of the diaphragm is preferably controlled in the temperature range in which it is actually used. Therefore, for example, when used as a diaphragm for electrolysis in an environment of 90 ° C., it is necessary to satisfy the above pore diameter range at 90 ° C.
  • an average water-permeable pore diameter of 0.1 ⁇ m or more and 1.0 ⁇ m or less and a maximum pore diameter of 0.5 ⁇ m or more and 1.8 ⁇ m can be exhibited as a better gas barrier property and high ion permeability. Or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less, and a maximum pore diameter of 0.5 ⁇ m or more and 1.8 ⁇ m or less.
  • the pore diameter of the diaphragm is preferably controlled approximately symmetrically in the thickness direction from the center of the diaphragm to both surfaces.
  • the pore size distribution of the diaphragm is symmetric, for example, when the diaphragm is incorporated into an electrolytic cell, the same function can be exhibited on both the front and back sides, and handling properties are improved. In addition, foreign matter is less likely to be clogged inside the diaphragm during electrolysis.
  • the average water permeability pore diameter and the maximum pore diameter of the diaphragm can be measured by the following methods.
  • the average water-permeable pore diameter of the diaphragm means an average water-permeable pore size measured by the following method using an integrity tester (“Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan).
  • an integrity tester (“Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan).
  • the diaphragm is cut into a predetermined size including the core material, and this is used as a sample. This sample is set in an arbitrary pressure vessel, and the inside of the vessel is filled with pure water.
  • the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature.
  • the average water-permeable pore diameter can be obtained from the following Hagen-Poiseuille equation using a pressure between 10 kPa and 30 kPa and a gradient of the water flow rate.
  • Average water-permeable pore diameter (m) ⁇ 32 ⁇ L ⁇ 0 / ( ⁇ P) ⁇ 0.5
  • is the viscosity of water (Pa ⁇ s)
  • L is the thickness of the diaphragm (m)
  • ⁇ 0 is the apparent flow velocity
  • ⁇ 0 (m / s) flow rate (m 3 / s) / flow channel area. (M 2 ).
  • is the porosity
  • P is the pressure (Pa).
  • the maximum pore diameter of the diaphragm can be measured by the following method using an integrity tester (manufactured by Sartorius Stedim Japan, “Sartochcheck Junior BP-Plus”).
  • an integrity tester manufactured by Sartorius Stedim Japan, “Sartochcheck Junior BP-Plus”.
  • the diaphragm is cut into a predetermined size including the core material, and this is used as a sample.
  • This sample is wetted with pure water, impregnated with pure water in the pores of the diaphragm, and set in a pressure-resistant container for measurement.
  • the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature.
  • the upper surface side of the sample is pressurized with nitrogen, and the nitrogen pressure when bubbles are continuously generated from the lower surface side of the sample is defined as a bubble point pressure.
  • the maximum pore diameter can be obtained from the following bubble point equation obtained by modifying the Young-Laplace equation.
  • the porosity of the diaphragm must be controlled.
  • the porosity of the diaphragm must be controlled. It can be said that the porosity of the diaphragm is related to the ratio of the pores having the average pore diameter and the maximum pore diameter within the above ranges to the diaphragm.
  • the lower limit of the porosity of the diaphragm needs to be 30% or more, and 35% or more. Is more preferable, and it is still more preferable that it is 40% or more.
  • the upper limit of porosity needs to be 80% or less, and it is more preferable that it is 70% or less. If the porosity of the diaphragm is not more than the above upper limit value, the porous structure can be maintained.
  • the porosity ⁇ of the diaphragm refers to the open porosity determined by the Archimedes method and can be determined by the following equation.
  • Porosity ⁇ (%) ( ⁇ 1- ⁇ 2) ⁇ 100
  • ⁇ 1 represents the saturated water density (g / cm 3 ), that is, the density of the sample in a state where the open pores are saturated with water.
  • ⁇ 2 represents the dry density (g / cm 3 ), that is, the density of the sample in a state where water is sufficiently removed from the open pores and dried.
  • the porosity ⁇ can be measured in a room set at 25 ° C. by the following procedure.
  • the diaphragm washed with pure water is cut into three pieces having a size of 3 cm ⁇ 3 cm, and the thickness d is measured with a thickness gauge.
  • These measurement samples are immersed in pure water for 24 hours, excess water is removed, and the weight w1 (g) is measured. Subsequently, the sample taken out is allowed to stand for 12 hours or more in a dryer set at 50 ° C.
  • the degree of opening tends to increase as the porosity increases.
  • the opening degree needs to be 20% or more, more preferably 25% or more, and still more preferably 30% or more.
  • the opening degree needs to be 80% or less, more preferably 75% or less, and still more preferably 70% or less.
  • the opening degree of the diaphragm in the present embodiment can be obtained by the following method. First, a diaphragm surface image is captured by SEM. Next, this image is binarized by image analysis software (“WinROOF”, manufactured by Mitani Corporation), and the holes and portions other than the holes are separated. Subsequently, the obtained binarized image is analyzed to determine the ratio of holes to the entire image, and this is used as the opening degree. As the aperture, an average value of apertures obtained from three or more SEM images with different observation locations is used.
  • WinROOF image analysis software
  • a diaphragm having the above pore diameter and porosity With a polyphenylene copolymer, it is possible to realize a diaphragm structure having higher mechanical strength and higher strength than other polymers. In addition, it has been found that the diaphragm stably exhibits its function over a long period of time in a wide range of temperature, pressure and pH.
  • the thickness of the diaphragm of this embodiment must be controlled in order to obtain appropriate film properties and electrolysis performance. In alkaline water electrolysis, it must be properly controlled to increase the mechanical strength and electrolysis efficiency of the diaphragm.
  • the thickness of the diaphragm must be 100 ⁇ m or more and 600 ⁇ m or less. If the thickness of the diaphragm is 100 ⁇ m or more, the diaphragm is hardly broken and the strength against impact is further improved. From this viewpoint, the thickness of the diaphragm is more preferably 200 ⁇ m or more, and further preferably 300 ⁇ m or more. On the other hand, if the thickness of the diaphragm is 600 ⁇ m or less, thickness unevenness can be reduced during film formation, and the pore diameter can be easily controlled.
  • the thickness of the diaphragm is more preferably 500 ⁇ m or less, and further preferably 450 ⁇ m or less.
  • the tensile strength at break of the diaphragm of the present embodiment is preferably controlled in each of the MD direction and the TD direction.
  • the tensile breaking strength in the MD direction is preferably 10 MPa or more and 30 MPa or less
  • the tensile breaking strength in the TD direction is preferably 10 MPa or more and 30 MPa or less. If it is a diaphragm which has the tensile fracture strength of each range, it will become a diaphragm with high handling property at the time of incorporating in an electrolytic cell, and a tear and a pinhole are hard to generate
  • the tensile strength at break of the diaphragm is preferably controlled in the temperature range in which it is actually used. Therefore, for example, when used as a diaphragm for electrolysis in an environment of 90 ° C., it is necessary to satisfy the above-described range of tensile strength at 90 ° C.
  • the tensile strength at break can be measured by a method according to JIS K 7161.
  • the MD (Machine Direction) direction is a flow direction during film formation
  • the TD (Transverse Direction) direction is a direction orthogonal to the MD direction.
  • tear strength is given as one of indices indicating the ease of fracture starting from the notch or pinhole.
  • the tear strength of the diaphragm can be measured by a method according to JIS L 1096. If the tear strength of the diaphragm is high, for example, even when notches or pinholes are generated due to contact with the electrode during electrolysis, it is possible to more effectively suppress the problem that the diaphragm is broken by its own weight.
  • the tear strength of the diaphragm is not particularly limited, but is preferably 10N or more and 100N or less.
  • the tear strength of the diaphragm is the tear strength in each of the MD direction and the TD direction.
  • the water contact angle of the porous membrane is not particularly limited, it can be 10 ° or more and 90 ° or less, preferably 20 ° or more and 80 ° or less, from the viewpoint of gas barrier properties and electrolyte permeability. It is more preferable that the angle is not less than 70 ° and not more than 70 °. When the water contact angle is within this range, it is possible to prevent the gas generated at the electrode from adhering to the electrode surface and hindering the electrode reaction, and the electrolysis efficiency can be further enhanced.
  • the water contact angle of the porous membrane can be controlled by controlling the hydrophilicity of a material such as a polymer constituting the surface of the porous membrane.
  • the water contact angle of the porous electrode refers to the tangent and the surface of the porous electrode when water is dropped on the surface of the porous electrode and a tangent is drawn from the portion where the water droplet contacts the porous electrode to the surface of the water droplet. This is the angle formed by The water contact angle of the porous electrode can be measured by the ⁇ / 2 method using a commercially available contact angle meter.
  • the diaphragm for alkaline water electrolysis of this embodiment is not specifically limited, It can form into a film by a well-known method, However, It is preferable to provide the following processes. These steps do not limit the procedure and can be appropriately selected.
  • Step A Step of mixing PTFE fine powder, hydrophilic inorganic particles and lubricant
  • Step B Step of preforming the mixture obtained in Step A and extruding the paste
  • ⁇ Step C Step of rolling the sheet between a pair of rolls
  • ⁇ step D step of removing the lubricant from the rolled sheet
  • ⁇ step E >> step of stretching the obtained sheet in the MD or TD direction
  • Step F Step of firing the stretched sheet at a temperature equal to or higher than the melting point of PTFE
  • Step A As a raw material, it is preferable to use PTFE fine powder having a standard specific gravity of 2.19 or less, particularly 2.16 or less.
  • the standard specific gravity is a specific gravity measured according to JIS K6892.
  • the lubricant is not particularly limited as long as it can wet the surface of the PTFE fine powder and can be removed by means such as evaporation or extraction after the mixture is formed into a sheet.
  • the lubricant is, for example, a hydrocarbon oil such as liquid paraffin, naphtha, white oil, toluene, xylene, and various alcohols, ketones, esters, and the like can be used.
  • liquid paraffin when liquid paraffin is used, the affinity with PTFE is good, the moldability is good, and the product that completely evaporates in Step F is preferable. Specifically, those having a boiling point of 100 ° C. or higher and 160 ° C. or lower are more preferable.
  • liquid paraffin examples include “Isopar E” and “Isopar M” manufactured by TonenGeneral.
  • the amount of lubricant added to PTFE is not particularly limited, but is preferably 20 parts by mass or more and 200 parts by mass or less when the total of PTFE and hydrophilic inorganic particles is 100 parts by mass. If it is this range, since a lubricant will fully osmose
  • the dispersant is not particularly limited, but is a long-chain carboxylic acid having low water solubility such as stearic acid, lauric acid, decanoic acid, octanoic acid, 2-ethylhexanoic acid, and a polar having a chain length of 6 or more carbon atoms.
  • An organic solvent is mentioned.
  • a known apparatus can be used for the dispersion treatment, and specific examples include a bead mill, a ball mill, a planetary mixer, a disper, and a homogenizer.
  • the amount of the dispersant added is not particularly limited as long as the surface of the hydrophilic inorganic particles can be hydrophobized, but is preferably 1% by mass or more and 10% by mass or less with respect to the hydrophilic inorganic particles. If it is this range, the surface of a hydrophilic inorganic particle can fully be hydrophilized, and it will be supersaturated in a lubricant and will not precipitate.
  • the mixing temperature is not particularly limited, but is preferably 19 ° C. or lower, which is the PTFE transition point.
  • ripen in order to fully infiltrate PTFE into PTFE between the process A and the process B, it is preferable to age
  • ripen in order to fully infiltrate PTFE into PTFE between the process A and the process B, it is preferable to age
  • ripen in order to fully infiltrate PTFE into PTFE between the process A and the process B, it is preferable to age
  • ripen for aging, it is preferable to ripen PTFE at a temperature not lower than the transition point of PTFE, that is, not lower than 20 ° C. and not higher than 30 ° C. A uniform extruded sheet can be obtained in Step B after the aging step.
  • Step B The mixture obtained in step A is extruded into a sheet using a T-die after preforming in step B. Although it does not specifically limit for extrusion, It is preferable to use a flat die.
  • the thickness of the extruded PTFE sheet is preferably 0.5 to 5.0 mm.
  • the physical properties of the obtained sheet can be made uniform by appropriately controlling the molding pressure, compression speed, and holding time.
  • the extrusion temperature is not particularly limited, but is preferably 20 ° C or higher and 100 ° C or lower. If it is this range, an appropriate shear can be given to PTFE and a moldability becomes favorable in a latter process. From this viewpoint, the extrusion temperature is more preferably 30 ° C. or higher and 80 ° C. or lower.
  • Step C the sheet extruded from the die is rolled through the pair of rolls along the MD direction.
  • the TD direction is preferably rolled while maintaining the width of the sheet. That is, the sheet is stretched only in the MD direction.
  • this rolling is performed by passing the sheet between the pair of rolling rolls while pulling the sheet with a pulling roll disposed downstream of the pair of rolling rolls in the sheet flow direction.
  • the rotational speed of the pulling roll is set slightly higher than the rotational speed of the rolling roll, the sheet is rolled in the MD direction while keeping the length in the TD direction constant.
  • step C the PTFE sheet is rolled in a state containing a liquid lubricant, and the PTFE sheet is stretched thinner than at the time of extrusion, and the thickness is leveled.
  • the temperature of the rolled sheet is affected by the temperature of the roll and the atmosphere, it may be lower than 19 ° C. which is the phase transition point of PTFE.
  • the PTFE sheet at a temperature of less than 19 ° C. is heated to a temperature of 19 ° C. or higher. That is, in Step C, the PTFE sheet at a temperature lower than the phase transition point of PTFE is heated so as to have a temperature equal to or higher than the phase transition point of PTFE.
  • the rolling of the PTFE sheet is preferably performed such that the length in the width direction after rolling relative to the length in the width direction before rolling is in the range of 90% to 110%. In this specification, when the change in the length in the width direction is within the above range, the sheet is rolled “while maintaining the length in the width direction”.
  • the thickness of the PTFE sheet after rolling is preferably 50 ⁇ m or more and 2000 ⁇ m.
  • the thickness of the PTFE sheet is preferably 5% or more and 60% or less compared to the thickness before rolling.
  • the thickness of the PTFE sheet in step B is preferably 30% or less as compared with the thickness before rolling.
  • the rolling in step C is preferably performed in a state where the liquid lubricant is held on the PTFE sheet. For this reason, it is preferable to carry out while keeping the temperature of the PTFE sheet below the boiling point of the liquid lubricant.
  • Step D the lubricant is removed by heating or extracting the sheet. At this time, if the heating is performed at a temperature equal to or higher than the boiling point of the dispersant, the dispersant can also be removed. When removing by drying, the temperature is preferably 100 ° C. or higher and 300 ° C. or lower.
  • Step E the sheet is stretched in the MD direction and the TD direction to produce a porous film containing PTFE.
  • the stretching is preferably carried out at a temperature below the melting point of PTFE.
  • the stretching in the longitudinal direction is preferably performed by a roll stretching method, and the stretching in the width direction is preferably performed by a tenter stretching method. Either stretching in the longitudinal direction or stretching in the width direction may be performed first.
  • the draw ratio is appropriately adjusted so that desired characteristics can be obtained.
  • the stretch plane magnification calculated by the product of the stretch ratio in the longitudinal direction and the stretch ratio in the width direction is appropriately adjusted according to the desired electrolytic performance.
  • the stretching in step F is preferably performed at a temperature lower than the melting point of PTFE. Thin fibrils are produced by stretching in Step F.
  • Step F the stretched porous membrane is heated to a temperature equal to or higher than the melting point of PTFE and baked. This heating step improves the strength of the PTFE porous sheet.
  • ⁇ Step H Step of depositing inorganic compound from inorganic compound solution in PTFE porous membrane
  • the form of the PTFE porous membrane is not particularly limited, and examples thereof include papermaking, non-woven fabric, and stretched aperture membrane, but stretched aperture membranes are preferable.
  • the thickness is 100 ⁇ m or more and 600 ⁇ m or less, the average pore diameter is 1.0 ⁇ m or less, and the porosity is 50% or more. 90% or less is preferable.
  • the solvent of the solution to be impregnated is not particularly limited as long as it permeates PTFE. However, since it needs to be removed by drying, low molecular weight alcohols such as ethanol, propanol, and butanol having a low boiling point and volatile, acetone, Ketones and esters such as butanone are preferred.
  • the inorganic compound titanium, bismuth, zirconium, cesium salts and organic compounds are used. From the viewpoint of solubility and stability, an alcohol solution of an alkoxide compound of titanium or zirconium is preferably used. Examples of the step of impregnating the PTFE porous membrane with the inorganic compound solution include dip coating, slit coating, roll coating, blade coating, and the like.
  • the inorganic compound impregnated in the PTFE porous membrane can be precipitated in the PTFE porous membrane by synthesizing a compound having low solubility by drying or chemical reaction.
  • Hydrolysis is an example of a method for synthesizing a compound having low solubility by a chemical reaction.
  • Acid chlorides and alkoxide compounds react with water, and are deposited by replacing some or all of chlorine and alkoxyl groups with hydroxyl groups.
  • the form of water to be reacted is not limited and may be liquid or gas.
  • a heating step may be added.
  • the heating temperature is preferably 400 ° C.
  • the heating environment may be liquid or gas.
  • the liquid is not particularly limited, and examples thereof include acidic solutions such as hydrochloric acid, nitric acid, and sulfuric acid, and alkaline aqueous solutions containing ammonia, sodium hydroxide, and potassium hydroxide.
  • acidic solutions such as hydrochloric acid, nitric acid, and sulfuric acid
  • alkaline aqueous solutions containing ammonia, sodium hydroxide, and potassium hydroxide a stable compound can be obtained in a short time by hydrothermal synthesis by exposure to high temperature and high pressure in a liquid.
  • bipolar electrolytic cell for alkaline water electrolysis (Bipolar electrolytic cell for alkaline water electrolysis)
  • a bipolar electrolytic cell for alkaline water electrolysis which includes the above-described cathode, anode, and diaphragm, will be described with reference to the drawings.
  • the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is not limited to what is demonstrated below.
  • members other than the anode, the cathode and the diaphragm included in the bipolar electrolytic cell for alkaline water electrolysis are not limited to those listed below, and known members can be appropriately selected, designed and used. .
  • the electrolytic cell for alkaline water electrolysis of this embodiment is a bipolar electrolytic cell formed by stacking (stacking) the above-described diaphragm for alkaline water electrolysis of the present invention and a bipolar element holding a cathode and an anode. is there.
  • the electrolytic cell for alkaline water electrolysis according to the present embodiment is a combination of an anode, a cathode, and the above-described diaphragm for alkaline water electrolysis according to the present invention disposed between the anode and the cathode (“electrolysis cell”). Is also a bipolar electrolyzer having a plurality.
  • the diaphragm for alkaline water electrolysis of the present invention is a material containing a hydrophilic inorganic compound and polytetrafluoroethylene (PTFE), and has an appropriate average water-permeable pore diameter, maximum pore diameter, porosity, thickness, and content of the hydrophilic inorganic compound.
  • PTFE polytetrafluoroethylene
  • the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment is characterized by including the above-described diaphragm for alkaline water electrolysis according to the present invention, and other configurations are not particularly limited.
  • the configuration of an example of a bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment will be described with reference to the drawings.
  • FIG. 1 the side view about the whole example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is shown.
  • FIG. 2 the side view about the part of the broken-line square frame which shows the zero gap structure of an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment to (A) is shown.
  • FIG. 3 the top view about the electrode chamber part of an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is shown. As shown in FIG.
  • the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment includes an anode 2 a, a cathode 2 c, a partition wall 1 that separates the anode 2 a and the cathode 2 c, and an outer frame 3 that borders the partition wall 1.
  • a zero gap structure Z in which the diaphragm 4 is in contact with the anode 2a and the cathode 2c is formed (see FIG. 2).
  • an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4 (see FIGS. 2 and 3).
  • a frame 3 is provided. More specifically, the partition wall 1 has conductivity, and the outer frame 3 is provided so as to surround the partition wall 1 along the outer edge of the partition wall 1.
  • the bipolar element 60 may be used so that a given direction D1 along the partition wall 1 is normally a vertical direction.
  • a given direction D1 along the partition wall 1 is a set of two sides facing each other.
  • the direction may be the same as the direction (see FIGS. 1 to 3).
  • the said perpendicular direction is also called electrolyte solution passage direction.
  • the bipolar electrolytic cell 50 is configured by stacking a necessary number of bipolar elements 60.
  • the bipolar electrolytic cell 50 has a fast head 51g, an insulating plate 51i, and an anode terminal element 51a arranged in order from one end, and further, an anode side gasket portion 7, a diaphragm 4, and a cathode side gasket portion. 7.
  • Bipolar elements 60 are arranged in this order. At this time, the bipolar element 60 is arranged so that the cathode 2c faces the anode terminal element 51a side.
  • the anode gasket portion 7 to the bipolar element 60 are repeatedly arranged as many times as necessary for the design production amount.
  • the bipolar electrolyzer 50 is formed into a body by tightening the entire body with a tightening mechanism such as a tie rod 51r (see FIG. 1) or a hydraulic cylinder system.
  • the arrangement constituting the bipolar electrolytic cell 50 can be arbitrarily selected from the anode 2a side or the cathode 2c side, and is not limited to the order described above.
  • the bipolar element 60 is disposed between the anode terminal element 51a and the cathode terminal element 51c, and the diaphragm 4 is connected to the anode terminal element 51a and the bipolar terminal element. It is disposed between the element 60, between the adjacent bipolar elements 60, and between the bipolar element 60 and the cathode terminal element 51c.
  • an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4.
  • the electrode chamber 5 has an electrolyte inlet for introducing the electrolyte into the electrode chamber 5 and an electrolyte outlet for extracting the electrolyte from the electrode chamber 5 at the boundary with the outer frame 3.
  • the anode chamber 5a is provided with an anode electrolyte inlet for introducing an electrolyte into the anode chamber 5a and an anode electrolyte outlet for extracting an electrolyte led out from the anode chamber 5a.
  • a cathode electrolyte inlet for introducing an electrolyte into the cathode chamber 5c and a cathode electrolyte outlet for extracting an electrolyte led out from the cathode chamber 5c.
  • the rectangular partition wall 1 and the rectangular diaphragm 4 are arranged in parallel, and the partition wall of the rectangular parallelepiped outer frame 3 provided at the edge of the partition wall 1. Since the inner surface on one side is perpendicular to the partition wall 1, the shape of the electrode chamber 5 is a rectangular parallelepiped.
  • the bipolar electrolytic cell 50 is usually provided with a header which is a pipe for distributing or collecting the electrolytic solution.
  • the electrolytic solution is placed in the anode chamber 5 a below the outer frame 3 at the edge of the partition wall 1.
  • an anode outlet header for discharging the electrode solution from the anode chamber 5a and a cathode outlet header for discharging the electrolyte solution from the cathode chamber 5c are provided above the outer frame 3 at the edge of the partition wall 1. .
  • typical arrangements of headers attached to the bipolar electrolytic cell 50 shown in FIGS. 1 to 3 include an internal header type and an external header type. In the present invention, either type is used. You may employ
  • the electrolytic solution distributed at the anode inlet header is introduced into the anode chamber 5a through the anode electrolyte inlet, passes through the anode chamber 5a, and passes through the anode electrolyte outlet. It is led out from the anode chamber 5a and collected at the anode outlet header.
  • the diaphragm 4 used in the alkaline water decomposition electrolytic cell of the present embodiment is the above-described alkaline water electrolysis diaphragm of the present invention, and the description thereof is omitted.
  • Electrodes (Anode, Cathode)
  • alkaline water is electrolyzed in an electrolytic cell having an electrode pair (that is, an anode and a cathode) connected to a power source, oxygen gas is generated at the anode, and hydrogen gas is generated at the cathode.
  • the electrode 2 included in the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment will be described in detail.
  • the term “electrode” means one or both of the anode 2a and the cathode 2c.
  • the electrode, metal foam, etc. which have net
  • the porous body electrode in the present embodiment may be the base material itself or may have a catalyst layer with high reaction activity on the surface of the base material, but may have a catalyst layer with high reaction activity on the surface of the base material. preferable.
  • the material of the substrate is not particularly limited and is a conductive substrate made of at least one selected from the group consisting of nickel, iron, mild steel, stainless steel, vanadium, molybdenum, copper, silver, manganese, platinum group, graphite, chromium, and the like. Is mentioned. You may use the electroconductive base material which consists of an alloy which consists of 2 or more types of metals, or a mixture of 2 or more types of electroconductive substances. Among these, nickel and nickel-based alloys are preferable from the viewpoint of the conductivity of the base material and the resistance to the use environment.
  • a thermal spraying method such as a plating method or a plasma spraying method, a thermal decomposition method in which heat is applied after applying a precursor layer solution on the substrate, a catalyst substance is mixed with a binder component
  • a method such as a method of fixing to a substrate and a vacuum film forming method such as a sputtering method.
  • the diaphragm 4 is pressed against the electrode more strongly than the conventional electrolytic cell.
  • the diaphragm 4 is damaged at the end of the opening, or the diaphragm 4 bites into the opening, and a gap is formed between the cathode 2c and the diaphragm 4 to increase the voltage. There is a case.
  • the electrode shape is made as planar as possible.
  • a method in which an expanded base material (for example, an expanded base material) is pressed with a roller and processed into a flat shape can be applied. At this time, it is desirable to press from 95% to 110% with respect to the original thickness of the metal flat plate before the expansion process to planarize.
  • the electrode 2 manufactured by performing the above treatment not only can prevent the diaphragm 4 from being damaged, but also can surprisingly reduce the voltage. The reason for this is not clear, but it is expected that the current density is equalized because the surface of the diaphragm 4 and the electrode surface are in uniform contact.
  • the size of the electrode 2 is not particularly limited, and according to the shape and size of a bipolar electrolytic cell for alkaline water electrolysis, an electrolytic cell, a bipolar element, a partition wall, etc., and according to a desired electrolytic capacity, Can be determined.
  • a bipolar electrolytic cell for alkaline water electrolysis an electrolytic cell, a bipolar element, a partition wall, etc.
  • a desired electrolytic capacity Can be determined.
  • the partition has a plate shape, it may be determined according to the size of the partition.
  • the sealing region (B) of the diaphragm and the bipolar element are further stacked via the gasket 7.
  • the gasket 7 is used to seal between the bipolar element 60 and the diaphragm 4 and between the bipolar element 60 against the electrolytic solution and the generated gas. Gas mixing between the chambers can be prevented.
  • the material of the gasket 7 is not particularly limited, and a known rubber material or resin material having insulating properties can be selected.
  • the gasket 7 may be embedded with a reinforcing material. Thereby, when it is pinched
  • a so-called “zero gap structure” Z in which the diaphragm 4 is in contact with the anode 2a and the cathode 2c is formed. It is preferable.
  • the anode 2a and the diaphragm 4 are in contact with each other over the entire surface of the electrode, and the cathode 2c and the diaphragm 4 are in contact with each other, or the distance between the electrodes is the diaphragm over the entire surface of the electrode.
  • the generated gas is quickly released to the side opposite to the diaphragm 4 side of the electrode 2 through the pores of the electrode 2, whereby the distance between the anode 2 a and the cathode 2 c (hereinafter referred to as “distance between electrodes”). ”)",
  • the voltage loss due to the electrolytic solution and the occurrence of gas accumulation in the vicinity of the electrode can be suppressed as much as possible, and the electrolysis voltage can be suppressed low.
  • the anode 2a and the cathode 2c are processed completely smoothly and pressed so as to sandwich the diaphragm 4, or the electrode 2 and the partition 4
  • an elastic body such as a spring is disposed between and the electrode 2 is supported by this elastic body.
  • preferable embodiment of the means which comprises the zero gap structure Z in the bipolar electrolytic cell 50 for alkaline water electrolysis of this embodiment is mentioned later.
  • a spring which is an elastic body is disposed between the electrode 2 and the partition wall 1, and the electrode 2 is supported by this spring. It is preferable.
  • a spring made of a conductive material may be attached to the partition wall 1 and the electrode 2 may be attached to this spring.
  • a spring may be attached to the electrode rib 6 attached to the partition wall 1, and the electrode 2 may be attached to the spring.
  • the structure is less deformed even when pressed. It is said.
  • the electrode 2 supported via the elastic body has a flexible structure that is deformed when the diaphragm 4 is pressed, thereby absorbing tolerances in manufacturing accuracy of the electrolytic cell 50 and irregularities due to deformation of the electrode 2 and the like. Thus, the zero gap structure Z can be maintained.
  • the conductive elastic body 2 e and the current collector 2 r are electrically conductive between the cathode 2 c or the anode 2 a and the partition wall 1.
  • the elastic body 2e is provided so as to be sandwiched between the cathode 2c or the anode 2a and the current collector 2r.
  • FIG. 4 shows an example of an alkaline water electrolysis apparatus that can use the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment.
  • the alkaline water electrolyzer 70 includes a rectifier 74, an oxygen concentration meter, in addition to the liquid feed pump 71, the gas-liquid separation tank 72, and the water replenisher 73, in addition to the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment. 75, a hydrogen concentration meter 76, a flow meter 77, a pressure gauge 78, a heat exchanger 79, a pressure control valve 80, and the like.
  • Electrolysis is performed by circulating the electrolyte in the alkaline water electrolysis apparatus equipped with the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment, so that excellent electrolytic efficiency can be achieved even after high-density current operation or variable power supply operation. In addition, it is possible to carry out highly efficient alkaline water electrolysis while maintaining high gas purity.
  • the electrolytic solution that can be used for the alkaline water electrolysis of the present embodiment may be an alkaline aqueous solution in which an alkali salt is dissolved, and examples thereof include an aqueous NaOH solution and an aqueous KOH solution.
  • concentration of the alkali salt is not particularly limited, but is preferably 20% by mass to 50% by mass, and more preferably 25% by mass to 40% by mass. Among these, from the viewpoint of ionic conductivity, kinematic viscosity, and freezing at low temperature, a 25% to 40% by weight aqueous KOH solution is particularly preferable.
  • the temperature of the electrolytic solution in the electrolytic cell is not particularly limited, but is preferably 80 ° C. to 130 ° C. If it is set as the said temperature range, it can suppress effectively that the members of electrolysis apparatuses, such as a gasket and a diaphragm, deteriorate with heat, maintaining high electrolysis efficiency.
  • the temperature of the electrolytic solution is more preferably 85 ° C. to 125 ° C., and particularly preferably 90 ° C. to 115 ° C.
  • the current density applied to the electrolytic cell is not particularly limited, is preferably 4kA / m 2 ⁇ 20kA / m 2, a 6kA / m 2 ⁇ 15kA / m 2 Is more preferable.
  • the pressure in the electrolytic cell is not particularly limited, but is preferably 3 kPa to 1000 kPa, and more preferably 3 kPa to 300 kPa.
  • the flow rate of the electrolytic solution per electrode chamber and other conditions may be appropriately controlled according to each configuration of the bipolar electrolytic layer for alkaline water electrolysis.
  • bipolar electrolytic cell for alkaline water electrolysis according to the embodiment of the present invention has been illustrated and described with reference to the drawings, but the bipolar electrolytic cell for alkaline water electrolysis of the present invention is limited to the above example. However, the above embodiment can be modified as appropriate.
  • One evaluation index of the gas barrier property of the diaphragm of the present embodiment is evaluation of the bubble point of the diaphragm.
  • the bubble point in this evaluation method is that the diaphragm is sufficiently wetted with pure water, the inside of the hole is filled with pure water, one side of the diaphragm is pressurized with nitrogen, and from the opposite side of the diaphragm at a rate of 150 mL / min. This is the pressure when bubbles are continuously generated.
  • the lower the gas barrier property of the diaphragm the smaller the value of the bubble point.
  • the higher the gas barrier property of the diaphragm the more difficult it is for gas to pass through, so the value of the bubble point increases.
  • the bubble point of the diaphragm is not particularly limited, but is preferably 10 kPa or more. If the bubble point of the diaphragm is 10 kPa or more, since there is no pinhole of 0.2 ⁇ m or more, the separation ability of the diaphragm can be secured. In addition, when the diaphragm is used for electrolysis, even when a differential pressure is applied between the cathode chamber and the anode chamber, the generated gas cannot easily pass through the diaphragm, so that mixing of oxygen and hydrogen can be effectively suppressed. . From this viewpoint, the bubble point of the diaphragm is more preferably 100 kPa or more.
  • One of the cell voltage evaluation indices when electrolysis is performed using the alkaline water electrolysis diaphragm of the present embodiment is the ion permeability of the diaphragm. If the ion permeability is high, the electrical resistance during electrolysis can be reduced, and accordingly, the voltage loss caused by the diaphragm for alkaline water electrolysis can also be reduced. In this respect, since the diaphragm for alkaline water electrolysis of the present embodiment can maintain high ion permeability, the cell voltage during electrolysis can be reduced by using this.
  • the cell voltage at the time of performing electrolysis using the diaphragm for alkaline water electrolysis of this embodiment can be evaluated by the following method, for example.
  • a diaphragm is installed between the nickel electrodes, and both electrode chambers separated by the diaphragm are filled with a 30% by mass KOH aqueous solution at 90 ° C.
  • a direct current having a current density of 0.60 A / cm 2 is applied between both electrodes, and electrolysis is performed for a long time.
  • the potential difference between both electrodes is measured 24 hours after the start of electrolysis, and the potential difference between both electrodes is defined as the cell voltage.
  • water in the KOH aqueous solution is consumed by electrolysis. Therefore, pure water is periodically added so that the KOH concentration becomes constant.
  • the electrolytic solution in both electrode chambers is circulated by a pump so that oxygen and hydrogen generated from the electrodes do not stay in the electrolytic cell.
  • the cell voltage when the diaphragm of the present embodiment is used is not particularly limited, but a suitable example is 1.80 V at a current density of 0.60 A / cm 2 .
  • the voltage can be further reduced to 1.75 V or less, and the cell voltage can be further reduced depending on the operating conditions. If the voltage loss in the diaphragm can be reduced, water can be electrolyzed efficiently with a small amount of electric power.
  • the electrodes (anode and cathode) and diaphragm used in Examples and Comparative Examples were prepared as follows.
  • Example 1 Zirconium oxide (“UEP zirconium oxide”, manufactured by Daiichi Rare Element Chemical Industries, Ltd.) in 300 g of Isopar M (manufactured by TonenGeneral Co., Ltd., hereinafter the same) in which 10 g of n-decanoic acid (manufactured by Kanto Chemical Co., Ltd.) was dissolved, 475 g (hereinafter referred to as ZrO 2 ) was previously uniformly dispersed with a ball mill (Universal Ball Mill Base BKFD-203 manufactured by Terraoka Co., Ltd.) to prepare a ZrO 2 dispersion solution.
  • URP zirconium oxide manufactured by Daiichi Rare Element Chemical Industries, Ltd.
  • PTFE-A Teflon PTFE fine powder 6-J”, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd., hereinafter referred to as PTFE-A
  • PTFE-A Teflon PTFE fine powder 6-J
  • ZrO 2 dispersion adjusted to 15 ° C.
  • the resulting mixture was extruded into a sheet at 70 ° C. after preforming.
  • the sheet was rolled through a pair of rolls set at 120 ° C.
  • the rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C.
  • the stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
  • the obtained diaphragm had a maximum pore size of 0.2 ⁇ m and an average water-permeable pore size of 0.1 ⁇ m.
  • the thickness was 360 ⁇ m, the porosity was 30%, and the water contact angle was 30 °.
  • the tensile fracture strength of MD direction and TD direction was 20 MPa and 16 MPa, respectively.
  • the details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • Example 2 350 g of ZrO 2 was uniformly dispersed in 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved to prepare a ZrO 2 dispersion solution. Subsequently, 150 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C.
  • the obtained diaphragm had a maximum pore size of 2.0 ⁇ m and an average water-permeable pore size of 1.0 ⁇ m.
  • the thickness was 360 ⁇ m, the porosity was 80%, and the water contact angle was 85 °.
  • the tensile fracture strength of MD direction and TD direction was 28 MPa and 24 MPa, respectively.
  • Table 1 The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • Example 3 In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 425 g of ZrO 2 was uniformly dispersed to prepare a ZrO 2 dispersion solution. Subsequently, 75 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C.
  • the obtained diaphragm had a maximum pore diameter of 1.4 ⁇ m and an average water-permeable pore diameter of 0.6 ⁇ m.
  • the thickness was 110 ⁇ m, the porosity was 40%, and the water contact angle was 15 °.
  • the tensile breaking strength of MD direction and TD direction was 25 MPa and 19 MPa, respectively.
  • the details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • Example 4 In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 425 g of titanium oxide (“TTO-51A”, manufactured by Ishihara Sangyo Co., Ltd., hereinafter referred to as TiO 2 ) was uniformly dispersed to prepare a TiO 2 dispersion solution. Subsequently, 75 g of PTFE-A was mixed with the TiO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C.
  • TiO 2 titanium oxide
  • the obtained diaphragm had a maximum pore diameter of 1.4 ⁇ m and an average water-permeable pore diameter of 0.6 ⁇ m.
  • the thickness was 480 ⁇ m, the porosity was 40%, and the water contact angle was 90 °.
  • the tensile breaking strength of MD direction and TD direction was 25 MPa and 19 MPa, respectively.
  • Table 1 The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • Example 5 A PTFE porous membrane having a thickness of 300 ⁇ m, a porosity of 80%, and a pore diameter of 200 nm was obtained by a biaxial stretching opening method.
  • the obtained PTFE porous membrane was immersed in an 80 wt% zirconium tetrabutoxide 1-butanol solution (manufactured by Sigma Aldrich), and the porous membrane was impregnated with zirconium tetrabutoxide.
  • the PTFE porous membrane was taken out from the 1-butanol solution, and the zirconium compound was precipitated in the PTFE porous membrane by immersing it in distilled water after removing the excess solution using a PE spatula.
  • the PTFE porous membrane on which the zirconium compound was deposited was dried at 60 ° C. for 1 hour and then heated in a heating furnace at 200 ° C. for 1 hour to obtain a diaphragm for alkaline water electrolysis.
  • the maximum pore diameter of the obtained diaphragm was 0.8 ⁇ m, and the average water-permeable pore diameter was 0.025 ⁇ m.
  • the thickness was 300 ⁇ m, the porosity was 40%, and the water contact angle was 80 °.
  • the tensile fracture strength of MD direction and TD direction was 25 MPa and 22 MPa, respectively.
  • Table 2 The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
  • Example 6 A PTFE porous film having a thickness of 300 ⁇ m, a porosity of 80%, and a pore diameter of 100 nm was obtained by a biaxial stretching opening method.
  • the obtained PTFE porous membrane was immersed in an 80 wt% zirconium tetrabutoxide 1-butanol solution (manufactured by Sigma Aldrich), and the porous membrane was impregnated with zirconium tetrabutoxide.
  • the PTFE porous membrane was taken out from the 1-butanol solution, and the excess solution was removed using a PE spatula and then immersed in distilled water to precipitate a zirconium compound in the PTFE porous membrane.
  • the PTFE porous membrane on which the zirconium compound was deposited was dried at 60 ° C. for 1 hour and then heated at 200 ° C. for 1 hour. Furthermore, it put into the container made from PTFE with an internal volume of 100 mL with 80 mL 30% potassium hydroxide aqueous solution, and it heated at 150 degreeC * 24 hours in the pressure
  • the obtained diaphragm had a maximum pore size of 1.0 ⁇ m and an average water-permeable pore size of 0.03 ⁇ m. The thickness was 300 ⁇ m, the porosity was 45%, and the water contact angle was 80 °. And the tensile fracture strength of MD direction and TD direction was 11 MPa and 24 MPa, respectively.
  • Table 2 The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
  • Example 7 A PTFE porous film having a thickness of 300 ⁇ m, a porosity of 80%, and a pore diameter of 100 nm was obtained by a biaxial stretching opening method.
  • the obtained PTFE porous membrane was immersed in an 80 wt% zirconium tetrabutoxide 1-butanol solution, and the porous membrane was impregnated with zirconium tetrabutoxide.
  • the PTFE porous membrane was taken out from the 1-butanol solution, and the excess solution was removed using a PE spatula and then immersed in distilled water to precipitate a zirconium compound in the PTFE porous membrane.
  • the PTFE porous membrane on which the zirconium compound was deposited was dried at 60 ° C. for 1 hour and then heated at 200 ° C. for 1 hour. Furthermore, it put into the container made from PTFE with an internal capacity of 100 mL with 80 mL 30% potassium hydroxide aqueous solution, and it heated at 200 degreeC x 24 hours in the pressure
  • the obtained diaphragm had a maximum pore size of 1.6 ⁇ m and an average water-permeable pore size of 0.03 ⁇ m. The thickness was 300 ⁇ m, the porosity was 45%, and the water contact angle was 80 °. And the tensile breaking strength of MD direction and TD direction was 12 MPa and 22 MPa, respectively.
  • Table 2 The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
  • the stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
  • the maximum pore diameter of the obtained diaphragm was 0.1 ⁇ m, and the average water-permeable pore diameter was smaller than 0.1 ⁇ m, and could not be measured.
  • the thickness was 300 ⁇ m, the porosity was 15%, and the water contact angle was 20 °.
  • the tensile breaking strength of MD direction and TD direction was 6 MPa and 5 MPa, respectively.
  • Table 1 The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • the obtained diaphragm had a maximum pore diameter of 2.5 ⁇ m and an average water-permeable pore diameter of 1.4 ⁇ m.
  • the thickness was 300 ⁇ m, the porosity was 85%, and the water contact angle was 110 °.
  • the tensile fracture strength of MD direction and TD direction was 12 MPa and 9 MPa, respectively.
  • Table 1 The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • the obtained membrane had a maximum pore size of 0.9 ⁇ m and an average water-permeable pore size of 0.4 ⁇ m.
  • the thickness was 30 ⁇ m, the porosity was 50%, and the water contact angle was 45 °.
  • the tensile breaking strengths in the MD direction and TD direction were 27 MPa and 20 MPa, respectively.
  • the details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • the obtained membrane had a maximum pore size of 0.9 ⁇ m and an average water-permeable pore size of 0.4 ⁇ m.
  • the thickness was 800 ⁇ m, the porosity was 50%, and the water contact angle was 50 °.
  • the tensile breaking strengths in the MD direction and TD direction were 27 MPa and 20 MPa, respectively.
  • the details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • the thickness was 110 ⁇ m, the porosity was 70%, and the water contact angle was 125 °. And the tensile breaking strength of MD direction and TD direction was 30 MPa and 26 MPa, respectively.
  • the details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • PTFE porous membrane As the PTFE porous membrane, a commercially available PTFE membrane filter ("Omnipore JGWP" manufactured by Merck Millipore) was used, and details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • Polyethersulfone ("Ultrason E7020” (trademark), manufactured by BASF, hereinafter PES) and polyvinylpyrrolidone (weight average molecular weight (Mw) 900000, manufactured by Wako Pure Chemical Industries, Ltd., hereinafter PVP) are added to the mixture from which the balls have been separated. Then, the mixture was stirred and dissolved at 60 ° C. for 12 hours using a three-one motor to obtain a coating solution having the following component composition.
  • PES 15 parts by mass
  • PVP 6 parts by mass
  • NMP 70 parts by mass ZrO 2 : 45 parts by mass
  • the coating film was formed in the support base material surface by solidifying PES. Thereafter, the coating film was sufficiently washed with pure water.
  • the obtained diaphragm had a maximum pore size of 1.2 ⁇ m and an average water-permeable pore size of 0.2 ⁇ m.
  • the thickness was 600 ⁇ m, the porosity was 40%, and the water contact angle was 25 °.
  • the tensile breaking strengths in the MD direction and TD direction were 16 MPa and 17 MPa, respectively.
  • the details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
  • Example 8 A diaphragm for alkaline water electrolysis was obtained in the same manner as in Example 7, except that a PTFE porous membrane having a thickness of 200 ⁇ m, a porosity of 55%, and a pore diameter of 1000 nm obtained by the uniaxial stretching opening method was used.
  • the obtained diaphragm had a maximum pore size of 2.5 ⁇ m and an average water-permeable pore size of 0.1 ⁇ m.
  • the thickness was 200 ⁇ m, the porosity was 20%, and the water contact angle was 90 °.
  • the tensile breaking strength of MD direction and TD direction was 20 MPa and 10 MPa, respectively.
  • Table 2 The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
  • the average water-permeable pore size of the diaphragm is the average water-permeable pore size obtained by measurement of the following method using an integrity tester (manufactured by Sartorius Stedim Japan, "Sartochcheck Junior BP-Plus”). did. First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was set in a pressure-resistant container for measurement (permeation area: 12.57 cm 2 ), and the inside of the container was filled with 150 mL of pure water. Next, the pressure vessel was held in a thermostat set at 90 ° C., and the measurement was started after the inside of the pressure vessel reached 90 ° C.
  • the average water permeable pore diameter was determined from the following Hagen-Poiseuille equation using the gradient between the pressure between 10 kPa and 30 kPa and the water flow rate.
  • Average water-permeable pore diameter (m) ⁇ 32 ⁇ L ⁇ 0 / ( ⁇ P) ⁇ 0.5
  • is the viscosity of water (Pa ⁇ s)
  • L is the thickness of the diaphragm (m)
  • ⁇ 0 is the apparent flow velocity
  • ⁇ 0 (m / s) flow rate (m 3 / s) / flow channel area. (M 2 ).
  • is the porosity
  • P is the pressure (Pa).
  • the maximum pore diameter of the diaphragm was measured by the following method using an integrity tester ("Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan). First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was wetted with pure water, impregnated with pure water in the pores of the membrane, and set in a pressure-resistant container for measurement. Next, the pressure vessel was held in a thermostat set at a predetermined temperature, and measurement was started after the pressure vessel reached the predetermined temperature.
  • the average primary particle size of the hydrophilic inorganic particles of the diaphragm is measured using a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, “Miniscope TM3000”). It was. First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was subjected to metal coating for 1 minute using a magnetron sputtering apparatus (“MSP-1S type” manufactured by Vacuum Device Inc.). Next, this sample was set on an SEM observation sample stage, and measurement was started.
  • SEM scanning electron microscope
  • the diaphragm which is a measurement sample was set so that observation by SEM could be performed from the direction perpendicular to the film surface to be measured.
  • the measurement was started, the magnification was adjusted (preferably 20,000 times or more) so that the inorganic particles to be observed can be seen, and the imaging screen was stored as an image.
  • the obtained image was binarized using image analysis software (“WinROOF”, manufactured by Mitani Corporation), the absolute maximum length was measured for each of the 10 non-aggregated inorganic particles, and the number average was calculated. Calculated. This average was taken as the primary particle size of the inorganic particles.
  • WinROOF image analysis software
  • the porosity of the diaphragm was measured in a room kept at 25 ° C. using an electronic balance.
  • the diaphragm was cut into three pieces of 3 cm ⁇ 3 cm (9 cm 2 ) to make measurement samples, and the thickness d (cm) was measured with a thickness gauge.
  • the measurement sample was immersed in pure water for 24 hours to remove excess water, and the weight w1 (g) was measured. Then, these were left still for 12 hours or more in the dryer set to 50 degreeC, and were dried, and the weight w2 (g) was measured.
  • the water contact angle of the diaphragm was measured using “Drop Master DM-701” (manufactured by Kyowa Interface Chemical Co., Ltd.). 3 ⁇ L of pure water was dropped on the surface of the measurement target (diaphragm or porous electrode), and the water contact angle was measured by the ⁇ / 2 method.
  • the measurement atmosphere conditions were a temperature of 23 ° C. and a humidity of 65% RH.
  • FIG. 1 An electrolytic cell having a bipolar zero-gap structure as shown in FIG. 1 was prepared, which was composed of an anode terminal element, a cathode terminal element, and four bipolar elements. The diaphragms of the respective examples and comparative examples are incorporated in each electrolytic cell.
  • the header pipe of the electrolytic cell was an external header type.
  • ⁇ Anode> As the anode, a nickel expanded base material that had been blasted in advance was used, and a granulated product of nickel oxide was sprayed on both surfaces of the conductive base material by plasma spraying.
  • a material in which platinum was supported on a plain woven mesh substrate obtained by knitting a fine nickel wire having a diameter of 0.15 mm with a mesh of 40 mesh was used.
  • the gasket used was a rectangular shape having an inner dimension of 60 mm ⁇ 50 mm with a thickness of 4.0 mm and having a slit structure for holding by inserting a diaphragm inside.
  • the slit structure was a structure in which a gap of 0.4 mm was provided inside the gasket in the width direction of 6 mm in order to accommodate the edge of the diaphragm.
  • This gasket was made of fluorine-based rubber and had an elastic modulus of 4.0 MPa at 100% deformation.
  • conductive elastic body one obtained by corrugating a woven nickel wire having a wire diameter of 0.15 mm so as to have a wave height of 5 mm was used.
  • the bipolar element was a 90 mm ⁇ 70 mm rectangle, and the area of the anode and cathode was 58 mm ⁇ 48 mm.
  • the depth of the anode chamber (anode chamber depth) was 10 mm
  • the depth of the cathode chamber (cathode chamber depth) was 10 mm
  • the material was nickel.
  • the thickness of a nickel partition wall in which a nickel anode rib having a height of 11 mm and a thickness of 1.5 mm and a nickel cathode rib having a height of 11 mm and a thickness of 1.5 mm were attached by welding was 2 mm.
  • a nickel expanded metal having a thickness of 1 mm, a lateral length of the opening of 4.5 mm, and a longitudinal length of 3.2 mm was used.
  • the conductive elastic body described above was fixed by spot welding on a current collector.
  • the zero gap bipolar element was stacked through a 60 mm ⁇ 50 mm diaphragm to form a zero gap structure in which the cathode and the anode were pressed against the diaphragm.
  • the above bipolar electrolytic cell was incorporated into an electrolysis apparatus 70 shown in FIG. 4 and used for alkaline water electrolysis.
  • the gas-liquid separation tank 72 and the external header type bipolar electrolytic cell 50 are filled with 30% KOH aqueous solution as an electrolytic solution.
  • the electrolyte solution is fed between the anode chamber and the anode gas-liquid separation tank (oxygen separation tank 72o) and between the cathode chamber and the cathode gas-liquid separation tank (hydrogen separation tank 72h) by the liquid feed pump 71, respectively. It is circulating.
  • the flow rate of the electrolyte was measured with a flow meter 77 to 10 L / min, and the temperature was adjusted to 120 ° C. with a heat exchanger 79.
  • a 20A pipe obtained by subjecting an SGP carbon steel pipe to a Teflon lining inner surface treatment was used for the electrolyte solution wetted part of the circulation channel.
  • the pressure in the cell after the start of energization was measured with a pressure gauge 78 and adjusted so that the cathode side pressure was 301 kPa and the oxygen side pressure was 300 kPa.
  • the pressure was adjusted by installing a pressure control valve 80 downstream of the pressure gauge 78.
  • the rectifier 74 oxygen concentration meter 75, hydrogen concentration meter 76, pressure gauge 78, flow meter 77, heat exchanger 79, liquid feed pump 71, gas-liquid separation tank 72 (72h and 72o), water replenisher 73, etc. All of those used in the art are used.
  • Comparative Examples 1 to 6 and 8 the cell voltage after 2500 hours of electrolysis was 2.20 V or higher, the cell voltage was high, and the electrolysis efficiency was low.
  • Comparative Example 7 the diaphragm deteriorated and the gas purity was less than 98.5% for both oxygen and hydrogen.
  • a diaphragm for alkaline water electrolysis that has good gas barrier properties and ion permeability, and has high electrolysis efficiency even in high-temperature and long-term electrolysis.
  • Electrode 2a Anode 2c Cathode 2e Conductive elastic body 2r Current collector 3 Outer frame 4 Diaphragm 5 Electrode chamber 5a Anode chamber 5c Cathode chamber 6 Current plate (rib) 7 Gasket 50 Bipolar electrolytic cell 51g Fast head, loose head 51i Insulating plate 51a Anode terminal element 51c Cathode terminal element 51r Tie rod 60 Bipolar element 65 Electrolytic cell 70 Electrolytic device 71 Feed pump 72 Gas-liquid separation tank 72h Hydrogen separation Tank 72o Oxygen separation tank 73 Water replenisher 74 Rectifier 75 Oxygen concentration meter 76 Hydrogen concentration meter 77 Flow meter 78 Pressure meter 79 Heat exchanger 80 Pressure control valve D1 A given direction along the partition (electrolyte passage direction) Z Zero gap structure SW Center distance in the short direction of the mesh LW Distance between centers in the long direction of the mesh C Mesh opening TE Mesh thickness B Mesh bond length T Plate thickness W Feed width

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention is characterized by including at least polytetrafluoroethylene (PTFE) and an inorganic compound, by having an average water-permeable pore diameter of 0.02 µm to 1.0 µm, a maximum pore diameter of 0.2 µm to 2.0 µm, a porosity of 30% to 90%, and a thickness of 100 µm to 600 µm, and in that the content of the inorganic compound therein is 70% by mass to 95% by mass with respect to a total amount of 100% by mass of PTFE and the inorganic compound.

Description

隔膜、電解槽及び水素製造方法Diaphragm, electrolytic cell, and hydrogen production method
 本発明は、隔膜、電解槽及び水素製造方法に関する。 The present invention relates to a diaphragm, an electrolytic cell, and a hydrogen production method.
 隔膜は濃縮、精製、濾過、透析など様々な分野で利用されており、その素材、孔径、厚みなどを最適化する為、開発が盛んに行われている。また、近年は目的ごとにさらなる高性能化や機能特化を目指して、特に、燃料電池や再生可能エネルギーなどの新エネルギー分野やリチウムイオン二次電池等の蓄電池分野では、安全性と性能を両立する隔膜の需要が日に日に高まっている。とりわけ広い温度、圧力、pHの範囲でも使用できる隔膜の開発要求は非常に高い。 Separation membranes are used in various fields such as concentration, purification, filtration, and dialysis, and are being actively developed to optimize their materials, pore size, thickness, and the like. In recent years, aiming for higher performance and functional specialization for each purpose, both safety and performance have been achieved, particularly in new energy fields such as fuel cells and renewable energy, and storage battery fields such as lithium ion secondary batteries. The demand for diaphragms is increasing day by day. In particular, there is a high demand for developing a diaphragm that can be used in a wide range of temperatures, pressures, and pHs.
 水素は、石油精製、化学合成材料、金属精製、定置用燃料電池等、工業的に広く利用されている。近年は、燃料電池車(FCV)向けの水素ステーションやスマートコミュニティ、水素発電所等における利用の可能性も広がっている。さらに、再生可能エネルギーの導入が進むにつれて、電力網の需給バランスを維持する必要が出てきたため、大容量の電力を長期間貯められる水素ストレージのニーズも高まっている。かかる観点から、高純度の水素の製造技術に注目が集まっている。 Hydrogen is widely used industrially, such as petroleum refining, chemical synthesis materials, metal refining, and stationary fuel cells. In recent years, the possibility of use in hydrogen stations, smart communities, hydrogen power plants, etc. for fuel cell vehicles (FCVs) has also expanded. Furthermore, as the introduction of renewable energy has progressed, it has become necessary to maintain a balance between the supply and demand of the power grid, and there is an increasing need for hydrogen storage that can store a large amount of power for a long period of time. From this point of view, attention has been focused on high-purity hydrogen production technology.
 水素の工業的な製造方法の1つとして、水の電気分解(以下、単に「電解」という場合がある。)がある。この方法は、化石燃料を改質する水素の製造方法に比べ、高純度の水素が得られるという利点がある。水の電気分解では、導電性を高めるために、水酸化ナトリウムや水酸化カリウム等の電解質を添加した水溶液を、電解液として用いることが一般的である。この電解液に、陰極と陽極によって直流電流を印加することで、水を電気分解する。 One of the industrial methods for producing hydrogen is electrolysis of water (hereinafter sometimes simply referred to as “electrolysis”). This method has an advantage that high-purity hydrogen can be obtained as compared with a hydrogen production method for reforming fossil fuels. In the electrolysis of water, an aqueous solution to which an electrolyte such as sodium hydroxide or potassium hydroxide is added is generally used as an electrolytic solution in order to increase conductivity. Water is electrolyzed by applying a direct current to the electrolytic solution through a cathode and an anode.
 電気分解を行うための電解槽は、隔膜を介して陽極室と陰極室に仕切られている。陽極室では酸素ガスが生成し、陰極室では水素ガスが生成する。隔膜には、この酸素ガスと水素ガスが混合しないように、ガス遮断性が求められる。 The electrolytic cell for performing electrolysis is divided into an anode chamber and a cathode chamber through a diaphragm. Oxygen gas is generated in the anode chamber, and hydrogen gas is generated in the cathode chamber. The diaphragm is required to have a gas barrier property so that the oxygen gas and the hydrogen gas are not mixed.
 水の電気分解において電気(電子)を運ぶ媒体はイオンである。そのため、電気分解を効率よく行うために、隔膜には、高いイオン透過性が求められる。かかる観点から、特許文献1では高いイオン透過性を発現する隔膜として、隔膜構造を有する隔膜が提案されている。 The medium that carries electricity (electrons) in the electrolysis of water is ions. Therefore, in order to perform electrolysis efficiently, the diaphragm is required to have high ion permeability. From this viewpoint, Patent Document 1 proposes a diaphragm having a diaphragm structure as a diaphragm that exhibits high ion permeability.
 加えて、電気分解を長期間効率よく安定して行うために、電解槽を構成する陽極、陰極、及び隔膜には物理的、及び化学的安定性が求められる。かかる観点から、隔膜は耐久性に優れた材料を用いて、ガス遮断性と高いイオン透過性を両立することが求められる。 In addition, in order to perform electrolysis efficiently and stably for a long period of time, physical and chemical stability are required for the anode, cathode and diaphragm constituting the electrolytic cell. From such a viewpoint, the diaphragm is required to satisfy both gas barrier properties and high ion permeability using a material having excellent durability.
国際公開第2013/183584号International Publication No. 2013/183584
 しかしながら、上記した技術は未だ改善すべき点がある。例えば、隔膜として汎用的に使用されているポリエーテルスルホンやポリスルホンは繰り返し単位中にエーテル基を有する為、酸性あるいはアルカリ性環境下で徐々に加水分解される。加水分解が進行すると、孔径や気孔率が変化し隔膜としての機能の低下や機械強度の低下を引き起こす恐れがある。特に高温、高濃度の酸性、アルカリ性環境下では、加水分解速度は増加し、この問題は一層顕著になる。 However, there are still some points to be improved on the above technology. For example, polyethersulfone and polysulfone, which are widely used as a diaphragm, have an ether group in the repeating unit, and therefore are gradually hydrolyzed in an acidic or alkaline environment. As hydrolysis proceeds, the pore size and porosity change, which may cause a decrease in function as a diaphragm and a decrease in mechanical strength. In particular, under a high temperature, high concentration acidic and alkaline environment, the hydrolysis rate increases, and this problem becomes more remarkable.
 一方、イオンの透過効率は導電率で表され、電解液の濃度及び温度と密接に関係している。例えば、80℃以上の高温域では水酸化カリウム水溶液の導電率は濃度約30質量%が最大となる。そのため、イオンの透過効率の向上を目的に、導電率の高い条件で隔膜を使用することは、前記加水分解速度の問題を顕在化させる恐れがある。 On the other hand, the ion transmission efficiency is expressed in terms of conductivity and is closely related to the concentration and temperature of the electrolyte. For example, in a high temperature range of 80 ° C. or higher, the conductivity of the potassium hydroxide aqueous solution is maximum at a concentration of about 30% by mass. For this reason, the use of a diaphragm under high electrical conductivity conditions for the purpose of improving ion transmission efficiency may cause the problem of the hydrolysis rate.
 加えて、隔膜のイオン透過効率を最適化する上で、隔膜の多孔質構造を制御することが非常に重要となる。特に水の電気分解の隔膜として使用する上では、高いイオン透過性と共に、高いガス遮断性を両立しなければならない。その為、耐加水分解性が高い材料で、かつ高い電解効率が得られる最適な隔膜が求められている。 In addition, in order to optimize the ion transmission efficiency of the diaphragm, it is very important to control the porous structure of the diaphragm. In particular, when used as a diaphragm for water electrolysis, it is necessary to achieve both high ion permeability and high gas barrier properties. Therefore, there is a demand for an optimum diaphragm that is a material having high hydrolysis resistance and that can obtain high electrolysis efficiency.
 ところで、フッ素系の高分子であるポリテトラフルオロエチレン(PTFE)は、耐熱性、耐薬品性の高い材料として汎用的に利用されており、アルカリ性環境下であっても非常に高い耐性を有することが知られている。特にePTFEと呼ばれる多孔質PTFEは、PTFEの性質を維持した多孔質であるため、耐熱・耐薬品性が必要な環境でのフィルターやシールといった用途に利用されている。 By the way, polytetrafluoroethylene (PTFE) which is a fluorine-based polymer is widely used as a material having high heat resistance and chemical resistance, and has extremely high resistance even in an alkaline environment. It has been known. In particular, porous PTFE called ePTFE is used for applications such as filters and seals in environments that require heat resistance and chemical resistance because it is porous while maintaining the properties of PTFE.
 ePTFEは、例えば国際公開第1997/20881号に記載の方法、つまり滑剤と混合したPTFEファインパウダーの押出、圧延及び延伸により作製することができる。しかしながら、PTFEは疎水性材料であり、アルカリ水電解に使用に適した隔膜はいまだに存在しない。 EPTFE can be produced, for example, by the method described in International Publication No. 1997/20881, that is, extrusion, rolling and stretching of PTFE fine powder mixed with a lubricant. However, PTFE is a hydrophobic material and there is still no diaphragm suitable for use in alkaline water electrolysis.
 本発明は、上記した問題に鑑みなされたものであり、長期間安定して高い機能を有する隔膜を提供することを目的とする。特に、高温かつ高濃度の酸性、またはアルカリ性環境下での耐加水分解性が高く、かつ高い分離能とイオン透過性とを両立した隔膜を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a diaphragm having a high function stably for a long period of time. In particular, an object of the present invention is to provide a diaphragm that has high hydrolysis resistance in a high temperature and high concentration acidic or alkaline environment and that has both high separation ability and ion permeability.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、親水性無機化合物及びポリテトラフルオロエチレン(PTFE)を含む材料で、適切な平均透水孔径、最大孔径、気孔率、厚み、及び親水性無機化合物の含有量を有する隔膜を実現することにより、上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a material containing a hydrophilic inorganic compound and polytetrafluoroethylene (PTFE) has an appropriate average water-permeable pore diameter, maximum pore diameter, porosity, thickness. And it discovered that the said subject could be solved by implement | achieving the diaphragm which has content of a hydrophilic inorganic compound, and came to complete this invention.
 すなわち、本発明は、以下のとおりである。
[1]
 少なくともポリテトラフルオロエチレン(PTFE)及び無機化合物を含み、
 平均透水孔径が0.02μm以上1.0μm以下、
 最大孔径が0.2μm以上2.0μm以下、
 気孔率が30%以上90%以下、
 厚みが100μm以上600μm以下であって、
 前記無機化合物の含有量が、前記PTFEおよび前記無機化合物の合計量を100質量%として、70質量%以上95質量%以下であることを特徴とする、
隔膜。
[2]
 少なくともポリテトラフルオロエチレン(PTFE)及び無機化合物を含み、
 平均透水孔径が0.02μm以上1.0μm以下、
 最大孔径が0.2μm以上2.0μm以下、
 気孔率が30%以上90%以下、
 厚みが100μm以上600μm以下であって、
 前記無機化合物の含有量が、前記PTFEおよび前記無機化合物の合計量を100質量%として、70質量%以上95質量%以下であることを特徴とする、
アルカリ水電解用隔膜。
[3]
 前記平均透水孔径が0.1μm以上1.0μm以下であることを特徴とする、[1]または[2]に記載の隔膜。
[4]
 前記無機化合物が親水性無機粒子又は親水性無機多孔体であることを特徴とする、[1]~[3]のいずれかに記載の隔膜。
[5]
 前記親水性無機粒子の1次粒径が10nm以上300nm以下であることを特徴とする、[1]~[4]のいずれかに記載の隔膜。
[6]
 前記親水性無機粒子が、少なくともTiO、Ti(OH)、ZrO、Zr(OH)のうちいずれかを含むことを特徴とする、[1]~[5]のいずれかに記載の隔膜。
[7]
 水接触角が10°よりも大きく90°以下であることを特徴とする、[1]~[6]のいずれかに記載の隔膜。
[8]
 流れ(MD)方向の引張破断強度が10MPa以上30MPa以下
 かつ流れ方向と直交する(TD)方向の引張破断強度が10MPa以上30MPa以下であることを特徴とする、[1]~[7]のいずれかに記載の隔膜。
[9]
 [1]~[8]のいずれかに記載の隔膜を備え、
 陰極及び陽極を含む複数のエレメントが、前記隔膜を挟んで重ね合わされ、
 前記隔膜が前記陰極及び前記陽極と接触してゼロギャップ構造が形成されている
ことを特徴とする、電解槽。
[10]
 [9]に記載の電解槽を使用し、電解液温度85℃~125℃、電流密度4kA/m~20kA/mで水酸化カリウム又は水酸化ナトリウムの水溶液を電気分解することを特徴とする、水素製造方法。
[11]
 アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法において、
 前記電解槽は少なくとも、陽極と陰極との間に隔膜を有し、
 前記隔膜は、
 少なくともポリテトラフルオロエチレン(PTFE)及び無機化合物を含み、
 平均透水孔径が0.02μm以上1.0μm以下、
 最大孔径が0.2μm以上2.0μm以下、
 気孔率が30%以上90%以下、
 厚みが100μm以上600μm以下であって、
 前記無機化合物の含有量が、前記PTFEおよび前記無機化合物の合計量を100質量%として、70質量%以上95質量%以下である
ことを特徴とする、水素製造方法。
That is, the present invention is as follows.
[1]
At least polytetrafluoroethylene (PTFE) and an inorganic compound,
The average water permeable pore diameter is 0.02 μm or more and 1.0 μm or less,
The maximum pore size is 0.2 μm or more and 2.0 μm or less,
Porosity is 30% or more and 90% or less,
The thickness is 100 μm or more and 600 μm or less,
The content of the inorganic compound is 70% by mass or more and 95% by mass or less, where the total amount of the PTFE and the inorganic compound is 100% by mass,
diaphragm.
[2]
At least polytetrafluoroethylene (PTFE) and an inorganic compound,
The average water permeable pore diameter is 0.02 μm or more and 1.0 μm or less,
The maximum pore size is 0.2 μm or more and 2.0 μm or less,
Porosity is 30% or more and 90% or less,
The thickness is 100 μm or more and 600 μm or less,
The content of the inorganic compound is 70% by mass or more and 95% by mass or less, where the total amount of the PTFE and the inorganic compound is 100% by mass,
A diaphragm for alkaline water electrolysis.
[3]
The diaphragm according to [1] or [2], wherein the average water-permeable pore diameter is 0.1 μm or more and 1.0 μm or less.
[4]
The diaphragm according to any one of [1] to [3], wherein the inorganic compound is a hydrophilic inorganic particle or a hydrophilic inorganic porous material.
[5]
The diaphragm according to any one of [1] to [4], wherein a primary particle size of the hydrophilic inorganic particles is 10 nm or more and 300 nm or less.
[6]
The hydrophilic inorganic particles include at least one of TiO 2 , Ti (OH) 4 , ZrO 2 , and Zr (OH) 4 , according to any one of [1] to [5] diaphragm.
[7]
The diaphragm according to any one of [1] to [6], wherein the water contact angle is greater than 10 ° and 90 ° or less.
[8]
Any of [1] to [7], wherein the tensile breaking strength in the flow (MD) direction is 10 MPa or more and 30 MPa or less and the tensile breaking strength in the (TD) direction orthogonal to the flow direction is 10 MPa or more and 30 MPa or less The diaphragm according to the above.
[9]
[1] to the diaphragm according to any one of [8],
A plurality of elements including a cathode and an anode are stacked with the diaphragm interposed therebetween,
An electrolytic cell, wherein the diaphragm is in contact with the cathode and the anode to form a zero gap structure.
[10]
Using the electrolytic cell according to [9], electrolyte temperature 85 ° C. ~ 125 ° C., and wherein the electrolysis of an aqueous solution of potassium hydroxide or sodium hydroxide at a current density of 4kA / m 2 ~ 20kA / m 2 A method for producing hydrogen.
[11]
In a hydrogen production method for producing hydrogen by electrolyzing water containing an alkali with an electrolytic cell,
The electrolytic cell has a diaphragm at least between an anode and a cathode,
The diaphragm is
At least polytetrafluoroethylene (PTFE) and an inorganic compound,
The average water permeable pore diameter is 0.02 μm or more and 1.0 μm or less,
The maximum pore size is 0.2 μm or more and 2.0 μm or less,
Porosity is 30% or more and 90% or less,
The thickness is 100 μm or more and 600 μm or less,
Content of the said inorganic compound is 70 mass% or more and 95 mass% or less characterized by the total amount of the said PTFE and the said inorganic compound being 100 mass%, The hydrogen manufacturing method characterized by the above-mentioned.
 本発明によれば、ガス遮断性及びイオン透過性が良好であり、高温かつ長期間の電解においても電解効率の高いアルカリ水電解用隔膜を提供することができる。 According to the present invention, it is possible to provide a diaphragm for alkaline water electrolysis that has good gas barrier properties and ion permeability, and has high electrolysis efficiency even in high-temperature and long-term electrolysis.
本実施形態のアルカリ水電解用複極式電解槽の一例の全体について示す側面図である。It is a side view shown about the whole example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment. 本実施形態のアルカリ水電解用複極式電解槽の一例のゼロギャップ構造を破線四角枠の部分について示す側面図である。It is a side view which shows the zero gap structure of an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment about the part of a broken-line square frame. 本実施形態のアルカリ水電解用複極式電解槽の一例の電極室部分について示す平面図である。It is a top view shown about the electrode chamber part of an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment. 本実施形態のアルカリ水電解用複極式電解槽の一例を備えるアルカリ水電解装置の概要を示す図である。It is a figure which shows the outline | summary of the alkaline water electrolysis apparatus provided with an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment. 本実施形態のアルカリ水電解用複極式電解槽の多孔体電極の一例のエキスパンド型基材の網目部分について示す平面図、及び、前記平面図の線A-Aに沿う面により切断したときの断面図である。A plan view showing a network portion of an expanded base material as an example of a porous electrode of a bipolar electrolytic cell for alkaline water electrolysis according to this embodiment, and when cut by a plane along line AA in the plan view. It is sectional drawing. 本実施形態のアルカリ水電解用複極式電解槽の多孔体電極の一例の平織メッシュ型基材の網目部分について示す平面図である。It is a top view shown about the mesh part of the plain-woven mesh type | mold base material of an example of the porous body electrode of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment. 本実施形態のアルカリ水電解用複極式電解槽の多孔体電極の一例のパンチング型基材について示す平面図である。It is a top view shown about a punching type substrate of an example of a porous body electrode of a bipolar electrolytic cell for alkaline water electrolysis of this embodiment.
(アルカリ水電解用隔膜)
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
(Membrane for alkaline water electrolysis)
Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
 本実施形態のアルカリ水電解用隔膜は、少なくともポリテトラフルオロエチレン(PTFE)及び親水性無機化合物を含み、平均透水孔径が0.02μm以上1.0μm以下、最大孔径が0.2μm以上2.0μm以下、気孔率が30%以上90%以下、厚みが100μm以上600μm以下であって、親水性無機化合物の含有量がPTFEおよび親水性無機化合物の合計量を100質量%として、70質量%以上95質量%以下であることを特徴とする。 The alkaline water electrolysis diaphragm of this embodiment contains at least polytetrafluoroethylene (PTFE) and a hydrophilic inorganic compound, and has an average water-permeable pore diameter of 0.02 μm to 1.0 μm and a maximum pore diameter of 0.2 μm to 2.0 μm. Hereinafter, the porosity is 30% or more and 90% or less, the thickness is 100 μm or more and 600 μm or less, and the content of the hydrophilic inorganic compound is 70% by mass or more and 95% by mass, where the total amount of PTFE and hydrophilic inorganic compound is 100% by mass. It is characterized by being not more than mass%.
-PTFE-
 本実施形態におけるアルカリ水電解用隔膜は、ポリテトラフルオロエチレンを含む多孔膜である。隔膜に含まれるPTFEは、種々のPTFEの中から適宜選択されて良いが、中でもPTFEファインパウダーであることが好ましい。PTFEファインパウダーを用いることで、隔膜の引張強度を高くすることができる。PTFEファインパウダーは、テトラフルオロエチレンの乳化重合により得られたPTFE微粒子(例えば、平均粒径が0.1~0.5μmのPTFE微粒子)の水性分散体(PTFEディスパージョン)を凝析及び乾燥して製造される、PTFEの粉末である。このPTFE粉末の平均粒径は、例えば、200~1000μmである。
-PTFE-
The diaphragm for alkaline water electrolysis in the present embodiment is a porous film containing polytetrafluoroethylene. The PTFE contained in the diaphragm may be appropriately selected from various PTFEs, and among them, PTFE fine powder is preferable. By using PTFE fine powder, the tensile strength of the diaphragm can be increased. PTFE fine powder is obtained by coagulating and drying an aqueous dispersion (PTFE dispersion) of PTFE fine particles (for example, PTFE fine particles having an average particle size of 0.1 to 0.5 μm) obtained by emulsion polymerization of tetrafluoroethylene. PTFE powder produced by The average particle size of the PTFE powder is, for example, 200 to 1000 μm.
 PTFEとしては、テトラフルオロエチレンのみを重合させたホモポリマーからなる純PTFEを用いることができ、又は少量の他のモノマーを含む共重合体である変性PTFEを用いることもできる。テトラフルオロエチレンと共重合させる成分としては、例えば、ヘキサフルオロプロピレン、パ-フルオロプロピルビニルエーテルの一方又は両方を用いることができる。本実施形態で用いられるPTFEは、これらのうちの1種を単独で使用しても良いし、2種類以上を組合わせて使用しても良い。
 上記したPTFEファインパウダーの具体的な例としては、SOLVAY社の「アルゴフロン(商標、以下同様)」、三井・デュポン・フロロケミカル社の「テフロン(商標、以下同様)」、ダイキン社の「ポリフロン(商標、以下同様)」が挙げられる。
As PTFE, pure PTFE made of a homopolymer obtained by polymerizing only tetrafluoroethylene can be used, or modified PTFE which is a copolymer containing a small amount of other monomers can also be used. As a component to be copolymerized with tetrafluoroethylene, for example, one or both of hexafluoropropylene and perfluoropropyl vinyl ether can be used. As PTFE used in the present embodiment, one of these may be used alone, or two or more may be used in combination.
Specific examples of the above-mentioned PTFE fine powder include “Algoflon (trademark, the same applies hereinafter)” of SOLVAY, “Teflon (trademark; same applies hereinafter)” of Mitsui DuPont Fluorochemical Co., “Polyflon” of Daikin (Trademark, the same shall apply hereinafter) ".
 PTFEとして、テトラフルオロエチレンが主鎖骨格に含まれる共重合体を用いることで、高温、高濃度のアルカリ溶液に対する耐性が一層向上する。また、例えば特許第2810869号に記載されているような公知の一般的な製法を用いることで、PTFE多孔膜を作製することが出来る。 By using a copolymer containing tetrafluoroethylene in the main chain skeleton as PTFE, resistance to high temperature and high concentration alkaline solution is further improved. Moreover, a PTFE porous film can be produced by using a known general production method as described in, for example, Japanese Patent No. 2810869.
 本発明のPTFEの標準比重は、2.00以上2.30以下であることが好ましい。比重が2.00以上であれば、広い温度範囲で機械強度を担保でき、隔膜の機能を安定して発現することが出来る。比重が2.30以下であれば、加工性が良好で、製膜時の孔径が制御し易くなる。 The standard specific gravity of the PTFE of the present invention is preferably 2.00 or more and 2.30 or less. If the specific gravity is 2.00 or more, the mechanical strength can be ensured in a wide temperature range, and the function of the diaphragm can be stably expressed. If the specific gravity is 2.30 or less, the workability is good and the pore diameter during film formation can be easily controlled.
 PTFEは架橋処理が施されていてもよい。架橋処理の方法は、特に限定されないが、電子線やγ線等の放射線照射による架橋や架橋剤による熱架橋等が挙げられる。これらの架橋処理は、多孔質構造を付与した後に施すことがより好ましい。 PTFE may be subjected to a crosslinking treatment. The method for the crosslinking treatment is not particularly limited, and examples thereof include crosslinking by irradiation with radiation such as electron beams and γ rays and thermal crosslinking using a crosslinking agent. These crosslinking treatments are more preferably performed after imparting a porous structure.
-親水性無機化合物-
 本実施形態におけるアルカリ水電解用隔膜は、高い電解液透過性、高いイオン透過性及び高いガス遮断性を発現するために、無機化合物を含有する。ここで、無機化合物は隔膜の表面に付着していても良いし、一部が多孔膜を構成する高分子材料に埋没していても良い。また無機化合物が隔膜の空隙部に内包されると、隔膜から脱離しにくくなり、隔膜の性能を長時間維持できる。無機化合物としては、親水性無機化合物が好ましく、微粒子形状の親水性無機粒子または親水性無機多孔体であることがより好ましい。
-Hydrophilic inorganic compounds-
The diaphragm for alkaline water electrolysis in the present embodiment contains an inorganic compound in order to exhibit high electrolyte solution permeability, high ion permeability, and high gas barrier properties. Here, the inorganic compound may adhere to the surface of the diaphragm, or a part thereof may be buried in a polymer material constituting the porous film. In addition, when the inorganic compound is encapsulated in the gap of the diaphragm, it becomes difficult to detach from the diaphragm, and the performance of the diaphragm can be maintained for a long time. As the inorganic compound, a hydrophilic inorganic compound is preferable, and a hydrophilic inorganic particle or a hydrophilic inorganic porous body in the form of fine particles is more preferable.
--親水性無機粒子--
 親水性無機粒子としては、例えば、ジルコニウム、チタン、ビスマス、セリウムの酸化物又は水酸化物;周期律表第IV族元素の酸化物;周期律表第IV族元素の窒化物、及び周期律表第IV族元素の炭化物からなる群より選ばれる少なくとも1種の無機物が挙げられる。これらの中でも、化学的安定性の観点から、ジルコニウム、チタン、ビスマス、セリウムの酸化物、周期律表第IV族元素の酸化物もしくは水酸化物が好ましく、酸化ジルコニウム(ZrO)、水酸化ジルコニウム(Zr(OH))、酸化チタン(TiO)、水酸化チタン(Ti(OH))がより好ましい。これら親水性無機粒子は、1種単独で用いてもよいし、2種以上を併用してもよい。アルカリ水電解の電解液としては、NaOH水溶液、KOH水溶液等のアルカリ性溶液がよく用いられる。このような環境に酸化チタンを曝すと、チタン酸ナトリウムやチタン酸カリウムといったチタン酸塩に変化することがある。そのため、親水性無機粒子として、あらかじめチタン酸塩を用いてもよい。親水性無機粒子の粒子表面は、極性を帯びている。水溶液である電解液内における、極性の小さな酸素分子や水素分子と、極性の大きな水分子との親和性等を踏まえると、極性の大きな水分子の方が親水性無機粒子と吸着し易いとと考えられる。よって、このような親水性無機粒子が隔膜表面に存在することで、隔膜表面に水分子が優先的に吸着し、酸素分子や水素分子等の気泡が隔膜表面に吸着しない。その結果、隔膜表面への気泡の付着を効果的に抑制することができる。
--- Hydrophilic inorganic particles--
Examples of hydrophilic inorganic particles include zirconium, titanium, bismuth, cerium oxide or hydroxide; periodic table group IV element oxide; periodic table group IV element nitride, and periodic table. And at least one inorganic substance selected from the group consisting of carbides of Group IV elements. Among these, from the viewpoint of chemical stability, oxides of zirconium, titanium, bismuth, cerium, oxides or hydroxides of group IV elements of the periodic table are preferable, and zirconium oxide (ZrO 2 ), zirconium hydroxide (Zr (OH) 4 ), titanium oxide (TiO 2 ), and titanium hydroxide (Ti (OH) 4 ) are more preferable. These hydrophilic inorganic particles may be used alone or in combination of two or more. As an electrolytic solution for alkaline water electrolysis, alkaline solutions such as NaOH aqueous solution and KOH aqueous solution are often used. When titanium oxide is exposed to such an environment, it may change to a titanate such as sodium titanate or potassium titanate. Therefore, titanate may be used in advance as the hydrophilic inorganic particles. The particle surface of the hydrophilic inorganic particles is polar. Considering the affinity between oxygen molecules and hydrogen molecules with a small polarity and water molecules with a large polarity in an electrolyte solution that is an aqueous solution, water molecules with a large polarity are more easily adsorbed to hydrophilic inorganic particles. Conceivable. Therefore, when such hydrophilic inorganic particles are present on the surface of the diaphragm, water molecules are preferentially adsorbed on the surface of the diaphragm, and bubbles such as oxygen molecules and hydrogen molecules are not adsorbed on the surface of the diaphragm. As a result, it is possible to effectively suppress the adhesion of bubbles to the diaphragm surface.
 親水性無機粒子の平均一次粒径は、特に限定されないが、10nm以上300nm以下であることが好ましく、25.0nm以上250nm以下であることがより好ましい。親水性無機粒子の平均一次粒径が、この範囲であると、隔膜孔内に取り込まれた際、そこで凝集して形成される二次粒子の粒径が隔膜の孔径より大きくなり、隔膜から親水性無機粒子が脱落することを抑制できる。また、親水性無機粒子の二次粒子の表面積を増加させて、隔膜の細孔内を一層親水化することができる。また、隔膜から脱落した親水性無機粒子が、多孔体電極の細孔を閉塞することを防止して、過電圧の上昇を防止することができる。
 隔膜中の親水性無機粒子の平均一次粒径は、次の方法で求めることができる。測定サンプルを隔膜表面の垂直方向から走査型電子顕微鏡(SEM)で観察し、親水性無機粒子が観察できる倍率で撮像する。その画像を、画像解析ソフトを用いて2値化し、凝集していない10点の無機粒子のそれぞれに対して絶対最大長を測定し、その個数平均を求める。
The average primary particle size of the hydrophilic inorganic particles is not particularly limited, but is preferably 10 nm or more and 300 nm or less, and more preferably 25.0 nm or more and 250 nm or less. When the average primary particle size of the hydrophilic inorganic particles is within this range, when the particles are taken into the pores of the membrane, the particle size of the secondary particles formed by aggregation is larger than the pore size of the membrane, so Of the inorganic particles can be suppressed. In addition, the surface area of the secondary particles of the hydrophilic inorganic particles can be increased to make the pores of the diaphragm more hydrophilic. Moreover, it is possible to prevent the hydrophilic inorganic particles dropped from the diaphragm from blocking the pores of the porous electrode, thereby preventing an increase in overvoltage.
The average primary particle size of the hydrophilic inorganic particles in the diaphragm can be determined by the following method. The measurement sample is observed with a scanning electron microscope (SEM) from the direction perpendicular to the diaphragm surface, and is imaged at a magnification at which the hydrophilic inorganic particles can be observed. The image is binarized using image analysis software, the absolute maximum length is measured for each of the 10 non-aggregated inorganic particles, and the number average is obtained.
 親水性無機粒子の平均二次粒径は、特に限定されないが、隔膜からの脱落防止及び多孔膜孔内の親水化の観点から、0.2μm以上10μm以下であることが好ましく、0.5μm以上8.0μm以下であることがより好ましい。平均二次粒径は、親水性無機粒子が隔膜中で形成している二次粒子の状態の平均粒径である。
 なお、平均二次粒径は、隔膜から高分子樹脂を溶解除去して残った親水性無機粒子を測定試料として、レーザー回折・散乱法により、体積分布から平均二次粒径を計測することができる。より具体的には、後述する実施例に記載の方法によって求めることができる。
The average secondary particle size of the hydrophilic inorganic particles is not particularly limited, but is preferably 0.2 μm or more and 10 μm or less, and preferably 0.5 μm or more, from the viewpoint of preventing falling off from the diaphragm and hydrophilization in the pores of the porous membrane. More preferably, it is 8.0 μm or less. The average secondary particle size is an average particle size in a state of secondary particles formed by hydrophilic inorganic particles in the diaphragm.
The average secondary particle size can be measured from the volume distribution by laser diffraction / scattering method using the hydrophilic inorganic particles remaining after dissolving and removing the polymer resin from the diaphragm as a measurement sample. it can. More specifically, it can be determined by the method described in Examples described later.
--親水性無機多孔体--
 親水性無機多孔体としては、例えば、ジルコニウム、チタン、ビスマス、セリウムの酸化物又は水酸化物;周期律表第IV族元素の酸化物;周期律表第IV族元素の窒化物、及び周期律表第IV族元素の炭化物からなる群より選ばれる少なくとも1種の無機物が挙げられる。これらの中でも、化学的安定性の観点から、ジルコニウム、チタン、ビスマス、セリウムの酸化物、周期律表第IV族元素の酸化物もしくは水酸化物が好ましく、酸化ジルコニウム(ZrO)、水酸化ジルコニウム(Zr(OH))、酸化チタン(TiO)、水酸化チタン(Ti(OH))がより好ましい。これら親水性無機多孔体は、1種単独で用いてもよいし、2種以上を併用してもよい。アルカリ水電解の電解液としては、NaOH水溶液、KOH水溶液等のアルカリ性溶液がよく用いられる。このような環境に酸化チタンを曝すと、チタン酸ナトリウムやチタン酸カリウムといったチタン酸塩に変化することがある。そのため、親水性無機多孔体として、あらかじめチタン酸塩を用いてもよい。親水性無機多孔体表面は、極性を帯びている。水溶液である電解液内における、極性の小さな酸素分子や水素分子と、極性の大きな水分子との親和性等を踏まえると、極性の大きな水分子の方が親水性無機多孔体と吸着し易いとと考えられる。よって、このような親水性無機多孔体が隔膜表面に存在することで、隔膜表面に水分子が優先的に吸着し、酸素分子や水素分子等の気泡が隔膜表面に吸着しない。その結果、隔膜表面への気泡の付着を効果的に抑制することができる。
--- Hydrophilic inorganic porous material--
Examples of the hydrophilic inorganic porous material include oxides or hydroxides of zirconium, titanium, bismuth, and cerium; oxides of group IV elements of the periodic table; nitrides of group IV elements of the periodic table; and periodic rules Examples include at least one inorganic substance selected from the group consisting of carbides of Group IV elements. Among these, from the viewpoint of chemical stability, oxides of zirconium, titanium, bismuth, cerium, oxides or hydroxides of group IV elements of the periodic table are preferable, and zirconium oxide (ZrO 2 ), zirconium hydroxide (Zr (OH) 4), titanium oxide (TiO 2), titanium hydroxide (Ti (OH) 4) is more preferable. These hydrophilic inorganic porous materials may be used alone or in combination of two or more. As an electrolytic solution for alkaline water electrolysis, alkaline solutions such as NaOH aqueous solution and KOH aqueous solution are often used. When titanium oxide is exposed to such an environment, it may change to a titanate such as sodium titanate or potassium titanate. Therefore, titanate may be used in advance as the hydrophilic inorganic porous body. The surface of the hydrophilic inorganic porous body is polar. Considering the affinity between oxygen molecules and hydrogen molecules with a small polarity and water molecules with a large polarity in an electrolyte solution that is an aqueous solution, water molecules with a large polarity are more easily adsorbed to the hydrophilic inorganic porous material. it is conceivable that. Therefore, when such a hydrophilic inorganic porous material exists on the surface of the diaphragm, water molecules are preferentially adsorbed on the surface of the diaphragm, and bubbles such as oxygen molecules and hydrogen molecules are not adsorbed on the surface of the diaphragm. As a result, it is possible to effectively suppress the adhesion of bubbles to the diaphragm surface.
 親水性無機多孔体の平均孔径は、特に限定されないが、10nm以上500nm以下であることが好ましく、20nm以上300nm以下であることがより好ましい。親水性無機多孔体の平均孔径が、この範囲であると、高いガス遮断性と高イオン透過性の両立が可能となる。  The average pore size of the hydrophilic inorganic porous material is not particularly limited, but is preferably 10 nm or more and 500 nm or less, and more preferably 20 nm or more and 300 nm or less. When the average pore size of the hydrophilic inorganic porous material is within this range, both high gas barrier properties and high ion permeability can be achieved. *
 本実施形態において、隔膜中に含まれるPTFEおよび親水性無機化合物の合計量を100質量%として、親水性無機化合物の含有量は70質量%以上95質量%以下とする。親水性無機化合物の含有量が70質量%以上であると、例えば電解中も隔膜内部の親水性をより高くでき、発生するガスが隔膜を通って反対側の電極室に抜けるのを防ぎやすい。さらに、電解液が隔膜内に浸透する事が出来る為、隔膜の電圧損失をより低く保つことが出来る。一方で、親水性無機粒子の含有量が95質量%以下であると、隔膜の気孔率をより高く制御し易い。 In this embodiment, the total amount of PTFE and hydrophilic inorganic compound contained in the diaphragm is 100% by mass, and the content of the hydrophilic inorganic compound is 70% by mass to 95% by mass. When the content of the hydrophilic inorganic compound is 70% by mass or more, for example, the hydrophilicity inside the diaphragm can be increased even during electrolysis, and it is easy to prevent the generated gas from passing through the diaphragm to the opposite electrode chamber. Furthermore, since the electrolytic solution can permeate into the diaphragm, the voltage loss of the diaphragm can be kept lower. On the other hand, when the content of the hydrophilic inorganic particles is 95% by mass or less, it is easy to control the porosity of the diaphragm higher.
[耐加水分解性]
 本実施形態において、長期間安定した性能を得る観点から、隔膜は高い耐加水分解性を有することが好ましい。隔膜電解中は常に高温高濃度のアルカリ溶液に浸漬される為、加水分解性が不十分だと隔膜が徐々に劣化して脆くなる可能性がある。脆くなった隔膜は、循環する電解液や発生するガスによって浸食され、孔が大きくなり、気孔率も大きくなる。その結果、ガス遮断性が低下し、両電極から発生するガスが混合してガス純度が低下しやすくなる。
[Hydrolysis resistance]
In the present embodiment, the diaphragm preferably has high hydrolysis resistance from the viewpoint of obtaining stable performance for a long period of time. During diaphragm electrolysis, since it is always immersed in a high-temperature and high-concentration alkaline solution, if the hydrolyzability is insufficient, the diaphragm may gradually deteriorate and become brittle. The fragile diaphragm is eroded by the circulating electrolyte and generated gas, and the pores become larger and the porosity becomes larger. As a result, the gas barrier property is lowered, and the gas generated from both electrodes is mixed to easily reduce the gas purity.
 本実施形態における隔膜には、さらなる機能の付与を目的として、隔膜の機能を阻害しない範囲で、PTFE以外の物質が含まれていても良い。例えば、酸化防止剤、熱安定化剤等の添加剤を含有しても良いし、フッ素系樹脂等のコーティングを施しても良い。 The diaphragm in the present embodiment may contain a substance other than PTFE as long as the function of the diaphragm is not inhibited for the purpose of imparting further functions. For example, an additive such as an antioxidant or a heat stabilizer may be contained, or a coating such as a fluorine resin may be applied.
[隔膜の孔径]
 本実施形態における隔膜は分離能、強度など適切な膜物性を得る為に孔径を制御しなければならない。また、アルカリ水電解においては、陽極から発生する酸素ガス及び陰極から発生する水素ガスの混合を防止し、かつ電解における電圧損失低減する観点から、隔膜の孔径を制御しなければならない。
[Diaphragm pore size]
In the present embodiment, the pore diameter must be controlled in order to obtain appropriate membrane properties such as separation ability and strength. In alkaline water electrolysis, the pore diameter of the diaphragm must be controlled from the viewpoint of preventing mixing of oxygen gas generated from the anode and hydrogen gas generated from the cathode and reducing voltage loss in electrolysis.
 隔膜の平均透水孔径が大きい程、隔膜のイオン透過性が良好であり、電圧損失を低減しやすい傾向にある。また、隔膜の平均透水孔径が大きい程、アルカリ溶液との接触表面積が小さくなるので、ポリマーの劣化が抑制される傾向にある。 The larger the average water permeability pore size of the diaphragm, the better the ion permeability of the diaphragm, and the more likely it is to reduce the voltage loss. Moreover, since the surface area of contact with the alkaline solution is smaller as the average water-permeable pore diameter of the diaphragm is larger, the deterioration of the polymer tends to be suppressed.
 一方、隔膜の平均透水孔径が小さい程、隔膜の分解能は高くなり、電解においては隔膜のガス遮断性が良好となる傾向にある。さらに、後述する粒径の小さな親水性無機化合物を隔膜に担持した場合、欠落せずしっかりと保持することができる。これにより、親水性無機化合物の高い保持能力を付与でき、長期に亘ってその効果を維持することができる。 On the other hand, the smaller the average water-permeable pore diameter of the diaphragm, the higher the resolution of the diaphragm, and the better the gas barrier property of the diaphragm in electrolysis. Furthermore, when a hydrophilic inorganic compound having a small particle size, which will be described later, is supported on the diaphragm, it can be held firmly without being lost. Thereby, the high retention capability of a hydrophilic inorganic compound can be provided, and the effect can be maintained over a long period of time.
 また、隔膜の最大孔径は隔膜の分離精度を高める為、制御されなければならない。具体的には、平均透水孔径と最大孔径の差が小さい程分離性能は高くなる傾向にある。特に、電解においては、隔膜内の孔径のばらつきを小さく保てる為、ピンホールが発生して両電極室から発生するガスの純度が低下する可能性を低く出来る。 Also, the maximum pore size of the diaphragm must be controlled to increase the separation accuracy of the diaphragm. Specifically, the separation performance tends to be higher as the difference between the average water-permeable pore diameter and the maximum pore diameter is smaller. In particular, in electrolysis, since the variation in the hole diameter in the diaphragm can be kept small, it is possible to reduce the possibility that the purity of the gas generated from both electrode chambers due to the generation of pinholes is lowered.
 かかる観点から本発明の隔膜においては、隔膜の平均透水孔径は、0.02μm以上1.0μm以下、かつ最大孔径は0.2μm以上2.0μm以下の範囲でなければならない。孔径がこの範囲であれば、優れたガス遮断性と高イオン透過性の両立も達成できる。また、隔膜の孔径は実際に使用する温度域において制御されることが好ましい。従って、例えば90℃の環境下での電解用隔膜として使用する場合は、90℃で上記の孔径の範囲を満足させることが必要である。また、アルカリ水電解用隔膜として、より優れたガス遮断性と高いイオン透過性を発現できる範囲として、平均透水孔径が0.1μm以上1.0μm以下、かつ最大孔径が0.5μm以上1.8μm以下であることがより好ましく、0.1μm以上0.5μm以下、かつ最大孔径が0.5μm以上1.8μm以下であることがより好ましい。 From such a viewpoint, in the diaphragm of the present invention, the average water-permeable pore diameter of the diaphragm must be in the range of 0.02 μm to 1.0 μm and the maximum pore diameter is in the range of 0.2 μm to 2.0 μm. If the pore diameter is within this range, both excellent gas barrier properties and high ion permeability can be achieved. Further, the pore diameter of the diaphragm is preferably controlled in the temperature range in which it is actually used. Therefore, for example, when used as a diaphragm for electrolysis in an environment of 90 ° C., it is necessary to satisfy the above pore diameter range at 90 ° C. In addition, as a diaphragm for alkaline water electrolysis, an average water-permeable pore diameter of 0.1 μm or more and 1.0 μm or less and a maximum pore diameter of 0.5 μm or more and 1.8 μm can be exhibited as a better gas barrier property and high ion permeability. Or less, more preferably 0.1 μm or more and 0.5 μm or less, and a maximum pore diameter of 0.5 μm or more and 1.8 μm or less.
 隔膜の孔径は、隔膜の中心から両表面へと厚み方向に向かって略対称に制御することが好ましい。隔膜の孔径分布が対称であると、例えば隔膜を電解槽に組み込む際に表裏どちらでも同様の機能が発現でき、ハンドリング性も向上する。また、電解中に異物が隔膜内部に詰まりにくくなる。さらに、隔膜の孔径は、隔膜の表面から厚み方向に内部に向かって、徐々に小さくなることがより好ましい。孔径が内部に向かって徐々に小さくなると、例えば使用中に隔膜の表面に異物による傷がついた場合であっても、高い分離能を維持することが出来る。 The pore diameter of the diaphragm is preferably controlled approximately symmetrically in the thickness direction from the center of the diaphragm to both surfaces. When the pore size distribution of the diaphragm is symmetric, for example, when the diaphragm is incorporated into an electrolytic cell, the same function can be exhibited on both the front and back sides, and handling properties are improved. In addition, foreign matter is less likely to be clogged inside the diaphragm during electrolysis. Furthermore, it is more preferable that the pore diameter of the diaphragm gradually decreases from the surface of the diaphragm toward the inside in the thickness direction. When the pore diameter is gradually reduced toward the inside, high separation ability can be maintained even when, for example, the surface of the diaphragm is damaged by foreign matter during use.
 隔膜の平均透水孔径と最大孔径とは、以下の方法で測定することが出来る。
隔膜の平均透水孔径とは、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定した平均透水孔径をいう。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとする。このサンプルを任意の耐圧容器にセットして、容器内を純水で満たす。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始する。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から純水が透過してくる際の圧力と透過流量の数値を記録する。平均透水孔径は、圧力が10kPaから30kPaの間の圧力と透水流量の勾配を使い、以下のハーゲンポアズイユの式から求めることが出来る。
The average water permeability pore diameter and the maximum pore diameter of the diaphragm can be measured by the following methods.
The average water-permeable pore diameter of the diaphragm means an average water-permeable pore size measured by the following method using an integrity tester (“Sartochcheck Junior BP-Plus” manufactured by Sartorius Stedim Japan). First, the diaphragm is cut into a predetermined size including the core material, and this is used as a sample. This sample is set in an arbitrary pressure vessel, and the inside of the vessel is filled with pure water. Next, the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature. When the measurement starts, the upper surface side of the sample is pressurized with nitrogen, and the pressure and the permeate flow rate when pure water permeates from the lower surface side of the sample are recorded. The average water-permeable pore diameter can be obtained from the following Hagen-Poiseuille equation using a pressure between 10 kPa and 30 kPa and a gradient of the water flow rate.
  平均透水孔径(m)={32ηLμ/(εP)}0.5
 ここで、ηは水の粘度(Pa・s)、Lは隔膜の厚み(m)、μは見かけの流速でありμ(m/s)=流量(m/s)/流路面積(m)である。また、εは気孔率、Pは圧力(Pa)である。
Average water-permeable pore diameter (m) = {32ηLμ 0 / (εP)} 0.5
Here, η is the viscosity of water (Pa · s), L is the thickness of the diaphragm (m), μ 0 is the apparent flow velocity, and μ 0 (m / s) = flow rate (m 3 / s) / flow channel area. (M 2 ). Further, ε is the porosity, and P is the pressure (Pa).
 隔膜の最大孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定することが出来る。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとする。このサンプルを純水で濡らし、隔膜の孔内に純水を含浸させ、これを測定用の耐圧容器にセットする。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始する。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から気泡が連続して発生してくるときの窒素圧力を、バブルポイント圧力とする。最大孔径はヤング-ラプラスの式を変形させた下記バブルポイント式から求めることが出来る。 The maximum pore diameter of the diaphragm can be measured by the following method using an integrity tester (manufactured by Sartorius Stedim Japan, “Sartochcheck Junior BP-Plus”). First, the diaphragm is cut into a predetermined size including the core material, and this is used as a sample. This sample is wetted with pure water, impregnated with pure water in the pores of the diaphragm, and set in a pressure-resistant container for measurement. Next, the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature. When the measurement starts, the upper surface side of the sample is pressurized with nitrogen, and the nitrogen pressure when bubbles are continuously generated from the lower surface side of the sample is defined as a bubble point pressure. The maximum pore diameter can be obtained from the following bubble point equation obtained by modifying the Young-Laplace equation.
 最大孔径(m)=4γcosθ/P
 ここで、γは水の表面張力(N/m)、cosθは隔膜表面と水の接触角(rad)、Pはバブルポイント圧力(Pa)である。
Maximum pore diameter (m) = 4γ cos θ / P
Here, γ is the surface tension (N / m) of water, cos θ is the contact angle (rad) of the diaphragm surface and water, and P is the bubble point pressure (Pa).
[隔膜の気孔率]
 適切な分離能の発現や目詰まりによる寿命の短縮防止の観点から、隔膜の気孔率を制御しなければならない。また、隔膜を電解に使用した場合はガス遮断性、親水性の維持、気泡の付着によるイオン透過性低下の防止、さらには長時間安定した電解性能(低電圧損失等)が得られるといった観点から、隔膜の気孔率を制御しなければならない。隔膜の気孔率は、平均孔径及び最大孔径が上記範囲にある孔が、隔膜に占める割合と関連するものともいえる。隔膜の高い機能、特にアルカリ水電解用隔膜におけるガス遮断性や低電圧損失の両立性を発現させるために、隔膜の気孔率の下限は30%以上である必要があり、35%以上であることがより好ましく、40%以上であることが更に好ましい。また、気孔率の上限は80%以下である必要があり、70%以下であることがより好ましい。隔膜の気孔率が上記上限値以下であれば、多孔構造を保持することが出来る。
[Porosity of diaphragm]
From the viewpoint of appropriate separation ability and prevention of shortening of the life due to clogging, the porosity of the diaphragm must be controlled. In addition, when a diaphragm is used for electrolysis, it is possible to maintain gas barrier properties, maintain hydrophilicity, prevent ion permeability from being reduced due to air bubbles, and obtain stable electrolysis performance (low voltage loss, etc.) for a long time. , The porosity of the diaphragm must be controlled. It can be said that the porosity of the diaphragm is related to the ratio of the pores having the average pore diameter and the maximum pore diameter within the above ranges to the diaphragm. In order to exhibit the high function of the diaphragm, in particular the compatibility of gas barrier properties and low voltage loss in the diaphragm for alkaline water electrolysis, the lower limit of the porosity of the diaphragm needs to be 30% or more, and 35% or more. Is more preferable, and it is still more preferable that it is 40% or more. Moreover, the upper limit of porosity needs to be 80% or less, and it is more preferable that it is 70% or less. If the porosity of the diaphragm is not more than the above upper limit value, the porous structure can be maintained.
 ここで、隔膜の気孔率εとは、アルキメデス法により求めた開気孔率をいい、以下の式により求めることができる。
  気孔率ε(%)=(ρ1-ρ2)×100
ρ1は、飽水密度(g/cm)、すなわち、開気孔内が水を含んで飽和した状態のサンプルの密度を表す。ρ2は、乾燥密度(g/cm)、すなわち、開気孔内から水が十分に除去されて乾燥した状態のサンプルの密度を表す。ρ1及びρ2は、それぞれの状態のサンプルについて、w:重量(g)、d:厚み(cm)、s:厚み方向に垂直な面の面積(cm)を測定し、ρ=w/(d×s)として求めることができる。
 隔膜サンプルの水接触面が低吸水性であって、サンプルが水を含んだ状態と乾燥状態との間で厚みや面積が有意に変化しない場合には、d及びsは一定値とみなすこともできる。
 気孔率εは、具体的に、25℃に設定した室内で次の手順で測定することができる。純水で洗浄した隔膜を3cm×3cmの大きさで3枚に切出して、シックネスゲージで厚みdを測定する。これら測定サンプルを純水中に24時間浸し、余分な水分を取り除いて重量w1(g)を測定する。続いて、取り出したサンプルを50℃に設定された乾燥機で12時間以上静置して乾燥させて、重量w2(g)を測定する。そして、w1、w2、及びdの値から気孔率を求める。3枚のサンプルについて気孔率を求め、それらの算術平均値を隔膜の気孔率εとする。
Here, the porosity ε of the diaphragm refers to the open porosity determined by the Archimedes method and can be determined by the following equation.
Porosity ε (%) = (ρ1-ρ2) × 100
ρ1 represents the saturated water density (g / cm 3 ), that is, the density of the sample in a state where the open pores are saturated with water. ρ2 represents the dry density (g / cm 3 ), that is, the density of the sample in a state where water is sufficiently removed from the open pores and dried. ρ1 and ρ2 are w: weight (g), d: thickness (cm), s: area (cm 2 ) of a plane perpendicular to the thickness direction, and ρ = w / (d Xs).
If the water contact surface of the diaphragm sample is low in water absorption and the thickness or area of the sample does not change significantly between the water-containing state and the dry state, d and s may be regarded as constant values. it can.
Specifically, the porosity ε can be measured in a room set at 25 ° C. by the following procedure. The diaphragm washed with pure water is cut into three pieces having a size of 3 cm × 3 cm, and the thickness d is measured with a thickness gauge. These measurement samples are immersed in pure water for 24 hours, excess water is removed, and the weight w1 (g) is measured. Subsequently, the sample taken out is allowed to stand for 12 hours or more in a dryer set at 50 ° C. and dried, and the weight w2 (g) is measured. And a porosity is calculated | required from the value of w1, w2, and d. The porosity is obtained for three samples, and the arithmetic average value thereof is defined as the porosity ε of the diaphragm.
 そして、隔膜の気孔率と膜表面の開口度は相関性がある。例えば、気孔率が大きい程、開口度が高くなる傾向にある。また、開口度が高い程、後述する親水性無機化合物の効果を受けやすく、より高い親水性を維持する傾向にある。これらの理由から本実施形態の隔膜の開口度は、前記した孔径の範囲に多孔構造を制御した上で制御することが好ましい。高い親水性を維持する観点から、開口度は20%以上にする必要があり、25%以上であることがより好ましく、30%以上であることが更に好ましい。一方で親水性無機化合物の担持や隔膜表面の強度を維持する為、開口度は80%以下である必要があり、75%以下であることがより好ましく、70%以下であることが更に好ましい。 And there is a correlation between the porosity of the diaphragm and the degree of opening of the membrane surface. For example, the degree of opening tends to increase as the porosity increases. Moreover, it is easy to receive the effect of the hydrophilic inorganic compound mentioned later, and there exists a tendency to maintain higher hydrophilicity, so that opening degree is high. For these reasons, it is preferable to control the opening degree of the diaphragm according to the present embodiment after controlling the porous structure within the above-described range of the pore diameter. From the viewpoint of maintaining high hydrophilicity, the opening degree needs to be 20% or more, more preferably 25% or more, and still more preferably 30% or more. On the other hand, in order to maintain the support of the hydrophilic inorganic compound and the strength of the diaphragm surface, the opening degree needs to be 80% or less, more preferably 75% or less, and still more preferably 70% or less.
 本実施形態における隔膜の開口度は以下の方法で求めることが出来る。まず、隔膜表面画像をSEMで取り込む。次に、この画像を画像解析ソフト(三谷商事社製、「WinROOF」)で2値化し、孔と孔以外の部分を分ける。続いて、得られた2値化像を分析し画像全体に対する孔の割合を求め、これを開口度とする。開口度はそれぞれ観察箇所の違う3枚以上のSEM画像から得られた開口度の平均値を用いる。 The opening degree of the diaphragm in the present embodiment can be obtained by the following method. First, a diaphragm surface image is captured by SEM. Next, this image is binarized by image analysis software (“WinROOF”, manufactured by Mitani Corporation), and the holes and portions other than the holes are separated. Subsequently, the obtained binarized image is analyzed to determine the ratio of holes to the entire image, and this is used as the opening degree. As the aperture, an average value of apertures obtained from three or more SEM images with different observation locations is used.
 上記のような孔径と気孔率を有する隔膜をポリフェニレン共重合体でなすことにより、他のポリマーに比べて機械強度が高く丈夫で、高い機能を有する隔膜構造を実現することが出来る。その上、広い温度、圧力、pHの範囲でも長期に亘って上記隔膜が安定して機能を発現することを見出した。 By forming a diaphragm having the above pore diameter and porosity with a polyphenylene copolymer, it is possible to realize a diaphragm structure having higher mechanical strength and higher strength than other polymers. In addition, it has been found that the diaphragm stably exhibits its function over a long period of time in a wide range of temperature, pressure and pH.
[隔膜の厚み]
 本実施形態の隔膜の厚みは、適切な膜物性及び電解性能を得る為に制御されなければならない。アルカリ水電解においては、隔膜の機械強度と電解効率を高める為に適切に制御されなければならない。
[Thickness of diaphragm]
The thickness of the diaphragm of this embodiment must be controlled in order to obtain appropriate film properties and electrolysis performance. In alkaline water electrolysis, it must be properly controlled to increase the mechanical strength and electrolysis efficiency of the diaphragm.
 かかる観点から、隔膜の厚みは100μm以上600μm以下でなければならない。隔膜の厚みが100μm以上であれば、隔膜が破れにくくなり、衝撃に対する強度が一層向上する。この観点より、隔膜の厚みは、200μm以上であることがより好ましく、300μm以上であることが更に好ましい。
 一方で、隔膜の厚みが600μm以下であれば、製膜時に厚み斑を少なくでき、孔径の制御がしやすくなる。また、隔膜を電解に使用した場合、孔内に含まれる電解液の抵抗によりイオンの透過性を阻害されにくく、一層優れたイオン透過性を維持すことができる。かかる観点より、隔膜の厚みは、500μm以下であることがより好ましく、450μm以下であることが更に好ましい。
From such a viewpoint, the thickness of the diaphragm must be 100 μm or more and 600 μm or less. If the thickness of the diaphragm is 100 μm or more, the diaphragm is hardly broken and the strength against impact is further improved. From this viewpoint, the thickness of the diaphragm is more preferably 200 μm or more, and further preferably 300 μm or more.
On the other hand, if the thickness of the diaphragm is 600 μm or less, thickness unevenness can be reduced during film formation, and the pore diameter can be easily controlled. In addition, when the diaphragm is used for electrolysis, the ion permeability is hardly hindered by the resistance of the electrolytic solution contained in the pores, and a further excellent ion permeability can be maintained. From this viewpoint, the thickness of the diaphragm is more preferably 500 μm or less, and further preferably 450 μm or less.
[機械強度]
 本実施形態の隔膜の引張破断強度は、MD方向、TD方向それぞれに対して制御されることが好ましい。具体的には、MD方向の引張破断強度は10MPa以上30MPa以下であることが好ましく、TD方向の引張破断強度は10MPa以上30MPa以下であることが好ましい。それぞれの範囲の引張破断強度を有する隔膜であれば、電解槽に組み込む際のハンドリング性が高く、破れやピンホールが発生しにくい隔膜となる。また、隔膜の引張破断強度は実際に使用する温度域において制御されることが好ましい。従って、例えば90℃の環境下での電解用隔膜として使用する場合は、90℃で上記の引張破断強度の範囲を満足させることが必要である。引張破断強度は、JIS K 7161に準じた方法により測定することができる。なお、本明細書において、特に断りがない限り、MD(Machine Direction)方向とは製膜時の流れ方向であり、TD(Transverse Direction)方向とはMD方向と直交する方向である。
[Mechanical strength]
The tensile strength at break of the diaphragm of the present embodiment is preferably controlled in each of the MD direction and the TD direction. Specifically, the tensile breaking strength in the MD direction is preferably 10 MPa or more and 30 MPa or less, and the tensile breaking strength in the TD direction is preferably 10 MPa or more and 30 MPa or less. If it is a diaphragm which has the tensile fracture strength of each range, it will become a diaphragm with high handling property at the time of incorporating in an electrolytic cell, and a tear and a pinhole are hard to generate | occur | produce. In addition, the tensile strength at break of the diaphragm is preferably controlled in the temperature range in which it is actually used. Therefore, for example, when used as a diaphragm for electrolysis in an environment of 90 ° C., it is necessary to satisfy the above-described range of tensile strength at 90 ° C. The tensile strength at break can be measured by a method according to JIS K 7161. In this specification, unless otherwise specified, the MD (Machine Direction) direction is a flow direction during film formation, and the TD (Transverse Direction) direction is a direction orthogonal to the MD direction.
 本実施形態の隔膜にノッチやピンホールが生じた際、それらを起点とする破断のし易さを示す指標の1つとして、引き裂き強度が挙げられる。隔膜の引き裂き強度は、JIS L 1096に準じた方法で測定することができる。隔膜の引き裂き強度が高ければ、例えば、電解時に電極との接触によりノッチやピンホールが生じた場合であっても、自重で隔膜が破断するといった不具合を一層効果的に抑制できる。隔膜の引き裂き強度は、特に限定されないが、10N以上100N以下であることが好ましい。引き裂き強度が10N以上であれば、隔膜にノッチやピンホール等が生じた場合であっても、そこから傷口が大きくなることを一層効果的に抑制できる。引き裂き強度が100N以下であれば、水電解時に電極との密着性が向上し、電解効率を上げることができる。ここで隔膜の引き裂き強度は、MD方向、TD方向それぞれにおける其々の引き裂き強度である。 When a notch or a pinhole is generated in the diaphragm of the present embodiment, tear strength is given as one of indices indicating the ease of fracture starting from the notch or pinhole. The tear strength of the diaphragm can be measured by a method according to JIS L 1096. If the tear strength of the diaphragm is high, for example, even when notches or pinholes are generated due to contact with the electrode during electrolysis, it is possible to more effectively suppress the problem that the diaphragm is broken by its own weight. The tear strength of the diaphragm is not particularly limited, but is preferably 10N or more and 100N or less. If the tear strength is 10 N or more, even when a notch, a pinhole, or the like is generated in the diaphragm, it is possible to more effectively suppress the wound from being enlarged. When the tear strength is 100 N or less, the adhesion with the electrode is improved during water electrolysis, and the electrolysis efficiency can be increased. Here, the tear strength of the diaphragm is the tear strength in each of the MD direction and the TD direction.
[水接触角]
 多孔膜の水接触角は、特に限定されないが、ガス遮断性及び電解液透過性の観点から、10°以上90°以下とすることができ、20°以上80°以下であることが好ましく、30°以上70°以下であることがより好ましい。水接触角がこの範囲であると、電極で発生したガスが電極表面へ付着して電極反応を阻害するのを防止することができ、電解効率を一層高めることができる。
 多孔膜の水接触角は、多孔膜の表面を構成する高分子等の材料の親水性を制御することにより、制御することができる。ここで、多孔体電極の水接触角とは、多孔体電極の表面に水を滴下し、水滴が多孔体電極と接する部位から水滴の表面に接線を引いたときに、接線と多孔体電極表面のなす角度である。
 多孔体電極の水接触角は、市販の接触角計を用いて、θ/2法により測定することができる。
[Water contact angle]
Although the water contact angle of the porous membrane is not particularly limited, it can be 10 ° or more and 90 ° or less, preferably 20 ° or more and 80 ° or less, from the viewpoint of gas barrier properties and electrolyte permeability. It is more preferable that the angle is not less than 70 ° and not more than 70 °. When the water contact angle is within this range, it is possible to prevent the gas generated at the electrode from adhering to the electrode surface and hindering the electrode reaction, and the electrolysis efficiency can be further enhanced.
The water contact angle of the porous membrane can be controlled by controlling the hydrophilicity of a material such as a polymer constituting the surface of the porous membrane. Here, the water contact angle of the porous electrode refers to the tangent and the surface of the porous electrode when water is dropped on the surface of the porous electrode and a tangent is drawn from the portion where the water droplet contacts the porous electrode to the surface of the water droplet. This is the angle formed by
The water contact angle of the porous electrode can be measured by the θ / 2 method using a commercially available contact angle meter.
<隔膜の製造方法(1)>
 本実施形態のアルカリ水電解用隔膜は、特に限定されず公知の方法で製膜できるが、以下の工程を備えるのが好ましい。これらの工程は手順を限定するものではなく、適宜選択することができる。
<<工程A>>PTFEファインパウダーと親水性無機粒子と滑剤を混合する工程
<<工程B>>工程Aで得られた混合物を予備成形し、ペースト押出する工程
<<工程C>>押出されたシートを一対のロールの間に通して圧延する工程
<<工程D>>圧延されたシートから滑剤を除去する工程
<<工程E>>得られたシートをMD方向またはTD方向に延伸する工程
<<工程F>>延伸されたシートをPTFEの融点以上の温度で焼成する工程
<Method for producing diaphragm (1)>
Although the diaphragm for alkaline water electrolysis of this embodiment is not specifically limited, It can form into a film by a well-known method, However, It is preferable to provide the following processes. These steps do not limit the procedure and can be appropriately selected.
<< Step A >> Step of mixing PTFE fine powder, hydrophilic inorganic particles and lubricant << Step B >> Step of preforming the mixture obtained in Step A and extruding the paste << Step C >> Step of rolling the sheet between a pair of rolls << step D >> step of removing the lubricant from the rolled sheet << step E >> step of stretching the obtained sheet in the MD or TD direction << Step F >> Step of firing the stretched sheet at a temperature equal to or higher than the melting point of PTFE
 以下各工程について詳細に説明する。
<<工程A>>
 原料としては、標準比重が2.19以下、特に2.16以下、であるPTFEファインパウダーを使用することが好ましい。標準比重はJIS K6892に従って測定される比重である。
 滑剤は、PTFEファインパウダーの表面を濡らすことが可能であり、上記混合物をシートに成形した後に、蒸発や抽出などの手段によって除去可能な物質である限り、特に限定されない。滑剤は、例えば、流動パラフィン、ナフサ、ホワイトオイル、トルエン、キシレンなどの炭化水素油であり、各種のアルコール類、ケトン類、エステル類などを用いることができる。中でも流動パラフィンを用いると、PTFEとの親和性が良く、成形性が良好であり、工程Fにおいて完全に蒸発する物が良い。具体的には、沸点が100℃以上160℃以下であるものがより好ましい。この様な流動パラフィンの例としては、東燃ゼネラル社の「アイソパーE」「アイソパーM」などが挙げられる。
Hereinafter, each step will be described in detail.
<< Step A >>
As a raw material, it is preferable to use PTFE fine powder having a standard specific gravity of 2.19 or less, particularly 2.16 or less. The standard specific gravity is a specific gravity measured according to JIS K6892.
The lubricant is not particularly limited as long as it can wet the surface of the PTFE fine powder and can be removed by means such as evaporation or extraction after the mixture is formed into a sheet. The lubricant is, for example, a hydrocarbon oil such as liquid paraffin, naphtha, white oil, toluene, xylene, and various alcohols, ketones, esters, and the like can be used. Among them, when liquid paraffin is used, the affinity with PTFE is good, the moldability is good, and the product that completely evaporates in Step F is preferable. Specifically, those having a boiling point of 100 ° C. or higher and 160 ° C. or lower are more preferable. Examples of such liquid paraffin include “Isopar E” and “Isopar M” manufactured by TonenGeneral.
 PTFEに添加される滑剤の量は、特に限定されないが、PTFEと親水性無機粒子の合計を100質量部としたときに、20質量部以上200質量部以下であることが好ましい。この範囲であれば、滑剤がPTFEに十分浸透し、親水性無機粒子の分散状態も良好となるため、斑の無い隔膜を得ることが出来る。 The amount of lubricant added to PTFE is not particularly limited, but is preferably 20 parts by mass or more and 200 parts by mass or less when the total of PTFE and hydrophilic inorganic particles is 100 parts by mass. If it is this range, since a lubricant will fully osmose | permeate PTFE and the dispersion state of a hydrophilic inorganic particle will also become favorable, a diaphragm without a spot can be obtained.
 滑剤中に親水性無機粒子を均一に分散させる為、滑材中で分散剤の存在下、分散処理を施し、分散液(分散ペースト)とすることが好ましい。分散剤としては、特に限定されないが、ステアリン酸、ラウリン酸、デカン酸、オクタン酸、2-エチルヘキサン酸などの水溶解性の低い長鎖カルボン酸、6以上の炭素原子の鎖長を有する極性有機溶媒が挙げられる。分散処理は、公知の装置が利用でき、具体的には、ビーズミル、ボールミル、プラネタリーミキサー、ディスパー、ホモジナイザー等が挙げられる。 In order to uniformly disperse the hydrophilic inorganic particles in the lubricant, it is preferable to carry out a dispersion treatment in the presence of the dispersant in the lubricant to obtain a dispersion (dispersion paste). The dispersant is not particularly limited, but is a long-chain carboxylic acid having low water solubility such as stearic acid, lauric acid, decanoic acid, octanoic acid, 2-ethylhexanoic acid, and a polar having a chain length of 6 or more carbon atoms. An organic solvent is mentioned. A known apparatus can be used for the dispersion treatment, and specific examples include a bead mill, a ball mill, a planetary mixer, a disper, and a homogenizer.
 添加される分散剤の混合量は、親水性無機粒子の表面を疎水化できれば特に限定されないが、親水性無機粒子に対して1質量%以上10質量%以下であることが好ましい。この範囲であれば、親水性無機粒子の表面を十分親水化でき、滑剤中で過飽和し析出しない。 The amount of the dispersant added is not particularly limited as long as the surface of the hydrophilic inorganic particles can be hydrophobized, but is preferably 1% by mass or more and 10% by mass or less with respect to the hydrophilic inorganic particles. If it is this range, the surface of a hydrophilic inorganic particle can fully be hydrophilized, and it will be supersaturated in a lubricant and will not precipitate.
 混合する温度は、特に限定されないが、PTFEの転移点である19℃以下で行うことが好ましい。また、工程Aと工程Bの間に滑剤をPTFEへ十分浸透させるため、熟成させることが好ましい。熟成は、PTFEをPTFEの転移点以上の温度、つまり20℃以上30℃以下で熟成することが好ましい。熟成工程を経れば、工程Bにおいて均一な押出しシートを得ることが出来る。 The mixing temperature is not particularly limited, but is preferably 19 ° C. or lower, which is the PTFE transition point. Moreover, in order to fully infiltrate PTFE into PTFE between the process A and the process B, it is preferable to age | cure | ripen. For aging, it is preferable to ripen PTFE at a temperature not lower than the transition point of PTFE, that is, not lower than 20 ° C. and not higher than 30 ° C. A uniform extruded sheet can be obtained in Step B after the aging step.
<<工程B>>
 工程Aにおいて得られた混合物は、工程Bにおいて予備成形の後、Tダイを用いてシート状に押し出される。押出しには、特に限定されないが、フラットダイを用いることが好ましい。押し出すPTFEシートの厚さは、0.5~5.0mmが好ましい。
<< Step B >>
The mixture obtained in step A is extruded into a sheet using a T-die after preforming in step B. Although it does not specifically limit for extrusion, It is preferable to use a flat die. The thickness of the extruded PTFE sheet is preferably 0.5 to 5.0 mm.
 ペーストの嵩を小さくし、余分な空気を排除することを目的として、予備成形を行う事が好ましい。成形は、成形圧力、圧縮速度、保持時間を適切に制御することで、得られるシートの物性が均一にすることができる。 It is preferable to perform preforming for the purpose of reducing the bulk of the paste and eliminating excess air. In molding, the physical properties of the obtained sheet can be made uniform by appropriately controlling the molding pressure, compression speed, and holding time.
 押出し温度は、特に限定されないが、20℃以上100℃以下が好ましい。この範囲であれば、PTFEに適切なせん断を与えることが出来、後段の工程において成形性が良好となる。かかる観点から、押出し温度は30℃以上80℃以下がより好ましい。 The extrusion temperature is not particularly limited, but is preferably 20 ° C or higher and 100 ° C or lower. If it is this range, an appropriate shear can be given to PTFE and a moldability becomes favorable in a latter process. From this viewpoint, the extrusion temperature is more preferably 30 ° C. or higher and 80 ° C. or lower.
<<工程C>>
 工程Cにおいて、ダイから押し出されたシートは、MD方向に沿ってー対のロールの間を通して圧延される。この際、TD方向についてはシートの幅を維持しながら圧延されることが好ましい。すなわち、シートはMD方向のみに引き延ばされることになる。この圧延は、具体的には、一対の圧延ロールよりもシート流れ方向の下流側に配置した引っ張りロールによりシートを引っ張りながら、そのシートを当該一対の圧延ロールの間を通過させて圧延することにより、実施することができる。このとき、引っ張りロールの回転速度を圧延ロールの回転速度よりもやや高く設定すると、シートがTD方向の長さを一定に保ちながらそのMD方向に圧延される。
<< Step C >>
In step C, the sheet extruded from the die is rolled through the pair of rolls along the MD direction. At this time, the TD direction is preferably rolled while maintaining the width of the sheet. That is, the sheet is stretched only in the MD direction. Specifically, this rolling is performed by passing the sheet between the pair of rolling rolls while pulling the sheet with a pulling roll disposed downstream of the pair of rolling rolls in the sheet flow direction. Can be implemented. At this time, if the rotational speed of the pulling roll is set slightly higher than the rotational speed of the rolling roll, the sheet is rolled in the MD direction while keeping the length in the TD direction constant.
 工程Cでは、PTFEシートが液状潤滑剤を含んだ状態で圧延され、PTFEシートが押出時よりも薄く引き延ばされ、厚さが均―化される。 In step C, the PTFE sheet is rolled in a state containing a liquid lubricant, and the PTFE sheet is stretched thinner than at the time of extrusion, and the thickness is leveled.
 圧延されたシートの温度は、ロール及び雰囲気の温度に影響を受けるが、PTFEの相転移点である19℃を下回ることがある。しかし、PTFEシートの温度がこの程度に低いと、得られるPTFE多孔膜の幅方向における膜厚分布が大きくなる。そこで、19℃未満の温度にあるPTFEシートを、19℃以上の温度になるように加熱する。すなわち、工程Cでは、PTFEの相転移点未満の温度にあるPTFEシートが、PTFEの相転移点以上の温度になるように加熱される。ただし、PTFEシートは、用いる滑剤の沸点未満となるように加熱することが好ましい。 Although the temperature of the rolled sheet is affected by the temperature of the roll and the atmosphere, it may be lower than 19 ° C. which is the phase transition point of PTFE. However, when the temperature of the PTFE sheet is so low, the film thickness distribution in the width direction of the obtained PTFE porous film becomes large. Therefore, the PTFE sheet at a temperature of less than 19 ° C. is heated to a temperature of 19 ° C. or higher. That is, in Step C, the PTFE sheet at a temperature lower than the phase transition point of PTFE is heated so as to have a temperature equal to or higher than the phase transition point of PTFE. However, it is preferable to heat the PTFE sheet so as to be less than the boiling point of the lubricant to be used.
 PTFEシートの圧延は、圧延前の幅方向の長さに対する圧延後の幅方向の長さが90%以上110%以下の範囲となるように、実施することが好ましい。本明細書では、幅方向の長さの変化が上記範囲内にある場合に、「幅方向の長さを維持しながら」圧延したものとする。工程Cにおいては、圧延後のPTFEシートの厚さを、50μm以上2000μmにすることが好ましい。また、工程Cでは、PTFEシートの厚さを、圧延前の厚さと比較して、5%以上60%以下とすることが好ましい。工程BにおけるPTFEシートの厚さは、圧延前の厚さと比較して、30%以下にすることが好ましい。工程Cにおける圧延は、PTFEシートに液状潤滑剤が保持された状態で実施することが好ましい。このため、PTFEシートの温度を、液状潤滑剤の沸点未満に保ちながら実施することが好ましい。 The rolling of the PTFE sheet is preferably performed such that the length in the width direction after rolling relative to the length in the width direction before rolling is in the range of 90% to 110%. In this specification, when the change in the length in the width direction is within the above range, the sheet is rolled “while maintaining the length in the width direction”. In step C, the thickness of the PTFE sheet after rolling is preferably 50 μm or more and 2000 μm. In Step C, the thickness of the PTFE sheet is preferably 5% or more and 60% or less compared to the thickness before rolling. The thickness of the PTFE sheet in step B is preferably 30% or less as compared with the thickness before rolling. The rolling in step C is preferably performed in a state where the liquid lubricant is held on the PTFE sheet. For this reason, it is preferable to carry out while keeping the temperature of the PTFE sheet below the boiling point of the liquid lubricant.
<<工程D>>
 工程Dにおいて、シートを加熱または抽出することにより滑剤が除去される。この際、分散剤の沸点以上で加熱すれば、分散剤も併せて除去することが出来る。乾燥除去する場合、温度は100℃以上300℃以下であることが好ましい。
<< Step D >>
In step D, the lubricant is removed by heating or extracting the sheet. At this time, if the heating is performed at a temperature equal to or higher than the boiling point of the dispersant, the dispersant can also be removed. When removing by drying, the temperature is preferably 100 ° C. or higher and 300 ° C. or lower.
<<工程E>>
 工程Eにおいて、シートがそのMD方向及びTD方向に延伸され、PTFEを含有する多孔膜が製造される。延伸は、PTFEの融点未満の温度で実施することが好ましい。
<< Step E >>
In step E, the sheet is stretched in the MD direction and the TD direction to produce a porous film containing PTFE. The stretching is preferably carried out at a temperature below the melting point of PTFE.
 長手方向への延伸はロール延伸法、幅方向への延伸は、テンター延伸法により実施することが好ましい。長手方向への延伸と幅方向への延伸とはいずれを先に実施しても構わない。工程Eにおいて所望の特性が得られるように延伸倍率は適宜調整される。長手方向についての延伸倍率と幅方向についての延伸倍率との積により算出される延伸面倍率は、所望の電解性能に合わせて適宜調整される。工程Fにおける延伸は、PTFEの融点未満の温度、実施することが好ましい。工程Fにおける延伸により細いフイブリルが生成される。 The stretching in the longitudinal direction is preferably performed by a roll stretching method, and the stretching in the width direction is preferably performed by a tenter stretching method. Either stretching in the longitudinal direction or stretching in the width direction may be performed first. In the step E, the draw ratio is appropriately adjusted so that desired characteristics can be obtained. The stretch plane magnification calculated by the product of the stretch ratio in the longitudinal direction and the stretch ratio in the width direction is appropriately adjusted according to the desired electrolytic performance. The stretching in step F is preferably performed at a temperature lower than the melting point of PTFE. Thin fibrils are produced by stretching in Step F.
<<工程F>>
 工程Fにおいて、延伸された多孔膜は、PTFEの融点以上の温度に加熱され、焼成される。この加熱工程によりPTFE多孔質シートの強度が向上する。
<< Step F >>
In step F, the stretched porous membrane is heated to a temperature equal to or higher than the melting point of PTFE and baked. This heating step improves the strength of the PTFE porous sheet.
<隔膜の製造方法(2)>
 上述の隔膜の製造方法(1)とは別の、以下の工程を備える方法で製造することもできる。これらの工程は手順を限定するものではなく、適宜選択することができる。
<<工程G>>PTFE多孔膜に無機化合物の溶液を含浸させる工程
<<工程H>>PTFE多孔膜中の無機化合物溶液から無機化合物を析出させる工程
<Method for producing diaphragm (2)>
It can also be manufactured by a method comprising the following steps, which is different from the above-described method (1) for manufacturing a diaphragm. These steps do not limit the procedure and can be appropriately selected.
<< Step G >> Step of impregnating PTFE porous membrane with solution of inorganic compound << Step H >> Step of depositing inorganic compound from inorganic compound solution in PTFE porous membrane
 以下各工程について詳細に説明する。
<<工程G>>
 PTFE多孔膜の形態は、特に限定されず抄紙、不織布、延伸開口膜が挙げられるが、延伸開口膜が好ましく、厚みは100μm以上、600μm以下、平均孔径が1.0μm以下、気孔率50%以上、90%以下が好ましい。
Hereinafter, each step will be described in detail.
<< Process G >>
The form of the PTFE porous membrane is not particularly limited, and examples thereof include papermaking, non-woven fabric, and stretched aperture membrane, but stretched aperture membranes are preferable. The thickness is 100 μm or more and 600 μm or less, the average pore diameter is 1.0 μm or less, and the porosity is 50% or more. 90% or less is preferable.
 含浸させる溶液の溶媒は、PTFEに浸透する物であれば特に限定されないが、乾燥除去させる必要があるため、沸点が低く揮発性であるエタノール、プロパノール、ブタノールなどの低分子量アルコール類や、アセトンやブタノンなどのケトン類およびエステル類が好ましい。 The solvent of the solution to be impregnated is not particularly limited as long as it permeates PTFE. However, since it needs to be removed by drying, low molecular weight alcohols such as ethanol, propanol, and butanol having a low boiling point and volatile, acetone, Ketones and esters such as butanone are preferred.
 無機化合物としては、チタン、ビスマス、ジルコニウム、セシウムの塩や有機化合物が用いられる。溶解性および安定性の観点から、チタンやジルコニウムのアルコキシド化合物のアルコール溶液が好ましく用いられる。
 PTFE多孔膜に無機化合物の溶液を含浸させる工程としては、ディップコート、スリットコート、ロールコート、ブレードコートなどが挙げられる。
As the inorganic compound, titanium, bismuth, zirconium, cesium salts and organic compounds are used. From the viewpoint of solubility and stability, an alcohol solution of an alkoxide compound of titanium or zirconium is preferably used.
Examples of the step of impregnating the PTFE porous membrane with the inorganic compound solution include dip coating, slit coating, roll coating, blade coating, and the like.
<<工程H>>
 PTFE多孔膜中に含浸させた無機化合物は、乾燥や化学反応により溶解性の低い化合物を合成することで、PTFE多孔膜中に析出させることができる。化学反応により溶解性の低い化合物を合成する手法としては、加水分解が挙げられる。酸塩化物やアルコキシド化合物は水と反応し、塩素やアルコキシル基の一部もしくは全てがヒドロキシル基に置換されることで、析出する。反応させる水の形態は限定されず、液体でも気体でもよい。化学反応により溶解性の低い化合物を析出させた後に、酸化物などのさらに安定な化合物を得るために、加熱する工程が追加されてもよい。加熱するときの温度は、PTFEが分解しない400℃以下が好ましい。加熱環境は、液体中でも気体中でもよい。液体は特に限定されないが、塩酸や硝酸、硫酸などの酸性溶液や、アンモニアや水酸化ナトリウム、水酸化カリウムを含むアルカリ性の水溶液が挙げられる。さらに、例えば、液体中で高温高圧に曝されることで、水熱合成法により、短時間で安定な化合物を得ることもできる。
<< Step H >>
The inorganic compound impregnated in the PTFE porous membrane can be precipitated in the PTFE porous membrane by synthesizing a compound having low solubility by drying or chemical reaction. Hydrolysis is an example of a method for synthesizing a compound having low solubility by a chemical reaction. Acid chlorides and alkoxide compounds react with water, and are deposited by replacing some or all of chlorine and alkoxyl groups with hydroxyl groups. The form of water to be reacted is not limited and may be liquid or gas. In order to obtain a more stable compound such as an oxide after depositing a compound having low solubility by a chemical reaction, a heating step may be added. The heating temperature is preferably 400 ° C. or lower at which PTFE does not decompose. The heating environment may be liquid or gas. The liquid is not particularly limited, and examples thereof include acidic solutions such as hydrochloric acid, nitric acid, and sulfuric acid, and alkaline aqueous solutions containing ammonia, sodium hydroxide, and potassium hydroxide. Furthermore, for example, a stable compound can be obtained in a short time by hydrothermal synthesis by exposure to high temperature and high pressure in a liquid.
(アルカリ水電解用複極式電解槽)
 以下、上述した陰極、陽極、隔膜を備える、本実施形態のアルカリ水電解用複極式電解槽の一例について、図を参照しながら説明する。
 なお、本実施形態のアルカリ水電解用複極式電解槽は、下記で説明するものに限定されるものではない。また、アルカリ水電解用複極式電解槽に含まれる、陽極、陰極及び隔膜以外の部材も、下記で挙げられるものに限定されず、公知のものを適宜選択、設計等して用いることができる。
(Bipolar electrolytic cell for alkaline water electrolysis)
Hereinafter, an example of a bipolar electrolytic cell for alkaline water electrolysis according to this embodiment, which includes the above-described cathode, anode, and diaphragm, will be described with reference to the drawings.
In addition, the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is not limited to what is demonstrated below. Further, members other than the anode, the cathode and the diaphragm included in the bipolar electrolytic cell for alkaline water electrolysis are not limited to those listed below, and known members can be appropriately selected, designed and used. .
 本実施形態のアルカリ水電解用電解槽は、上述した本発明のアルカリ水電解用隔膜と、陰極と陽極とを保持した複極式エレメントとを積層(スタック)してなる複極式電解槽である。言い換えると、本実施形態のアルカリ水電解用電解槽は、陽極と、陰極と、前記陽極と前記陰極との間に配置された上述の本発明によるアルカリ水電解用隔膜との組み合わせ(「電解セル」とも称する)を、複数備える、複極式電解槽である。本発明のアルカリ水電解用隔膜は、親水性無機化合物及びポリテトラフルオロエチレン(PTFE)を含む材料で、適切な平均透水孔径、最大孔径、気孔率、厚み、及び親水性無機化合物の含有量を有している。これにより、ガス遮断性及びイオン透過性が良好であり、高温かつ長期間の電解においても電解効率の高いアルカリ水電解用隔膜を提供することができる。 The electrolytic cell for alkaline water electrolysis of this embodiment is a bipolar electrolytic cell formed by stacking (stacking) the above-described diaphragm for alkaline water electrolysis of the present invention and a bipolar element holding a cathode and an anode. is there. In other words, the electrolytic cell for alkaline water electrolysis according to the present embodiment is a combination of an anode, a cathode, and the above-described diaphragm for alkaline water electrolysis according to the present invention disposed between the anode and the cathode (“electrolysis cell”). Is also a bipolar electrolyzer having a plurality. The diaphragm for alkaline water electrolysis of the present invention is a material containing a hydrophilic inorganic compound and polytetrafluoroethylene (PTFE), and has an appropriate average water-permeable pore diameter, maximum pore diameter, porosity, thickness, and content of the hydrophilic inorganic compound. Have. As a result, it is possible to provide a diaphragm for alkaline water electrolysis that has good gas barrier properties and ion permeability, and has high electrolysis efficiency even in high-temperature and long-term electrolysis.
 このように、本実施形態のアルカリ水電解用複極式電解槽は、上述した本発明のアルカリ水電解用隔膜を備えることを特徴とするものであり、それ以外の構成については特に限定されない。以下、本実施形態のアルカリ水電解用複極式電解槽の一例の構成について、図を参照しながら説明する。 Thus, the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment is characterized by including the above-described diaphragm for alkaline water electrolysis according to the present invention, and other configurations are not particularly limited. Hereinafter, the configuration of an example of a bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment will be described with reference to the drawings.
 図1に、本実施形態のアルカリ水電解用複極式電解槽の一例の全体についての側面図を示す。
 図2に、本実施形態のアルカリ水電解用複極式電解槽の一例のゼロギャップ構造を(A)に示す破線四角枠の部分についての側面図を示す。
 図3に、本実施形態のアルカリ水電解用複極式電解槽の一例の電極室部分についての平面図を示す。
 本実施形態のアルカリ水電解用複極式電解槽は、図1に示すとおり、陽極2aと、陰極2cと、陽極2aと陰極2cとを隔離する隔壁1と、隔壁1を縁取る外枠3とを備える複数の電解セル65が隔膜4を挟んで重ね合わせられている複極式電解槽50である。
In FIG. 1, the side view about the whole example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is shown.
In FIG. 2, the side view about the part of the broken-line square frame which shows the zero gap structure of an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment to (A) is shown.
In FIG. 3, the top view about the electrode chamber part of an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is shown.
As shown in FIG. 1, the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment includes an anode 2 a, a cathode 2 c, a partition wall 1 that separates the anode 2 a and the cathode 2 c, and an outer frame 3 that borders the partition wall 1. Is a bipolar electrolytic cell 50 in which a plurality of electrolytic cells 65 are stacked with the diaphragm 4 interposed therebetween.
 本実施形態のアルカリ水電解用複極式電解槽では、特に限定されないが、隔膜4が陽極2a及び陰極2cと接触したゼロギャップ構造Zが形成されていることが好ましい(図2参照)。 In the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment, although not particularly limited, it is preferable that a zero gap structure Z in which the diaphragm 4 is in contact with the anode 2a and the cathode 2c is formed (see FIG. 2).
 そして、本実施形態における複極式電解槽50では、隔壁1と外枠3と隔膜4とにより電解液が通過する電極室5が画成されている(図2、図3参照)。 In the bipolar electrolytic cell 50 according to this embodiment, an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4 (see FIGS. 2 and 3).
((複極式エレメント))
 一例のアルカリ水電解用複極式電解槽に用いられる複極式エレメント60は、図2~図3に示すように、陽極2aと陰極2cとを隔離する隔壁1を備え、隔壁を縁取る外枠3を備えている。より具体的には、隔壁1は導電性を有し、外枠3は隔壁1の外縁に沿って隔壁1を取り囲むように設けられている。
((Bipolar element))
A bipolar element 60 used in a bipolar electrolytic cell for alkaline water electrolysis as an example, as shown in FIGS. 2 to 3, includes a partition wall 1 that separates an anode 2a and a cathode 2c, and an outer edge that surrounds the partition wall. A frame 3 is provided. More specifically, the partition wall 1 has conductivity, and the outer frame 3 is provided so as to surround the partition wall 1 along the outer edge of the partition wall 1.
 なお、本実施形態では、複極式エレメント60は、通常、隔壁1に沿う所与の方向D1が、鉛直方向となるように、使用してよい。具体的には、図2、図3に示すように隔壁1の平面視形状が長方形である場合、隔壁1に沿う所与の方向D1が、向かい合う2組の辺のうちの1組の辺の方向と同じ方向となるように、使用してよい(図1~図3参照)。そして、本明細書では、上記鉛直方向を電解液通過方向とも称する。 In the present embodiment, the bipolar element 60 may be used so that a given direction D1 along the partition wall 1 is normally a vertical direction. Specifically, as shown in FIGS. 2 and 3, when the partition wall 1 has a rectangular shape in plan view, a given direction D1 along the partition wall 1 is a set of two sides facing each other. The direction may be the same as the direction (see FIGS. 1 to 3). And in this specification, the said perpendicular direction is also called electrolyte solution passage direction.
 本実施形態では、図1に示すとおり、複極式電解槽50は複極式エレメント60を必要数積層することで構成されている。
 図1に示す一例では、複極式電解槽50は、一端からファストヘッド51g、絶縁板51i、陽極ターミナルエレメント51aが順番に並べられ、更に、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7、複極式エレメント60が、この順番で並べて配置される。このとき、複極式エレメント60は、陽極ターミナルエレメント51a側に陰極2cを向けるよう配置する。陽極側ガスケット部分7から複極式エレメント60までは、設計生産量に必要な数だけ繰り返し配置される。陽極側ガスケット部分7から複極式エレメント60までを必要数だけ繰り返し配置した後、再度、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7を並べて配置し、最後に陰極ターミナルエレメント51c、絶縁板51i、ルーズヘッド51gをこの順番で配置する。複極式電解槽50は、全体をタイロッド51r(図1参照)や油圧シリンダー方式等の締め付け機構で締め付けることによりー体化され、複極式電解槽50となる。
 複極式電解槽50を構成する配置は、陽極2a側からでも陰極2c側からでも任意に選択でき、上述の順序に限定されるものではない。
In the present embodiment, as shown in FIG. 1, the bipolar electrolytic cell 50 is configured by stacking a necessary number of bipolar elements 60.
In the example shown in FIG. 1, the bipolar electrolytic cell 50 has a fast head 51g, an insulating plate 51i, and an anode terminal element 51a arranged in order from one end, and further, an anode side gasket portion 7, a diaphragm 4, and a cathode side gasket portion. 7. Bipolar elements 60 are arranged in this order. At this time, the bipolar element 60 is arranged so that the cathode 2c faces the anode terminal element 51a side. The anode gasket portion 7 to the bipolar element 60 are repeatedly arranged as many times as necessary for the design production amount. After the necessary number of anode-side gasket portions 7 to the bipolar element 60 are repeatedly arranged, the anode-side gasket portion 7, the diaphragm 4, and the cathode-side gasket portion 7 are arranged again, and finally, the cathode terminal element 51c and the insulation The plate 51i and the loose head 51g are arranged in this order. The bipolar electrolyzer 50 is formed into a body by tightening the entire body with a tightening mechanism such as a tie rod 51r (see FIG. 1) or a hydraulic cylinder system.
The arrangement constituting the bipolar electrolytic cell 50 can be arbitrarily selected from the anode 2a side or the cathode 2c side, and is not limited to the order described above.
 図1に示すように、複極式電解槽50では、複極式エレメント60が、陽極ターミナルエレメント51aと陰極ターミナルエレメント51cとの間に配置され、隔膜4は、陽極ターミナルエレメント51aと複極式エレメント60との間、隣接して並ぶ複極式エレメント60同士の間、及び複極式エレメント60と陰極ターミナルエレメント51cとの間に配置されている。 As shown in FIG. 1, in the bipolar electrolytic cell 50, the bipolar element 60 is disposed between the anode terminal element 51a and the cathode terminal element 51c, and the diaphragm 4 is connected to the anode terminal element 51a and the bipolar terminal element. It is disposed between the element 60, between the adjacent bipolar elements 60, and between the bipolar element 60 and the cathode terminal element 51c.
 また、本実施形態における複極式電解槽50では、図2、図3に示すとおり、隔壁1と外枠3と隔膜4とにより、電解液が通過する電極室5が画成されている。 In the bipolar electrolytic cell 50 according to the present embodiment, as shown in FIGS. 2 and 3, an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4.
 詳細には、電極室5は、外枠3との境界において、電極室5に電解液を導入する電解液入口と、電極室5から電解液を導出する電解液出口とを有する。より具体的には、陽極室5aには、陽極室5aに電解液を導入する陽極電解液入口と、陽極室5aから導出する電解液を導出する陽極電解液出口とが設けられ、陰極室5cには、陰極室5cに電解液を導入する陰極電解液入口と、陰極室5cから導出する電解液を導出する陰極電解液出口とが設けられる。 Specifically, the electrode chamber 5 has an electrolyte inlet for introducing the electrolyte into the electrode chamber 5 and an electrolyte outlet for extracting the electrolyte from the electrode chamber 5 at the boundary with the outer frame 3. More specifically, the anode chamber 5a is provided with an anode electrolyte inlet for introducing an electrolyte into the anode chamber 5a and an anode electrolyte outlet for extracting an electrolyte led out from the anode chamber 5a. Are provided with a cathode electrolyte inlet for introducing an electrolyte into the cathode chamber 5c and a cathode electrolyte outlet for extracting an electrolyte led out from the cathode chamber 5c.
 なお、図1~図3に示した例では、長方形形状の隔壁1と長方形形状の隔膜4とが平行に配置され、また、隔壁1の端縁に設けられた直方体形状の外枠3の隔壁1側の内面が隔壁1に垂直となっているため、電極室5の形状が直方体となっている。 In the example shown in FIGS. 1 to 3, the rectangular partition wall 1 and the rectangular diaphragm 4 are arranged in parallel, and the partition wall of the rectangular parallelepiped outer frame 3 provided at the edge of the partition wall 1. Since the inner surface on one side is perpendicular to the partition wall 1, the shape of the electrode chamber 5 is a rectangular parallelepiped.
 複極式電解槽50には、通常、電解液を配液又は集液する管であるヘッダーが取り付けられ、隔壁1の端縁にある外枠3のうちの下方に、陽極室5aに電解液を入れる陽極入口ヘッダーと、陰極室5cに電解液を入れる陰極入口ヘッダーとを備えている。また、同様に、隔壁1の端縁にある外枠3のうちの上方に、陽極室5aから電極液を出す陽極出口ヘッダーと、陰極室5cから電解液を出す陰極出口ヘッダーとを備えている。
 なお、図1~図3に示す複極式電解槽50に取り付けられるヘッダーの配設態様として、代表的には、内部ヘッダー型と外部ヘッダー型とがあるが、本発明では、いずれの型を採用してもよく、特に限定されない。
The bipolar electrolytic cell 50 is usually provided with a header which is a pipe for distributing or collecting the electrolytic solution. The electrolytic solution is placed in the anode chamber 5 a below the outer frame 3 at the edge of the partition wall 1. An anode inlet header and a cathode inlet header into which the electrolyte solution is placed in the cathode chamber 5c. Similarly, an anode outlet header for discharging the electrode solution from the anode chamber 5a and a cathode outlet header for discharging the electrolyte solution from the cathode chamber 5c are provided above the outer frame 3 at the edge of the partition wall 1. .
Note that typical arrangements of headers attached to the bipolar electrolytic cell 50 shown in FIGS. 1 to 3 include an internal header type and an external header type. In the present invention, either type is used. You may employ | adopt and it does not specifically limit.
 本実施形態の複極式電解槽50では、陽極入口ヘッダーで配液された電解液が、陽極電解液入口を通って陽極室5aに導入され、陽極室5aを通過し、陽極電解液出口を通って陽極室5aから導出され、陽極出口ヘッダーで集液される。 In the bipolar electrolytic cell 50 of the present embodiment, the electrolytic solution distributed at the anode inlet header is introduced into the anode chamber 5a through the anode electrolyte inlet, passes through the anode chamber 5a, and passes through the anode electrolyte outlet. It is led out from the anode chamber 5a and collected at the anode outlet header.
[アルカリ水分解用隔膜]
 本実施形態のアルカリ水分解用電解槽に用いる隔膜4は、上述した本発明のアルカリ水電解用隔膜であり,説明は割愛する。
[Diaphragm for alkaline water decomposition]
The diaphragm 4 used in the alkaline water decomposition electrolytic cell of the present embodiment is the above-described alkaline water electrolysis diaphragm of the present invention, and the description thereof is omitted.
[電極(陽極、陰極)]
 アルカリ水電解反応では、電源に接続されている電極対(すなわち、陽極及び陰極)を備える電解槽で、アルカリ水を電気分解して、陽極で酸素ガスを発生させ、陰極で水素ガスを発生させる。
 以下、本実施形態のアルカリ水電解用複極式電解槽50に含まれる電極2について、詳述する。
 なお、本明細書中において、「電極」と称する場合には、陽極2a及び陰極2cのいずれか一方又は両方を意味するものとする。
[Electrodes (Anode, Cathode)]
In the alkaline water electrolysis reaction, alkaline water is electrolyzed in an electrolytic cell having an electrode pair (that is, an anode and a cathode) connected to a power source, oxygen gas is generated at the anode, and hydrogen gas is generated at the cathode. .
Hereinafter, the electrode 2 included in the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment will be described in detail.
In the present specification, the term “electrode” means one or both of the anode 2a and the cathode 2c.
 後述するゼロギャップ電解槽の場合は、隔膜4との接触面の裏側から発生するガスを脱泡する必要があるため、多孔体電極は、隔膜4に接する面と反対に位置する面が、貫通していることが好ましい。 In the case of a zero gap electrolytic cell described later, since it is necessary to degas the gas generated from the back side of the contact surface with the diaphragm 4, the surface of the porous electrode located opposite to the surface in contact with the diaphragm 4 penetrates. It is preferable.
 本実施形態における多孔体電極としては、特に限定されないが、平均孔径の制御の観点から、平織メッシュ型、パンチング型、エキスパンド型などの網(メッシュ)状構造を有する電極、金属発泡体等が挙げられる。中でも、細孔の寸法や形状の制御の観点から、平織メッシュ型、パンチング型、エキスパンド型からなる群より選択される網状構造を有することが好ましい。 Although it does not specifically limit as a porous body electrode in this embodiment, From a viewpoint of control of an average hole diameter, the electrode, metal foam, etc. which have net | network (mesh) structure, such as a plain woven mesh type, a punching type, and an expanded type, are mentioned. It is done. Among these, from the viewpoint of controlling the size and shape of the pores, it is preferable to have a network structure selected from the group consisting of plain weave mesh type, punching type, and expanded type.
 本実施形態における多孔体電極は、基材そのものとしてもよく、基材の表面に反応活性の高い触媒層を有するものとしてもよいが、基材の表面に反応活性の高い触媒層を有するものが好ましい。 The porous body electrode in the present embodiment may be the base material itself or may have a catalyst layer with high reaction activity on the surface of the base material, but may have a catalyst layer with high reaction activity on the surface of the base material. preferable.
 基材の材料としては、特に制限されず、ニッケル、鉄、軟鋼、ステンレス、バナジウム、モリブデン、銅、銀、マンガン、白金族、黒鉛及びクロム等から群より選ばれる少なくとも一種からなる導電性基材が挙げられる。二種以上の金属からなる合金又は、二種以上の導電性物質の混合物からなる導電性基材を用いてもよい。中でも、基材の導電性及び使用環境への耐性の観点から、ニッケル及びニッケル基合金などが好ましい。 The material of the substrate is not particularly limited and is a conductive substrate made of at least one selected from the group consisting of nickel, iron, mild steel, stainless steel, vanadium, molybdenum, copper, silver, manganese, platinum group, graphite, chromium, and the like. Is mentioned. You may use the electroconductive base material which consists of an alloy which consists of 2 or more types of metals, or a mixture of 2 or more types of electroconductive substances. Among these, nickel and nickel-based alloys are preferable from the viewpoint of the conductivity of the base material and the resistance to the use environment.
 基材上に触媒層を形成させる方法としては、めっき法、プラズマ溶射法等の溶射法、基材上に前駆体層溶液を塗布した後に熱を加える熱分解法、触媒物質をバインダー成分と混合して基材に固定化する方法、及び、スパッタリング法等の真空成膜法といった手法が挙げられる。 As a method for forming a catalyst layer on a substrate, a thermal spraying method such as a plating method or a plasma spraying method, a thermal decomposition method in which heat is applied after applying a precursor layer solution on the substrate, a catalyst substance is mixed with a binder component And a method such as a method of fixing to a substrate and a vacuum film forming method such as a sputtering method.
 後述するゼロギャップ構成では、隔膜4が、従来の電解セルより強く電極に押しつけられる。例えばエキスパンド型基材を用いた電極では開口部の端部で、隔膜4が破損すること或いは、開口部に隔膜4が食い込んで、陰極2cと隔膜4の間に隙間ができて電圧が上昇する場合がある。 In the zero gap configuration described later, the diaphragm 4 is pressed against the electrode more strongly than the conventional electrolytic cell. For example, in an electrode using an expanded type substrate, the diaphragm 4 is damaged at the end of the opening, or the diaphragm 4 bites into the opening, and a gap is formed between the cathode 2c and the diaphragm 4 to increase the voltage. There is a case.
 上記の課題を解決するためには、できるだけ平面的な電極形状とすることが好ましい。例えば、エキスパンド加工した基材(例えば、エキスパンド型基材)をローラーでプレスして平面状に加工する方法が適用できる。この際、エキスパンド加工前の元の金属平板厚みに対し、95%から110%までプレスし、平面化することが望ましい。 In order to solve the above problems, it is preferable to make the electrode shape as planar as possible. For example, a method in which an expanded base material (for example, an expanded base material) is pressed with a roller and processed into a flat shape can be applied. At this time, it is desirable to press from 95% to 110% with respect to the original thickness of the metal flat plate before the expansion process to planarize.
 上記の処理を施して製造した電極2は、隔膜4の損傷を防げるだけでなく、意外なことに電圧も低減できる。この理由は明確ではないが隔膜4の表面と電極面が均一に接触するので電流密度が均―化するためと予想される。 The electrode 2 manufactured by performing the above treatment not only can prevent the diaphragm 4 from being damaged, but also can surprisingly reduce the voltage. The reason for this is not clear, but it is expected that the current density is equalized because the surface of the diaphragm 4 and the electrode surface are in uniform contact.
 電極2のサイズとしては、特に限定されず、アルカリ水電解用複極式電解槽、電解セル、複極式エレメント、隔壁などの形状やサイズに合わせて、また所望する電解能力などに応じて、定めることができる。例えば、隔壁が板状の形状の場合、隔壁のサイズに合わせて定められてよい。 The size of the electrode 2 is not particularly limited, and according to the shape and size of a bipolar electrolytic cell for alkaline water electrolysis, an electrolytic cell, a bipolar element, a partition wall, etc., and according to a desired electrolytic capacity, Can be determined. For example, when the partition has a plate shape, it may be determined according to the size of the partition.
[ガスケット]
 本実施形態のアルカリ水電解用複極式電解槽50では、隔膜のシーリング領域(B)と複極式エレメントとが、さらにガスケット7を介してスタックされることが好ましい。
 ガスケット7は、複極式エレメント60と隔膜4の間、複極式エレメント60間を電解液と発生ガスに対してシールするために使用され、電解液や発生ガスのセル外への漏れや両極室間におけるガス混合を防ぐことができる。
[gasket]
In the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment, it is preferable that the sealing region (B) of the diaphragm and the bipolar element are further stacked via the gasket 7.
The gasket 7 is used to seal between the bipolar element 60 and the diaphragm 4 and between the bipolar element 60 against the electrolytic solution and the generated gas. Gas mixing between the chambers can be prevented.
 ガスケット7の材質としては、特に制限されるものではなく、絶縁性を有する公知のゴム材料や樹脂材料等を選択することができる。 The material of the gasket 7 is not particularly limited, and a known rubber material or resin material having insulating properties can be selected.
 ガスケット7は、補強材が埋設されていてもよい。これにより、スタック時に枠体に挟まれて押圧されたときに、ガスケット7が潰れることを抑制でき、破損を防止し易くできる。 The gasket 7 may be embedded with a reinforcing material. Thereby, when it is pinched | interposed and pressed by the frame at the time of stacking, it can suppress that the gasket 7 is crushed and can make it easy to prevent a failure | damage.
[[ゼロギャップ構造]]
 本実施形態のアルカリ水電解用複極式電解槽50では、特に限定されないが、図2に示すように、隔膜4が陽極2a及び陰極2cと接触した、いわゆる「ゼロギャップ構造」Zが形成されていることが好ましい。「ゼロギャップ構造」Zは、電極全面にわたり、陽極2aと隔膜4とが互いに接触し、且つ、陰極2cと隔膜4とが互いに接触している状態、又は、電極全面にわたり、極間距離が隔膜4の厚みとほぼ同じとなる距離で、陽極2aと隔膜4との間及び陰極2cと隔膜4との間に隙間のほとんど無い状態、に保つことのできる構造である。
 アルカリ水電解において、隔膜4と、陽極2aや陰極2cとの間に隙間がある場合、この部分には電解液の他に電解で発生した大量のガスバブルが滞留することで、電気抵抗が非常に高くなる。
 一方、ゼロギャップ構造Zを形成すると、発生するガスを電極2の細孔を通して電極2の隔膜4側とは反対側に素早く逃がすことによって、陽極2aと陰極2cの間隔(以下、「極間距離」ともいう。)を低減しつつ、電解液による電圧損失や電極近傍におけるガス溜まりの発生を極力抑え、電解電圧を低く抑制することができる。
[[Zero gap structure]]
In the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment, although not particularly limited, as shown in FIG. 2, a so-called “zero gap structure” Z in which the diaphragm 4 is in contact with the anode 2a and the cathode 2c is formed. It is preferable. In the “zero gap structure” Z, the anode 2a and the diaphragm 4 are in contact with each other over the entire surface of the electrode, and the cathode 2c and the diaphragm 4 are in contact with each other, or the distance between the electrodes is the diaphragm over the entire surface of the electrode. 4 is a structure that can be maintained at a distance that is substantially the same as the thickness of 4, with almost no gap between the anode 2 a and the diaphragm 4 and between the cathode 2 c and the diaphragm 4.
In alkaline water electrolysis, when there is a gap between the diaphragm 4 and the anode 2a or the cathode 2c, a large amount of gas bubbles generated by electrolysis stay in this portion in addition to the electrolytic solution, so that the electric resistance is very high. Get higher.
On the other hand, when the zero gap structure Z is formed, the generated gas is quickly released to the side opposite to the diaphragm 4 side of the electrode 2 through the pores of the electrode 2, whereby the distance between the anode 2 a and the cathode 2 c (hereinafter referred to as “distance between electrodes”). ")", The voltage loss due to the electrolytic solution and the occurrence of gas accumulation in the vicinity of the electrode can be suppressed as much as possible, and the electrolysis voltage can be suppressed low.
 ゼロギャップ構造Zを構成する手段は、既にいくつか提案されており、例えば、陽極2aと陰極2cを完全に平滑に加工して、隔膜4を挟むように押し付ける方法や、電極2と隔壁4との間にバネ等の弾性体を配置し、この弾性体で電極2を支持する方法が挙げられる。
 なお、本実施形態のアルカリ水電解用複極式電解槽50において、ゼロギャップ構造Zを構成する手段の好ましい実施形態については、後述する。
Several means for forming the zero gap structure Z have already been proposed. For example, the anode 2a and the cathode 2c are processed completely smoothly and pressed so as to sandwich the diaphragm 4, or the electrode 2 and the partition 4 There is a method in which an elastic body such as a spring is disposed between and the electrode 2 is supported by this elastic body.
In addition, preferable embodiment of the means which comprises the zero gap structure Z in the bipolar electrolytic cell 50 for alkaline water electrolysis of this embodiment is mentioned later.
 ゼロギャップ型セルにおける複極式エレメント60では、極間距離を小さくする手段として、電極2と隔壁1との間に弾性体であるバネを配置し、このバネで電極2を支持する形態をとることが好ましい。例えば、第1の例では、隔壁1に導電性の材料で製作されたバネを取り付け、このバネに電極2を取り付けてよい。また、第2の例では、隔壁1に取り付けた電極リブ6にバネを取り付け、そのバネに電極2を取り付けてよい。なお、このような弾性体を用いた形態を採用する場合には、電極2が隔膜4に接する圧力が不均一にならないように、バネの強度、バネの数、形状等必要に応じて適宜調節する必要がある。 In the bipolar element 60 in the zero gap type cell, as a means for reducing the distance between the electrodes, a spring which is an elastic body is disposed between the electrode 2 and the partition wall 1, and the electrode 2 is supported by this spring. It is preferable. For example, in the first example, a spring made of a conductive material may be attached to the partition wall 1 and the electrode 2 may be attached to this spring. In the second example, a spring may be attached to the electrode rib 6 attached to the partition wall 1, and the electrode 2 may be attached to the spring. When adopting a form using such an elastic body, the strength of the springs, the number of springs, the shape, etc. are adjusted as necessary so that the pressure at which the electrode 2 contacts the diaphragm 4 is not uneven. There is a need to.
 また弾性体を介して支持した電極2の対となるもう一方の電極2の剛性を強くすること(例えば、陽極の剛性を陰極の剛性よりも強くすること)で、押しつけても変形の少ない構造としている。―方で、弾性体を介して支持した電極2については、隔膜4を押しつけると変形する柔軟な構造とすることで、電解槽50の製作精度上の公差や電極2の変形等による凹凸を吸収してゼロギャップ構造Zを保つことができる。 In addition, by strengthening the rigidity of the other electrode 2 that forms a pair of electrodes 2 supported via an elastic body (for example, by making the rigidity of the anode stronger than the rigidity of the cathode), the structure is less deformed even when pressed. It is said. On the other hand, the electrode 2 supported via the elastic body has a flexible structure that is deformed when the diaphragm 4 is pressed, thereby absorbing tolerances in manufacturing accuracy of the electrolytic cell 50 and irregularities due to deformation of the electrode 2 and the like. Thus, the zero gap structure Z can be maintained.
 本実施形態のアルカリ水電解用複極式電解槽50では、図2に示すように、陰極2c又は陽極2aと隔壁1との間に、導電性弾性体2e及び集電体2rが、導電性弾性体2eが陰極2c又は陽極2aと集電体2rとに挟まれるように、設けられている。 In the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment, as shown in FIG. 2, the conductive elastic body 2 e and the current collector 2 r are electrically conductive between the cathode 2 c or the anode 2 a and the partition wall 1. The elastic body 2e is provided so as to be sandwiched between the cathode 2c or the anode 2a and the current collector 2r.
(アルカリ水電解装置)
 本実施形態のアルカリ水電解用複極式電解槽を用いることができる、アルカリ水電解装置の一例を図4に示す。
 アルカリ水電解装置70は、本実施形態のアルカリ水電解用複極式電解槽50に加えて、送液ポンプ71、気液分離タンク72、水補給器73以外にも、整流器74、酸素濃度計75、水素濃度計76、流量計77、圧力計78、熱交換器79、圧力制御弁80などを備えてよい。
(Alkaline water electrolyzer)
FIG. 4 shows an example of an alkaline water electrolysis apparatus that can use the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment.
The alkaline water electrolyzer 70 includes a rectifier 74, an oxygen concentration meter, in addition to the liquid feed pump 71, the gas-liquid separation tank 72, and the water replenisher 73, in addition to the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment. 75, a hydrogen concentration meter 76, a flow meter 77, a pressure gauge 78, a heat exchanger 79, a pressure control valve 80, and the like.
(アルカリ水電解)
 本実施形態のアルカリ水電解用複極式電解槽を備えたアルカリ水電解装置に電解液を循環させて電解を行うことにより、高密度電流運転や変動電源運転後の場合でも、優れた電解効率及び高い発生ガス純度を維持して、高効率なアルカリ水電解を実施することができる。
(Alkaline water electrolysis)
Electrolysis is performed by circulating the electrolyte in the alkaline water electrolysis apparatus equipped with the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment, so that excellent electrolytic efficiency can be achieved even after high-density current operation or variable power supply operation. In addition, it is possible to carry out highly efficient alkaline water electrolysis while maintaining high gas purity.
 本実施形態のアルカリ水電解に用いることができる電解液としては、アルカリ塩が溶解されたアルカリ性の水溶液としてよく、例えば、NaOH水溶液、KOH水溶液等が挙げられる。
 アルカリ塩の濃度としては、特に限定されないが、20質量%~50質量%が好ましく、25質量%~40質量%がより好ましい。
 中でも、イオン導電率、動粘度、冷温化での凍結の観点から、25質量%~40質量%のKOH水溶液が特に好ましい。
The electrolytic solution that can be used for the alkaline water electrolysis of the present embodiment may be an alkaline aqueous solution in which an alkali salt is dissolved, and examples thereof include an aqueous NaOH solution and an aqueous KOH solution.
The concentration of the alkali salt is not particularly limited, but is preferably 20% by mass to 50% by mass, and more preferably 25% by mass to 40% by mass.
Among these, from the viewpoint of ionic conductivity, kinematic viscosity, and freezing at low temperature, a 25% to 40% by weight aqueous KOH solution is particularly preferable.
 電解セル内にある電解液の温度は、特に限定されないが、80℃~130℃であることが好ましい。
 上記温度範囲とすれば、高い電解効率を維持しながら、ガスケット、隔膜等の電解装置の部材が熱により劣化することを効果的に抑制することができる。
 電解液の温度は、85℃~125℃であることがさらに好ましく、90℃~115℃であることが特に好ましい。
The temperature of the electrolytic solution in the electrolytic cell is not particularly limited, but is preferably 80 ° C. to 130 ° C.
If it is set as the said temperature range, it can suppress effectively that the members of electrolysis apparatuses, such as a gasket and a diaphragm, deteriorate with heat, maintaining high electrolysis efficiency.
The temperature of the electrolytic solution is more preferably 85 ° C. to 125 ° C., and particularly preferably 90 ° C. to 115 ° C.
 本実施形態のアルカリ水電解において、電解セルに与える電流密度としては、特に限定されないが、4kA/m~20kA/mであることが好ましく、6kA/m~15kA/mであることがさらに好ましい。
 特に、変動電源を使用する場合には、電流密度の上限を上記範囲にすることが好ましい。
In alkaline water electrolysis of the present embodiment, it as the current density applied to the electrolytic cell is not particularly limited, is preferably 4kA / m 2 ~ 20kA / m 2, a 6kA / m 2 ~ 15kA / m 2 Is more preferable.
In particular, when using a variable power source, it is preferable to set the upper limit of the current density within the above range.
 本実施形態のアルカリ水電解において、電解セル内の圧力としては、特に限定されないが、3kPa~1000kPaであることが好ましく、3kPa~300kPaであることがさらに好ましい。 In the alkaline water electrolysis of the present embodiment, the pressure in the electrolytic cell is not particularly limited, but is preferably 3 kPa to 1000 kPa, and more preferably 3 kPa to 300 kPa.
 電極室当たりの電解液の流量その他の条件は、アルカリ水電解用複極式電解層の各構成に応じて適宜制御すればよい。 The flow rate of the electrolytic solution per electrode chamber and other conditions may be appropriately controlled according to each configuration of the bipolar electrolytic layer for alkaline water electrolysis.
 以上、図面を参照して、本発明の実施形態のアルカリ水電解用複極式電解槽について例示説明したが、本発明のアルカリ水電解用複極式電解槽は、上記の例に限定されることはなく、上記実施形態には、適宜変更を加えることができる。 The bipolar electrolytic cell for alkaline water electrolysis according to the embodiment of the present invention has been illustrated and described with reference to the drawings, but the bipolar electrolytic cell for alkaline water electrolysis of the present invention is limited to the above example. However, the above embodiment can be modified as appropriate.
(ガス遮断性評価)
 本実施形態の隔膜のガス遮断性の評価指標の1つとして、隔膜のバブルポイントの評価が挙げられる。本評価方法におけるバブルポイントは、隔膜を純水で十分に濡らして、孔内を純水で満たした後、隔膜の片側面を窒素で加圧し、隔膜の反対側面から、150mL/分の割合で気泡が連続して発生してくるときの圧力とする。隔膜のガス遮断性が低いほど、バブルポイントの値は小さくなり、隔膜のガス遮断性が高いほど、ガスが通過し難いため、バブルポイントの値は大きくなる。
(Evaluation of gas barrier properties)
One evaluation index of the gas barrier property of the diaphragm of the present embodiment is evaluation of the bubble point of the diaphragm. The bubble point in this evaluation method is that the diaphragm is sufficiently wetted with pure water, the inside of the hole is filled with pure water, one side of the diaphragm is pressurized with nitrogen, and from the opposite side of the diaphragm at a rate of 150 mL / min. This is the pressure when bubbles are continuously generated. The lower the gas barrier property of the diaphragm, the smaller the value of the bubble point. The higher the gas barrier property of the diaphragm, the more difficult it is for gas to pass through, so the value of the bubble point increases.
 隔膜のバブルポイントは、特に限定されないが、10kPa以上であることが好ましい。隔膜のバブルポイントが10kPa以上であれば、0.2μm以上のピンホールが無い為、隔膜の分離能を担保できる。また、隔膜を電解に使用した場合、陰極室と陽極室に差圧がついた場合であっても、発生したガスが容易に隔膜を透過できないため、酸素と水素の混合を効果的に抑制できる。かかる観点から、隔膜のバブルポイントは100kPa以上であることがより好ましい。 The bubble point of the diaphragm is not particularly limited, but is preferably 10 kPa or more. If the bubble point of the diaphragm is 10 kPa or more, since there is no pinhole of 0.2 μm or more, the separation ability of the diaphragm can be secured. In addition, when the diaphragm is used for electrolysis, even when a differential pressure is applied between the cathode chamber and the anode chamber, the generated gas cannot easily pass through the diaphragm, so that mixing of oxygen and hydrogen can be effectively suppressed. . From this viewpoint, the bubble point of the diaphragm is more preferably 100 kPa or more.
(イオン透過性評価)
 本実施形態のアルカリ水電解用隔膜を用いて電解を行う際のセル電圧の評価指標の1つとして、隔膜のイオン透過性が挙げられる。イオン透過性が高ければ、電解時の電気抵抗を低減でき、これに伴ってアルカリ水電解用隔膜に起因する電圧損失も低減できる。この点、本実施形態のアルカリ水電解用隔膜は高いイオン透過性を維持できるので、これを用いることで、電解時のセル電圧を小さくできる。
(Ion permeability evaluation)
One of the cell voltage evaluation indices when electrolysis is performed using the alkaline water electrolysis diaphragm of the present embodiment is the ion permeability of the diaphragm. If the ion permeability is high, the electrical resistance during electrolysis can be reduced, and accordingly, the voltage loss caused by the diaphragm for alkaline water electrolysis can also be reduced. In this respect, since the diaphragm for alkaline water electrolysis of the present embodiment can maintain high ion permeability, the cell voltage during electrolysis can be reduced by using this.
 本実施形態のアルカリ水電解用隔膜を用いて電解を行う際のセル電圧は、例えば、以下の方法によって評価することができる。ニッケル電極の間に隔膜を設置し、隔膜によって隔てられた両電極室を90℃、30質量%のKOH水溶液で満たす。両電極間に電流密度0.60A/cmの直流電流を印加し、長時間電解する。電解開始後24時間の両電極間の電位差を測定し、この両電極間の電位差をセル電圧とする。なお、電解中はKOH水溶液中の水が、電解により消費されるため、KOH濃度が一定になるように純水を定期的に添加させる。また電解セル内に電極から発生した、酸素、水素が滞留しない様に、ポンプで両電極室内の電解液を循環させる。かかる条件で運転した場合、本実施形態の隔膜を使用した場合のセル電圧は、特に限定されるものではないが、好適な一例を挙げるならば、電流密度0.60A/cm時に1.80V以下とすることができ、さらには1.75V以下とすることができ、運転条件によって一層セル電圧を低下させることができる。隔膜における電圧損失を低減することができるならば、少ない電力量で効率的に水の電気分解が行える。さらには、長期に高電流密度で運転した場合も、電圧損失による発熱で電解槽内の電解液を加熱し過ぎるといったリスクや、電解槽や電極等の材質の劣化を早めるといったリスク等を軽減することができる。 The cell voltage at the time of performing electrolysis using the diaphragm for alkaline water electrolysis of this embodiment can be evaluated by the following method, for example. A diaphragm is installed between the nickel electrodes, and both electrode chambers separated by the diaphragm are filled with a 30% by mass KOH aqueous solution at 90 ° C. A direct current having a current density of 0.60 A / cm 2 is applied between both electrodes, and electrolysis is performed for a long time. The potential difference between both electrodes is measured 24 hours after the start of electrolysis, and the potential difference between both electrodes is defined as the cell voltage. During electrolysis, water in the KOH aqueous solution is consumed by electrolysis. Therefore, pure water is periodically added so that the KOH concentration becomes constant. Further, the electrolytic solution in both electrode chambers is circulated by a pump so that oxygen and hydrogen generated from the electrodes do not stay in the electrolytic cell. When operated under such conditions, the cell voltage when the diaphragm of the present embodiment is used is not particularly limited, but a suitable example is 1.80 V at a current density of 0.60 A / cm 2 . The voltage can be further reduced to 1.75 V or less, and the cell voltage can be further reduced depending on the operating conditions. If the voltage loss in the diaphragm can be reduced, water can be electrolyzed efficiently with a small amount of electric power. Furthermore, even when operating at a high current density for a long period of time, the risk of overheating the electrolyte in the electrolytic cell due to heat generation due to voltage loss, the risk of premature deterioration of the material of the electrolytic cell and electrodes, etc. are reduced. be able to.
 以下、実施例及び比較例を挙げて、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 実施例及び比較例で使用した電極(陽極、陰極)及び隔膜は、下記の通りに作製した。 The electrodes (anode and cathode) and diaphragm used in Examples and Comparative Examples were prepared as follows.
[実施例1]
 n-デカン酸(関東化学社製、以下同様)10gを溶解させたアイソパーM(東燃ゼネラル社製、以下同様)300g中で酸化ジルコニウム(「UEP酸化ジルコニウム」、第一稀元素化学工業社製、以下ZrOと記載)475gを予めボールミル(テラオカ社製万能型ボールミル架台BKFD-203)で均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液にPTFE(「テフロンPTFEファインパウダー6-J」、三井・デュポンフロロケミカル社製、以下PTFE-Aと記載)25gを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は0.2μm、平均透水孔径は0.1μmであった。また、厚みは360μm、気孔率は30%、水接触角は30°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ20MPa、16MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Example 1]
Zirconium oxide (“UEP zirconium oxide”, manufactured by Daiichi Rare Element Chemical Industries, Ltd.) in 300 g of Isopar M (manufactured by TonenGeneral Co., Ltd., hereinafter the same) in which 10 g of n-decanoic acid (manufactured by Kanto Chemical Co., Ltd.) was dissolved, 475 g (hereinafter referred to as ZrO 2 ) was previously uniformly dispersed with a ball mill (Universal Ball Mill Base BKFD-203 manufactured by Terraoka Co., Ltd.) to prepare a ZrO 2 dispersion solution. Subsequently, 25 g of PTFE (“Teflon PTFE fine powder 6-J”, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd., hereinafter referred to as PTFE-A) was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore size of 0.2 μm and an average water-permeable pore size of 0.1 μm. The thickness was 360 μm, the porosity was 30%, and the water contact angle was 30 °. And the tensile fracture strength of MD direction and TD direction was 20 MPa and 16 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[実施例2]
 10gのn-デカン酸を溶解させた300gのアイソパーM中で350gのZrOを均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液に150gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は2.0μm、平均透水孔径は1.0μmであった。また、厚みは360μm、気孔率は80%、水接触角は85°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ28MPa、24MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Example 2]
350 g of ZrO 2 was uniformly dispersed in 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved to prepare a ZrO 2 dispersion solution. Subsequently, 150 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore size of 2.0 μm and an average water-permeable pore size of 1.0 μm. The thickness was 360 μm, the porosity was 80%, and the water contact angle was 85 °. And the tensile fracture strength of MD direction and TD direction was 28 MPa and 24 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[実施例3]
 10gのn-デカン酸を溶解させた300gのアイソパーM中で425gのZrOを均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液に75gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は1.4μm、平均透水孔径は0.6μmであった。また、厚みは110μm、気孔率は40%、水接触角は15°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ25MPa、19MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Example 3]
In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 425 g of ZrO 2 was uniformly dispersed to prepare a ZrO 2 dispersion solution. Subsequently, 75 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore diameter of 1.4 μm and an average water-permeable pore diameter of 0.6 μm. The thickness was 110 μm, the porosity was 40%, and the water contact angle was 15 °. And the tensile breaking strength of MD direction and TD direction was 25 MPa and 19 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[実施例4]
 10gのn-デカン酸を溶解させた300gのアイソパーM中で酸化チタン(「TTO-51A」、石原産業社製、以下TiO)425gを均一分散させ、TiO分散溶液を作製した。続いて、15℃に調整したTiO分散溶液に75gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は1.4μm、平均透水孔径は0.6μmであった。また、厚みは480μm、気孔率は40%、水接触角は90°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ25MPa、19MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Example 4]
In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 425 g of titanium oxide (“TTO-51A”, manufactured by Ishihara Sangyo Co., Ltd., hereinafter referred to as TiO 2 ) was uniformly dispersed to prepare a TiO 2 dispersion solution. Subsequently, 75 g of PTFE-A was mixed with the TiO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore diameter of 1.4 μm and an average water-permeable pore diameter of 0.6 μm. The thickness was 480 μm, the porosity was 40%, and the water contact angle was 90 °. And the tensile breaking strength of MD direction and TD direction was 25 MPa and 19 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[実施例5]
 二軸延伸開口法で厚み300μm、気孔率80%、孔径200nmのPTFE多孔膜を得た。得られたPTFE多孔膜を80wt%ジルコニウムテトラブトキシド 1-ブタノール溶液(Sigma Aldrich社製)に浸漬し、多孔膜中にジルコニウムテトラブトキシドを含浸させた。1-ブタノール溶液からPTFE多孔膜を取出し、PE製のへらを用いて、余剰の溶液を除去した後に蒸留水に浸漬することで、PTFE多孔膜中にジルコニウム化合物を析出させた。ジルコニウム化合物を析出させたPTFE多孔膜を60℃で1時間乾燥させた後に、200℃の加熱炉の中で1時間加熱し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は0.8μm、平均透水孔径は0.025μmであった。また、厚みは300μm、気孔率は40%、水接触角は80°だった。
 そしてMD方向、TD方向の引張破断強度はそれぞれ25MPa、22MPaだった。得られたアルカリ水電解用隔膜の詳細を表2に示す。
[Example 5]
A PTFE porous membrane having a thickness of 300 μm, a porosity of 80%, and a pore diameter of 200 nm was obtained by a biaxial stretching opening method. The obtained PTFE porous membrane was immersed in an 80 wt% zirconium tetrabutoxide 1-butanol solution (manufactured by Sigma Aldrich), and the porous membrane was impregnated with zirconium tetrabutoxide. The PTFE porous membrane was taken out from the 1-butanol solution, and the zirconium compound was precipitated in the PTFE porous membrane by immersing it in distilled water after removing the excess solution using a PE spatula. The PTFE porous membrane on which the zirconium compound was deposited was dried at 60 ° C. for 1 hour and then heated in a heating furnace at 200 ° C. for 1 hour to obtain a diaphragm for alkaline water electrolysis.
The maximum pore diameter of the obtained diaphragm was 0.8 μm, and the average water-permeable pore diameter was 0.025 μm. The thickness was 300 μm, the porosity was 40%, and the water contact angle was 80 °.
And the tensile fracture strength of MD direction and TD direction was 25 MPa and 22 MPa, respectively. The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
[実施例6]
 二軸延伸開口法で厚み300μm、気孔率80%、孔径100nmのPTFE多孔膜を得た。得られたPTFE多孔膜を80wt%ジルコニウムテトラブトキシド 1-ブタノール溶液(Sigma Aldrich社製)に浸漬し、多孔膜中にジルコニウムテトラブトキシドを含浸させた。1-ブタノール溶液からPTFE多孔膜を取出し、PEへらを用いて、余剰の溶液を除去した後に蒸留水に浸漬することで、PTFE多孔膜中にジルコニウム化合物を析出させた。ジルコニウム化合物を析出させたPTFE多孔膜を60℃で1時間乾燥させた後に、200℃で1時間加熱した。さらに、80mLの30%水酸化カリウム水溶液とともに内容量100mLのPTFE製容器に入れて、SUS製の耐圧容器内で150℃×24時間加熱し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は1.0μm、平均透水孔径は0.03μmであった。また、厚みは300μm、気孔率は45%、水接触角は80°だった。
 そしてMD方向、TD方向の引張破断強度はそれぞれ11MPa、24MPaだった。得られたアルカリ水電解用隔膜の詳細を表2に示す。
[Example 6]
A PTFE porous film having a thickness of 300 μm, a porosity of 80%, and a pore diameter of 100 nm was obtained by a biaxial stretching opening method. The obtained PTFE porous membrane was immersed in an 80 wt% zirconium tetrabutoxide 1-butanol solution (manufactured by Sigma Aldrich), and the porous membrane was impregnated with zirconium tetrabutoxide. The PTFE porous membrane was taken out from the 1-butanol solution, and the excess solution was removed using a PE spatula and then immersed in distilled water to precipitate a zirconium compound in the PTFE porous membrane. The PTFE porous membrane on which the zirconium compound was deposited was dried at 60 ° C. for 1 hour and then heated at 200 ° C. for 1 hour. Furthermore, it put into the container made from PTFE with an internal volume of 100 mL with 80 mL 30% potassium hydroxide aqueous solution, and it heated at 150 degreeC * 24 hours in the pressure | voltage resistant container made from SUS, and obtained the diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore size of 1.0 μm and an average water-permeable pore size of 0.03 μm. The thickness was 300 μm, the porosity was 45%, and the water contact angle was 80 °.
And the tensile fracture strength of MD direction and TD direction was 11 MPa and 24 MPa, respectively. The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
[実施例7]
 二軸延伸開口法で厚み300μm、気孔率80%、孔径100nmのPTFE多孔膜を得た。得られたPTFE多孔膜を80wt%ジルコニウムテトラブトキシド 1-ブタノール溶液に浸漬し、多孔膜中にジルコニウムテトラブトキシドを含浸させた。1-ブタノール溶液からPTFE多孔膜を取出し、PEへらを用いて、余剰の溶液を除去した後に蒸留水に浸漬することで、PTFE多孔膜中にジルコニウム化合物を析出させた。ジルコニウム化合物を析出させたPTFE多孔膜を60℃で1時間乾燥させた後に、200℃で1時間加熱した。さらに、80mLの30%水酸化カリウム水溶液とともに内容量100mLのPTFE製容器に入れて、SUS製の耐圧容器内で200℃×24時間加熱し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は1.6μm、平均透水孔径は0.03μmであった。また、厚みは300μm、気孔率は45%、水接触角は80°だった。
 そしてMD方向、TD方向の引張破断強度はそれぞれ12MPa、22MPaだった。得られたアルカリ水電解用隔膜の詳細を表2に示す。
[Example 7]
A PTFE porous film having a thickness of 300 μm, a porosity of 80%, and a pore diameter of 100 nm was obtained by a biaxial stretching opening method. The obtained PTFE porous membrane was immersed in an 80 wt% zirconium tetrabutoxide 1-butanol solution, and the porous membrane was impregnated with zirconium tetrabutoxide. The PTFE porous membrane was taken out from the 1-butanol solution, and the excess solution was removed using a PE spatula and then immersed in distilled water to precipitate a zirconium compound in the PTFE porous membrane. The PTFE porous membrane on which the zirconium compound was deposited was dried at 60 ° C. for 1 hour and then heated at 200 ° C. for 1 hour. Furthermore, it put into the container made from PTFE with an internal capacity of 100 mL with 80 mL 30% potassium hydroxide aqueous solution, and it heated at 200 degreeC x 24 hours in the pressure | voltage resistant container made from SUS, and obtained the diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore size of 1.6 μm and an average water-permeable pore size of 0.03 μm. The thickness was 300 μm, the porosity was 45%, and the water contact angle was 80 °.
And the tensile breaking strength of MD direction and TD direction was 12 MPa and 22 MPa, respectively. The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
[比較例1]
 10gのn-デカン酸(関東化学社製)を溶解させた300gのアイソパーM中で485gのZrOを均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液に15gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は0.1μm、平均透水孔径は0.1μmより小さく測定できなかった。また、厚みは300μm、気孔率は15%、水接触角は20°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ6MPa、5MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Comparative Example 1]
In 300 g of Isopar M in which 10 g of n-decanoic acid (manufactured by Kanto Chemical Co., Inc.) was dissolved, 485 g of ZrO 2 was uniformly dispersed to prepare a ZrO 2 dispersion solution. Subsequently, 15 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The maximum pore diameter of the obtained diaphragm was 0.1 μm, and the average water-permeable pore diameter was smaller than 0.1 μm, and could not be measured. The thickness was 300 μm, the porosity was 15%, and the water contact angle was 20 °. And the tensile breaking strength of MD direction and TD direction was 6 MPa and 5 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例2]
 10gのn-デカン酸を溶解させた300gのアイソパーM中で300gのZrOを均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液に200gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は2.5μm、平均透水孔径は1.4μmだった。また、厚みは300μm、気孔率は85%、水接触角は110°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ12MPa、9MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Comparative Example 2]
In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 300 g of ZrO 2 was uniformly dispersed to prepare a ZrO 2 dispersion solution. Subsequently, 200 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained diaphragm had a maximum pore diameter of 2.5 μm and an average water-permeable pore diameter of 1.4 μm. The thickness was 300 μm, the porosity was 85%, and the water contact angle was 110 °. And the tensile fracture strength of MD direction and TD direction was 12 MPa and 9 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例3]
 10gのn-デカン酸を溶解させた300gのアイソパーM中で385gのZrOを均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液に125gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は0.9μm、平均透水孔径は0.4μmだった。また、厚みは30μm、気孔率は50%、水接触角は45°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ27MPa、20MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Comparative Example 3]
In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 385 g of ZrO 2 was uniformly dispersed to prepare a ZrO 2 dispersion solution. Subsequently, 125 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained membrane had a maximum pore size of 0.9 μm and an average water-permeable pore size of 0.4 μm. The thickness was 30 μm, the porosity was 50%, and the water contact angle was 45 °. The tensile breaking strengths in the MD direction and TD direction were 27 MPa and 20 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例4]
 10gのn-デカン酸を溶解させた300gのアイソパーM中で385gのZrOを均一分散させ、ZrO分散溶液を作製した。続いて、15℃に調整したZrO分散溶液に125gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は0.9μm、平均透水孔径は0.4μmだった。また、厚みは800μm、気孔率は50%、水接触角は50°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ27MPa、20MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Comparative Example 4]
In 300 g of Isopar M in which 10 g of n-decanoic acid was dissolved, 385 g of ZrO 2 was uniformly dispersed to prepare a ZrO 2 dispersion solution. Subsequently, 125 g of PTFE-A was mixed with the ZrO 2 dispersion adjusted to 15 ° C. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained membrane had a maximum pore size of 0.9 μm and an average water-permeable pore size of 0.4 μm. The thickness was 800 μm, the porosity was 50%, and the water contact angle was 50 °. The tensile breaking strengths in the MD direction and TD direction were 27 MPa and 20 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例5]
 15℃に調整した300gのアイソパーMと125gのPTFE-Aを混合した。得られた混合物は予備成形の後に70℃でシート状に押出した。シートは120℃に設定された1対のロール間を通して圧延した。圧延したシートを200℃に加熱して滑剤取り除き、320℃に設定したストレッチャーでMD方向、TD方向それぞれに延伸した。延伸したシートは350℃で焼成し、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は0.8μm、平均透水孔径は0.3μmだった。また、厚みは110μm、気孔率は70%、水接触角は125°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ30MPa、26MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Comparative Example 5]
300 g of Isopar M adjusted to 15 ° C. and 125 g of PTFE-A were mixed. The resulting mixture was extruded into a sheet at 70 ° C. after preforming. The sheet was rolled through a pair of rolls set at 120 ° C. The rolled sheet was heated to 200 ° C. to remove the lubricant, and stretched in the MD and TD directions with a stretcher set at 320 ° C. The stretched sheet was fired at 350 ° C. to obtain a diaphragm for alkaline water electrolysis.
The obtained membrane had a maximum pore size of 0.8 μm and an average water-permeable pore size of 0.3 μm. The thickness was 110 μm, the porosity was 70%, and the water contact angle was 125 °. And the tensile breaking strength of MD direction and TD direction was 30 MPa and 26 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例6]
 PTFE多孔膜として、市販のPTFEメンブレンフィルター(「オムニポアJGWP)メルクミリポア社製)を用いた。得られたアルカリ水電解用隔膜の詳細を表1に示す。
[Comparative Example 6]
As the PTFE porous membrane, a commercially available PTFE membrane filter ("Omnipore JGWP" manufactured by Merck Millipore) was used, and details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例7]
 ZrOとN-メチル-2-ピロリドン(和光純薬工業社製、以下NMP)を、粒径0.5mmのSUSボールが入ったボールミルポットに投入した。これらを回転数70rpmで3時間攪拌して、分散させて混合物を得た。得られた混合物を、ステンレス製のざる(網目30メッシュ)により濾過し、混合物からボールを分離した。ボールを分離した混合物に、ポリエーテルスルホン(「Ultrason E7020」(商標)、BASF社製、以下PES)及びポリビニルピロリドン(重量平均分子量(Mw)900000、和光純薬工業社製、以下PVP)を加え、スリーワンモータを用いて60℃で12時間攪拌して溶解させ、以下の成分組成の塗工液を得た。
 PES:15質量部
 PVP:6質量部
 NMP:70質量部
 ZrO:45質量部
[Comparative Example 7]
ZrO 2 and N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd., hereinafter referred to as NMP) were charged into a ball mill pot containing SUS balls having a particle diameter of 0.5 mm. These were stirred at a rotational speed of 70 rpm for 3 hours and dispersed to obtain a mixture. The resulting mixture was filtered through a stainless steel sieve (mesh 30 mesh) to separate the balls from the mixture. Polyethersulfone ("Ultrason E7020" (trademark), manufactured by BASF, hereinafter PES) and polyvinylpyrrolidone (weight average molecular weight (Mw) 900000, manufactured by Wako Pure Chemical Industries, Ltd., hereinafter PVP) are added to the mixture from which the balls have been separated. Then, the mixture was stirred and dissolved at 60 ° C. for 12 hours using a three-one motor to obtain a coating solution having the following component composition.
PES: 15 parts by mass PVP: 6 parts by mass NMP: 70 parts by mass ZrO 2 : 45 parts by mass
 この塗工液を、支持基材であるポリフェニレンサルファイドメッシュ(くればぁ社製、膜厚280μm、目開き358μm、糸径150μm、以下PPSメッシュ)の両表面に対して、コンマコータを用いて塗工厚みが各面150μmとなるよう塗工した。塗工後直ちに、塗工液を塗工した支持基材を、40℃の純水/NMP混合液(純水/NMP=50/50(v/v))を溜めた凝固浴の蒸気下へ晒した。その後直ちに、塗工液を塗工した支持基材を、凝固浴中へ浸漬した。そして、PESを凝固させることで支持基材表面に塗膜を形成させた。その後、純水で塗膜を十分洗浄した。
 得られた隔膜の最大孔径は1.2μm、平均透水孔径は0.2μmであった。また、厚みは600μm、気孔率は40%、水接触角は25°だった。そしてMD方向、TD方向の引張破断強度はそれぞれ16MPa、17MPaだった。得られたアルカリ水電解用隔膜の詳細を表1に示す。
Apply this coating solution to both surfaces of polyphenylene sulfide mesh (Kuraba Co., Ltd., film thickness: 280 μm, mesh opening: 358 μm, thread diameter: 150 μm, hereinafter referred to as PPS mesh) using a comma coater. Coating was performed so that the thickness was 150 μm on each side. Immediately after coating, the supporting base material coated with the coating liquid is placed under the steam of a coagulation bath in which 40 ° C. pure water / NMP mixed liquid (pure water / NMP = 50/50 (v / v)) is stored. I was exposed. Immediately after that, the supporting substrate coated with the coating solution was immersed in a coagulation bath. And the coating film was formed in the support base material surface by solidifying PES. Thereafter, the coating film was sufficiently washed with pure water.
The obtained diaphragm had a maximum pore size of 1.2 μm and an average water-permeable pore size of 0.2 μm. The thickness was 600 μm, the porosity was 40%, and the water contact angle was 25 °. The tensile breaking strengths in the MD direction and TD direction were 16 MPa and 17 MPa, respectively. The details of the obtained membrane for alkaline water electrolysis are shown in Table 1.
[比較例8]
 一軸延伸開口法で得られた厚み200μm、気孔率55%、孔径1000nmのPTFE多孔膜を用いた以外は、実施例7と同様にして、アルカリ水電解用隔膜を得た。
 得られた隔膜の最大孔径は2.5μm、平均透水孔径は0.1μmであった。また、厚みは200μm、気孔率は20%、水接触角は90°だった。
 そしてMD方向、TD方向の引張破断強度はそれぞれ20MPa、10MPaだった。得られたアルカリ水電解用隔膜の詳細を表2に示す。
[Comparative Example 8]
A diaphragm for alkaline water electrolysis was obtained in the same manner as in Example 7, except that a PTFE porous membrane having a thickness of 200 μm, a porosity of 55%, and a pore diameter of 1000 nm obtained by the uniaxial stretching opening method was used.
The obtained diaphragm had a maximum pore size of 2.5 μm and an average water-permeable pore size of 0.1 μm. The thickness was 200 μm, the porosity was 20%, and the water contact angle was 90 °.
And the tensile breaking strength of MD direction and TD direction was 20 MPa and 10 MPa, respectively. The details of the obtained diaphragm for alkaline water electrolysis are shown in Table 2.
[物性の測定・評価方法]
 以下、隔膜についての物性の測定・評価方法について説明する。
[Measurement and evaluation method of physical properties]
Hereinafter, a method for measuring and evaluating physical properties of the diaphragm will be described.
(1)平均透水孔径
 隔膜の平均透水孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法の測定で得られる平均透水孔径とした。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとした。このサンプルを測定用の耐圧容器(透過部面積12.57cm)にセットして、容器内を150mLの純水で満たした。次に、耐圧容器を90℃に設定した恒温槽内で保持し、耐圧容器内部が90℃になってから測定を開始した。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から純水が透過してくるので、圧力及び透過流量の数値を記録した。平均透水孔径は、圧力が10kPaから30kPaの間の圧力と透水流量との勾配を使い、以下のハーゲンポアズイユの式から求めた。
  平均透水孔径(m)={32ηLμ/(εP)}0.5
ここで、ηは水の粘度(Pa・s)、Lは隔膜の厚み(m)、μは見かけの流速でありμ(m/s)=流量(m/s)/流路面積(m)である。また、εは気孔率、Pは圧力(Pa)である。
(1) Average water-permeable pore diameter The average water-permeable pore size of the diaphragm is the average water-permeable pore size obtained by measurement of the following method using an integrity tester (manufactured by Sartorius Stedim Japan, "Sartochcheck Junior BP-Plus"). did. First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was set in a pressure-resistant container for measurement (permeation area: 12.57 cm 2 ), and the inside of the container was filled with 150 mL of pure water. Next, the pressure vessel was held in a thermostat set at 90 ° C., and the measurement was started after the inside of the pressure vessel reached 90 ° C. When the measurement started, the upper surface side of the sample was pressurized with nitrogen, and pure water permeated from the lower surface side of the sample, so the numerical values of pressure and permeation flow rate were recorded. The average water permeable pore diameter was determined from the following Hagen-Poiseuille equation using the gradient between the pressure between 10 kPa and 30 kPa and the water flow rate.
Average water-permeable pore diameter (m) = {32ηLμ 0 / (εP)} 0.5
Here, η is the viscosity of water (Pa · s), L is the thickness of the diaphragm (m), μ 0 is the apparent flow velocity, and μ 0 (m / s) = flow rate (m 3 / s) / flow channel area. (M 2 ). Further, ε is the porosity, and P is the pressure (Pa).
(2)最大孔径
 隔膜の最大孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定した。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとした。このサンプルを純水で濡らし、膜の孔内に純水を含浸させ、これを測定用の耐圧容器にセットした。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始した。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から150mL/分の割合で気泡が連続して発生してくるときの窒素圧力を、バブルポイント圧力とした。最大孔径はヤング-ラプラスの式を変形させた下記バブルポイント式から求めた。
  最大孔径(m)=4γcosθ/P
ここで、γは水の表面張力(N/m)、cosθは隔膜表面と水との接触角(rad)、Pはバブルポイント圧力(Pa)である。
(2) Maximum pore diameter The maximum pore diameter of the diaphragm was measured by the following method using an integrity tester ("Sartochcheck Junior BP-Plus" manufactured by Sartorius Stedim Japan). First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was wetted with pure water, impregnated with pure water in the pores of the membrane, and set in a pressure-resistant container for measurement. Next, the pressure vessel was held in a thermostat set at a predetermined temperature, and measurement was started after the pressure vessel reached the predetermined temperature. When the measurement was started, the upper surface side of the sample was pressurized with nitrogen, and the nitrogen pressure when bubbles were continuously generated from the lower surface side of the sample at a rate of 150 mL / min was defined as the bubble point pressure. The maximum pore diameter was obtained from the following bubble point equation obtained by modifying the Young-Laplace equation.
Maximum pore diameter (m) = 4γ cos θ / P
Here, γ is the surface tension (N / m) of water, cos θ is the contact angle (rad) between the diaphragm surface and water, and P is the bubble point pressure (Pa).
(3)親水性無機粒子の平均一次粒径
 隔膜の親水性無機粒子の平均一次粒径の測定は、走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製、「Miniscope TM3000」)を使用して行った。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとした。このサンプルに対して、マグネトロンスパッタ装置(真空デバイス社製、「MSP-1S型」)を用いて1分間メタルコーティングを行った。次に、このサンプルをSEMの観察用試料台にセットして測定を開始した。このとき、SEMによる観察が測定対象の膜表面の垂直方向から行えるように、測定試料である隔膜をセットした。測定を開始し、観察対象の無機粒子が見えるように倍率を調節(2万倍以上が好ましい)して撮像し、その撮像画面を画像として保存した。得られた画像は、画像解析ソフト(三谷商事社製、「WinROOF」)を用いて2値化し、凝集していない10点の無機粒子のそれぞれに対し絶対最大長を測定し、その個数平均を算出した。この平均を、無機粒子の一次粒径とした。
(3) Average primary particle size of hydrophilic inorganic particles The average primary particle size of the hydrophilic inorganic particles of the diaphragm is measured using a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, “Miniscope TM3000”). It was. First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was subjected to metal coating for 1 minute using a magnetron sputtering apparatus (“MSP-1S type” manufactured by Vacuum Device Inc.). Next, this sample was set on an SEM observation sample stage, and measurement was started. At this time, the diaphragm which is a measurement sample was set so that observation by SEM could be performed from the direction perpendicular to the film surface to be measured. The measurement was started, the magnification was adjusted (preferably 20,000 times or more) so that the inorganic particles to be observed can be seen, and the imaging screen was stored as an image. The obtained image was binarized using image analysis software (“WinROOF”, manufactured by Mitani Corporation), the absolute maximum length was measured for each of the 10 non-aggregated inorganic particles, and the number average was calculated. Calculated. This average was taken as the primary particle size of the inorganic particles.
(4)気孔率
 隔膜の気孔率は、電子天秤を用いて、25℃に保った室内で測定した。
 隔膜を3cm×3cmの大きさ(9cm)で3枚に切出して測定サンプルとし、シックネスゲージで厚みd(cm)を測定した。次いで、測定サンプルを純水中に24時間浸し、余分な水分を取り除いて、重量w1(g)を測定した。続いて、これらを50℃に設定した乾燥機内で12時間以上静置して乾燥させて、重量w2(g)を測定した。
 測定対象の隔膜は、水接触面が非常に低吸水性であり、測定サンプルが水を含んだ状態と乾燥状態とで厚み及び面積が有意に変化しなかった。そのため、厚みd及び面積を一定値とみなして、下記式で、w1、w2の値から気孔率を求めた。
  気孔率(%)={(w1-w2)/(d×9)}×100
 3枚の測定サンプルについてそれぞれ気孔率を求め、それらの算術平均値を隔膜の気孔率εとした。
(4) Porosity The porosity of the diaphragm was measured in a room kept at 25 ° C. using an electronic balance.
The diaphragm was cut into three pieces of 3 cm × 3 cm (9 cm 2 ) to make measurement samples, and the thickness d (cm) was measured with a thickness gauge. Next, the measurement sample was immersed in pure water for 24 hours to remove excess water, and the weight w1 (g) was measured. Then, these were left still for 12 hours or more in the dryer set to 50 degreeC, and were dried, and the weight w2 (g) was measured.
The diaphragm to be measured had a very low water-absorbing surface on the water contact surface, and the thickness and area did not change significantly between the state in which the measurement sample contained water and the dry state. Therefore, considering the thickness d and the area as constant values, the porosity was determined from the values of w1 and w2 by the following formula.
Porosity (%) = {(w1-w2) / (d × 9)} × 100
The porosity was obtained for each of the three measurement samples, and the arithmetic average value thereof was defined as the porosity ε of the diaphragm.
(5)水接触角
 隔膜について、水接触角の測定は、「Drop Master DM-701」(協和界面化学社製)を用いて行った。純水3μLを測定対象(隔膜又は多孔体電極)の表面に滴下し、水接触角をθ/2法により測定した。測定雰囲気条件は、温度23℃、湿度65%RHとした。
(5) Water contact angle The water contact angle of the diaphragm was measured using “Drop Master DM-701” (manufactured by Kyowa Interface Chemical Co., Ltd.). 3 μL of pure water was dropped on the surface of the measurement target (diaphragm or porous electrode), and the water contact angle was measured by the θ / 2 method. The measurement atmosphere conditions were a temperature of 23 ° C. and a humidity of 65% RH.
(6)引張破断応力
 温度23℃、湿度65%RHの雰囲気下において、JIS K 7161に準じた方法で測定した。アルカリ水電解用隔膜のMD方向、TD方向に沿って、それぞれ幅10mm、長さ100mmに切り出したものを試験片とした。「オートグラフAGS-1kNX」(島津製作所社製)を用いて、チャック間長さ50mm、引張り速度100mm/分の条件で、試験片について引張り試験を行い、5回の測定値の相加平均を引張破断強度の測定値とした。これをMD方向及びTD方向のそれぞれについて算出した。
(6) Tensile rupture stress It measured by the method according to JISK7161 in the atmosphere of temperature 23 degreeC and humidity 65% RH. A specimen cut into a width of 10 mm and a length of 100 mm along the MD direction and the TD direction of the diaphragm for alkaline water electrolysis was used as a test piece. Using “Autograph AGS-1kNX” (manufactured by Shimadzu Corporation), a tensile test was performed on the test piece under the conditions of a length between chucks of 50 mm and a pulling speed of 100 mm / min, and an arithmetic average of five measured values was calculated. It was set as the measured value of tensile breaking strength. This was calculated for each of the MD and TD directions.
[電解試験]
 実施例1~7及び比較例1~8の隔膜を用いて、電流密度が10kA/mの高電流密度下で連続して2500時間通電し、アルカリ水電解を行った。
 2500時間後、各実施例及び比較例ごとに4つの電解セルの対電圧の平均値を算出し、セル電圧(V)として評価した。
 また、陰極側及び陽極側の気液分離タンクから気体をサンプリングし、陰極側での水素濃度(%)及び陽極側での酸素濃度(%)をガスクロマトグラフィで測定して、それぞれ水素純度(%)及び酸素純度(%)として評価した。実施例1~4及び比較例1~7の結果を表1に、実施例5~7及び比較例8の結果を表2にそれぞれ示す。
[Electrolysis test]
Using the diaphragms of Examples 1 to 7 and Comparative Examples 1 to 8, energization was continuously performed for 2500 hours under a high current density of 10 kA / m 2 to perform alkaline water electrolysis.
After 2500 hours, the average value of the counter voltage of the four electrolytic cells was calculated for each Example and Comparative Example and evaluated as the cell voltage (V).
In addition, gas was sampled from the gas-liquid separation tank on the cathode side and the anode side, the hydrogen concentration (%) on the cathode side and the oxygen concentration (%) on the anode side were measured by gas chromatography, and the hydrogen purity (% ) And oxygen purity (%). Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 7, and Table 2 shows the results of Examples 5 to 7 and Comparative Example 8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下、使用した複極式電解槽及び電解システムについて説明する。 Hereinafter, the used bipolar electrolytic cell and electrolytic system will be described.
[複極式電解槽]
 陽極ターミナルエレメント、陰極ターミナルエレメント、4個の複極式エレメントから構成される、図1のような、複極式ゼロギャップ構造の電解槽を作製した。各電解槽にはそれぞれの実施例及び比較例の隔膜が組み込まれている。電解槽のヘッダー管の配設は外部ヘッダー型とした。
[Bipolar electrolytic cell]
An electrolytic cell having a bipolar zero-gap structure as shown in FIG. 1 was prepared, which was composed of an anode terminal element, a cathode terminal element, and four bipolar elements. The diaphragms of the respective examples and comparative examples are incorporated in each electrolytic cell. The header pipe of the electrolytic cell was an external header type.
<陽極>
陽極としては、あらかじめブラスト処理を施したニッケルエキスパンド基材を用い、酸化ニッケルの造粒物をプラズマ溶射法によって導電性基材の両面に吹き付けて製作した。
<Anode>
As the anode, a nickel expanded base material that had been blasted in advance was used, and a granulated product of nickel oxide was sprayed on both surfaces of the conductive base material by plasma spraying.
<陰極>
 導電性基材として、直径0.15mmのニッケルの細線を40メッシュの目開きで編んだ平織メッシュ基材上に白金を担持したものを用いた。
<Cathode>
As the conductive substrate, a material in which platinum was supported on a plain woven mesh substrate obtained by knitting a fine nickel wire having a diameter of 0.15 mm with a mesh of 40 mesh was used.
<ガスケット>
 ガスケットは、厚み4.0mmの内寸60mm×50mmの四角形状のもので、内側に隔膜を挿入することで保持するためのスリット構造を有するものを使用した。スリット構造は、隔膜の縁部を収容するためにガスケット内側に0.4mmの隙間を幅方向6mmに設けた構造とした。このガスケットは、フッ素系ゴムを材質とし、100%変形時の弾性率が4.0MPaであった。
<Gasket>
The gasket used was a rectangular shape having an inner dimension of 60 mm × 50 mm with a thickness of 4.0 mm and having a slit structure for holding by inserting a diaphragm inside. The slit structure was a structure in which a gap of 0.4 mm was provided inside the gasket in the width direction of 6 mm in order to accommodate the edge of the diaphragm. This gasket was made of fluorine-based rubber and had an elastic modulus of 4.0 MPa at 100% deformation.
<導電性弾性体>
 導電性弾性体は、線径0.15mmのニッケル製ワイヤーを織ったものを、波高さ5mmになるように波付け加工したものを使用した。
<Conductive elastic body>
As the conductive elastic body, one obtained by corrugating a woven nickel wire having a wire diameter of 0.15 mm so as to have a wave height of 5 mm was used.
<複極式エレメント>
 複極式エレメントは、90mm×70mmの長方形で、陽極及び陰極の面積は58mm×48mmとした。また陽極室の深さ(陽極室深さ)は10mm、陰極室の深さ(陰極室深さ)10mmとし、材質をニッケルとした。高さ11mm、厚み1.5mmのニッケル製の陽極リブと、高さ11mm、厚み1.5mmのニッケル製の陰極リブを溶接により取り付けたニッケル製の隔壁の厚みは2mmとした。
<Bipolar element>
The bipolar element was a 90 mm × 70 mm rectangle, and the area of the anode and cathode was 58 mm × 48 mm. The depth of the anode chamber (anode chamber depth) was 10 mm, the depth of the cathode chamber (cathode chamber depth) was 10 mm, and the material was nickel. The thickness of a nickel partition wall in which a nickel anode rib having a height of 11 mm and a thickness of 1.5 mm and a nickel cathode rib having a height of 11 mm and a thickness of 1.5 mm were attached by welding was 2 mm.
 集電対として、厚み1mm、開口部の横方向長さ4.5mm、縦方向長さ3.2mmのニッケルエキスパンドメタルを用いた。上述した導電性弾性体を、集電対上にスポット溶接して固定した。このゼロギャップ複極式エレメントを、60mm×50mmの隔膜を介してスタックさせることで、陰極と陽極が隔膜に押し付けられたゼロギャップ構造を形成した。 As the current collector, a nickel expanded metal having a thickness of 1 mm, a lateral length of the opening of 4.5 mm, and a longitudinal length of 3.2 mm was used. The conductive elastic body described above was fixed by spot welding on a current collector. The zero gap bipolar element was stacked through a 60 mm × 50 mm diaphragm to form a zero gap structure in which the cathode and the anode were pressed against the diaphragm.
[電解システム]
 上記複極式電解槽を、図4に示す電解装置70に組み込んでアルカリ水電解に使用した。以下、図4を参照しながら、電解システムの概略を説明する。
 気液分離タンク72及び外部ヘッダー型の複極式電解槽50には、電解液として30%KOH水溶液が封入されている。この電解液は、送液ポンプ71により、陽極室と陽極用気液分離タンク(酸素分離タンク72o)との間、陰極室と陰極用気液分離タンク(水素分離タンク72h)との間をそれぞれ循環している。電解液の流量は、流量計77で測定して10L/minに、温度は、熱交換器79によって120℃に調整した。循環流路の電解液接液部には、SGP炭素鋼配管にテフロンライニング内面処理を施した、20Aの配管を用いた。
 気液分離タンク72(72h及び72o)は、高さ500mm、容積0.02mのものを使用した。各気液分離タンク72h及び72oの液量は、設計容積の50%程度とした。整流器74から、各電解セルの陰極及び陽極に対して、所定の電極密度で通電した。
 通電開始後のセル内圧力は、圧力計78で測定し、陰極側圧力が301kPa、酸素側圧力が300kPaとなるとように調整した。圧力調整は、圧力計78の下流に圧力制御弁80を設置し、これにより行った。
[Electrolysis system]
The above bipolar electrolytic cell was incorporated into an electrolysis apparatus 70 shown in FIG. 4 and used for alkaline water electrolysis. Hereinafter, an outline of the electrolysis system will be described with reference to FIG.
The gas-liquid separation tank 72 and the external header type bipolar electrolytic cell 50 are filled with 30% KOH aqueous solution as an electrolytic solution. The electrolyte solution is fed between the anode chamber and the anode gas-liquid separation tank (oxygen separation tank 72o) and between the cathode chamber and the cathode gas-liquid separation tank (hydrogen separation tank 72h) by the liquid feed pump 71, respectively. It is circulating. The flow rate of the electrolyte was measured with a flow meter 77 to 10 L / min, and the temperature was adjusted to 120 ° C. with a heat exchanger 79. For the electrolyte solution wetted part of the circulation channel, a 20A pipe obtained by subjecting an SGP carbon steel pipe to a Teflon lining inner surface treatment was used.
A gas-liquid separation tank 72 (72h and 72o) having a height of 500 mm and a volume of 0.02 m 3 was used. The amount of liquid in each gas-liquid separation tank 72h and 72o was about 50% of the design volume. From the rectifier 74, electricity was supplied at a predetermined electrode density to the cathode and anode of each electrolytic cell.
The pressure in the cell after the start of energization was measured with a pressure gauge 78 and adjusted so that the cathode side pressure was 301 kPa and the oxygen side pressure was 300 kPa. The pressure was adjusted by installing a pressure control valve 80 downstream of the pressure gauge 78.
 なお、整流器74、酸素濃度計75、水素濃度計76、圧力計78、流量計77、熱交換器79、送液ポンプ71、気液分離タンク72(72h及び72o)、水補給器73等は、いずれも当該技術分野において通常使用されるものを用いた。 The rectifier 74, oxygen concentration meter 75, hydrogen concentration meter 76, pressure gauge 78, flow meter 77, heat exchanger 79, liquid feed pump 71, gas-liquid separation tank 72 (72h and 72o), water replenisher 73, etc. All of those used in the art are used.
[電解試験の結果]
 実施例1~7においては、2500時間電解後のセル電圧が2.00V以下であり、低電圧が維持されていた。また、ガス純度も酸素、水素共に99.0%以上であり、隔膜のガス遮断性も良好であった。
[Results of electrolysis test]
In Examples 1 to 7, the cell voltage after electrolysis for 2500 hours was 2.00 V or less, and the low voltage was maintained. The gas purity was 99.0% or more for both oxygen and hydrogen, and the gas barrier property of the diaphragm was good.
 一方、比較例1~6及び8においては、2500時間電解後のセル電圧が2.20V以上であり、セル電圧が高く、電解効率が低かった。また、比較例7においては、隔膜が劣化しガス純度が酸素、水素共に98.5%未満であった。 On the other hand, in Comparative Examples 1 to 6 and 8, the cell voltage after 2500 hours of electrolysis was 2.20 V or higher, the cell voltage was high, and the electrolysis efficiency was low. In Comparative Example 7, the diaphragm deteriorated and the gas purity was less than 98.5% for both oxygen and hydrogen.
 本発明によれば、ガス遮断性及びイオン透過性が良好であり、高温かつ長期間の電解においても電解効率の高いアルカリ水電解用隔膜を提供することができる。 According to the present invention, it is possible to provide a diaphragm for alkaline water electrolysis that has good gas barrier properties and ion permeability, and has high electrolysis efficiency even in high-temperature and long-term electrolysis.
 1    隔壁
 2    電極
 2a   陽極
 2c   陰極
 2e   導電性弾性体
 2r   集電体
 3    外枠
 4    隔膜
 5    電極室
 5a   陽極室
 5c   陰極室
 6    整流板(リブ)
 7    ガスケット
 50   複極式電解槽
 51g  ファストヘッド、ルーズヘッド
 51i  絶縁板
 51a  陽極ターミナルエレメント
 51c  陰極ターミナルエレメント
 51r  タイロッド
 60   複極式エレメント
 65   電解セル
 70   電解装置
 71   送液ポンプ
 72   気液分離タンク
 72h  水素分離タンク
 72o  酸素分離タンク
 73   水補給器
 74   整流器
 75   酸素濃度計
 76   水素濃度計
 77   流量計
 78   圧力計
 79   熱交換器
 80   圧力制御弁
 D1   隔壁に沿う所与の方向(電解液通過方向)
 Z    ゼロギャップ構造
 SW   メッシュの短目方向の中心間距離
 LW   メッシュの長目方向の中心間距離
 C    メッシュの目開き
 TE   メッシュの厚み
 B    メッシュのボンド長さ
 T    板厚
 W    送り幅(刻み幅)
 A    平織メッシュ型の目開き
 d    平織メッシュ型の線径
 D    パンチング型の穴径
 P    パンチング型の穴間ピッチ
DESCRIPTION OF SYMBOLS 1 Partition 2 Electrode 2a Anode 2c Cathode 2e Conductive elastic body 2r Current collector 3 Outer frame 4 Diaphragm 5 Electrode chamber 5a Anode chamber 5c Cathode chamber 6 Current plate (rib)
7 Gasket 50 Bipolar electrolytic cell 51g Fast head, loose head 51i Insulating plate 51a Anode terminal element 51c Cathode terminal element 51r Tie rod 60 Bipolar element 65 Electrolytic cell 70 Electrolytic device 71 Feed pump 72 Gas-liquid separation tank 72h Hydrogen separation Tank 72o Oxygen separation tank 73 Water replenisher 74 Rectifier 75 Oxygen concentration meter 76 Hydrogen concentration meter 77 Flow meter 78 Pressure meter 79 Heat exchanger 80 Pressure control valve D1 A given direction along the partition (electrolyte passage direction)
Z Zero gap structure SW Center distance in the short direction of the mesh LW Distance between centers in the long direction of the mesh C Mesh opening TE Mesh thickness B Mesh bond length T Plate thickness W Feed width (step width)
A Opening of plain weave mesh type d Wire diameter of plain weave mesh type D Hole diameter of punching type P Pitch between holes of punching type

Claims (11)

  1.  少なくともポリテトラフルオロエチレン(PTFE)及び無機化合物を含み、
     平均透水孔径が0.02μm以上1.0μm以下、
     最大孔径が0.2μm以上2.0μm以下、
     気孔率が30%以上90%以下、
     厚みが100μm以上600μm以下であって、
     前記無機化合物の含有量が、前記PTFEおよび前記無機化合物の合計量を100質量%として、70質量%以上95質量%以下であることを特徴とする、
    隔膜。
    At least polytetrafluoroethylene (PTFE) and an inorganic compound,
    The average water permeable pore diameter is 0.02 μm or more and 1.0 μm or less,
    The maximum pore size is 0.2 μm or more and 2.0 μm or less,
    Porosity is 30% or more and 90% or less,
    The thickness is 100 μm or more and 600 μm or less,
    The content of the inorganic compound is 70% by mass or more and 95% by mass or less, where the total amount of the PTFE and the inorganic compound is 100% by mass,
    diaphragm.
  2.  少なくともポリテトラフルオロエチレン(PTFE)及び無機化合物を含み、
     平均透水孔径が0.02μm以上1.0μm以下、
     最大孔径が0.2μm以上2.0μm以下、
     気孔率が30%以上90%以下、
     厚みが100μm以上600μm以下であって、
     前記無機化合物の含有量が、前記PTFEおよび前記無機化合物の合計量を100質量%として、70質量%以上95質量%以下であることを特徴とする、
    アルカリ水電解用隔膜。
    At least polytetrafluoroethylene (PTFE) and an inorganic compound,
    The average water permeable pore diameter is 0.02 μm or more and 1.0 μm or less,
    The maximum pore size is 0.2 μm or more and 2.0 μm or less,
    Porosity is 30% or more and 90% or less,
    The thickness is 100 μm or more and 600 μm or less,
    The content of the inorganic compound is 70% by mass or more and 95% by mass or less, where the total amount of the PTFE and the inorganic compound is 100% by mass,
    A diaphragm for alkaline water electrolysis.
  3.  前記平均透水孔径が0.1μm以上1.0μm以下であることを特徴とする、請求項1または2に記載の隔膜。 The diaphragm according to claim 1 or 2, wherein the average water-permeable pore diameter is 0.1 µm or more and 1.0 µm or less.
  4.  前記無機化合物が親水性無機粒子又は親水性無機多孔体であることを特徴とする、請求項1~3のいずれか1項に記載の隔膜。 The diaphragm according to any one of claims 1 to 3, wherein the inorganic compound is a hydrophilic inorganic particle or a hydrophilic inorganic porous material.
  5.  前記親水性無機粒子の1次粒径が10nm以上300nm以下であることを特徴とする、請求項1~4のいずれか1項に記載の隔膜。 The diaphragm according to any one of claims 1 to 4, wherein a primary particle size of the hydrophilic inorganic particles is 10 nm or more and 300 nm or less.
  6.  前記親水性無機粒子が、少なくともTiO、Ti(OH)、ZrO、Zr(OH)のうちいずれかを含むことを特徴とする、請求項1~5のいずれか1項に記載の隔膜。 6. The hydrophilic inorganic particles according to any one of claims 1 to 5, wherein the hydrophilic inorganic particles include at least one of TiO 2 , Ti (OH) 4 , ZrO 2 , and Zr (OH) 4 . diaphragm.
  7.  水接触角が10°よりも大きく90°以下であることを特徴とする、請求項1~6のいずれか1項に記載の隔膜。 The diaphragm according to any one of claims 1 to 6, wherein the water contact angle is greater than 10 ° and 90 ° or less.
  8.  流れ(MD)方向の引張破断強度が10MPa以上30MPa以下
     かつ流れ方向と直交する(TD)方向の引張破断強度が10MPa以上30MPa以下であることを特徴とする、請求項1~7のいずれか1項に記載の隔膜。
    The tensile breaking strength in the flow (MD) direction is 10 MPa or more and 30 MPa or less, and the tensile breaking strength in the (TD) direction orthogonal to the flow direction is 10 MPa or more and 30 MPa or less. The diaphragm according to item.
  9.  請求項1~8のいずれか1項に記載の隔膜を備え、
     陰極及び陽極を含む複数のエレメントが、前記隔膜を挟んで重ね合わされ、
     前記隔膜が前記陰極及び前記陽極と接触してゼロギャップ構造が形成されている
    ことを特徴とする、電解槽。
    A diaphragm according to any one of claims 1 to 8,
    A plurality of elements including a cathode and an anode are stacked with the diaphragm interposed therebetween,
    An electrolytic cell, wherein the diaphragm is in contact with the cathode and the anode to form a zero gap structure.
  10.  請求項9に記載の電解槽を使用し、電解液温度85℃~125℃、電流密度4kA/m~20kA/mで水酸化カリウム又は水酸化ナトリウムの水溶液を電気分解することを特徴とする、水素製造方法。 And characterized by using the electrolytic cell according to claim 9, electrolyte temperature of 85 ° C. ~ 125 ° C., electrolysis of an aqueous solution of potassium hydroxide or sodium hydroxide at a current density of 4kA / m 2 ~ 20kA / m 2 A method for producing hydrogen.
  11.  アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法において、
     前記電解槽は少なくとも、陽極と陰極との間に隔膜を有し、
     前記隔膜は、
     少なくともポリテトラフルオロエチレン(PTFE)及び無機化合物を含み、
     平均透水孔径が0.02μm以上1.0μm以下、
     最大孔径が0.2μm以上2.0μm以下、
     気孔率が30%以上90%以下、
     厚みが100μm以上600μm以下であって、
     前記無機化合物の含有量が、前記PTFEおよび前記無機化合物の合計量を100質量%として、70質量%以上95質量%以下である
    ことを特徴とする、水素製造方法。
     
    In a hydrogen production method for producing hydrogen by electrolyzing water containing an alkali with an electrolytic cell,
    The electrolytic cell has a diaphragm at least between an anode and a cathode,
    The diaphragm is
    At least polytetrafluoroethylene (PTFE) and an inorganic compound,
    The average water permeable pore diameter is 0.02 μm or more and 1.0 μm or less,
    The maximum pore size is 0.2 μm or more and 2.0 μm or less,
    Porosity is 30% or more and 90% or less,
    The thickness is 100 μm or more and 600 μm or less,
    Content of the said inorganic compound is 70 mass% or more and 95 mass% or less characterized by the total amount of the said PTFE and the said inorganic compound being 100 mass%, The hydrogen manufacturing method characterized by the above-mentioned.
PCT/JP2018/013957 2017-03-31 2018-03-30 Diaphragm, electrolytic bath, and method for producing hydrogen WO2018182006A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019509422A JPWO2018182006A1 (en) 2017-03-31 2018-03-30 Diaphragm, electrolytic cell, and hydrogen production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017072978 2017-03-31
JP2017-072978 2017-03-31
JP2017199785 2017-10-13
JP2017-199785 2017-10-13

Publications (1)

Publication Number Publication Date
WO2018182006A1 true WO2018182006A1 (en) 2018-10-04

Family

ID=63676385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013957 WO2018182006A1 (en) 2017-03-31 2018-03-30 Diaphragm, electrolytic bath, and method for producing hydrogen

Country Status (2)

Country Link
JP (1) JPWO2018182006A1 (en)
WO (1) WO2018182006A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105557A (en) * 2018-12-26 2020-07-09 株式会社日本触媒 Diaphragm for alkaline water electrolysis
JP2020169349A (en) * 2019-04-01 2020-10-15 株式会社日本触媒 Diaphragm for alkaline water electrolysis and production method thereof
WO2021019985A1 (en) * 2019-07-30 2021-02-04 旭化成株式会社 Alkaline water electrolysis vessel
WO2021085334A1 (en) * 2019-10-31 2021-05-06 株式会社トクヤマ Elastic mat for alkaline water electrolysis cells
CN114086213A (en) * 2021-10-27 2022-02-25 四川华能氢能科技有限公司 A composite membrane for reducing the energy consumption of hydrogen production from alkaline electrolysis water
CN115074775A (en) * 2022-07-22 2022-09-20 北京化工大学 An integrated composite membrane, its preparation method and its application in hydrogen production by alkaline hydrolysis
CN119239017A (en) * 2024-12-04 2025-01-03 苏州希倍优氢能源科技有限公司 A sandwich structure water electrolysis composite diaphragm, preparation method and application
CN119529453A (en) * 2025-01-23 2025-02-28 山东东岳未来氢能材料股份有限公司 A kind of Al2O3/PTFE composite microporous membrane and its preparation method and application
CN119529453B (en) * 2025-01-23 2025-05-27 山东东岳未来氢能材料股份有限公司 A kind of Al2O3/PTFE composite microporous membrane and its preparation method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177674A (en) * 1974-12-27 1976-07-06 Sumitomo Electric Industries SHIFUTSUKAECHIRENJUSHITAKOSEIKOZOBUTSU
JPS56169782A (en) * 1980-06-03 1981-12-26 Asahi Glass Co Ltd Production of caustic alkali
JPS57131236A (en) * 1980-11-06 1982-08-14 Gore & Ass Multi-component porous high strength ptfe products and manufacture
JPS591690A (en) * 1982-06-09 1984-01-07 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Porous diaphragm for electrolytic tank and production thereof
JPS59166541A (en) * 1983-03-10 1984-09-19 Japan Goatetsukusu Kk Production of porous membrane of chemical resistance
JPS6217193A (en) * 1985-07-13 1987-01-26 Shirakawa Seisakusho:Kk Gas permeable membrane
WO2016148302A1 (en) * 2015-03-18 2016-09-22 旭化成株式会社 Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177674A (en) * 1974-12-27 1976-07-06 Sumitomo Electric Industries SHIFUTSUKAECHIRENJUSHITAKOSEIKOZOBUTSU
JPS56169782A (en) * 1980-06-03 1981-12-26 Asahi Glass Co Ltd Production of caustic alkali
JPS57131236A (en) * 1980-11-06 1982-08-14 Gore & Ass Multi-component porous high strength ptfe products and manufacture
JPS591690A (en) * 1982-06-09 1984-01-07 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Porous diaphragm for electrolytic tank and production thereof
JPS59166541A (en) * 1983-03-10 1984-09-19 Japan Goatetsukusu Kk Production of porous membrane of chemical resistance
JPS6217193A (en) * 1985-07-13 1987-01-26 Shirakawa Seisakusho:Kk Gas permeable membrane
WO2016148302A1 (en) * 2015-03-18 2016-09-22 旭化成株式会社 Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260298B2 (en) 2018-12-26 2023-04-18 株式会社日本触媒 Diaphragm for alkaline water electrolysis
JP2020105557A (en) * 2018-12-26 2020-07-09 株式会社日本触媒 Diaphragm for alkaline water electrolysis
JP7232110B2 (en) 2019-04-01 2023-03-02 株式会社日本触媒 Diaphragm for alkaline water electrolysis and method for producing the diaphragm
JP2020169349A (en) * 2019-04-01 2020-10-15 株式会社日本触媒 Diaphragm for alkaline water electrolysis and production method thereof
JPWO2021019985A1 (en) * 2019-07-30 2021-02-04
JP7170144B2 (en) 2019-07-30 2022-11-11 旭化成株式会社 Alkaline water electrolyzer
WO2021019985A1 (en) * 2019-07-30 2021-02-04 旭化成株式会社 Alkaline water electrolysis vessel
CN114555866A (en) * 2019-10-31 2022-05-27 株式会社德山 Elastic pad for alkaline water electrolyzer
WO2021085334A1 (en) * 2019-10-31 2021-05-06 株式会社トクヤマ Elastic mat for alkaline water electrolysis cells
CN114086213A (en) * 2021-10-27 2022-02-25 四川华能氢能科技有限公司 A composite membrane for reducing the energy consumption of hydrogen production from alkaline electrolysis water
CN115074775A (en) * 2022-07-22 2022-09-20 北京化工大学 An integrated composite membrane, its preparation method and its application in hydrogen production by alkaline hydrolysis
CN115074775B (en) * 2022-07-22 2024-06-07 北京化工大学 An integrated composite membrane and its preparation method and application in alkaline hydrolysis hydrogen production
CN119239017A (en) * 2024-12-04 2025-01-03 苏州希倍优氢能源科技有限公司 A sandwich structure water electrolysis composite diaphragm, preparation method and application
CN119529453A (en) * 2025-01-23 2025-02-28 山东东岳未来氢能材料股份有限公司 A kind of Al2O3/PTFE composite microporous membrane and its preparation method and application
CN119529453B (en) * 2025-01-23 2025-05-27 山东东岳未来氢能材料股份有限公司 A kind of Al2O3/PTFE composite microporous membrane and its preparation method and application

Also Published As

Publication number Publication date
JPWO2018182006A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018182006A1 (en) Diaphragm, electrolytic bath, and method for producing hydrogen
JP6746721B2 (en) Double electrode type electrolytic cell, double electrode type electrolytic cell for alkaline water electrolysis, and hydrogen production method
JP6637556B2 (en) Alkaline water electrolysis diaphragm, alkaline water electrolysis device, hydrogen production method, and alkaline water electrolysis diaphragm production method
JP7009146B2 (en) Alkaline water electrolysis diaphragm and its manufacturing method, multi-pole electrolytic cell
WO2018139616A1 (en) Electrolytic bath, electrolysis device, electrolysis method, and method for producing hydrogen
CA2932016C (en) Polymer electrolyte membrane
JP6596289B2 (en) Microporous membrane containing polyphenylene copolymer and method for producing the same
JP6030952B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
US11035046B2 (en) Woven or nonwoven web
JP2015117417A (en) Diaphragm for alkaline water electrolysis and alkaline water electrolytic cell using the same
KR102436919B1 (en) Alkaline water hydrosys separator having ion conductivity in koh electrolyte
JP7136580B2 (en) Diaphragm, method for manufacturing diaphragm, electrolytic cell, and method for producing hydrogen
WO2018139609A1 (en) Bipolar electrolytic cell, bipolar electrolytic vessel, and method for manufacturing hydrogen
Guo et al. Effect of porous irregular ZrO2 nanoparticles on the performance of alkaline water electrolysis composite separator membranes under complex conditions
JP2023129128A (en) Separator for non-aqueous electrolyte secondary battery, member for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2022063055A (en) Alkaline water electrolysis diaphragm, and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777322

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载