WO2018181580A1 - Permanent magnet and rotating machine - Google Patents
Permanent magnet and rotating machine Download PDFInfo
- Publication number
- WO2018181580A1 WO2018181580A1 PCT/JP2018/012975 JP2018012975W WO2018181580A1 WO 2018181580 A1 WO2018181580 A1 WO 2018181580A1 JP 2018012975 W JP2018012975 W JP 2018012975W WO 2018181580 A1 WO2018181580 A1 WO 2018181580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- permanent magnet
- atomic
- content
- coercive force
- Prior art date
Links
- 239000002245 particle Substances 0.000 claims abstract description 57
- 239000010949 copper Substances 0.000 claims abstract description 45
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 27
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 13
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 7
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 abstract 2
- 239000012071 phase Substances 0.000 description 202
- 238000000034 method Methods 0.000 description 41
- 239000000843 powder Substances 0.000 description 40
- 230000032683 aging Effects 0.000 description 24
- 239000002994 raw material Substances 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 20
- 239000000956 alloy Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 20
- 230000005415 magnetization Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000007858 starting material Substances 0.000 description 10
- 238000005245 sintering Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000010298 pulverizing process Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007885 magnetic separation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 229910052733 gallium Inorganic materials 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000002431 foraging effect Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Definitions
- the present invention relates to a permanent magnet and a rotating machine.
- An RTB-based permanent magnet containing rare earth element R, transition metal element T, and boron B has excellent magnetic properties.
- the maximum energy product of an Nd—Fe—B permanent magnet is high.
- Nd is more expensive than transition metals, and the supply amount of Nd is not stable. Therefore, research has been conducted in which a part of Nd is replaced with an inexpensive element such as Y, La, or Ce (see Patent Document 1 below).
- the coercive force HcJ of a permanent magnet in which a part of Nd is replaced with Y, La, Ce, or the like is significantly smaller than that in the case where Nd is not replaced.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a permanent magnet having a large coercive force among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet. .
- a permanent magnet includes a plurality of main phase particles containing a rare earth element R, a transition metal element T, and boron, and a grain boundary phase positioned between the plurality of main phase particles.
- Including an RT phase containing an intermetallic compound of rare earth element R and transition metal element T, and the total content of rare earth element R in the RT phase is [R] L atomic%
- the cerium content in is [Ce] L atomic%, and 100 ⁇ [Ce] L / [R] L is 75-100.
- a rotating machine includes the permanent magnet.
- a permanent magnet having a large coercive force among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet are provided.
- FIG. 10 is a schematic diagram of a cross section 10cs of FIG.
- FIG. 2 is an enlarged view of a part II of the cross section 10cs of the permanent magnet 10 shown in FIG.
- FIG. 3 is a schematic perspective view of a rotating machine according to an embodiment of the present invention.
- the permanent magnet according to the present invention may be a sintered magnet or a hot-worked magnet.
- the permanent magnet according to the present invention may be a rare earth magnet.
- the whole permanent magnet 10 according to the present embodiment is shown in (a) of FIG.
- a cross section 10cs of the permanent magnet 10 is shown in FIG.
- FIG. 2 is an enlarged view of a part II of the cross section 10 cs of the permanent magnet 10.
- the permanent magnet 10 includes a plurality of main phase particles 11 (main phase) and a grain boundary phase 9 located between the plurality of main phase particles 11.
- the permanent magnet 10 may be a sintered body composed of a large number of main phase particles 11 via the grain boundary phase 9.
- the main phase particles 11 contain a rare earth element R, a transition metal element T, and B (boron).
- the rare earth element R contains at least Nd (neodymium) and Ce (cerium).
- the transition metal element T contains at least Fe (iron).
- the Cu content [Cu] in the permanent magnet 10 is 0.1 to 2 atomic%.
- the grain boundary phase 9 includes an RT phase 3 containing an intermetallic compound of a rare earth element R and a transition metal element T.
- the total content of rare earth elements R in the RT phase 3 is expressed as [R] L atomic%.
- the Ce content in the RT phase 3 is expressed as [Ce] L atomic%. 100 ⁇ [Ce] L / [R] L is 75-100.
- the inventors of the present invention have arrived at the present invention based on the following considerations.
- the residual magnetic flux density of the permanent magnet tends to decrease as the amount of Nd replaced increases.
- the amount of the grain boundary phase in the permanent magnet and the magnetism of the grain boundary phase are important.
- the content of the grain boundary phase increases, the content of the main phase decreases, so that the residual magnetic flux density of the permanent magnet tends to be small.
- As a method of increasing the coercive force of the permanent magnet there is a method of making the main phase particles fine as follows. For example, the particle size of the main phase particles is reduced to 1 ⁇ m or less by the melt span method or HDDR (Hydrogenation Decomposition Decomposition Recombination) method.
- an alloy having a low co-crystal point such as Nd—Ga or Nd—Cu is diffused and infiltrated into the sintered body from the surface of the sintered body, and the concentration of Nd on the surface of the main phase particles is changed to another rare earth element R. Higher than.
- the coercive force of the permanent magnet obtained from the sintered body tends to increase.
- the smaller the particle size of the main phase particles the higher the specific surface area of the main phase particles and the easier it is to obtain a modification effect due to the increased Nd concentration on the surface of the particles.
- the conventional high-temperature sintering method cannot be used, and it is necessary to use a method such as warm working or hot working, and the manufacturing cost of the permanent magnet tends to increase.
- the shape of the permanent magnet to which the above method can be applied is limited. Therefore, a method for increasing the coercive force of the permanent magnet is required without depending on the particle size of the main phase particles.
- the present inventors have found that an RT phase exists in the grain boundary phase of a permanent magnet containing Ce.
- the RT phase may be, for example, an RFe 2 phase.
- EDS energy dispersive X-ray spectrometer
- SEM scanning electron microscope
- each content of Nd and Ce in the rare earth element R in the RFe 2 phase (unit: atomic%) ) was measured.
- the Nd content was, for example, 30%.
- the Ce content was, for example, 70%.
- the CeFe 2 phase exists in the binary phase diagram of Ce and Fe, but the NdFe 2 phase does not exist in the binary phase diagram of Nd and Fe.
- NdFe 2 phase is energetically stable than the CeFe 2 phase, hardly the CeFe 2 phase is easily formed in the grain boundary phase, NdFe 2 phase is formed in the grain boundary phase.
- the Ce content in the RT phase increases, the magnetization of the RT phase decreases and the magnetization of the grain boundary phase decreases. Therefore, as Nd in the grain boundary phase is replaced with Ce, the magnetization of the grain boundary phase decreases, and magnetic separation between main phase grains tends to occur. As a result, the coercive force of the permanent magnet increases.
- the method of controlling the magnetization of the grain boundary phase by replacing Nd with Ce the coercive force of the permanent magnet can be increased at a low manufacturing cost regardless of the particle size of the main phase particles. Based on the above consideration, the present inventors have found the permanent magnet 10 according to the present embodiment.
- the magnetism of the RT phase 3 changes according to the type of rare earth element R contained in the RT phase 3. There is a positive correlation between the Nd content in the RT phase 3 and the magnetization of the RT phase 3, and the Ce content in the RT phase 3 and the RT phase 3 There is a negative correlation with magnetization.
- Cu is added to the raw material of the permanent magnet 10
- Cu contained in the grain boundary phase 9 and Nd contained in the RT phase 3 form an Nd—Cu phase in the process of producing the permanent magnet 10.
- the magnetization of the Nd—Cu phase is very small.
- the Nd—Cu phase is formed outside the RT phase 3 by, for example, sucking Nd contained in the RT phase 3 (RFe 2 phase) by Cu. Also, Cu diffuses into the RT phase 3 (RFe 2 phase), and the T site is replaced with Cu, whereby an Nd-Cu phase is formed in the RT phase 3, and the Nd-Cu phase is Separate from RT phase 3.
- the atomic radius of Cu is approximately equal to the atomic radius of Fe and is 1.17 ⁇ . Therefore, the Fe site of the RFe 2 phase is easily replaced with Cu.
- Nd—Cu phase Due to the decrease in the Nd content in the RT phase 3 and the generation of the Nd—Cu phase, the magnetization of the grain boundary phase 9 becomes small. As a result, magnetic separation between the main phase particles 11 easily occurs, and the coercive force of the permanent magnet 10 increases. If the Cu content [Cu] in the permanent magnet 10 is too small, the amount of Nd—Cu phase generated is not sufficient, and sufficient coercive force cannot be obtained. When there is too much [Cu], Nd contained in the main phase particle 11 and Cu contained in the grain boundary phase 9 form an Nd—Cu phase in addition to Nd contained in the RT phase 3.
- the Nd—Cu phase may include an intermetallic compound of Nd and Cu.
- the Nd—Cu phase may include, for example, NdCu 2 . The reason why the coercive force of the permanent magnet 10 is large is not limited to the above reason.
- the present inventors have found that the coercive force of the permanent magnet 10 tends to increase when an aging treatment is performed on the sintered body described later at a predetermined temperature in the process of manufacturing the permanent magnet 10.
- the temperature of the aging treatment may be 900 to 970 ° C., or 900 to 950 ° C.
- the present inventors consider that the reason why the coercive force tends to increase when the temperature of the aging treatment is within the above range is as follows. If the temperature of the aging treatment is too low, the amount of the liquid phase generated from the RT phase 3 is small. Therefore, Nd migration in the RT phase 3 and diffusion of Cu into the RT phase 3 hardly occur.
- Each main phase particle 11 includes at least a rare earth element R, a transition metal element T, and boron (B).
- the rare earth element R contains at least Nd (neodymium) and Ce (cerium). That is, a part of Nd is replaced with Ce.
- the transition metal element T contains at least Fe (iron).
- the transition metal element T may contain Fe and Co (cobalt). That is, a part of the Fe may be replaced with Co.
- Each main phase particle 11 may contain carbon (C) in addition to boron. That is, a part of the above B may be replaced with C.
- the main phase particle 11 may contain R 2 T 14 M as a main phase.
- the element M may be only B.
- the element M may be B and C.
- R 2 T 14 M may be represented as Nd 2 ⁇ x Ce x Fe 14 ⁇ s Co s B 1 ⁇ t C t .
- x is greater than 0 and less than 2.
- s is 0 or more and less than 14.
- t is 0 or more and less than 1.
- the main phase particles 11 may contain Nd 2 Fe 14 B.
- the main phase particles 11 may include Y 2 Fe 14 B.
- the main phase particles 11 may include Ce 2 Fe 14 B.
- the grain boundary phase 9 may include, in addition to the RT phase 3, an R rich phase 5, a heterogeneous phase 7, an R 6 T 13 E phase, and the like.
- the element E may be at least one selected from the group consisting of Ga, Si, Sn, and Bi.
- the definitions of RT phase 3, R rich phase 5, heterogeneous phase 7, and R 6 T 13 E phase may be as follows.
- the content of C in the RT phase 3 is expressed as [C] L atomic%.
- the N content in the RT phase 3 is expressed as [N] L atomic%.
- the content of O in the RT phase 3 is expressed as [O] L atomic%.
- the total content of rare earth elements R in the RT phase 3 is expressed as [R] L atomic%.
- the total content of the transition metal element T in the RT phase 3 is expressed as [T] L atomic%.
- the total content of the element E in the RT phase 3 is expressed as [E] L atomic%.
- the RT phase 3 may be a phase that satisfies all of the following inequalities (1), (2), and (3).
- the RT phase 3 may include, for example, an RT 2 phase. That is, the intermetallic compound contained in the RT phase 3 may be, for example, RT 2.
- RT 2 may be represented as Nd 1- ⁇ Ce ⁇ Fe 2- ⁇ Co ⁇ . ⁇ is 0 or more and 1 or less. ⁇ is 0 or more and 2 or less.
- RT 2 may be, for example, NdFe 2 or CeFe 2 .
- the RT phase 3 may contain trace elements other than R and T in addition to R and T intermetallic compounds.
- the RT phase 3 may be a Laves phase.
- the crystal structure of RT phase 3 may be C15 type.
- the RT phase 3 may be specified based on the diffraction angle 2 ⁇ of the diffraction peak derived from the lattice plane (hkl) using an X-ray diffraction (XRD) pattern.
- XRD X-ray diffraction
- 2 ⁇ derived from the lattice plane (220) of the RT phase 3 may be 34.0 to 34.73 °.
- 2 ⁇ derived from the lattice plane (311) of the RT phase 3 may be 40.10 to 40.97 °.
- the 2 ⁇ may vary within the above range depending on the type of rare earth element R contained in the RT phase 3.
- 100 ⁇ [Ce] L / [R] L may be 76-84.
- [Ce] L and [R] L may be measured by SEM-EDS analysis.
- TEM-EDS analysis using EDS attached to a transmission electron microscope (TEM), or It may be measured by three-dimensional atom probe (3DAP) analysis.
- 100 ⁇ [Ce] L / [R] L may be calculated from the measured [Ce] L and [R] L.
- the content of C in the R-rich phase 5 is expressed as [C] R atomic%.
- the N content in the R-rich phase 5 is expressed as [N] R atomic%.
- the content of O in the R-rich phase 5 is expressed as [O] R atomic%.
- the total content of rare earth elements R in the R-rich phase 5 is expressed as [R] R atomic%.
- the total content of the transition metal element T in the R-rich phase 5 is expressed as [T] R atomic%.
- the R-rich phase 5 may be a phase that satisfies the following inequalities (4) and (5). 0 ⁇ [C] R + [N] R + [O] R ⁇ 30 (4) 0.50 ⁇ [R] R / ([R] R + [T] R ) ⁇ 1.00 (5)
- the content of C in the heterogeneous phase 7 is expressed as [C] D atomic%.
- the N content in the different phase 7 is expressed as [N] D atomic%.
- the content of O in the heterogeneous phase 7 is expressed as [O] D atomic%.
- the hetero phase 7 may be a phase in which the sum of [C] D , [N] D, and [O] D [C] D + [N] D + [O] D is 30 or more and less than 100. That is, the different phase 7 may be a phase satisfying the following inequality (6).
- the hetero phase 7 may include, for example, at least one selected from the group consisting of an oxide of R, a carbide of R, and a nitride of R. 30 ⁇ [C] D + [N] D + [O] D ⁇ 100 (6)
- the content of C in the R 6 T 13 E phase is expressed as [C] A atomic%.
- the content of N in the R 6 T 13 E phase is expressed as [N] A atomic%.
- the content of O in the R 6 T 13 E phase is expressed as [O] A atomic%.
- the total content of rare earth elements R in the R 6 T 13 E phase is expressed as [R] A atomic%.
- the total content of the transition metal element T in the R 6 T 13 E phase is expressed as [T] A atomic%.
- the total content of the element E in the R 6 T 13 E phase is expressed as [E] A atomic%.
- the R 6 T 13 E phase may be a phase that satisfies all of the following inequalities (7), (8), and (9).
- the rare earth element R may further contain other rare earth elements in addition to Nd and Ce.
- Other rare earth elements include, for example, Sc (scandium), Y (yttrium), La (lanthanum), Pr (praseodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Ho (holmium), Dy ( It may be at least one selected from the group consisting of dysprosium) and Tb (terbium).
- the rare earth element R may consist only of Nd and Ce.
- the total content [R] of the rare earth element R in the permanent magnet 10 may be 14 to 18 atomic%.
- the Nd content [Nd] in the permanent magnet 10 may be 7 to 13 atomic%, or 9 to 11 atomic%.
- the Ce content [Ce] in the permanent magnet 10 may be 4 to 8 atomic%.
- the transition metal element T may further contain Co (cobalt) in addition to Fe, and may further contain other transition metal elements.
- the other transition metal element may be, for example, Ni (nickel).
- the transition metal element T may consist only of Fe and Co.
- the total content [T] of the transition metal element T in the permanent magnet 10 may be 76 to 84 atomic%.
- the Fe content [Fe] in the permanent magnet 10 may be 72 to 84 atomic%.
- the Co content [Co] in the permanent magnet 10 may be 0 to 5 atomic%.
- the B content [B] in the permanent magnet 10 may be 4.2 to 5.8 atomic%.
- the Cu content [Cu] in the permanent magnet 10 may be 0.1 to 2 atomic%, or 0.3 to 1.0 atomic%. When [Cu] is within the above range, the coercive force of the permanent magnet 10 tends to increase.
- the permanent magnet 10 is made of Al (aluminum), Mn (manganese), Nb (niobium), Ta (tantalum), Zr (zirconium), Ti (titanium), W (tungsten), Mo (molybdenum), V (vanadium), You may further contain elements, such as Ag (silver), Ge (germanium), Zn (zinc), Ga (gallium), Si (silicon), Sn (tin), and Bi (bismuth).
- the total content [E] of the element E in the permanent magnet 10 is 0 to 1 atomic%. It's okay.
- [E] is within the above range, the coercive force of the permanent magnet 10 tends to increase.
- the permanent magnet 10 contains the element E, an R 6 T 13 E phase is easily generated in the grain boundary phase 9 in the process of manufacturing the permanent magnet 10.
- the R 6 T 13 E phase may be, for example, an R 6 Fe 13 E phase.
- the content of Nd in the R 6 T 13 E phase is expressed as [Nd] A atomic%.
- the total content of R in the R 6 T 13 E phase is expressed as [R] A atomic%.
- 100 ⁇ [Nd] A / [R] A is large, and may be, for example, 70 or more.
- the reason why the coercive force tends to increase is not limited to the above reason.
- the composition of the permanent magnet 10 is X-ray fluorescence analysis, ICP (Inductively Coupled Plasma) emission analysis, inert gas melting-non-dispersive infrared absorption method, combustion in oxygen stream-infrared absorption method, inert gas melting- It may be specified by a thermal conductivity method or the like.
- the average particle diameter (D50) of the main phase particles 11 may be 2 to 10 ⁇ m, 2.4 to 10 ⁇ m, or 3 to 6 ⁇ m. If the D50 of the main phase particles 11 is too small, the production of the main phase particles 11 tends to be difficult. When D50 of the main phase particles 11 is too large, the volume of the main phase particles 11 increases, so that the demagnetizing field tends to increase. As a result, magnetization reversal is likely to occur, and the coercive force of the permanent magnet 10 is likely to decrease. When the D50 of the main phase particle 11 is within the above range, the coercive force of the permanent magnet 10 tends to increase.
- the manufacturing cost of the permanent magnet 10 tends to increase.
- the D50 of the main phase particle 11 is equal to or higher than the lower limit, the utilization rate of the raw material is likely to be high, and the manufacturing cost of the permanent magnet 10 is likely to be low.
- the manufacturing method of the permanent magnet 10 may be as follows.
- the starting materials are weighed to match the desired permanent magnet 10 composition.
- the starting material can be, for example, a metal or an alloy.
- the raw material alloy may be produced from the above starting materials by the following strip casting method, high frequency induction melting method, arc melting method, and other melting methods.
- a raw material alloy may be produced from a starting material by a reduction diffusion method.
- a melting method such as a strip casting method may be performed in a non-oxidizing atmosphere.
- the non-oxidizing atmosphere may be, for example, a vacuum or an inert gas such as Ar (argon).
- the starting material is melted in a non-oxidizing atmosphere to produce a molten metal (melting material alloy).
- the molten metal is poured onto the surface of a rotating roll in a non-oxidizing atmosphere. Since the metal roll is cooled by water cooling or the like, the molten metal is rapidly cooled and solidified on the surface of the roll to obtain a thin plate or flake (scale piece) of the raw material alloy.
- the roll may be made of copper, for example.
- the raw material alloy may be pulverized by, for example, hydrogen pulverization.
- hydrogen pulverization the raw material alloy is placed in a hydrogen atmosphere, and the raw material alloy is made to store hydrogen.
- the raw material alloy occludes hydrogen, the volume of the raw material alloy expands.
- the hydrogenation reaction of the metal contained in the raw material alloy occurs, and the raw material alloy becomes brittle.
- cracks occur in the raw material alloy, and the raw material alloy is pulverized.
- the particle size of the coarse powder may be, for example, 10 to 1000 ⁇ m.
- the coarse powder may be dehydrogenated by heating the coarse powder.
- the dehydrogenation temperature may be 300-400 ° C.
- the dehydrogenation time may be 0.5 to 20 hours.
- a lubricant may be added to the coarse powder.
- the lubricant may be, for example, an ester organic material or an amide organic material.
- the amide-based organic substance may be, for example, oleic acid amide.
- the coarse powder may be pulverized by an airflow pulverizer (jet mill) or the like.
- the inert gas may be nitrogen gas or the like.
- the average particle diameter (D50) of the fine powder may be, for example, 2 to 10 ⁇ m. If D50 of the fine powder is too small, coarse particles are likely to be generated in the main phase when an aging treatment described later is applied to the sintered body. As a result, the coercive force of the permanent magnet 10 tends to be small. If D50 of the fine powder is too large, the main phase particles 11 are likely to be large. As a result, the coercive force of the permanent magnet 10 tends to be small. When the D50 of the fine powder is within the above range, the coercive force of the permanent magnet 10 tends to increase.
- the pressing direction may be a direction perpendicular to the magnetic field direction.
- the strength of the magnetic field may be, for example, 960-1600 kA / m.
- the pressure applied to the fine powder may be, for example, 10 to 500 MPa.
- the sintering temperature may be 1000 to 1200 ° C., for example.
- the sintering time may be, for example, 0.1 to 100 hours.
- the green body may be sintered in a reduced pressure atmosphere, an inert atmosphere, or the like. While the green body is sintered, the grain boundary phase 9 may be in a molten state, and the RT phase 3 may not be formed.
- the grain boundary phase 9 in the sintered body may include the RT phase 3 or the like.
- the permanent magnet 10 is obtained by subjecting the sintered body to an aging treatment.
- the sintered body is heated.
- the temperature of the aging treatment may be as described above.
- the time for aging treatment may be, for example, 1 to 100 hours.
- the aging treatment may be performed in a reduced pressure atmosphere, an inert atmosphere, or the like.
- the aging treatment may be composed of one stage of heat treatment or may be composed of two or more stages of heat treatment. For example, after heating at a relatively high temperature, it may be heated at a relatively low temperature. In this case, the coercive force of the permanent magnet 10 tends to increase.
- the average particle diameter (D50) of the sintered body after the aging treatment may be the same as the average particle diameter (D50) of the main phase particles 11 described above.
- the obtained permanent magnet 10 may be processed into a predetermined shape.
- the processing method may be, for example, shape processing such as cutting and grinding, or chamfering processing such as barrel polishing.
- shape processing such as cutting and grinding
- chamfering processing such as barrel polishing.
- the surface of the permanent magnet 10 serving as a measurement sample may be processed flat. Due to the flat surface, the exact dimensions of the measurement sample can be obtained.
- the method for processing the surface to be flat may be, for example, a wet method, a dry method, or the like. The wet method is preferable because the processing time is short and the processing cost is low.
- the rotating machine according to the present embodiment includes the permanent magnet 10a.
- An example of the internal structure of the rotating machine is shown in FIG.
- the rotating machine 200 according to the present embodiment is a permanent magnet synchronous rotating machine (SPM rotating machine).
- the rotating machine 200 includes a cylindrical rotor 50 and a stator 30 disposed inside the rotor 50.
- the rotor 50 includes a cylindrical core 52 and a plurality of permanent magnets 10 a arranged along the inner peripheral surface of the core 52.
- the plurality of permanent magnets 10 a are arranged so that N poles and S poles are alternately arranged along the inner peripheral surface of the core 52.
- the stator 30 has a plurality of coils 32 provided along the outer peripheral surface thereof.
- the coil 32 and the permanent magnet 10a are arranged so as to face each other.
- the rotating machine 200 may be an electric motor.
- the electric motor converts electrical energy into mechanical energy by the interaction between the field generated by the electromagnet generated by energizing the coil 32 and the field generated by the permanent magnet 10a.
- the rotating machine 200 may be a generator.
- the generator converts mechanical energy into electrical energy by the interaction (electromagnetic induction) between the field and the coil 32 by the permanent magnet 10a.
- the rotating machine 200 that functions as an electric motor may be, for example, a permanent magnet DC motor, a linear synchronous motor, a permanent magnet synchronous motor (SPM motor, IPM motor), or a reciprocating motor.
- the motor that functions as the reciprocating motor may be, for example, a voice coil motor or a vibration motor.
- the rotating machine 200 that functions as a generator may be, for example, a permanent magnet synchronous generator, a permanent magnet commutator generator, or a permanent magnet AC generator.
- the rotating machine 200 may be used for automobiles, industrial machines, household appliances, and the like.
- the permanent magnet according to the present invention may be manufactured by a hot working method, a film forming method, a spark plasma sintering method, or the like.
- Example 1 A permanent magnet was produced by the method described below. Nd, Ce, Fe, FeB, Al, Co, and Cu were prepared as starting materials (single or alloy) for the permanent magnet. The purity of each starting material was 99.9% by mass. The composition of the permanent magnet is 9.6 atomic% Nd-6.4 atomic% Ce-77.8 atomic% Fe-5.0 atomic% B-0.5 atomic% Al-0.6 atomic% Co-0.1 Each starting material was weighed and mixed so as to be atomic% Cu to prepare a mixed material. An alloy thin plate was obtained by quenching the melt of the mixed raw material on the surface of the roll by strip casting.
- the thin plate was pulverized by hydrogen pulverization to obtain a coarse powder.
- Lubricant was added to the coarse powder.
- the lubricant was oleic amide.
- the content of the lubricant in the coarse powder was 0.1% by mass.
- the coarse powder to which the lubricant was added was pulverized by a jet mill in a high-pressure nitrogen gas atmosphere to obtain a fine powder.
- the average particle diameter (D50) of the fine powder was 3 ⁇ m.
- the fine powder was put into a molding space (cavity) in the molding machine.
- a fine powder was pressed in a magnetic field and molded to obtain a molded body.
- the pressing direction was a direction perpendicular to the magnetic field direction.
- the strength of the magnetic field was 15 ⁇ (10 3 / 4 ⁇ ) kA / m.
- the pressure applied to the fine powder was 140 MPa.
- the sintered body was sintered to obtain a sintered body.
- the sintering temperature was 1000 ° C.
- the sintering time was 4 hours.
- the sintered body was subjected to an aging treatment by heating the sintered body.
- the temperature of the aging treatment was 950 ° C.
- the time for aging treatment was 12 hours.
- the average particle size (D50) of the sintered body after the aging treatment was 3.2 ⁇ m.
- the surface of the sintered body after the aging treatment was processed flat by a wet method to obtain the permanent magnet of Example 1.
- HcJ [Measurement of magnetic properties] Using a BH tracer, the demagnetization curve of the permanent magnet of Example 1 was measured, and the coercive force HcJ (unit: kA / m) of the permanent magnet of Example 1 was determined. The maximum applied magnetic field in the measurement of the demagnetization curve was 3T. HcJ of Example 1 is shown in Table 1. The unit (kOe) of the coercive force HcJ in the following table is equivalent to “ ⁇ (10 3 / 4 ⁇ ) ⁇ (kA / m)”. HcJ is preferably 12 ⁇ (10 3 / 4 ⁇ ) kA / m or more.
- Example 2 to 5 In Examples 2 to 5, each starting material was weighed so that the composition of the permanent magnet was as shown in Table 1. Except for this point, permanent magnets of Examples 2 to 5 were individually manufactured by the same method as in Example 1. Table 1 shows D50 of each fine powder of Examples 2 to 5 and D50 of the sintered body after aging treatment.
- Example 1 The magnetic properties of the permanent magnets of Examples 2 to 5 were analyzed in the same manner as in Example 1.
- the compositions of the permanent magnets of Examples 2 to 5 were analyzed in the same manner as in Example 1.
- 100 ⁇ [Ce] L / [R] L of each of Examples 2 to 5 was determined. The results are shown in Table 1.
- Example 6 to 8 In Examples 6 to 8, the coarse powder was pulverized using a jet mill so that the D50 of the fine powder became the value shown in Table 1. Except for this point, permanent magnets of Examples 6 to 8 were individually manufactured by the same method as in Example 1. Table 1 shows D50 of the sintered bodies after the aging treatment in Examples 6 to 8.
- Example 1 The magnetic properties of the permanent magnets of Examples 6 to 8 were analyzed by the same method as in Example 1.
- the compositions of the permanent magnets of Examples 6 to 8 were analyzed in the same manner as in Example 1. In the same manner as in Example 1, 100 ⁇ [Ce] L / [R] L of each of Examples 6 to 8 was determined. The results are shown in Table 1.
- Comparative Examples 1 and 2 In Comparative Examples 1 and 2, each starting material was weighed so that the composition of the permanent magnet was the composition shown in Table 1. Except for this point, the permanent magnets of Comparative Examples 1 and 2 were individually produced by the same method as in Example 1. Table 1 shows D50 of each fine powder of Comparative Examples 1 and 2 and D50 of the sintered body after aging treatment.
- Example 1 In the same manner as in Example 1, the magnetic properties of the permanent magnets of Comparative Examples 1 and 2 were analyzed. The compositions of the permanent magnets of Comparative Examples 1 and 2 were analyzed by the same method as in Example 1. In the same manner as in Example 1, 100 ⁇ [Ce] L / [R] L of each of Comparative Examples 1 and 2 was determined. The results are shown in Table 1.
- Comparative Example 3 The temperature of the aging treatment in Comparative Example 3 was 800 ° C. Except for this point, a permanent magnet of Comparative Example 3 was produced in the same manner as in Example 1. Table 1 shows D50 of the fine powder of Comparative Example 3 and D50 of the sintered body after the aging treatment.
- the magnetic properties of the permanent magnet of Comparative Example 3 were analyzed by the same method as in Example 1.
- the composition of the permanent magnet of Comparative Example 3 was analyzed by the same method as in Example 1.
- 100 ⁇ [Ce] L / [R] L of Comparative Example 3 was determined by the same method as in Example 1. The results are shown in Table 1.
- the temperature of the aging treatment is denoted by the following Table 1, T A. 100 ⁇ [Ce] L / [R] L is expressed as Ce / R in Table 1 below.
- the coercive force of all the examples was 12 kOe or more (955 kA / m or more).
- a permanent magnet having a large coercive force among the permanent magnets containing Ce as an alternative element of Nd is provided.
- Example 6 D50 of the fine powder of Example 6 was smaller than that of Example 1. As a result, it is considered that the coercive force of Example 6 was larger than that of Example 1.
- Example 7 The D50 of the fine powder of Example 7 was larger than that of Example 1. As a result, it is considered that the coercive force of Example 7 was smaller than that of Example 1.
- Example 8 D50 of the fine powder of Example 8 was larger than that of Example 1. As a result, it is considered that the coercive force of Example 8 was smaller than that of Example 1.
- the permanent magnet of Comparative Example 1 did not contain Cu. As a result, in Comparative Example 1, it is considered that 100 ⁇ [Ce] L / [R] L was low and the coercive force was small.
- the permanent magnet according to the present invention is used, for example, in a rotating machine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
Provided are: a permanent magnet that has a large magnetic coercive force among the permanent magnets that contain Ce as a substitutional element for Nd; and a rotating machine equipped with said permanent magnet. This permanent magnet 10 is provided with: a plurality of main phase particles 11 each comprising a rare-earth element R, a transition metal element T, and boron; and a grain boundary phase 9 that is situated between the main phase particles 11, wherein the rare-earth element R includes at least neodymium and cerium, and the transition metal element T includes at least iron, the contained amount of copper in the permanent magnet 10 is 0.1-2 at%, the grain boundary phase 9 includes an R-T phase 3 comprising an intermetallic compound of the rare-earth element R and the transition metal element T, and, when the total contained amount of the rare-earth element R in the R-T phase 3 is [R]L at% and the contained amount of cerium in the R-T phase 3 is [Ce]L at%, 100×[Ce]L/[R]L equals to 75-100.
Description
本発明は、永久磁石及び回転機に関する。
The present invention relates to a permanent magnet and a rotating machine.
希土類元素R、遷移金属元素T、及びホウ素Bを含有するR‐T‐B系永久磁石は、優れた磁気特性を有する。例えば、Nd‐Fe‐B系永久磁石の最大エネルギー積は高い。しかしながら、Ndは、遷移金属に比べて高価であって、Ndの供給量は安定しない。そこで、Ndの一部をY、La又はCe等の安価な元素に置換する研究が行われている(下記特許文献1参照)。
An RTB-based permanent magnet containing rare earth element R, transition metal element T, and boron B has excellent magnetic properties. For example, the maximum energy product of an Nd—Fe—B permanent magnet is high. However, Nd is more expensive than transition metals, and the supply amount of Nd is not stable. Therefore, research has been conducted in which a part of Nd is replaced with an inexpensive element such as Y, La, or Ce (see Patent Document 1 below).
しかしながら、Ndの一部がY、La又はCe等で置換された永久磁石の保磁力HcJは、Ndが置換されていない場合に比べて著しく小さい。
However, the coercive force HcJ of a permanent magnet in which a part of Nd is replaced with Y, La, Ce, or the like is significantly smaller than that in the case where Nd is not replaced.
本発明は、上記事情に鑑みてなされたものであり、Ndの代替元素としてCeを含む永久磁石の中でも保磁力が大きい永久磁石、及び当該永久磁石を備える回転機を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a permanent magnet having a large coercive force among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet. .
本発明の一側面に係る永久磁石は、希土類元素R、遷移金属元素T、及びホウ素を含有する複数の主相粒子と、複数の主相粒子の間に位置する粒界相と、を備える永久磁石であって、希土類元素Rが、少なくともネオジム及びセリウムを含み、遷移金属元素Tが、少なくとも鉄を含み、永久磁石における銅の含有量が0.1~2原子%であり、粒界相が、希土類元素R及び遷移金属元素Tの金属間化合物を含有するR‐T相を含み、R‐T相における希土類元素Rの含有量の合計が[R]L原子%であり、R‐T相におけるセリウムの含有量が[Ce]L原子%であり、100×[Ce]L/[R]Lが75~100である。
A permanent magnet according to one aspect of the present invention includes a plurality of main phase particles containing a rare earth element R, a transition metal element T, and boron, and a grain boundary phase positioned between the plurality of main phase particles. A magnet in which the rare earth element R includes at least neodymium and cerium, the transition metal element T includes at least iron, the copper content in the permanent magnet is 0.1 to 2 atomic%, and the grain boundary phase is , Including an RT phase containing an intermetallic compound of rare earth element R and transition metal element T, and the total content of rare earth element R in the RT phase is [R] L atomic%, The cerium content in is [Ce] L atomic%, and 100 × [Ce] L / [R] L is 75-100.
本発明の一側面に係る回転機は、上記永久磁石を備える。
A rotating machine according to one aspect of the present invention includes the permanent magnet.
本発明によれば、Ndの代替元素としてCeを含む永久磁石の中でも保磁力が大きい永久磁石、及び当該永久磁石を備える回転機が提供される。
According to the present invention, a permanent magnet having a large coercive force among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet are provided.
以下、場合により図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。図面において、同一又は同等の構成要素には同一の符号を付す。本発明に係る永久磁石は、焼結磁石、又は熱間加工磁石であってよい。本発明に係る永久磁石は、希土類磁石であってよい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as the case may be. However, the present invention is not limited to the following embodiment. In the drawings, the same or equivalent components are denoted by the same reference numerals. The permanent magnet according to the present invention may be a sintered magnet or a hot-worked magnet. The permanent magnet according to the present invention may be a rare earth magnet.
本実施形態に係る永久磁石10の全体は、図1中の(a)に示される。永久磁石10の断面10csは、図1中の(b)に示される。図2は、永久磁石10の断面10csの一部IIの拡大図である。図2に示されるように、永久磁石10は、複数の主相粒子11(主相)と、複数の主相粒子11の間に位置する粒界相9と、を備える。例えば、永久磁石10は、粒界相9を介した多数の主相粒子11から構成される焼結体であってよい。
The whole permanent magnet 10 according to the present embodiment is shown in (a) of FIG. A cross section 10cs of the permanent magnet 10 is shown in FIG. FIG. 2 is an enlarged view of a part II of the cross section 10 cs of the permanent magnet 10. As shown in FIG. 2, the permanent magnet 10 includes a plurality of main phase particles 11 (main phase) and a grain boundary phase 9 located between the plurality of main phase particles 11. For example, the permanent magnet 10 may be a sintered body composed of a large number of main phase particles 11 via the grain boundary phase 9.
主相粒子11は、希土類元素R、遷移金属元素T、及びB(ホウ素)を含有する。希土類元素Rは、少なくともNd(ネオジム)及びCe(セリウム)を含む。遷移金属元素Tは、少なくともFe(鉄)を含む。永久磁石10におけるCuの含有量[Cu]は0.1~2原子%である。
The main phase particles 11 contain a rare earth element R, a transition metal element T, and B (boron). The rare earth element R contains at least Nd (neodymium) and Ce (cerium). The transition metal element T contains at least Fe (iron). The Cu content [Cu] in the permanent magnet 10 is 0.1 to 2 atomic%.
粒界相9は、希土類元素R及び遷移金属元素Tの金属間化合物を含有するR‐T相3を含む。R‐T相3における希土類元素Rの含有量の合計が[R]L原子%と表される。R‐T相3におけるCeの含有量が[Ce]L原子%と表される。100×[Ce]L/[R]Lは75~100である。
The grain boundary phase 9 includes an RT phase 3 containing an intermetallic compound of a rare earth element R and a transition metal element T. The total content of rare earth elements R in the RT phase 3 is expressed as [R] L atomic%. The Ce content in the RT phase 3 is expressed as [Ce] L atomic%. 100 × [Ce] L / [R] L is 75-100.
本発明者らは、以下の考察に基づいて本発明に至った。
The inventors of the present invention have arrived at the present invention based on the following considerations.
永久磁石の残留磁束密度は、置換されたNdの量が多いほど、小さくなり易い。永久磁石の保磁力を大きくするためには、永久磁石における粒界相の量、及び、粒界相の磁性が重要である。粒界相の含有量が増えると、主相の含有量が減少するため、永久磁石の残留磁束密度が小さくなり易い。永久磁石の保磁力を増加させる方法として、以下のように主相粒子を微細にする方法がある。例えば、メルトスパン法又はHDDR(Hydrogenation Decomposition Desorption Recombination)法により、主相粒子の粒径を1μm以下に小さくする。そして、焼結体に対してNd‐Ga、又はNd‐Cu等の共結晶点が低い合金を焼結体表面から拡散及び浸透させ、主相粒子の表面におけるNdの濃度を他の希土類元素Rよりも高くする。その結果、焼結体から得られる永久磁石の保磁力は大きくなり易い。主相粒子の粒径が小さくなるほど、主相粒子の比表面積は高くなり、粒子の表面のNd濃度を高めたことに起因する改質効果が得られ易い。しかしながら、焼結工程において、1μm以下の微細な主相の結晶組織を維持するためには、低温で焼結工程を行う必要がある。そのため、従来の高温での焼結方法を用いることができず、温間加工又は熱間加工等の方法を用いる必要があり、永久磁石の製造コストが高くなり易い。さらに、焼結体表面から共晶点が低い合金を拡散及び浸透させることが可能な深さは限られるため、上記の方法を適用できる永久磁石の形状は限られる。そこで、主相粒子の粒径に依存することなく、永久磁石の保磁力を大きくする方法が求められる。
The residual magnetic flux density of the permanent magnet tends to decrease as the amount of Nd replaced increases. In order to increase the coercive force of the permanent magnet, the amount of the grain boundary phase in the permanent magnet and the magnetism of the grain boundary phase are important. When the content of the grain boundary phase increases, the content of the main phase decreases, so that the residual magnetic flux density of the permanent magnet tends to be small. As a method of increasing the coercive force of the permanent magnet, there is a method of making the main phase particles fine as follows. For example, the particle size of the main phase particles is reduced to 1 μm or less by the melt span method or HDDR (Hydrogenation Decomposition Decomposition Recombination) method. Then, an alloy having a low co-crystal point such as Nd—Ga or Nd—Cu is diffused and infiltrated into the sintered body from the surface of the sintered body, and the concentration of Nd on the surface of the main phase particles is changed to another rare earth element R. Higher than. As a result, the coercive force of the permanent magnet obtained from the sintered body tends to increase. The smaller the particle size of the main phase particles, the higher the specific surface area of the main phase particles and the easier it is to obtain a modification effect due to the increased Nd concentration on the surface of the particles. However, in the sintering process, it is necessary to perform the sintering process at a low temperature in order to maintain a fine main phase crystal structure of 1 μm or less. Therefore, the conventional high-temperature sintering method cannot be used, and it is necessary to use a method such as warm working or hot working, and the manufacturing cost of the permanent magnet tends to increase. Furthermore, since the depth at which an alloy having a low eutectic point can be diffused and penetrated from the surface of the sintered body is limited, the shape of the permanent magnet to which the above method can be applied is limited. Therefore, a method for increasing the coercive force of the permanent magnet is required without depending on the particle size of the main phase particles.
本発明者らは、Ceを含有する永久磁石の粒界相には、R‐T相が存在することを見出した。R‐T相は、例えば、RFe2相であってよい。走査型電子顕微鏡(SEM)に付属するエネルギー分散型X線分光器(EDS)を用いたSEM‐EDS分析により、RFe2相中の希土類元素RにおけるNd及びCeの各含有量(単位:原子%)を測定した。その結果、Ndの含有量は、例えば30%であった。Ceの含有量は、例えば70%であった。CeとFeとの二元相図にはCeFe2相が存在するが、NdとFeとの二元相図にはNdFe2相は存在しない。つまり、NdFe2相はCeFe2相に比べてエネルギー的に不安定であり、CeFe2相は粒界相中に形成され易いが、NdFe2相は粒界相中に形成され難い。そして、R‐T相におけるCeの含有量が多いほど、R‐T相の磁化が小さく、粒界相の磁化が小さい。したがって、粒界相中のNdをCeで置換するほど、粒界相の磁化が減少し、主相粒子同士の磁気分離が起こり易い。その結果、永久磁石の保磁力が増加する。このようにCeによるNdの置換によって粒界相の磁化を制御する方法であれば、主相粒子の粒径に依らず、低い製造コストで永久磁石の保磁力を大きくすることができる。以上の考察に基づいて、本発明者らは本実施形態に係る永久磁石10を見出した。
The present inventors have found that an RT phase exists in the grain boundary phase of a permanent magnet containing Ce. The RT phase may be, for example, an RFe 2 phase. By SEM-EDS analysis using an energy dispersive X-ray spectrometer (EDS) attached to a scanning electron microscope (SEM), each content of Nd and Ce in the rare earth element R in the RFe 2 phase (unit: atomic%) ) Was measured. As a result, the Nd content was, for example, 30%. The Ce content was, for example, 70%. The CeFe 2 phase exists in the binary phase diagram of Ce and Fe, but the NdFe 2 phase does not exist in the binary phase diagram of Nd and Fe. That, NdFe 2 phase is energetically stable than the CeFe 2 phase, hardly the CeFe 2 phase is easily formed in the grain boundary phase, NdFe 2 phase is formed in the grain boundary phase. As the Ce content in the RT phase increases, the magnetization of the RT phase decreases and the magnetization of the grain boundary phase decreases. Therefore, as Nd in the grain boundary phase is replaced with Ce, the magnetization of the grain boundary phase decreases, and magnetic separation between main phase grains tends to occur. As a result, the coercive force of the permanent magnet increases. Thus, if the method of controlling the magnetization of the grain boundary phase by replacing Nd with Ce, the coercive force of the permanent magnet can be increased at a low manufacturing cost regardless of the particle size of the main phase particles. Based on the above consideration, the present inventors have found the permanent magnet 10 according to the present embodiment.
つまり、永久磁石10の保磁力が大きい理由は以下の通りである、と本発明者らは考える。R‐T相3の磁性は、R‐T相3に含まれる希土類元素Rの種類に応じて変化する。R‐T相3におけるNdの含有量と、R‐T相3の磁化との間には、正の相関関係があり、R‐T相3におけるCeの含有量と、R‐T相3の磁化との間には、負の相関関係がある。永久磁石10の原料にCuを添加すると、永久磁石10を作製する過程で、粒界相9に含まれるCuと、R‐T相3に含まれるNdとが、Nd‐Cu相を形成する。Nd‐Cu相の磁化は非常に小さい。Nd‐Cu相は、例えば、CuがR‐T相3(RFe2相)に含まれるNdを吸引することにより、R‐T相3の外に形成される。また、CuがR‐T相3(RFe2相)内に拡散し、TサイトがCuで置換されることにより、Nd‐Cu相がR‐T相3内に形成され、Nd‐Cu相がR‐T相3から分離する。Cuの原子半径は、Feの原子半径とほぼ等しく、1.17Åである。そのため、RFe2相のFeサイトは、Cuで置換され易い。Nd‐Cu相がR‐T相3から分離することにより、R‐T相3におけるNdの含有量が減少し、100×[Ce]L/[R]Lが75~100となる。R‐T相3におけるNdの含有量の減少、及びNd‐Cu相の生成により、粒界相9の磁化が小さくなる。その結果、主相粒子11同士の磁気分離が起こり易くなり、永久磁石10の保磁力が大きくなる。永久磁石10におけるCuの含有量[Cu]が少なすぎると、Nd‐Cu相の生成量が十分でないため、十分な保磁力が得られない。[Cu]が多すぎると、R‐T相3に含まれるNdに加え、主相粒子11に含まれるNdと、粒界相9に含まれるCuとがNd‐Cu相を形成する。そのため、主相粒子11から粒界相9にFeが生じ、Feが粒界相中に析出し、粒界相9に異相(αFe)が生じる。αFeの保磁力は小さく、αFeの磁化は大きい。その結果、主相粒子11同士の磁気分離が起こり難くなり、永久磁石10の保磁力が小さくなる。[Cu]が0.1~2原子%であることにより、十分な量のNd‐Cu相が形成され、且つ、αFeが生じ難いことにより、永久磁石10の保磁力が大きくなる。Nd‐Cu相は、Nd及びCuの金属間化合物を含んでよい。Nd‐Cu相は、例えば、NdCu2を含んでよい。なお、永久磁石10の保磁力が大きい理由は、上記理由に限定されない。
That is, the present inventors consider that the reason why the coercive force of the permanent magnet 10 is large is as follows. The magnetism of the RT phase 3 changes according to the type of rare earth element R contained in the RT phase 3. There is a positive correlation between the Nd content in the RT phase 3 and the magnetization of the RT phase 3, and the Ce content in the RT phase 3 and the RT phase 3 There is a negative correlation with magnetization. When Cu is added to the raw material of the permanent magnet 10, Cu contained in the grain boundary phase 9 and Nd contained in the RT phase 3 form an Nd—Cu phase in the process of producing the permanent magnet 10. The magnetization of the Nd—Cu phase is very small. The Nd—Cu phase is formed outside the RT phase 3 by, for example, sucking Nd contained in the RT phase 3 (RFe 2 phase) by Cu. Also, Cu diffuses into the RT phase 3 (RFe 2 phase), and the T site is replaced with Cu, whereby an Nd-Cu phase is formed in the RT phase 3, and the Nd-Cu phase is Separate from RT phase 3. The atomic radius of Cu is approximately equal to the atomic radius of Fe and is 1.17Å. Therefore, the Fe site of the RFe 2 phase is easily replaced with Cu. By separating the Nd—Cu phase from the RT phase 3, the content of Nd in the RT phase 3 is reduced, and 100 × [Ce] L / [R] L becomes 75 to 100. Due to the decrease in the Nd content in the RT phase 3 and the generation of the Nd—Cu phase, the magnetization of the grain boundary phase 9 becomes small. As a result, magnetic separation between the main phase particles 11 easily occurs, and the coercive force of the permanent magnet 10 increases. If the Cu content [Cu] in the permanent magnet 10 is too small, the amount of Nd—Cu phase generated is not sufficient, and sufficient coercive force cannot be obtained. When there is too much [Cu], Nd contained in the main phase particle 11 and Cu contained in the grain boundary phase 9 form an Nd—Cu phase in addition to Nd contained in the RT phase 3. Therefore, Fe is generated from the main phase particles 11 in the grain boundary phase 9, Fe is precipitated in the grain boundary phase, and a different phase (αFe) is generated in the grain boundary phase 9. αFe has a small coercive force and αFe has a large magnetization. As a result, magnetic separation between the main phase particles 11 hardly occurs, and the coercive force of the permanent magnet 10 becomes small. When [Cu] is 0.1 to 2 atomic%, a sufficient amount of Nd—Cu phase is formed, and αFe is hardly generated, so that the coercive force of the permanent magnet 10 is increased. The Nd—Cu phase may include an intermetallic compound of Nd and Cu. The Nd—Cu phase may include, for example, NdCu 2 . The reason why the coercive force of the permanent magnet 10 is large is not limited to the above reason.
また、本発明者らは、永久磁石10を作製する過程で、後述する焼結体に対して所定の温度で時効処理を施すと、永久磁石10の保磁力が大きくなり易いことを見出した。時効処理の温度は、900~970℃、又は900~950℃であってよい。時効処理の温度が上記範囲内であると保磁力が大きくなり易い理由は以下の通りである、と本発明者らは考える。時効処理の温度が低すぎると、R‐T相3から生成する液相の量が少ない。そのため、R‐T相3におけるNdの移動、及び、CuのR‐T相3への拡散が起こり難い。時効処理の温度が高すぎると、主相粒子11に含まれるNdに由来するNd‐Cu相が形成され易くなる。時効処理の温度が上記範囲内であると、R‐T相3から生成する液相の量が多くなり易く、R‐T相3に含まれるNdに由来するNd‐Cu相が、主相粒子11に含まれるNdに由来するNd‐Cu相に比べて、形成され易い。その結果、永久磁石10の保磁力が大きくなり易い。なお、永久磁石10の保磁力が大きくなり易い理由は、上記理由に限定されない。
In addition, the present inventors have found that the coercive force of the permanent magnet 10 tends to increase when an aging treatment is performed on the sintered body described later at a predetermined temperature in the process of manufacturing the permanent magnet 10. The temperature of the aging treatment may be 900 to 970 ° C., or 900 to 950 ° C. The present inventors consider that the reason why the coercive force tends to increase when the temperature of the aging treatment is within the above range is as follows. If the temperature of the aging treatment is too low, the amount of the liquid phase generated from the RT phase 3 is small. Therefore, Nd migration in the RT phase 3 and diffusion of Cu into the RT phase 3 hardly occur. When the temperature of the aging treatment is too high, an Nd—Cu phase derived from Nd contained in the main phase particles 11 is easily formed. If the temperature of the aging treatment is within the above range, the amount of the liquid phase generated from the RT phase 3 tends to increase, and the Nd—Cu phase derived from Nd contained in the RT phase 3 is the main phase particle. As compared with the Nd—Cu phase derived from Nd contained in No. 11, it is easily formed. As a result, the coercive force of the permanent magnet 10 tends to increase. The reason why the coercive force of the permanent magnet 10 tends to increase is not limited to the above reason.
各主相粒子11は、少なくとも希土類元素R、遷移金属元素T、及びホウ素(B)を含む。希土類元素Rは、少なくともNd(ネオジム)及びCe(セリウム)を含む。つまり、Ndの一部がCeで置換されている。遷移金属元素Tは、少なくともFe(鉄)を含む。遷移金属元素Tは、FeとCo(コバルト)とを含んでよい。つまり、上記のFeの一部がCoで置換されてよい。各主相粒子11は、ホウ素に加えて炭素(C)を含んでよい。つまり、上記のBの一部がCで置換されてよい。主相粒子11は、主相としてR2T14Mを含んでよい。元素MはBのみであってよい。元素Mは、B及びCであってもよい。換言すれば、R2T14Mは、Nd2-xCexFe14-sCosB1-tCtと表されてよい。xは、0より大きく2未満である。sは、0以上14未満である。tは、0以上1未満である。例えば、主相粒子11は、Nd2Fe14Bを含んでよい。例えば、主相粒子11は、Y2Fe14Bを含んでもよい。例えば、主相粒子11は、Ce2Fe14Bを含んでもよい。
Each main phase particle 11 includes at least a rare earth element R, a transition metal element T, and boron (B). The rare earth element R contains at least Nd (neodymium) and Ce (cerium). That is, a part of Nd is replaced with Ce. The transition metal element T contains at least Fe (iron). The transition metal element T may contain Fe and Co (cobalt). That is, a part of the Fe may be replaced with Co. Each main phase particle 11 may contain carbon (C) in addition to boron. That is, a part of the above B may be replaced with C. The main phase particle 11 may contain R 2 T 14 M as a main phase. The element M may be only B. The element M may be B and C. In other words, R 2 T 14 M may be represented as Nd 2−x Ce x Fe 14−s Co s B 1−t C t . x is greater than 0 and less than 2. s is 0 or more and less than 14. t is 0 or more and less than 1. For example, the main phase particles 11 may contain Nd 2 Fe 14 B. For example, the main phase particles 11 may include Y 2 Fe 14 B. For example, the main phase particles 11 may include Ce 2 Fe 14 B.
図2に示されるように、粒界相9は、R‐T相3に加えて、Rリッチ相5、異相(heterogeneous phase)7、R6T13E相等を含んでもよい。元素Eは、Ga、Si、Sn、及びBiからなる群より選択される少なくとも一種であってよい。R‐T相3、Rリッチ相5、異相7、及びR6T13E相それぞれの定義は、下記の通りであってよい。
As shown in FIG. 2, the grain boundary phase 9 may include, in addition to the RT phase 3, an R rich phase 5, a heterogeneous phase 7, an R 6 T 13 E phase, and the like. The element E may be at least one selected from the group consisting of Ga, Si, Sn, and Bi. The definitions of RT phase 3, R rich phase 5, heterogeneous phase 7, and R 6 T 13 E phase may be as follows.
R‐T相3におけるCの含有量が[C]L原子%と表される。R‐T相3におけるNの含有量が[N]L原子%と表される。R‐T相3におけるOの含有量が[O]L原子%と表される。R‐T相3における希土類元素Rの含有量の合計が[R]L原子%と表される。R‐T相3における遷移金属元素Tの含有量の合計が[T]L原子%と表される。R‐T相3における元素Eの含有量の合計が[E]L原子%と表される。R‐T相3は、下記不等式(1)、(2)、及び(3)の全てを満たす相であってよい。
0≦[C]L+[N]L+[O]L<30 (1)
0.26≦[R]L/([R]L+[T]L)≦0.40 (2)
0.00≦[E]L/([R]L+[T]L+[E]L)≦0.03 (3) The content of C in theRT phase 3 is expressed as [C] L atomic%. The N content in the RT phase 3 is expressed as [N] L atomic%. The content of O in the RT phase 3 is expressed as [O] L atomic%. The total content of rare earth elements R in the RT phase 3 is expressed as [R] L atomic%. The total content of the transition metal element T in the RT phase 3 is expressed as [T] L atomic%. The total content of the element E in the RT phase 3 is expressed as [E] L atomic%. The RT phase 3 may be a phase that satisfies all of the following inequalities (1), (2), and (3).
0 ≦ [C] L + [N] L + [O] L <30 (1)
0.26 ≦ [R] L / ([R] L + [T] L ) ≦ 0.40 (2)
0.00 ≦ [E] L / ([R] L + [T] L + [E] L ) ≦ 0.03 (3)
0≦[C]L+[N]L+[O]L<30 (1)
0.26≦[R]L/([R]L+[T]L)≦0.40 (2)
0.00≦[E]L/([R]L+[T]L+[E]L)≦0.03 (3) The content of C in the
0 ≦ [C] L + [N] L + [O] L <30 (1)
0.26 ≦ [R] L / ([R] L + [T] L ) ≦ 0.40 (2)
0.00 ≦ [E] L / ([R] L + [T] L + [E] L ) ≦ 0.03 (3)
R‐T相3は、例えば、RT2相を含んでよい。つまり、R‐T相3に含まれる金属間化合物は、例えば、RT2であってよい。RT2は、Nd1-γCeγFe2-δCoδと表されてよい。γは0以上1以下である。δは0以上2以下である。RT2は、例えば、NdFe2、又はCeFe2であってよい。R‐T相3は、R及びTの金属間化合物に加えて、R及びT以外の微量の元素を含んでもよい。R‐T相3は、ラーベス(Laves)相であってよい。R‐T相3の結晶構造は、C15型であってよい。R‐T相3は、X線回折(XRD)パターンを用いて、格子面(hkl)に由来する回折ピークの回折角2θに基づいて特定されてよい。例えば、XRDパターンの測定にCuKα線を用いた場合、R‐T相3の格子面(220)に由来する2θが、34.0~34.73°であってよい。また、XRDパターンの測定にCuKα線を用いた場合、R‐T相3の格子面(311)に由来する2θが、40.10~40.97°であってよい。上記2θは、R‐T相3に含まれる希土類元素Rの種類に応じて、上記範囲内で変化してよい。
The RT phase 3 may include, for example, an RT 2 phase. That is, the intermetallic compound contained in the RT phase 3 may be, for example, RT 2. RT 2 may be represented as Nd 1-γ Ce γ Fe 2-δ Co δ . γ is 0 or more and 1 or less. δ is 0 or more and 2 or less. RT 2 may be, for example, NdFe 2 or CeFe 2 . The RT phase 3 may contain trace elements other than R and T in addition to R and T intermetallic compounds. The RT phase 3 may be a Laves phase. The crystal structure of RT phase 3 may be C15 type. The RT phase 3 may be specified based on the diffraction angle 2θ of the diffraction peak derived from the lattice plane (hkl) using an X-ray diffraction (XRD) pattern. For example, when CuKα rays are used for measurement of the XRD pattern, 2θ derived from the lattice plane (220) of the RT phase 3 may be 34.0 to 34.73 °. Further, when CuKα rays are used for measurement of the XRD pattern, 2θ derived from the lattice plane (311) of the RT phase 3 may be 40.10 to 40.97 °. The 2θ may vary within the above range depending on the type of rare earth element R contained in the RT phase 3.
100×[Ce]L/[R]Lは、76~84であってよい。100×[Ce]L/[R]Lが上記範囲内である場合、永久磁石10の保磁力が大きくなり易い。[Ce]L及び[R]Lは、SEM‐EDS分析により測定されてよい。また、永久磁石10における希土類元素Rの含有量が少なく、微細なR‐T相3を分析する必要がある場合、透過型電子顕微鏡(TEM)に付属するEDSを用いたTEM‐EDS分析、又は、3次元アトムプローブ(3DAP)分析により測定されてもよい。測定された[Ce]Lと[R]Lとから100×[Ce]L/[R]Lが算出されてよい。
100 × [Ce] L / [R] L may be 76-84. When 100 × [Ce] L / [R] L is within the above range, the coercive force of the permanent magnet 10 tends to increase. [Ce] L and [R] L may be measured by SEM-EDS analysis. When the content of rare earth element R in the permanent magnet 10 is small and it is necessary to analyze the fine RT phase 3, TEM-EDS analysis using EDS attached to a transmission electron microscope (TEM), or It may be measured by three-dimensional atom probe (3DAP) analysis. 100 × [Ce] L / [R] L may be calculated from the measured [Ce] L and [R] L.
Rリッチ相5におけるCの含有量が[C]R原子%と表される。Rリッチ相5におけるNの含有量が[N]R原子%と表される。Rリッチ相5におけるOの含有量が[O]R原子%と表される。Rリッチ相5における希土類元素Rの含有量の合計が[R]R原子%と表される。Rリッチ相5における遷移金属元素Tの含有量の合計が[T]R原子%と表される。Rリッチ相5は、下記不等式(4)及び(5)を満たす相であってよい。
0≦[C]R+[N]R+[O]R<30 (4)
0.50≦[R]R/([R]R+[T]R)≦1.00 (5) The content of C in the R-rich phase 5 is expressed as [C] R atomic%. The N content in the R-rich phase 5 is expressed as [N] R atomic%. The content of O in the R-rich phase 5 is expressed as [O] R atomic%. The total content of rare earth elements R in the R-rich phase 5 is expressed as [R] R atomic%. The total content of the transition metal element T in the R-rich phase 5 is expressed as [T] R atomic%. The R-rich phase 5 may be a phase that satisfies the following inequalities (4) and (5).
0 ≦ [C] R + [N] R + [O] R <30 (4)
0.50 ≦ [R] R / ([R] R + [T] R ) ≦ 1.00 (5)
0≦[C]R+[N]R+[O]R<30 (4)
0.50≦[R]R/([R]R+[T]R)≦1.00 (5) The content of C in the R-
0 ≦ [C] R + [N] R + [O] R <30 (4)
0.50 ≦ [R] R / ([R] R + [T] R ) ≦ 1.00 (5)
異相7におけるCの含有量が[C]D原子%と表される。異相7におけるNの含有量が[N]D原子%と表される。異相7におけるOの含有量が[O]D原子%と表される。異相7は、[C]Dと[N]Dと[O]Dとの合計[C]D+[N]D+[O]Dが30以上100未満である相であってよい。つまり、異相7は、下記不等式(6)を満たす相であってよい。異相7は、例えば、Rの酸化物、Rの炭化物及びRの窒化物からなる群より選ばれる少なくとも一種を含んでよい。
30≦[C]D+[N]D+[O]D<100 (6) The content of C in theheterogeneous phase 7 is expressed as [C] D atomic%. The N content in the different phase 7 is expressed as [N] D atomic%. The content of O in the heterogeneous phase 7 is expressed as [O] D atomic%. The hetero phase 7 may be a phase in which the sum of [C] D , [N] D, and [O] D [C] D + [N] D + [O] D is 30 or more and less than 100. That is, the different phase 7 may be a phase satisfying the following inequality (6). The hetero phase 7 may include, for example, at least one selected from the group consisting of an oxide of R, a carbide of R, and a nitride of R.
30 ≦ [C] D + [N] D + [O] D <100 (6)
30≦[C]D+[N]D+[O]D<100 (6) The content of C in the
30 ≦ [C] D + [N] D + [O] D <100 (6)
R6T13E相におけるCの含有量が[C]A原子%と表される。R6T13E相におけるNの含有量が[N]A原子%と表される。R6T13E相におけるOの含有量が[O]A原子%と表される。R6T13E相における希土類元素Rの含有量の合計が[R]A原子%と表される。R6T13E相における遷移金属元素Tの含有量の合計が[T]A原子%と表される。R6T13E相における元素Eの含有量の合計が[E]A原子%と表される。R6T13E相は、下記不等式(7)、(8)及び(9)の全てを満たす相であってよい。
0≦[C]A+[N]A+[O]A<30 (7)
0.26≦[R]A/([R]A+[T]A)≦0.40 (8)
0.03<[E]A/([R]A+[T]A+[E]A)≦1.00 (9) The content of C in the R 6 T 13 E phase is expressed as [C] A atomic%. The content of N in the R 6 T 13 E phase is expressed as [N] A atomic%. The content of O in the R 6 T 13 E phase is expressed as [O] A atomic%. The total content of rare earth elements R in the R 6 T 13 E phase is expressed as [R] A atomic%. The total content of the transition metal element T in the R 6 T 13 E phase is expressed as [T] A atomic%. The total content of the element E in the R 6 T 13 E phase is expressed as [E] A atomic%. The R 6 T 13 E phase may be a phase that satisfies all of the following inequalities (7), (8), and (9).
0 ≦ [C] A + [N] A + [O] A <30 (7)
0.26 ≦ [R] A / ([R] A + [T] A ) ≦ 0.40 (8)
0.03 <[E] A / ([R] A + [T] A + [E] A ) ≦ 1.00 (9)
0≦[C]A+[N]A+[O]A<30 (7)
0.26≦[R]A/([R]A+[T]A)≦0.40 (8)
0.03<[E]A/([R]A+[T]A+[E]A)≦1.00 (9) The content of C in the R 6 T 13 E phase is expressed as [C] A atomic%. The content of N in the R 6 T 13 E phase is expressed as [N] A atomic%. The content of O in the R 6 T 13 E phase is expressed as [O] A atomic%. The total content of rare earth elements R in the R 6 T 13 E phase is expressed as [R] A atomic%. The total content of the transition metal element T in the R 6 T 13 E phase is expressed as [T] A atomic%. The total content of the element E in the R 6 T 13 E phase is expressed as [E] A atomic%. The R 6 T 13 E phase may be a phase that satisfies all of the following inequalities (7), (8), and (9).
0 ≦ [C] A + [N] A + [O] A <30 (7)
0.26 ≦ [R] A / ([R] A + [T] A ) ≦ 0.40 (8)
0.03 <[E] A / ([R] A + [T] A + [E] A ) ≦ 1.00 (9)
希土類元素Rは、Nd及びCeに加えて、その他の希土類元素をさらに含んでもよい。その他の希土類元素は、例えば、Sc(スカンジウム)、Y(イットリウム)、La(ランタン)、Pr(プラセオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Ho(ホルミウム)、Dy(ジスプロシウム)及びTb(テルビウム)からなる群より選ばれる少なくも一種であってよい。希土類元素Rは、Nd及びCeのみからなっていてもよい。永久磁石10における希土類元素Rの含有量の合計[R]は、14~18原子%であってよい。永久磁石10におけるNdの含有量[Nd]は、7~13原子%、又は9~11原子%であってよい。永久磁石10におけるCeの含有量[Ce]は、4~8原子%であってよい。
The rare earth element R may further contain other rare earth elements in addition to Nd and Ce. Other rare earth elements include, for example, Sc (scandium), Y (yttrium), La (lanthanum), Pr (praseodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Ho (holmium), Dy ( It may be at least one selected from the group consisting of dysprosium) and Tb (terbium). The rare earth element R may consist only of Nd and Ce. The total content [R] of the rare earth element R in the permanent magnet 10 may be 14 to 18 atomic%. The Nd content [Nd] in the permanent magnet 10 may be 7 to 13 atomic%, or 9 to 11 atomic%. The Ce content [Ce] in the permanent magnet 10 may be 4 to 8 atomic%.
遷移金属元素Tは、Feに加えて、Co(コバルト)をさらに含んでもよく、その他の遷移金属元素をさらに含んでもよい。その他の遷移金属元素は、例えば、Ni(ニッケル)等であってよい。遷移金属元素Tは、Fe及びCoのみからなっていてもよい。永久磁石10における遷移金属元素Tの含有量の合計[T]は、76~84原子%であってよい。永久磁石10におけるFeの含有量[Fe]は、72~84原子%であってよい。永久磁石10におけるCoの含有量[Co]は、0~5原子%であってよい。
The transition metal element T may further contain Co (cobalt) in addition to Fe, and may further contain other transition metal elements. The other transition metal element may be, for example, Ni (nickel). The transition metal element T may consist only of Fe and Co. The total content [T] of the transition metal element T in the permanent magnet 10 may be 76 to 84 atomic%. The Fe content [Fe] in the permanent magnet 10 may be 72 to 84 atomic%. The Co content [Co] in the permanent magnet 10 may be 0 to 5 atomic%.
永久磁石10におけるBの含有量[B]は、4.2~5.8原子%であってよい。
The B content [B] in the permanent magnet 10 may be 4.2 to 5.8 atomic%.
永久磁石10におけるCuの含有量[Cu]は、0.1~2原子%、又は0.3~1.0原子%であってよい。[Cu]が上記範囲内である場合、永久磁石10の保磁力が大きくなり易い。
The Cu content [Cu] in the permanent magnet 10 may be 0.1 to 2 atomic%, or 0.3 to 1.0 atomic%. When [Cu] is within the above range, the coercive force of the permanent magnet 10 tends to increase.
永久磁石10は、Al(アルミニウム)、Mn(マンガン)、Nb(ニオブ)、Ta(タンタル)、Zr(ジルコニウム)、Ti(チタン)、W(タングステン)、Mo(モリブデン)、V(バナジウム)、Ag(銀)、Ge(ゲルマニウム)、Zn(亜鉛)、Ga(ガリウム)、Si(ケイ素)、Sn(錫)及びBi(ビスマス)等の元素をさらに含んでもよい。
The permanent magnet 10 is made of Al (aluminum), Mn (manganese), Nb (niobium), Ta (tantalum), Zr (zirconium), Ti (titanium), W (tungsten), Mo (molybdenum), V (vanadium), You may further contain elements, such as Ag (silver), Ge (germanium), Zn (zinc), Ga (gallium), Si (silicon), Sn (tin), and Bi (bismuth).
元素Eが、Si、Sn、Ga、及びBiからなる群より選択される少なくとも一種と定義されるとき、永久磁石10における元素Eの含有量の合計[E]は、0~1原子%であってよい。[E]が上記範囲内である場合、永久磁石10の保磁力が大きくなり易い。[E]が上記範囲内であると永久磁石10の保磁力が大きくなり易い理由は以下の通りである、と本発明者らは考える。永久磁石10が元素Eを含有する場合、永久磁石10の作製過程において、粒界相9にR6T13E相が生成し易い。粒界相9にR6T13E相が生成することにより、R‐T相3におけるNdの含有量が減少し、粒界相9の磁化が小さくなる。その結果、主相粒子11同士の磁気分離が起こり易くなり、永久磁石10の保磁力が大きくなり易い。一方、[E]が上記上限値以下である場合、粒界相9に、遷移金属元素Tを含有しないR‐E相が生成し難いため、遷移金属元素Tが粒界相9に析出し難い。その結果、主相粒子11間の磁気分離が起こり易くなり、永久磁石10の保磁力が大きくなり易い。R6T13E相は、例えば、R6Fe13E相であってよい。R6T13E相におけるNdの含有量が[Nd]A原子%と表される。R6T13E相におけるRの含有量の合計が[R]A原子%と表される。100×[Nd]A/[R]Aは大きく、例えば、70以上であってよい。なお、保磁力が大きくなり易い理由は、上記理由に限定されない。
When the element E is defined as at least one selected from the group consisting of Si, Sn, Ga, and Bi, the total content [E] of the element E in the permanent magnet 10 is 0 to 1 atomic%. It's okay. When [E] is within the above range, the coercive force of the permanent magnet 10 tends to increase. The present inventors consider that the reason why the coercive force of the permanent magnet 10 tends to increase when [E] is within the above range is as follows. When the permanent magnet 10 contains the element E, an R 6 T 13 E phase is easily generated in the grain boundary phase 9 in the process of manufacturing the permanent magnet 10. By generating the R 6 T 13 E phase in the grain boundary phase 9, the content of Nd in the RT phase 3 is reduced, and the magnetization of the grain boundary phase 9 is reduced. As a result, magnetic separation between the main phase particles 11 easily occurs, and the coercive force of the permanent magnet 10 tends to increase. On the other hand, when [E] is less than or equal to the above upper limit value, the transition metal element T is unlikely to precipitate in the grain boundary phase 9 because the RE phase not containing the transition metal element T is hardly generated in the grain boundary phase 9. . As a result, magnetic separation between the main phase particles 11 easily occurs, and the coercive force of the permanent magnet 10 tends to increase. The R 6 T 13 E phase may be, for example, an R 6 Fe 13 E phase. The content of Nd in the R 6 T 13 E phase is expressed as [Nd] A atomic%. The total content of R in the R 6 T 13 E phase is expressed as [R] A atomic%. 100 × [Nd] A / [R] A is large, and may be, for example, 70 or more. The reason why the coercive force tends to increase is not limited to the above reason.
永久磁石10の組成は、蛍光X線分析法、ICP(Inductively Coupled Plasma)発光分析法、不活性ガス融解‐非分散型赤外線吸収法、酸素気流中燃焼‐赤外吸収法、不活性ガス融解‐熱伝導度法等によって特定されてよい。
The composition of the permanent magnet 10 is X-ray fluorescence analysis, ICP (Inductively Coupled Plasma) emission analysis, inert gas melting-non-dispersive infrared absorption method, combustion in oxygen stream-infrared absorption method, inert gas melting- It may be specified by a thermal conductivity method or the like.
主相粒子11の平均粒径(D50)は、2~10μm、2.4~10μm、又は3~6μmであってよい。主相粒子11のD50が小さすぎると、主相粒子11の生産が難しくなり易い。主相粒子11のD50が大きすぎると、主相粒子11の体積が増加することにより、反磁界が増加し易い。その結果、磁化反転が起こり易くなり、永久磁石10の保磁力が低下し易い。主相粒子11のD50が上記範囲内であると、永久磁石10の保磁力が大きくなり易い。ただし、主相粒子11のD50が上記範囲外である場合であっても、本発明の作用効果は得られる。なお、気流粉砕法により、主相粒子11のD50が2μmを下回るように主相粒子11の原料を粉砕するためには、高速の気流を発生させるための圧縮機、又は硬質のセラミック板の冷却などが必要である。そのため、運転コストが高くなり易い。また、気流の速度が十分でないため、粉砕機に投入した原料の全てを2μm未満の微粉末として回収することができず、原料の利用率が低くなり易い。回収できなかった原料は損失となるため、永久磁石10の製造コストが高くなり易い。主相粒子11のD50が上記下限値以上であると、原料の利用率が高くなり易く、永久磁石10の製造コストが低くなり易い。
The average particle diameter (D50) of the main phase particles 11 may be 2 to 10 μm, 2.4 to 10 μm, or 3 to 6 μm. If the D50 of the main phase particles 11 is too small, the production of the main phase particles 11 tends to be difficult. When D50 of the main phase particles 11 is too large, the volume of the main phase particles 11 increases, so that the demagnetizing field tends to increase. As a result, magnetization reversal is likely to occur, and the coercive force of the permanent magnet 10 is likely to decrease. When the D50 of the main phase particle 11 is within the above range, the coercive force of the permanent magnet 10 tends to increase. However, even if D50 of the main phase particle 11 is out of the above range, the effects of the present invention can be obtained. In order to pulverize the raw material of the main phase particles 11 so that the D50 of the main phase particles 11 is less than 2 μm by the airflow pulverization method, a compressor for generating a high-speed airflow or cooling of a hard ceramic plate is used. Etc. are necessary. Therefore, the operation cost tends to be high. In addition, since the velocity of the airflow is not sufficient, not all of the raw materials charged into the pulverizer can be recovered as fine powder of less than 2 μm, and the utilization rate of the raw materials tends to be low. Since the raw material that could not be recovered is lost, the manufacturing cost of the permanent magnet 10 tends to increase. When the D50 of the main phase particle 11 is equal to or higher than the lower limit, the utilization rate of the raw material is likely to be high, and the manufacturing cost of the permanent magnet 10 is likely to be low.
(永久磁石の製造方法)
永久磁石10の製造方法は、以下の通りであってよい。所望の永久磁石10の組成に一致するように出発原料を秤量する。出発原料は、例えば、金属、又は合金であってよい。 (Permanent magnet manufacturing method)
The manufacturing method of thepermanent magnet 10 may be as follows. The starting materials are weighed to match the desired permanent magnet 10 composition. The starting material can be, for example, a metal or an alloy.
永久磁石10の製造方法は、以下の通りであってよい。所望の永久磁石10の組成に一致するように出発原料を秤量する。出発原料は、例えば、金属、又は合金であってよい。 (Permanent magnet manufacturing method)
The manufacturing method of the
下記のストリップキャスト法、高周波誘導溶解法、アーク溶解法、その他の溶解法により、上記の出発原料から原料合金を作製してよい。還元拡散法によって出発原料から原料合金を作製してもよい。原料合金の酸化を抑制するために、ストリップキャスト法等の溶解法を非酸化雰囲気中で実施してよい。非酸化雰囲気は、例えば、真空、又はAr(アルゴン)等の不活性ガスであってよい。
The raw material alloy may be produced from the above starting materials by the following strip casting method, high frequency induction melting method, arc melting method, and other melting methods. A raw material alloy may be produced from a starting material by a reduction diffusion method. In order to suppress oxidation of the raw material alloy, a melting method such as a strip casting method may be performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere may be, for example, a vacuum or an inert gas such as Ar (argon).
ストリップキャスト法では、上記出発原料を非酸化雰囲気中で溶解して、溶湯(原料合金の融液)を作製する。溶湯を非酸化雰囲気中で回転するロールの表面へ出湯(pour)する。金属ロールは水冷等で冷却されているので、溶湯がロールの表面で急冷され、凝固することにより、原料合金の薄板又は薄片(鱗片)が得られる。ロールは、例えば、銅製であってよい。
In the strip casting method, the starting material is melted in a non-oxidizing atmosphere to produce a molten metal (melting material alloy). The molten metal is poured onto the surface of a rotating roll in a non-oxidizing atmosphere. Since the metal roll is cooled by water cooling or the like, the molten metal is rapidly cooled and solidified on the surface of the roll to obtain a thin plate or flake (scale piece) of the raw material alloy. The roll may be made of copper, for example.
上記の溶解及び急冷によって得られた原料合金を粉砕して、粗粉末を得る。原料合金の粉砕方法は、例えば、水素粉砕であってよい。水素粉砕では、原料合金を水素雰囲気に置いて、原料合金に水素を吸蔵させる。原料合金が水素を吸蔵すると、原料合金の体積が膨張する。また、原料合金に含まれる金属の水素化反応が生じて、原料合金が脆くなる。その結果、原料合金にクラックが生じて、原料合金が粉砕される。粗粉末の粒径は、例えば、10~1000μmであってよい。
Crushed the raw material alloy obtained by the above melting and quenching to obtain a coarse powder. The raw material alloy may be pulverized by, for example, hydrogen pulverization. In hydrogen pulverization, the raw material alloy is placed in a hydrogen atmosphere, and the raw material alloy is made to store hydrogen. When the raw material alloy occludes hydrogen, the volume of the raw material alloy expands. Moreover, the hydrogenation reaction of the metal contained in the raw material alloy occurs, and the raw material alloy becomes brittle. As a result, cracks occur in the raw material alloy, and the raw material alloy is pulverized. The particle size of the coarse powder may be, for example, 10 to 1000 μm.
粗粉末を加熱することにより、粗粉末の脱水素を行ってよい。脱水素温度は、300~400℃であってよい。脱水素時間は、0.5~20時間であってよい。
The coarse powder may be dehydrogenated by heating the coarse powder. The dehydrogenation temperature may be 300-400 ° C. The dehydrogenation time may be 0.5 to 20 hours.
粗粉末を粉砕して、微粉末を得る。粗粉末を粉砕する前に、粗粉末に潤滑剤を添加してよい。粗粉末に潤滑剤を添加することにより、粗粉末を粉砕するときに、粉末同士が凝集し難く、粉末が粉砕装置の内壁に融着し難い。潤滑剤は、例えば、エステル系の有機物、アミド系の有機物であってよい。アミド系の有機物は、例えば、オレイン酸アミドであってよい。粗粉末は、気流式粉砕機(ジェットミル)等により粉砕してよい。ジェットミルによる粉砕では、粗粉末が、不活性ガスの気流によって加速された後、硬質のセラミック板に衝突することによって粉砕される。得られた微粉末は、ジェットミルの粒子捕集部(サイクロン)から回収される。不活性ガスは、窒素ガス等であってよい。微粉末の平均粒径(D50)は、例えば、2~10μmであってよい。微粉末のD50が小さすぎると、後述する時効処理を焼結体に施した際に主相に粗大粒子が生じ易い。その結果、永久磁石10の保磁力が小さくなり易い。微粉末のD50が大きすぎると、主相粒子11が大きくなり易い。その結果、永久磁石10の保磁力が小さくなり易い。微粉末のD50が上記範囲内であることにより、永久磁石10の保磁力が大きくなり易い。
Crushed coarse powder to obtain fine powder. Before pulverizing the coarse powder, a lubricant may be added to the coarse powder. By adding a lubricant to the coarse powder, when the coarse powder is pulverized, the powders are less likely to agglomerate and the powder is less likely to be fused to the inner wall of the pulverizer. The lubricant may be, for example, an ester organic material or an amide organic material. The amide-based organic substance may be, for example, oleic acid amide. The coarse powder may be pulverized by an airflow pulverizer (jet mill) or the like. In pulverization by a jet mill, coarse powder is accelerated by an inert gas stream and then pulverized by colliding with a hard ceramic plate. The obtained fine powder is recovered from the particle collecting part (cyclone) of the jet mill. The inert gas may be nitrogen gas or the like. The average particle diameter (D50) of the fine powder may be, for example, 2 to 10 μm. If D50 of the fine powder is too small, coarse particles are likely to be generated in the main phase when an aging treatment described later is applied to the sintered body. As a result, the coercive force of the permanent magnet 10 tends to be small. If D50 of the fine powder is too large, the main phase particles 11 are likely to be large. As a result, the coercive force of the permanent magnet 10 tends to be small. When the D50 of the fine powder is within the above range, the coercive force of the permanent magnet 10 tends to increase.
微粉末を成型機の成形空間(キャビティ)に入れ、微粉末を磁場中で加圧することにより、成形体を得る。加圧方向は、磁場方向に対して垂直な方向であってよい。磁場の強さは、例えば、960~1600kA/mであってよい。微粉末に加える圧力は、例えば、10~500MPaであってよい。
入 れ Place the fine powder into the molding space (cavity) of the molding machine and press the fine powder in a magnetic field to obtain a compact. The pressing direction may be a direction perpendicular to the magnetic field direction. The strength of the magnetic field may be, for example, 960-1600 kA / m. The pressure applied to the fine powder may be, for example, 10 to 500 MPa.
成形体を焼結して、焼結体を得る。焼結温度は、例えば、1000~1200℃であってよい。焼結時間は、例えば、0.1~100時間であってよい。成形体の焼結は、減圧雰囲気、不活性雰囲気等で行ってよい。成形体を焼結している間、粒界相9は溶融状態であってよく、R‐T相3は形成されていなくてよい。焼結体における粒界相9は、R‐T相3等を含んでよい。
Sintering the molded body to obtain a sintered body. The sintering temperature may be 1000 to 1200 ° C., for example. The sintering time may be, for example, 0.1 to 100 hours. The green body may be sintered in a reduced pressure atmosphere, an inert atmosphere, or the like. While the green body is sintered, the grain boundary phase 9 may be in a molten state, and the RT phase 3 may not be formed. The grain boundary phase 9 in the sintered body may include the RT phase 3 or the like.
焼結体に時効処理を施すことにより、永久磁石10を得る。時効処理では、焼結体を加熱する。時効処理の温度は、上述した通りであってよい。時効処理の時間は、例えば、1~100時間であってよい。時効処理は、減圧雰囲気、不活性雰囲気等で行ってよい。時効処理は、1段階の熱処理から構成されても、2段階以上の熱処理工程から構成されてもよい。例えば、比較的高温で加熱した後、比較的低温で加熱してもよい。この場合、永久磁石10の保磁力がより大きくなり易い。時効処理後の焼結体の平均粒径(D50)は、上記の主相粒子11の平均粒径(D50)と同じであってよい。
The permanent magnet 10 is obtained by subjecting the sintered body to an aging treatment. In the aging treatment, the sintered body is heated. The temperature of the aging treatment may be as described above. The time for aging treatment may be, for example, 1 to 100 hours. The aging treatment may be performed in a reduced pressure atmosphere, an inert atmosphere, or the like. The aging treatment may be composed of one stage of heat treatment or may be composed of two or more stages of heat treatment. For example, after heating at a relatively high temperature, it may be heated at a relatively low temperature. In this case, the coercive force of the permanent magnet 10 tends to increase. The average particle diameter (D50) of the sintered body after the aging treatment may be the same as the average particle diameter (D50) of the main phase particles 11 described above.
必要に応じて、得られた永久磁石10を所定の形状に加工してもよい。加工方法は、例えば、切断、研削などの形状加工、又は、バレル研磨などの面取り加工等であってよい。例えば、磁気特性を精密に測定するため、測定試料となる永久磁石10の表面を平坦に加工してよい。表面が平坦であることにより、測定試料の正確な寸法が得られる。表面を平坦に加工する方法は、例えば、湿式法、乾式法等であってよい。加工時間が短く、加工費用が安いことから、湿式法が好ましい。
If necessary, the obtained permanent magnet 10 may be processed into a predetermined shape. The processing method may be, for example, shape processing such as cutting and grinding, or chamfering processing such as barrel polishing. For example, in order to accurately measure the magnetic characteristics, the surface of the permanent magnet 10 serving as a measurement sample may be processed flat. Due to the flat surface, the exact dimensions of the measurement sample can be obtained. The method for processing the surface to be flat may be, for example, a wet method, a dry method, or the like. The wet method is preferable because the processing time is short and the processing cost is low.
(回転機)
本実施形態に係る回転機は、上記の永久磁石10aを備える。回転機の内部構造の一例は、図3に示される。本実施形態に係る回転機200は、永久磁石同期回転機(SPM回転機)である。回転機200は、円筒状のロータ50と、ロータ50の内側に配置されるステータ30と、を備えている。ロータ50は、円筒状のコア52と、コア52の内周面に沿って配置された複数の永久磁石10aと、を有している。複数の永久磁石10aは、コア52の内周面に沿ってN極とS極が交互に並ぶように配置されている。ステータ30は、その外周面に沿って設けられた複数のコイル32を有している。コイル32と永久磁石10aとは互いに対面するように配置されている。 (Rotating machine)
The rotating machine according to the present embodiment includes thepermanent magnet 10a. An example of the internal structure of the rotating machine is shown in FIG. The rotating machine 200 according to the present embodiment is a permanent magnet synchronous rotating machine (SPM rotating machine). The rotating machine 200 includes a cylindrical rotor 50 and a stator 30 disposed inside the rotor 50. The rotor 50 includes a cylindrical core 52 and a plurality of permanent magnets 10 a arranged along the inner peripheral surface of the core 52. The plurality of permanent magnets 10 a are arranged so that N poles and S poles are alternately arranged along the inner peripheral surface of the core 52. The stator 30 has a plurality of coils 32 provided along the outer peripheral surface thereof. The coil 32 and the permanent magnet 10a are arranged so as to face each other.
本実施形態に係る回転機は、上記の永久磁石10aを備える。回転機の内部構造の一例は、図3に示される。本実施形態に係る回転機200は、永久磁石同期回転機(SPM回転機)である。回転機200は、円筒状のロータ50と、ロータ50の内側に配置されるステータ30と、を備えている。ロータ50は、円筒状のコア52と、コア52の内周面に沿って配置された複数の永久磁石10aと、を有している。複数の永久磁石10aは、コア52の内周面に沿ってN極とS極が交互に並ぶように配置されている。ステータ30は、その外周面に沿って設けられた複数のコイル32を有している。コイル32と永久磁石10aとは互いに対面するように配置されている。 (Rotating machine)
The rotating machine according to the present embodiment includes the
回転機200は、電動機(モータ)であってよい。電動機は、コイル32への通電によって生成する電磁石による界磁と、永久磁石10aによる界磁と、の相互作用により、電気エネルギーを機械的エネルギーに変換する。回転機200は、発電機(ジェネレータ)であってもよい。発電機は、永久磁石10aによる界磁とコイル32との相互作用(電磁誘導)により、機械的エネルギーを電気的エネルギーに変換する。
The rotating machine 200 may be an electric motor. The electric motor converts electrical energy into mechanical energy by the interaction between the field generated by the electromagnet generated by energizing the coil 32 and the field generated by the permanent magnet 10a. The rotating machine 200 may be a generator. The generator converts mechanical energy into electrical energy by the interaction (electromagnetic induction) between the field and the coil 32 by the permanent magnet 10a.
電動機(モータ)として機能する回転機200は、例えば、永久磁石直流モータ、リニア同期モータ、永久磁石同期モータ(SPMモータ、IPMモータ)、又は往復動モータであってよい。往復動モータとして機能するモータは、例えば、ボイスコイルモータ、又は振動モータであってよい。発電機(ジェネレータ)として機能する回転機200は、例えば、永久磁石同期発電機、永久磁石整流子発電機、又は永久磁石交流発電機であってよい。回転機200は、自動車、産業機械、又は家庭用電化製品等に用いられてよい。
The rotating machine 200 that functions as an electric motor (motor) may be, for example, a permanent magnet DC motor, a linear synchronous motor, a permanent magnet synchronous motor (SPM motor, IPM motor), or a reciprocating motor. The motor that functions as the reciprocating motor may be, for example, a voice coil motor or a vibration motor. The rotating machine 200 that functions as a generator may be, for example, a permanent magnet synchronous generator, a permanent magnet commutator generator, or a permanent magnet AC generator. The rotating machine 200 may be used for automobiles, industrial machines, household appliances, and the like.
以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲において、本発明の種々の変更が可能であり、これ等の変更例も本発明に含まれる。例えば、本発明に係る永久磁石は、熱間加工法、成膜法、又は放電プラズマ焼結(Spark Plasma Sintering)法等によって製造されてもよい。
The preferred embodiment of the present invention has been described above, but the present invention is not necessarily limited to the above-described embodiment. Various modifications of the present invention are possible without departing from the spirit of the present invention, and these modified examples are also included in the present invention. For example, the permanent magnet according to the present invention may be manufactured by a hot working method, a film forming method, a spark plasma sintering method, or the like.
以下では、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1)
以下に示す方法により、永久磁石を作製した。永久磁石の出発原料(単体又は合金)として、Nd、Ce、Fe、FeB、Al、Co、及びCuを準備した。各出発原料の純度は99.9質量%であった。永久磁石の組成が9.6原子%Nd‐6.4原子%Ce‐77.8原子%Fe‐5.0原子%B‐0.5原子%Al‐0.6原子%Co‐0.1原子%Cuとなるように、各出発原料を秤量して混合し、混合原料を調製した。ストリップキャスト法により、混合原料の溶融液をロールの表面で急冷することにより、合金の薄板を得た。 Example 1
A permanent magnet was produced by the method described below. Nd, Ce, Fe, FeB, Al, Co, and Cu were prepared as starting materials (single or alloy) for the permanent magnet. The purity of each starting material was 99.9% by mass. The composition of the permanent magnet is 9.6 atomic% Nd-6.4 atomic% Ce-77.8 atomic% Fe-5.0 atomic% B-0.5 atomic% Al-0.6 atomic% Co-0.1 Each starting material was weighed and mixed so as to be atomic% Cu to prepare a mixed material. An alloy thin plate was obtained by quenching the melt of the mixed raw material on the surface of the roll by strip casting.
以下に示す方法により、永久磁石を作製した。永久磁石の出発原料(単体又は合金)として、Nd、Ce、Fe、FeB、Al、Co、及びCuを準備した。各出発原料の純度は99.9質量%であった。永久磁石の組成が9.6原子%Nd‐6.4原子%Ce‐77.8原子%Fe‐5.0原子%B‐0.5原子%Al‐0.6原子%Co‐0.1原子%Cuとなるように、各出発原料を秤量して混合し、混合原料を調製した。ストリップキャスト法により、混合原料の溶融液をロールの表面で急冷することにより、合金の薄板を得た。 Example 1
A permanent magnet was produced by the method described below. Nd, Ce, Fe, FeB, Al, Co, and Cu were prepared as starting materials (single or alloy) for the permanent magnet. The purity of each starting material was 99.9% by mass. The composition of the permanent magnet is 9.6 atomic% Nd-6.4 atomic% Ce-77.8 atomic% Fe-5.0 atomic% B-0.5 atomic% Al-0.6 atomic% Co-0.1 Each starting material was weighed and mixed so as to be atomic% Cu to prepare a mixed material. An alloy thin plate was obtained by quenching the melt of the mixed raw material on the surface of the roll by strip casting.
水素粉砕により薄板を粉砕して、粗粉末を得た。
The thin plate was pulverized by hydrogen pulverization to obtain a coarse powder.
粗粉末に潤滑剤を添加した。潤滑剤はオレイン酸アミドであった。粗粉末における潤滑剤の含有率は0.1質量%であった。潤滑剤を添加した粗粉末を、高圧の窒素ガス雰囲気中でジェットミルにより粉砕して、微粉末を得た。微粉末の平均粒径(D50)は、3μmであった。
Lubricant was added to the coarse powder. The lubricant was oleic amide. The content of the lubricant in the coarse powder was 0.1% by mass. The coarse powder to which the lubricant was added was pulverized by a jet mill in a high-pressure nitrogen gas atmosphere to obtain a fine powder. The average particle diameter (D50) of the fine powder was 3 μm.
微粉末を成型機内の成型空間(キャビティ)に入れた。磁場中で微粉末を加圧して成形し、成形体を得た。加圧方向は、磁場方向に対して垂直な方向であった。磁場の強さは15×(103/4π)kA/mであった。微粉末に加えた圧力は140MPaであった。
The fine powder was put into a molding space (cavity) in the molding machine. A fine powder was pressed in a magnetic field and molded to obtain a molded body. The pressing direction was a direction perpendicular to the magnetic field direction. The strength of the magnetic field was 15 × (10 3 / 4π) kA / m. The pressure applied to the fine powder was 140 MPa.
成形体を焼結して、焼結体を得た。焼結温度は1000℃であった。焼結時間は4時間であった。
The sintered body was sintered to obtain a sintered body. The sintering temperature was 1000 ° C. The sintering time was 4 hours.
焼結体を加熱することにより、焼結体に時効処理を施した。時効処理の温度は950℃であった。時効処理の時間は12時間であった。時効処理後の焼結体の平均粒径(D50)は、3.2μmであった。
The sintered body was subjected to an aging treatment by heating the sintered body. The temperature of the aging treatment was 950 ° C. The time for aging treatment was 12 hours. The average particle size (D50) of the sintered body after the aging treatment was 3.2 μm.
湿式法により、時効処理後の焼結体の表面を平坦に加工して、実施例1の永久磁石を得た。
The surface of the sintered body after the aging treatment was processed flat by a wet method to obtain the permanent magnet of Example 1.
[磁気特性の測定]
B‐Hトレーサーを用いて、実施例1の永久磁石における減磁曲線を測定し、実施例1の永久磁石の保磁力HcJ(単位:kA/m)を求めた。減磁曲線の測定における最大印加磁界は3Tであった。実施例1のHcJを表1に示す。下記表中の保磁力HcJの単位(kOe)は、「×(103/4π)×(kA/m)」と等価である。HcJは、12×(103/4π)kA/m以上であることが好ましい。 [Measurement of magnetic properties]
Using a BH tracer, the demagnetization curve of the permanent magnet of Example 1 was measured, and the coercive force HcJ (unit: kA / m) of the permanent magnet of Example 1 was determined. The maximum applied magnetic field in the measurement of the demagnetization curve was 3T. HcJ of Example 1 is shown in Table 1. The unit (kOe) of the coercive force HcJ in the following table is equivalent to “× (10 3 / 4π) × (kA / m)”. HcJ is preferably 12 × (10 3 / 4π) kA / m or more.
B‐Hトレーサーを用いて、実施例1の永久磁石における減磁曲線を測定し、実施例1の永久磁石の保磁力HcJ(単位:kA/m)を求めた。減磁曲線の測定における最大印加磁界は3Tであった。実施例1のHcJを表1に示す。下記表中の保磁力HcJの単位(kOe)は、「×(103/4π)×(kA/m)」と等価である。HcJは、12×(103/4π)kA/m以上であることが好ましい。 [Measurement of magnetic properties]
Using a BH tracer, the demagnetization curve of the permanent magnet of Example 1 was measured, and the coercive force HcJ (unit: kA / m) of the permanent magnet of Example 1 was determined. The maximum applied magnetic field in the measurement of the demagnetization curve was 3T. HcJ of Example 1 is shown in Table 1. The unit (kOe) of the coercive force HcJ in the following table is equivalent to “× (10 3 / 4π) × (kA / m)”. HcJ is preferably 12 × (10 3 / 4π) kA / m or more.
[組成の分析]
磁気特性を測定した後の実施例1の永久磁石を不活性ガス雰囲気において加熱することにより、永久磁石の熱消磁を行った。ICP発光分析法により、熱消磁後の永久磁石におけるNd、Ce、Fe、B、Al、Co、及びCuそれぞれの含有量(単位:原子%)を測定した。なお、各含有量は、上記で測定された全ての元素の含有量の合計100原子%を基準として算出された。各結果を表1に示す。 [Analysis of composition]
The permanent magnet of Example 1 after measuring the magnetic properties was heated in an inert gas atmosphere, whereby the permanent magnet was thermally demagnetized. The contents (unit: atomic%) of Nd, Ce, Fe, B, Al, Co, and Cu in the permanent magnet after thermal demagnetization were measured by ICP emission analysis. In addition, each content was computed on the basis of the total of 100 atomic% of content of all the elements measured above. The results are shown in Table 1.
磁気特性を測定した後の実施例1の永久磁石を不活性ガス雰囲気において加熱することにより、永久磁石の熱消磁を行った。ICP発光分析法により、熱消磁後の永久磁石におけるNd、Ce、Fe、B、Al、Co、及びCuそれぞれの含有量(単位:原子%)を測定した。なお、各含有量は、上記で測定された全ての元素の含有量の合計100原子%を基準として算出された。各結果を表1に示す。 [Analysis of composition]
The permanent magnet of Example 1 after measuring the magnetic properties was heated in an inert gas atmosphere, whereby the permanent magnet was thermally demagnetized. The contents (unit: atomic%) of Nd, Ce, Fe, B, Al, Co, and Cu in the permanent magnet after thermal demagnetization were measured by ICP emission analysis. In addition, each content was computed on the basis of the total of 100 atomic% of content of all the elements measured above. The results are shown in Table 1.
[100×[Ce]L/[R]L]
実施例1の永久磁石に対して、SEM‐EDS分析により、R‐T相におけるNdの含有量[Nd]Lと、R‐T相におけるCeの含有量[Ce]Lとを測定した。[Nd]Lと[Ce]Lとを合計して、R‐T相におけるRの含有量の合計[R]Lを求めた。[Ce]Lと[R]Lとから、100×[Ce]L/[R]Lを求めた。結果を表1に示す。 [100 × [Ce] L / [R] L ]
For the permanent magnet of Example 1, the Nd content [Nd] L in the RT phase and the Ce content [Ce] L in the RT phase were measured by SEM-EDS analysis. [Nd] L and [Ce] L were summed to determine the total content [R] L of R in the RT phase. From [Ce] L and [R] L , 100 × [Ce] L / [R] L was determined. The results are shown in Table 1.
実施例1の永久磁石に対して、SEM‐EDS分析により、R‐T相におけるNdの含有量[Nd]Lと、R‐T相におけるCeの含有量[Ce]Lとを測定した。[Nd]Lと[Ce]Lとを合計して、R‐T相におけるRの含有量の合計[R]Lを求めた。[Ce]Lと[R]Lとから、100×[Ce]L/[R]Lを求めた。結果を表1に示す。 [100 × [Ce] L / [R] L ]
For the permanent magnet of Example 1, the Nd content [Nd] L in the RT phase and the Ce content [Ce] L in the RT phase were measured by SEM-EDS analysis. [Nd] L and [Ce] L were summed to determine the total content [R] L of R in the RT phase. From [Ce] L and [R] L , 100 × [Ce] L / [R] L was determined. The results are shown in Table 1.
(実施例2~5)
実施例2~5では、永久磁石の組成が表1に示す組成となるように各出発原料を秤量した。この点を除いて、実施例1と同様の方法により、実施例2~5それぞれの永久磁石を個別に作製した。実施例2~5それぞれの微粉末のD50、及び時効処理後の焼結体のD50を表1に示す。 (Examples 2 to 5)
In Examples 2 to 5, each starting material was weighed so that the composition of the permanent magnet was as shown in Table 1. Except for this point, permanent magnets of Examples 2 to 5 were individually manufactured by the same method as in Example 1. Table 1 shows D50 of each fine powder of Examples 2 to 5 and D50 of the sintered body after aging treatment.
実施例2~5では、永久磁石の組成が表1に示す組成となるように各出発原料を秤量した。この点を除いて、実施例1と同様の方法により、実施例2~5それぞれの永久磁石を個別に作製した。実施例2~5それぞれの微粉末のD50、及び時効処理後の焼結体のD50を表1に示す。 (Examples 2 to 5)
In Examples 2 to 5, each starting material was weighed so that the composition of the permanent magnet was as shown in Table 1. Except for this point, permanent magnets of Examples 2 to 5 were individually manufactured by the same method as in Example 1. Table 1 shows D50 of each fine powder of Examples 2 to 5 and D50 of the sintered body after aging treatment.
実施例1と同様の方法により、実施例2~5それぞれの永久磁石の磁気特性を分析した。実施例1と同様の方法により、実施例2~5それぞれの永久磁石の組成を分析した。実施例1と同様の方法により、実施例2~5それぞれの100×[Ce]L/[R]Lを求めた。各結果を表1に示す。
The magnetic properties of the permanent magnets of Examples 2 to 5 were analyzed in the same manner as in Example 1. The compositions of the permanent magnets of Examples 2 to 5 were analyzed in the same manner as in Example 1. In the same manner as in Example 1, 100 × [Ce] L / [R] L of each of Examples 2 to 5 was determined. The results are shown in Table 1.
(実施例6~8)
実施例6~8では、ジェットミルを用いて、微粉末のD50が表1に示す値となるように粗粉末を粉砕した。この点を除いて、実施例1と同様の方法により、実施例6~8それぞれの永久磁石を個別に作製した。実施例6~8それぞれの時効処理後の焼結体のD50を表1に示す。 (Examples 6 to 8)
In Examples 6 to 8, the coarse powder was pulverized using a jet mill so that the D50 of the fine powder became the value shown in Table 1. Except for this point, permanent magnets of Examples 6 to 8 were individually manufactured by the same method as in Example 1. Table 1 shows D50 of the sintered bodies after the aging treatment in Examples 6 to 8.
実施例6~8では、ジェットミルを用いて、微粉末のD50が表1に示す値となるように粗粉末を粉砕した。この点を除いて、実施例1と同様の方法により、実施例6~8それぞれの永久磁石を個別に作製した。実施例6~8それぞれの時効処理後の焼結体のD50を表1に示す。 (Examples 6 to 8)
In Examples 6 to 8, the coarse powder was pulverized using a jet mill so that the D50 of the fine powder became the value shown in Table 1. Except for this point, permanent magnets of Examples 6 to 8 were individually manufactured by the same method as in Example 1. Table 1 shows D50 of the sintered bodies after the aging treatment in Examples 6 to 8.
実施例1と同様の方法により、実施例6~8それぞれの永久磁石の磁気特性を分析した。実施例1と同様の方法により、実施例6~8それぞれの永久磁石の組成を分析した。実施例1と同様の方法により、実施例6~8それぞれの100×[Ce]L/[R]Lを求めた。各結果を表1に示す。
The magnetic properties of the permanent magnets of Examples 6 to 8 were analyzed by the same method as in Example 1. The compositions of the permanent magnets of Examples 6 to 8 were analyzed in the same manner as in Example 1. In the same manner as in Example 1, 100 × [Ce] L / [R] L of each of Examples 6 to 8 was determined. The results are shown in Table 1.
(比較例1及び2)
比較例1及び2では、永久磁石の組成が表1に示す組成となるように各出発原料を秤量した。この点を除いて、実施例1と同様の方法により、比較例1及び2それぞれの永久磁石を個別に作製した。比較例1及び2それぞれの微粉末のD50、及び時効処理後の焼結体のD50を表1に示す。 (Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, each starting material was weighed so that the composition of the permanent magnet was the composition shown in Table 1. Except for this point, the permanent magnets of Comparative Examples 1 and 2 were individually produced by the same method as in Example 1. Table 1 shows D50 of each fine powder of Comparative Examples 1 and 2 and D50 of the sintered body after aging treatment.
比較例1及び2では、永久磁石の組成が表1に示す組成となるように各出発原料を秤量した。この点を除いて、実施例1と同様の方法により、比較例1及び2それぞれの永久磁石を個別に作製した。比較例1及び2それぞれの微粉末のD50、及び時効処理後の焼結体のD50を表1に示す。 (Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, each starting material was weighed so that the composition of the permanent magnet was the composition shown in Table 1. Except for this point, the permanent magnets of Comparative Examples 1 and 2 were individually produced by the same method as in Example 1. Table 1 shows D50 of each fine powder of Comparative Examples 1 and 2 and D50 of the sintered body after aging treatment.
実施例1と同様の方法により、比較例1及び2それぞれの永久磁石の磁気特性を分析した。実施例1と同様の方法により、比較例1及び2それぞれの永久磁石の組成を分析した。実施例1と同様の方法により、比較例1及び2それぞれの100×[Ce]L/[R]Lを求めた。各結果を表1に示す。
In the same manner as in Example 1, the magnetic properties of the permanent magnets of Comparative Examples 1 and 2 were analyzed. The compositions of the permanent magnets of Comparative Examples 1 and 2 were analyzed by the same method as in Example 1. In the same manner as in Example 1, 100 × [Ce] L / [R] L of each of Comparative Examples 1 and 2 was determined. The results are shown in Table 1.
(比較例3)
比較例3における時効処理の温度は800℃であった。この点を除いて、実施例1と同様の方法により、比較例3の永久磁石を作製した。比較例3の微粉末のD50、及び時効処理後の焼結体のD50を表1に示す。 (Comparative Example 3)
The temperature of the aging treatment in Comparative Example 3 was 800 ° C. Except for this point, a permanent magnet of Comparative Example 3 was produced in the same manner as in Example 1. Table 1 shows D50 of the fine powder of Comparative Example 3 and D50 of the sintered body after the aging treatment.
比較例3における時効処理の温度は800℃であった。この点を除いて、実施例1と同様の方法により、比較例3の永久磁石を作製した。比較例3の微粉末のD50、及び時効処理後の焼結体のD50を表1に示す。 (Comparative Example 3)
The temperature of the aging treatment in Comparative Example 3 was 800 ° C. Except for this point, a permanent magnet of Comparative Example 3 was produced in the same manner as in Example 1. Table 1 shows D50 of the fine powder of Comparative Example 3 and D50 of the sintered body after the aging treatment.
実施例1と同様の方法により、比較例3の永久磁石の磁気特性を分析した。実施例1と同様の方法により、比較例3の永久磁石の組成を分析した。実施例1と同様の方法により、比較例3の100×[Ce]L/[R]Lを求めた。各結果を表1に示す。
The magnetic properties of the permanent magnet of Comparative Example 3 were analyzed by the same method as in Example 1. The composition of the permanent magnet of Comparative Example 3 was analyzed by the same method as in Example 1. 100 × [Ce] L / [R] L of Comparative Example 3 was determined by the same method as in Example 1. The results are shown in Table 1.
時効処理の温度を下記表1ではTAと表記する。100×[Ce]L/[R]Lを下記表1ではCe/Rと表記する。
The temperature of the aging treatment is denoted by the following Table 1, T A. 100 × [Ce] L / [R] L is expressed as Ce / R in Table 1 below.
表1に示すように、全ての実施例の保磁力は12kOe以上(955kA/m以上)であった。一方、保磁力が12kOe以上である比較例はなかった。本発明によれば、Ndの代替元素としてCeを含む永久磁石の中でも保磁力が大きい永久磁石が提供されることが確認された。
As shown in Table 1, the coercive force of all the examples was 12 kOe or more (955 kA / m or more). On the other hand, there was no comparative example having a coercive force of 12 kOe or more. According to the present invention, it has been confirmed that a permanent magnet having a large coercive force among the permanent magnets containing Ce as an alternative element of Nd is provided.
実施例6の微粉末のD50は、実施例1に比べて、小さかった。その結果、実施例6の保磁力は、実施例1に比べて、大きかったと考えられる。
D50 of the fine powder of Example 6 was smaller than that of Example 1. As a result, it is considered that the coercive force of Example 6 was larger than that of Example 1.
実施例7の微粉末のD50は、実施例1に比べて、大きかった。その結果、実施例7の保磁力は、実施例1に比べて、小さかったと考えられる。
The D50 of the fine powder of Example 7 was larger than that of Example 1. As a result, it is considered that the coercive force of Example 7 was smaller than that of Example 1.
実施例8の微粉末のD50は、実施例1に比べて、大きかった。その結果、実施例8の保磁力は、実施例1に比べて、小さかったと考えられる。
D50 of the fine powder of Example 8 was larger than that of Example 1. As a result, it is considered that the coercive force of Example 8 was smaller than that of Example 1.
比較例1の永久磁石は、Cuを含有しなかった。その結果、比較例1では、100×[Ce]L/[R]Lが低くなり、保磁力が小さかったと考えられる。
The permanent magnet of Comparative Example 1 did not contain Cu. As a result, in Comparative Example 1, it is considered that 100 × [Ce] L / [R] L was low and the coercive force was small.
比較例2では、[Cu]が多かったため、100×[Ce]L/[R]Lは大きかった。しかしながら、Nd‐Cu相の増加によって主相においてNdが不足し、異相(αFe)が析出した。その結果、保磁力が小さかったと考えられる。
In Comparative Example 2, since there was much [Cu], 100 × [Ce] L / [R] L was large. However, due to the increase in the Nd—Cu phase, Nd was insufficient in the main phase, and a heterogeneous phase (αFe) was precipitated. As a result, it is thought that the coercive force was small.
比較例3では、時効処理の温度が低かった。その結果、100×[Ce]L/[R]Lが低くなり、保磁力が小さかったと考えられる。
In Comparative Example 3, the temperature of the aging treatment was low. As a result, it is considered that 100 × [Ce] L / [R] L was low and the coercive force was small.
本発明に係る永久磁石は、例えば、回転機に用いられる。
The permanent magnet according to the present invention is used, for example, in a rotating machine.
3…R‐T相、5…Rリッチ相、7…異相、9…粒界相、10,10a…永久磁石、10cs…永久磁石の断面、11…主相粒子、30…ステータ、32…コイル、52…コア、200…回転機。
DESCRIPTION OF SYMBOLS 3 ... RT phase, 5 ... R rich phase, 7 ... Different phase, 9 ... Grain boundary phase, 10, 10a ... Permanent magnet, 10cs ... Permanent magnet cross section, 11 ... Main phase particle, 30 ... Stator, 32 ... Coil 52 ... Core, 200 ... Rotating machine.
Claims (2)
- 希土類元素R、遷移金属元素T、及びホウ素を含有する複数の主相粒子と、
前記複数の主相粒子の間に位置する粒界相と、を備える永久磁石であって、
前記希土類元素Rが、少なくともネオジム及びセリウムを含み、
前記遷移金属元素Tが、少なくとも鉄を含み、
前記永久磁石における銅の含有量が0.1~2原子%であり、
前記粒界相が、前記希土類元素R及び前記遷移金属元素Tの金属間化合物を含有するR‐T相を含み、
前記R‐T相における前記希土類元素Rの含有量の合計が[R]L原子%であり、
前記R‐T相におけるセリウムの含有量が[Ce]L原子%であり、
100×[Ce]L/[R]Lが75~100である、
永久磁石。 A plurality of main phase particles containing a rare earth element R, a transition metal element T, and boron;
A grain boundary phase located between the plurality of main phase particles, and a permanent magnet comprising:
The rare earth element R includes at least neodymium and cerium,
The transition metal element T includes at least iron;
The copper content in the permanent magnet is 0.1 to 2 atomic%,
The grain boundary phase includes an RT phase containing an intermetallic compound of the rare earth element R and the transition metal element T;
The total content of the rare earth element R in the RT phase is [R] L atomic%,
The cerium content in the RT phase is [Ce] L atomic%,
100 × [Ce] L / [R] L is 75-100,
permanent magnet. - 請求項1に記載の永久磁石を備える回転機。 A rotating machine comprising the permanent magnet according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017068787A JP2020095991A (en) | 2017-03-30 | 2017-03-30 | Sintered magnet abd rotary machine |
JP2017-068787 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181580A1 true WO2018181580A1 (en) | 2018-10-04 |
Family
ID=63677019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012975 WO2018181580A1 (en) | 2017-03-30 | 2018-03-28 | Permanent magnet and rotating machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020095991A (en) |
WO (1) | WO2018181580A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7535837B2 (en) | 2022-08-30 | 2024-08-19 | 煙台東星磁性材料株式有限公司 | Ce-added RE-TBM-based sintered magnetic material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240047103A1 (en) * | 2020-12-09 | 2024-02-08 | Tdk Corporation | R-t-b based permanent magnet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012171490A1 (en) * | 2011-06-17 | 2012-12-20 | Ningbo Institute Of Materials Technology And Engineering, Chinese Academy Of Sciences | Neodymium/iron/boron-based permanent magnet |
JP2015204390A (en) * | 2014-04-15 | 2015-11-16 | Tdk株式会社 | Permanent magnet and motor |
-
2017
- 2017-03-30 JP JP2017068787A patent/JP2020095991A/en active Pending
-
2018
- 2018-03-28 WO PCT/JP2018/012975 patent/WO2018181580A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012171490A1 (en) * | 2011-06-17 | 2012-12-20 | Ningbo Institute Of Materials Technology And Engineering, Chinese Academy Of Sciences | Neodymium/iron/boron-based permanent magnet |
JP2015204390A (en) * | 2014-04-15 | 2015-11-16 | Tdk株式会社 | Permanent magnet and motor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7535837B2 (en) | 2022-08-30 | 2024-08-19 | 煙台東星磁性材料株式有限公司 | Ce-added RE-TBM-based sintered magnetic material |
Also Published As
Publication number | Publication date |
---|---|
JP2020095991A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5754232B2 (en) | Manufacturing method of high coercive force NdFeB magnet | |
JP6733576B2 (en) | R-T-B system permanent magnet | |
JP6274216B2 (en) | R-T-B system sintered magnet and motor | |
JP6269279B2 (en) | Permanent magnet and motor | |
JP6330813B2 (en) | R-T-B system sintered magnet and motor | |
KR101378089B1 (en) | R-t-b sintered magnet | |
JP6729446B2 (en) | R-T-B system permanent magnet | |
JP5120710B2 (en) | RL-RH-T-Mn-B sintered magnet | |
JP6572550B2 (en) | R-T-B sintered magnet | |
JP7180096B2 (en) | Permanent magnet and rotating machine | |
WO2012002059A1 (en) | R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system | |
JP6536816B2 (en) | RTB based sintered magnet and motor | |
JP6733577B2 (en) | R-T-B system permanent magnet | |
WO2018181592A1 (en) | Permanent magnet and rotating machine | |
CN110537232B (en) | Permanent magnet and rotating electrical machine | |
JP2011021269A (en) | Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor | |
JP6037093B1 (en) | Method for producing RTB-based sintered magnet | |
WO2018181581A1 (en) | Permanent magnet and rotary machine | |
JP4951703B2 (en) | Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor | |
JP6624455B2 (en) | Method for producing RTB based sintered magnet | |
WO2018181580A1 (en) | Permanent magnet and rotating machine | |
JP5743458B2 (en) | Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor | |
JP7228096B2 (en) | Method for producing RTB based sintered magnet | |
JP2000082610A (en) | High electric resitivity rare earth permanent magnet and its manufacture | |
JP2005197299A (en) | Rare earth sintered magnet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |