WO2018181019A1 - Semiconductor device and manufacturing method therefor - Google Patents
Semiconductor device and manufacturing method therefor Download PDFInfo
- Publication number
- WO2018181019A1 WO2018181019A1 PCT/JP2018/011766 JP2018011766W WO2018181019A1 WO 2018181019 A1 WO2018181019 A1 WO 2018181019A1 JP 2018011766 W JP2018011766 W JP 2018011766W WO 2018181019 A1 WO2018181019 A1 WO 2018181019A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- semiconductor device
- terminal
- layer
- resistance change
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to a semiconductor device and a manufacturing method thereof.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- Examples of functional elements formed inside a copper multilayer wiring structure on a semiconductor device include a variable resistance nonvolatile element (hereinafter referred to as “resistance variable element”) and a capacitor (capacitance element).
- resistance variable element a variable resistance nonvolatile element
- capacitor capacitor
- Capacitors embedded on a logic LSI include an embedded DRAM (Dynamic Random Access Memory) and a decoupling capacitor. By mounting these capacitors on the copper wiring, it is possible to increase the capacity and area of the capacitor.
- FPGA Field Programmable Gate Array
- a resistance change element is a generic term for elements that store information by changing a resistance state, and has a three-layer structure in which a resistance change layer is sandwiched between a lower electrode and an upper electrode, and a voltage is applied between the two electrodes. This utilizes the phenomenon that the resistance change of the resistance change layer occurs.
- a resistance change element using metal bridge formation there are a ReRAM (Resistive RAM) using a metal oxide layer as a resistance change layer, a solid electrolyte switch element using a solid electrolyte, and the like.
- Non-Patent Document 1 and Non-Patent Document 2 report a resistance change phenomenon using a chalcogenide compound as a solid electrolyte.
- the solid electrolyte switch element has a structure in which a solid electrolyte layer is sandwiched between two electrodes (a lower electrode and an upper electrode).
- a metal that is chemically active and can be easily oxidized and reduced by voltage application is used for one of the two electrodes, and a chemically inert metal material is used for the other electrode. Used.
- a solid electrolyte switch element in an off state when the lower electrode (chemically active electrode) is grounded and a negative voltage is applied to the upper electrode (chemically inactive electrode), Metal atoms constituting the electrode are ionized and eluted into the solid electrolyte layer. The metal ions are attracted to the upper electrode (chemically inactive electrode) side, further receive electrons and become metal atoms, and the metal atoms form conductive metal bridges. When both electrodes are electrically connected by the metal bridge formed in the solid electrolyte, the switch is turned on (low resistance state). The operation of changing from the “off state” to the “on state” by applying the negative voltage is referred to as “set”.
- the solid electrolyte switch element can hold the “on state” and the “off state” in a non-volatile manner while no voltage is applied, and can repeatedly perform “programming” operation.
- application to a nonvolatile memory or a nonvolatile switch becomes possible.
- Patent Document 1 An example of a memory element using a solid electrolyte is disclosed in Patent Document 1.
- the memory element disclosed in Patent Document 1 has a configuration in which a memory layer in which a resistance change layer and an ion source layer are stacked is provided between a lower electrode and an upper electrode.
- the resistance change layer corresponds to a solid electrolyte layer
- the ion source layer corresponds to an electrode that supplies metal ions.
- the memory element disclosed in Patent Document 1 has a structure in which a vertically active structure is reversed from a structure in which a chemically active electrode is used as a lower electrode, which is employed in the solid electrolyte switch element.
- the “off state” has a lower leakage current, that is, a higher resistance. Therefore, in order to increase the resistance in the “off state”, a higher positive voltage is generally applied during the “reset” operation. However, when a positive voltage higher than a certain voltage is applied during the “reset” operation, dielectric breakdown occurs in the solid electrolyte layer. Once dielectric breakdown occurs, the state remains in a state of lower resistance than the normal ON state, and thereafter no resistance change is shown. The voltage that causes dielectric breakdown when this positive voltage is applied is called dielectric breakdown voltage. Therefore, a high reset voltage can be applied and a higher resistance OFF state can be obtained by designing and manufacturing the element so that the dielectric breakdown voltage becomes high.
- Patent Document 2 and Patent Document 3 disclose a two-terminal solid electrolyte switch element provided in a copper multilayer wiring structure on a CMOS substrate and a method for manufacturing the same.
- an active electrode for supplying metal ions into a solid electrolyte is formed by exposing a copper wiring itself exposed by opening a part of an insulating layer in a copper multilayer wiring structure on a CMOS substrate.
- a mode for producing a two-terminal solid electrolyte switch element is disclosed.
- Non-Patent Document 3 in the formation process of the laminated structure of the solid electrolyte switch element, the oxidation free energy is made more negative than copper in order to prevent the copper surface from being oxidized between the lower electrode copper and the solid electrolyte layer. It has been proposed to deposit a large metal as a valve metal and provide a “buffer structure” that suppresses copper oxidation by oxidizing the valve metal.
- Non-Patent Document 4 includes a complementary resistance change element in which two resistance change elements having a structure in which two lower electrodes exposed in the same opening are opposed to each other are connected in series, and the reliability of the resistance state is improved. Techniques for improving are disclosed.
- Patent Document 4 relates to a switching element using an ion conductor, and it has been proposed to configure a selector element by connecting a plurality of switch elements in parallel and commonly connecting ion conduction layers and the like.
- Patent Document 5 relates to a resistance change element using an ionic conductor, and it is proposed that two resistance change elements are connected through a common electrode, thereby functioning as a three-terminal solid electrolyte switch. ing.
- the present invention has been made to solve the problems of the technology as described above. It is an object of the present invention to provide a semiconductor device that employs a configuration of a variable resistance element in which variation in set voltage between elements is improved and a method for forming the same.
- a semiconductor device of the present invention provides: A semiconductor device including at least two or more resistance change elements, a first terminal (first wiring), and a second terminal (second wiring),
- the variable resistance elements are respectively Having a first electrode, a second electrode, and a resistance change layer sandwiched between the first electrode and the second electrode, Based on an electrical signal applied between the first electrode and the second electrode, the resistance value reversibly changes,
- Each first electrode of the variable resistance element is electrically connected to a first terminal, and each second electrode is electrically connected to a second terminal, and
- Each resistance change layer is separated from each other between at least two resistance change elements,
- the second electrodes are separated from each other between the variable resistance elements, and are electrically connected to each other only via the second terminal.
- a method for manufacturing a semiconductor device of the present invention includes: A method of manufacturing a semiconductor device having a plurality of resistance change elements provided in a multilayer copper wiring layer on a semiconductor substrate, Forming an insulating barrier film on the copper wiring also serving as the first electrode electrically connected to the first terminal; Forming an opening in the insulating barrier film and exposing a copper wiring surface also serving as the first electrode; A step of sequentially forming a buffer layer and a solid electrolyte layer on the entire surface including the opening; Forming a second electrode connected to the second terminal on the solid electrolyte layer.
- the plurality of resistance change elements are configured as components. Since the set semiconductor device is “set”, variation in the “set voltage” of the semiconductor device can be suppressed. In other words, the variation of the “set voltage” between the plurality of variable resistance elements, which is a component of the semiconductor device, is not suppressed, but the variation of the “set voltage” of the semiconductor device of the present invention is suppressed.
- FIG. 3 is a circuit diagram showing a configuration example of the semiconductor device of the first embodiment shown in FIG. 2.
- 6 is a graph comparing standardized set voltage distributions when two 2 Mb variable resistance elements are connected in parallel in the first embodiment.
- It is a fragmentary sectional view showing an example of 1 composition of a 3 terminal type semiconductor device of a 2nd embodiment.
- It is a circuit diagram which shows the example of 1 structure of the 3 terminal type semiconductor device of 2nd Embodiment.
- the semiconductor substrate includes a substrate on which a semiconductor element including a MOS transistor and a resistance element and a semiconductor device in which these semiconductor elements are combined are configured.
- the semiconductor substrate also includes a substrate such as a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin on Film Transistor) substrate, a liquid crystal manufacturing substrate.
- the plasma CVD (Chemical Vapor Deposition) method is, for example, a method in which a gaseous material or a vaporized liquid material (gas molecules) is continuously supplied to a reaction chamber under reduced pressure, and the molecules are excited by plasma energy. In this method, a continuous film is formed on a substrate by vapor phase reaction or substrate surface reaction.
- the CMP (Chemical Mechanical Polishing) method is a method of flattening the unevenness of the wafer surface that occurs during the multilayer wiring formation process by bringing the polishing liquid into contact with a rotating polishing pad while flowing the polishing liquid over the wafer surface and polishing it. .
- the CMP method is used not only for polishing and planarizing an interlayer insulating film, but also for forming a buried wiring called a damascene wiring.
- a method of forming damascene wiring will be briefly described in the case of using copper (Cu) as a wiring material.
- Cu is formed on the insulating film in which the groove is formed in advance. Thereafter, by the CMP method, the Cu buried in the trench is left, and excess Cu on the insulating film is polished and removed. In this way, a damascene wiring in which Cu is embedded in the groove is formed.
- Barrier metal refers to a conductive film having a barrier property that covers the side and bottom surfaces of the wiring in order to prevent the metal elements constituting the wiring from diffusing into the interlayer insulating film or the lower layer.
- the material constituting the wiring is a metal containing Cu as a main component, for example, tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), carbonitride is used to prevent diffusion of copper (Cu).
- a refractory metal such as tungsten (WCN), a nitride thereof, or a laminated film thereof is used as a barrier metal. These films are easy to process by dry etching and have good consistency with the LSI manufacturing process before Cu is used as a wiring material.
- the barrier insulating film is formed on the upper surface of the Cu wiring and has a function to prevent Cu oxidation and diffusion of Cu into the insulating film and a role as an etching stopper layer during processing.
- a SiC film, a SiCN film, a SiN film, or a laminated film thereof is used as the barrier insulating film.
- variable resistance element and a manufacturing method thereof according to a preferred embodiment of the present invention will be described in detail with reference to the drawings.
- each embodiment will be described in a technically preferable form for carrying out the present invention, the scope of the invention is not limited to the embodiment described below.
- FIG. 1 is a partial cross-sectional view showing the configuration of a variable resistance element, which is a component of the semiconductor device of the present invention.
- resistance variable element As a symbol indicating “resistance variable element”, “Rheostat (two-terminal variable resistor)” The notation is adopted.
- FIG. 2 is a partial cross-sectional view showing a configuration example of the two-terminal semiconductor device according to the first embodiment.
- FIG. 3 is a circuit diagram showing a circuit configuration of a configuration example of the two-terminal semiconductor device according to the first embodiment shown in FIG.
- the connection form of the terminals of each variable resistance element is indicated by a symbol.
- the two-terminal semiconductor device of the first embodiment is a two-terminal semiconductor device 150 including two resistance change elements 151a and 151b, a first terminal 153, and a second terminal 154.
- Each of the two resistance change elements 151a and 151b includes a first electrode 1, a second electrode 2, and a resistance change layer 3 sandwiched between the first electrode 1 and the second electrode 2, Based on the electrical signal applied between the electrode 1 and the second electrode 2, it has a function of reversibly changing the resistance value, The first electrodes 1 and the first terminals 153 of the two variable resistance elements 151a and 151b are electrically connected, and the second electrodes 2 and the second terminals 154 are electrically connected in parallel.
- the resistance change layers 3 of the individual resistance change elements 151a and 151b are separated from each other and independent.
- the resistance change layer 3 and the second electrode 2 are not separated between individual resistance change elements connected in parallel, and the common resistance change layer and the common second electrode are used, respectively, two resistance changes
- the variation (difference) in characteristics between the two resistance change elements increases due to the difference in shape between the two resistance change elements.
- the shapes of the individual variable resistance elements connected in parallel can be made uniform, resulting in two resistances. Variation (difference) in characteristics between changing elements can be reduced.
- both the first terminal 153 and the second terminal 154 are in the form of wiring.
- the first electrode 1 of each of the resistance change elements 151a and 152b is in direct contact with the first terminal 153
- the second electrode 2 is connected to the second terminal 154 via each via. It is.
- the configuration of the two-terminal semiconductor device shown in FIG. 2 is an example of the two-terminal semiconductor device of the first embodiment, and the first electrodes 1 of the two resistance change elements 151a and 151b are both If the second electrode 2 is electrically connected to the first terminal 153 and the second terminal 154, the two resistance change elements are electrically connected in parallel.
- the first electrode 1 of the two resistance change elements 151 a and 152 b can be selected as a configuration that also serves as the first terminal 153.
- a configuration in which the second electrode 2 is in direct electrical contact with the second terminal 154 without vias can be selected.
- the shape of the first terminal 153 or the second terminal 154 may be an island-like terminal shape instead of a wiring shape.
- the entire two-terminal semiconductor device 150 when a programming voltage is applied between the first terminal 153 and the second terminal 154, of the two resistance change elements 151a and 151b connected in parallel, When one of the resistance change elements having a lower “set voltage” changes from the “off (high resistance) state” to the “on (low resistance) state”, the entire two-terminal semiconductor device 150 is also turned off (high resistance). ) State changes to ON (low resistance) state. That is, when the applied programming voltage reaches a lower “set voltage” of the “set voltages” of the two resistance change elements 151 a and 151 b, the entire two-terminal semiconductor device 150 is “set”.
- the application condition of the “programming voltage” necessary for the “set” operation of the two-terminal semiconductor device of the first embodiment is the peripheral circuit in addition to the “set voltage” of the two “resistance change elements” And the desired “on-state” resistance value.
- the application of the “programming voltage” may be a pulse application or a sweep application. Further, as long as the potential of the second terminal 154 becomes a “negative voltage” with respect to the potential of the first terminal 153, the “programming voltage” may be applied in any “applied voltage polarity”.
- the “reset voltage” is applied between the first terminal 153 and the second terminal 154 in the same manner as in the “set” operation.
- the “reset current” flows only in one of the resistance change elements that is in the “on state”. Therefore, the “reset operation” is performed in one of the resistance change elements that is in the “on state”.
- no current is supplied to the other resistance change elements that originally remain in the “off state”.
- the entire two-terminal semiconductor device 150 in which the resistance change elements 151a and 151b are connected in parallel is also in the “off state”. Return to. In this way, as in the “set” operation, during the “reset” operation, of the two resistance change elements connected in parallel, only one of the resistance change elements having the lower “set voltage” is used. , Causing a resistance change.
- FIG. 4 shows a case where a single 2 Mb variable resistance element and a two-terminal semiconductor device in which two variable resistance elements are connected in parallel are “set” in the two-terminal semiconductor device of the first embodiment. It is the graph which compared standardized "set voltage” distribution. The median value of the “set voltage” variation (distribution) of the variable resistance element alone is normalized to 0, and the standard deviation is normalized to 1. The standard deviation representing the “set voltage” variation (distribution) of the entire two-terminal semiconductor device in which two variable resistance elements are connected in parallel is reduced from 1 to 0.83.
- the standardized minimum applied programming voltage required to “set” all the 2Mb elements is 4.8, but the two variable resistance elements are connected in parallel.
- the normalized minimum applied programming voltage required to “set” all 2 Mb elements is reduced to 3.0.
- a two-terminal semiconductor device in which two resistance change elements 151a and 151b are connected in parallel is taken as an example. Is explained. Even in the configuration of a two-terminal semiconductor device in which three or more variable resistance elements are connected in parallel, the operation principle is essentially the same. As the number of variable resistance elements that are connected in parallel to configure the two-terminal semiconductor device increases, the probability that a variable resistance element having a lower “set voltage” is included increases. In other words, there is a high probability that a plurality of resistance change elements connected in parallel include a resistance change element having a “set voltage” lower than the median of the “set voltage” distribution of the resistance change element alone. . As a result, when the number of resistance change elements connected in parallel is increased, variation in “set voltage” of the two-terminal semiconductor device to which the resistance change elements are connected in parallel can be further reduced.
- each first electrode 1 and first terminal 153 of a plurality of resistance change elements are connected, and each second electrode 2 and second terminal 154 are connected. It can be confirmed with various measuring instruments that the configuration is connected.
- each “resistance change element” is observed by observation with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). By examining the first electrode 1 and the second electrode 2 and the connection form thereof, it can be confirmed that the configuration is as described above.
- the second embodiment of the present invention is a configuration of a three-terminal semiconductor device configured by the pair of the two-terminal semiconductor device 150 described in the first embodiment.
- FIG. 5 is a partial cross-sectional view showing a configuration example of the three-terminal semiconductor device according to the second embodiment.
- FIG. 6 is a circuit diagram showing a configuration example of the three-terminal semiconductor device according to the second embodiment shown in FIG. In the circuit diagram, the connection form of the terminals of each variable resistance element is indicated by the symbols shown in FIG.
- the three-terminal semiconductor device of this embodiment is configured by the pair of the two-terminal semiconductor devices 150a and 150b described in the first embodiment, and each of the two-terminal semiconductor devices 150a and 150b.
- the second terminals 154a and 154b constituting the are electrically connected to the control terminal 157.
- the first terminal 153a of the two-terminal semiconductor device 150a and the first terminal 153b of the two-terminal semiconductor device 150b are electrically connected to the remaining two terminals of the three-terminal semiconductor device, respectively.
- the two terminals according to the first embodiment when a “programming voltage” is applied between the first terminal 153a and the control terminal 157 constituting the two-terminal semiconductor device 150a, the two terminals according to the first embodiment.
- one of the two resistance change elements 151a and 151b connected in parallel and constituting the two-terminal type semiconductor device 150a has a lower “set voltage”.
- the “programming voltage” reaches the “set voltage”
- the change element changes its resistance from the “off (high resistance) state” to the “on (low resistance) state”.
- the entire two-terminal semiconductor device 150a is “set”.
- the programming voltage applied exceeds the “set voltage” of one resistance change element that is already “ON”, but does not reach the “set voltage” of the other resistance change element. Therefore, after the “programming operation”, the other variable resistance element having the higher “set voltage” remains in the “off state”.
- the two-terminal semiconductor device 150b is the same as the two-terminal semiconductor device 150a described above.
- the two resistance change elements 151a and 151b that are connected in parallel and constitute 150b one of the resistance change elements having a lower “set voltage” reaches the “programming voltage” of the “set voltage”.
- the application conditions of the “programming voltage” necessary for the “set” operation of the two-terminal semiconductor devices 150a and 150b are the configurations of the two-terminal semiconductor devices.
- the “set voltage” of the two “resistance change elements” used in the above it depends on the form of the peripheral circuit, the desired “ON state” resistance value, and the like.
- the “programming voltage” may be applied by applying a pulse or a sweep.
- the “programming voltage” is applied in any “applied voltage polarity”. But you can.
- the two-terminal type semiconductor device 150a and the two-terminal type semiconductor device 150b are sequentially “set”, and both are turned “on”, whereby the first terminal 153a constituting the two-terminal type semiconductor device 150a and the two-terminal type semiconductor device Switching between the two terminals of the first terminal 153b constituting the device 150b is switched from the “high resistance state” to the “low resistance state”. As a result, the two terminals of the first terminal 153a constituting the two-terminal semiconductor device 150a and the first terminal 153b constituting the two-terminal semiconductor device 150b are electrically connected with low resistance. It becomes a state.
- the two-terminal semiconductor device 150a and the two-terminal semiconductor device 150b both adopt a configuration in which the resistance change elements 151a and 151b are connected in parallel. It is possible to transmit an electrical signal between the first terminal 153a and the first terminal 153b while reducing the variation of the “set voltage”.
- the operation mechanism of the “reset” operation of the two-terminal semiconductor device 150a and the two-terminal semiconductor device 150b is essentially the same as the operation mechanism described in the two-terminal semiconductor device of the first embodiment.
- the “reset voltage” is applied between the first terminal 153a or the first terminal 153b and the control terminal 157 as in the “set” operation. At this time, the “reset current” flows only in one of the resistance change elements that is in the “on state”. Therefore, the “reset operation” is performed in one of the resistance change elements that is in the “on state”. On the other hand, since no current is supplied to the other resistance change elements that originally remain in the “off state”, there is no influence.
- a three-terminal semiconductor device using two-terminal semiconductor devices 150a and 150b in which two resistance change elements 151a and 151b are connected in parallel is used.
- the operation principle of the semiconductor device of the present invention is described. Even in the configuration of a three-terminal semiconductor device using a two-terminal semiconductor device in which three or more variable resistance elements are connected in parallel, the operation principle is essentially the same. Probability of including a variable resistance element having a lower “set voltage” as the number of variable resistance elements connected in parallel in the two-terminal semiconductor device used in the configuration of the three-terminal semiconductor device increases. Becomes higher.
- the three-terminal semiconductor device of the second embodiment is an electric signal switch that transmits between the first terminal 153a and the first terminal 153b.
- the two-terminal semiconductor device 150 described in the first embodiment is similar to the case where a total of four resistance change elements are connected in parallel. It becomes composition.
- the three-terminal semiconductor device configuration of the second embodiment is also configured by a pair of two two-terminal semiconductor devices 150a and 150b, and the second terminal 154a that constitutes each of the two-terminal semiconductor devices 150a and 150b, It can be confirmed with various measuring instruments that both 154b are electrically connected to the control terminal 157.
- the three-terminal semiconductor device of the second embodiment is formed in a multilayer copper wiring layer on a semiconductor substrate, the first electrode 1 of each “resistance change element” is observed by TEM observation and SEM observation. And the second electrode 2, the second terminals 154a, 154b, and the control terminal 157 can be checked to confirm the configuration described above.
- the semiconductor device of the third embodiment is configured to employ a solid electrolyte switch element as a resistance change element used in the configuration of the two-terminal semiconductor device described in the first embodiment.
- FIG. 7A is a partial cross-sectional view schematically showing a configuration of a solid electrolyte switch element used as a variable resistance element constituting the semiconductor device of the third embodiment.
- the solid electrolyte switch element 159 used in the third embodiment includes a first electrode 1, a second electrode 2, and a resistance change sandwiched between the first electrode 1 and the second electrode 2.
- the resistance change layer 3 includes a buffer layer 4 and a solid electrolyte layer 5 capable of conducting metal ions in the order closer to the first electrode 1.
- the 1st electrode 1 is comprised with the material used as the supply source of metal ion.
- the 1st electrode 1 consists of a metal material containing copper from a viewpoint of controllability of metal ionization and supply, and the metal ion supplied from this metal material is a copper ion.
- the second electrode 2 is made of a material containing a metal that is harder to ionize than the metal material used for the first electrode 1.
- the 2nd electrode 2 is comprised with the material containing Ru from a viewpoint of the ease of electrode processing.
- the buffer layer 4 is provided in contact with the entire surface of the first electrode 1 and is made of a material capable of suppressing oxidation of the surface of the first electrode 1.
- the buffer layer 4 is preferably made of a material containing at least one of Al, Hf, Ta, Ti, and Zr.
- the solid electrolyte layer 5 has a role of dissolving metal ions supplied from the first electrode 1 by applying a voltage between the first electrode 1 and the second electrode 2.
- Metal ions dissolved in the solid electrolyte layer 5, for example, copper ions, are transported by an electric field caused by a voltage applied between the first electrode 1 and the second electrode 2.
- the solid electrolyte layer can be obtained by a solid electrolyte material in which copper ions are easily eluted from a metal material containing copper or can be recovered by reducing the copper ions to copper by an electric field caused by an applied voltage. 5 is produced.
- the solid electrolyte material for producing the solid electrolyte layer 5 is preferably a material with little material deterioration due to switching cycles.
- the solid electrolyte layer 5 uses, for example, an oxide containing at least one of Al, Co, Fe, Hf, Mn, Si, Ta, Ti, Zn, and Zr, chalcogenide, amorphous Si, SiOCH, or the like. Is produced.
- the semiconductor device of the third embodiment is a semiconductor device in which at least two solid electrolyte switch elements are connected in parallel as resistance change elements.
- the semiconductor device of the third embodiment manufactured using a solid electrolyte switch element, as well as the two-terminal semiconductor device having the configuration described in the first embodiment the variation in set voltage is suppressed. Is possible.
- the semiconductor device according to the fourth embodiment has a configuration in which the two-terminal semiconductor device according to the first embodiment is provided inside a multilayer wiring structure formed on a semiconductor substrate.
- FIG. 8 schematically shows an example of the configuration of the semiconductor device of the fourth embodiment, in which a solid electrolyte switch element is employed as a variable resistance element and is provided inside a multilayer wiring structure formed on a semiconductor substrate. It is the fragmentary sectional view shown in.
- a solid electrolyte switch element 159 is provided as a resistance change element on a semiconductor substrate 101 with a first interlayer insulating film 102 interposed therebetween.
- the solid electrolyte switch element 159 used in the semiconductor device of the fourth embodiment has the same configuration as the solid electrolyte switch element used in the configuration of the semiconductor device of the third embodiment.
- the solid electrolyte switch element 159 described in the third embodiment includes a first electrode 1 and a second electrode 2, and a variable resistance layer sandwiched between the first electrode 1 and the second electrode 2.
- the resistance change layer 3 includes a buffer layer 4 and a solid electrolyte layer 5 capable of conducting the metal ions in the order closer to the first electrode 1.
- the solid electrolyte switch element 159 used in the semiconductor device of the fourth embodiment adopts the configuration shown in FIG. 7B.
- the buffer layer 4 is composed of a first metal oxide layer 6 and a second metal oxide layer 7.
- the solid electrolyte switch element 159 used in the semiconductor device of the fourth embodiment includes a lower wiring 106, a first metal oxide layer (not shown), a second metal oxide layer (not shown), and a solid electrolyte layer. 123, a first upper electrode 124, and a second upper electrode 125.
- the configuration shown in FIG. 8 can be adopted for the lower wiring 106, the first metal oxide layer, the second metal oxide layer, the solid electrolyte layer 123, and the first upper electrode 124.
- the lower wiring 106 corresponds to the first electrode 1 shown in FIG. 7B.
- the first metal oxide layer 121 corresponds to the first metal oxide layer 6, and the second metal oxide layer 122 corresponds to the second metal oxide layer 7.
- the solid electrolyte layer 123 corresponds to the solid electrolyte layer 5, and the first upper electrode 124 corresponds to the second electrode 2.
- the operation principle of the solid electrolyte switch element having the configuration shown in FIG. 7B is the same as the operation principle of the solid electrolyte switch element having the structure shown in FIG. 7A described in the third embodiment. Therefore, in the fourth embodiment, Detailed description thereof is omitted.
- the first metal oxide layer 121 is, for example, TiO y1 with an oxygen composition y1 with a thickness of 0.5 nm satisfying 1.5 ⁇ y1 ⁇ 2.0. Can be produced.
- the second metal oxide layer 127 functions as a passive layer, and can suppress oxidation of the lower wiring 106 containing Cu in the lower layer.
- the second metal oxide layer 122 is, for example, an AlO x1 having a 0.3 nm-thickness oxygen composition x1 satisfying 1.3 ⁇ x1 ⁇ 1.5. Can be produced.
- the solid electrolyte layer 123 can be made of, for example, a 6 nm thick SiOCH film.
- the first upper electrode 124 can be made of, for example, Ru 0.5 Ti 0.5 having a thickness of 10 nm.
- the second upper electrode 125 is a conductive film having a barrier property, and is formed to prevent the metal contained in the first upper electrode 124 in contact with the lower part from diffusing into the via plug 144 or the like.
- the second upper electrode 125 can be made of Ta with a film thickness of 25 nm, for example.
- a second hard mask film 128 and a third hard mask film 129 are formed on the stacked body of the first upper electrode 124 and the second upper electrode 125 in the solid electrolyte switch element 159.
- the upper surface of the first barrier insulating film 107 is covered with a protective insulating film 130.
- the lower wiring 106 is a wiring buried in a wiring groove formed in the second interlayer insulating film 103 and the first cap insulating film 104 via the first barrier metal 105.
- the lower wiring 106 By forming the lower wiring 106 from a metal material whose main component is Cu, it is used as a lower electrode corresponding to the first electrode 1 in the solid electrolyte switch element having the configuration shown in FIG. 7B. With this configuration, the lower wiring 106 can have a function of ionizing Cu atoms in the lower wiring 106 and eluting them into the solid electrolyte layer 123.
- the lower wiring 106 by forming the lower wiring 106 with a Cu material structure, a metal component that has not been formed in the first metal oxide layer 121 while being unoxidized can be alloyed with Cu and diffused into the lower wiring 106.
- the interface between the lower wiring 106 and the first metal oxide layer 121 is An alloy layer mainly composed of Cu and Ti is formed.
- the solid electrolyte layer 123 and the lower wiring 106 are connected at the opening of the first barrier insulating film 107 via the first metal oxide layer 121 and the second metal oxide layer 122. At this time, the width of the lower wiring 106 connected to the solid electrolyte layer 123 through the metal oxide layer is preferably larger than the diameter of the opening of the barrier insulating film 107.
- the first barrier metal 105 is a conductive film having a barrier property similar to that of the second upper electrode 125.
- the first barrier metal 105 covers the side surface and the bottom surface of the lower wiring 106.
- the metal contained in the lower wiring 106 diffuses into the first interlayer insulating film 102, the second interlayer insulating film 103, the first cap insulating film 104, and the like.
- a refractory metal such as Ta, TaN, TiN, WCN, nitride thereof, or the like
- a laminated film is used for the formation of the first barrier metal 105.
- the upper wiring 145 is a wiring buried in a wiring groove formed in the third interlayer insulating film 141 and the second cap insulating film 142 via the second barrier metal 143.
- the upper wiring 145 is integrated with the via plug 144.
- the via plug 144 is embedded in a prepared hole formed in the protective insulating film 130, the third hard mask film 129, and the second hard mask film 128 via the second barrier metal 143.
- the via plug 144 is electrically connected to the first upper electrode 124 and the second upper electrode 125 of the solid electrolyte switch element 159 via the second barrier metal 143.
- Cu is used to manufacture the upper wiring 145 and the via plug 144.
- the second barrier metal 143 is a conductive film having the same barrier properties as the first barrier metal 105.
- the second barrier metal 143 covers the side surfaces and the bottom surface of the upper wiring 145 and the via plug 144.
- the second barrier metal 143 formed of a conductive film having a barrier property is such that the metal included in the upper wiring 145 and the via plug 144 is the first via interlayer insulating film 140, the third interlayer insulating film 141, and the second cap insulating film. The diffusion to 142 is prevented.
- the upper wiring 145 and the via plug 144 are made of a metal material containing Cu as a main component, Ta, TaN, TiN, WCN are formed as in the first barrier metal 105.
- Such a refractory metal, a nitride thereof, or a laminated film thereof is used.
- the second barrier metal 143 is preferably made of the same material as the second upper electrode 125 which is a part of the configuration of the solid electrolyte switch element 159 from the viewpoint of reducing the contact resistance.
- the second upper electrode 125 is made of Ta, it is preferable to use Ta also for the production of the second barrier metal 143 in contact with the upper portion thereof.
- the third hard mask film 129 is a film that serves as a hard mask when the second hard mask film 128 is etched.
- the third hard mask film 129 is preferably a different type of film from the second hard mask film 128.
- the second hard mask film 128 is a SiCN film
- a SiO 2 film can be used for the third hard mask film 129.
- the protective insulating film 130 further prevents diffusion of constituent atoms (for example, copper ions) from the solid electrolyte switch element 159 to the first via interlayer insulating film 140 without damaging the solid electrolyte switch element 159 whose side surface is exposed.
- This is an insulating film having a function.
- a SiN film, a SiCN film, or the like can be used for the production of the protective insulating film 130.
- the first barrier insulating film 107 and the second barrier insulating film 146 are insulating films having a function of preventing diffusion of metal (for example, copper ions).
- the lower wiring 106 corresponding to the first electrode 1 and the first metal oxide layer through the opening provided in the first barrier insulating film 107 121 is in contact.
- a Cu electrode serving also as a Cu wiring can be used as the first electrode 1, and a resistance change element using a Cu electrode can be formed in the multilayer wiring structure on the CMOS substrate. Since the lower electrode of the variable resistance element also functions as a Cu wiring, the manufacturing process can be simplified.
- the semiconductor device of the fourth embodiment shown in FIG. 8 can be manufactured by applying the manufacturing method of FIGS. 9A to 9J in which the variable resistance element is provided inside the multilayer wiring structure on the semiconductor substrate.
- FIG. 9A to FIG. 9J are partial cross-sectional views for explaining a manufacturing method for providing a solid electrolyte switch element in a multilayer wiring structure on a semiconductor substrate, which employs the configuration shown in FIG. 7B.
- a first interlayer insulating film 102, a second interlayer insulating film 103, and a first cap insulating film 104 are sequentially formed on the semiconductor substrate 101.
- the semiconductor substrate 101 here may be the semiconductor substrate itself or a substrate on which a semiconductor element (not shown) is formed on the surface of the substrate.
- the first interlayer insulating film 102 is a 300 nm thick SiO 2 film
- the second interlayer insulating film 103 is a 150 nm thick SiOCH film
- the first cap insulating film 104 is a 100 nm thick SiO 2 film. Can be produced.
- a wiring trench is formed in the laminated film of the first cap insulating film 104, the second interlayer insulating film 103, and the first interlayer insulating film 102 by using a lithography method.
- This lithography method includes a photoresist forming process for forming a resist with a predetermined pattern on the first cap insulating film 104, a dry etching process for performing anisotropic etching on the laminated film using the resist as a mask, and an etching process. And a process of removing the resist after forming the wiring trench.
- the first barrier metal 105 can be formed with, for example, a stacked structure of TaN (film thickness 5 nm) / Ta (film thickness 5 nm).
- Cu can be used as the material of the lower wiring 106.
- a first barrier insulating film 107 is formed on the first cap insulating film 104 including the lower wiring 106.
- the first barrier insulating film 107 can be formed of, for example, a SiCN film having a thickness of 30 nm.
- a first hard mask film 108 is formed on the first barrier insulating film 107.
- the first hard mask film 108 is preferably made of a material different from that of the first barrier insulating film 107 from the viewpoint of maintaining a high etching selectivity in the dry etching process.
- the first hard mask film 108 can be manufactured using, for example, a SiO 2 film.
- the first hard mask film 108 can be manufactured using, for example, a SiO 2 film having a thickness of 40 nm.
- a photoresist having a predetermined opening pattern is formed on the first hard mask film 108 and dry etching is performed to form openings in the first hard mask film 108.
- the photoresist is removed by O 2 plasma ashing or the like.
- the first barrier insulating film 107 exposed at the bottom of the opening of the first hard mask film 108 is etched back, so that an opening exposing a part of the upper surface of the lower wiring 106 is formed in the first barrier insulating film 107.
- the first hard mask film 108 is formed by using a SiO 2 film having a thickness of 40 nm, and is removed by etching during this etch back. After this etch-back, as shown in FIG. 9B, the surface of the lower wiring 106 exposed at the bottom of the opening is cleaned by plasma irradiation using an organic solvent or a gas containing H 2 or an inert gas.
- step A1 9A to 9B are defined as step A1.
- the etch back for forming the opening of the first barrier insulating film 107 can be performed using plasma containing CF 4 when the first barrier insulating film 107 is a SiN film or a SiCN film. It is.
- the ionicity at the time of etching can be improved, and the side wall of the first barrier insulating film 107 can be tapered.
- the first hard mask film 108 can be removed by etching by this etch back.
- the first metal layer 161 includes at least one of Ti, Zr, and Hf.
- the second metal layer 162 includes at least one of Al, Nb, and Ta.
- the first metal layer 161 can be formed using a Ti film having a thickness of 0.5 nm
- the second metal layer can be formed using an Al film having a thickness of 0.2 nm.
- the first metal layer 161 and the second metal layer 162 are deposited, the first metal layer 161 and the second metal layer 162 are irradiated with a gas containing O 2 under reduced pressure without being exposed to the atmosphere. Oxidation treatment is performed. Subsequently, by performing vacuum heat treatment at a temperature higher than the film formation temperature under reduced pressure, the first metal oxide layer 121 and the second metal oxide layer 122 are simultaneously formed as shown in FIG. 9C.
- a solid electrolyte layer 123 is deposited on the formed second metal oxide layer 122.
- a 6-nm-thick SiOCH film can be used.
- the solid electrolyte layer 123 is deposited by a plasma CVD method, and then an inert gas plasma process is performed.
- the first upper electrode 124 and the second upper electrode 125 are formed in this order on the solid electrolyte layer 123 by DC sputtering.
- the lower wiring 106, the first metal oxide layer 121, the second metal oxide layer 122, the solid electrolyte layer 123, the first upper electrode 124, and the second upper electrode 125 constitute a stacked body that becomes the solid electrolyte switch element 159.
- the first upper electrode 124 can be formed of, for example, a Ru 0.5 Ti 0.5 film having a thickness of 10 nm.
- the second upper electrode 125 can be formed of, for example, a Ta film having a thickness of 25 nm.
- the first upper electrode 124 is made of Ru or a Ru alloy
- the first upper electrode 124 is continuously deposited without being exposed to the atmosphere after the deposition of the first upper electrode 124 in order to prevent surface oxidation of the first upper electrode 124.
- two upper electrodes 125 are deposited.
- the second hard mask film 128 and the third hard mask film 129 are stacked in this order on the second upper electrode 125.
- the second hard mask film 128 is preferably made of the same material as that of the first barrier insulating film 107 from the viewpoint of adhesion, and can be made of, for example, a SiCN film having a thickness of 30 nm.
- the third hard mask film 129 can be made of, for example, a 100 nm thick SiO 2 film.
- step A2 9A to 9D is referred to as step A2.
- the first metal layer 161 and the second metal layer 162 can be deposited by resistance heating of a metal raw material, electron beam irradiation, laser vapor deposition, DC sputtering, or the like.
- a metal raw material electron beam irradiation, laser vapor deposition, DC sputtering, or the like.
- DC sputtering is used with Ti as a target, sputtering power of 100 W, substrate temperature at room temperature, Ar flow rate of 20 sccm, and pressure of 0.5 Pa.
- a Ti film having a thickness of 0.5 nm for the first metal layer 161 can be deposited.
- the second metal layer 162 is formed of an Al film
- DC sputtering is used, using Al as a target, sputtering power of 150 W, substrate temperature at room temperature, Ar flow rate of 20 sccm, and pressure of 0.5 Pa.
- sputtering power 150 W
- substrate temperature at room temperature Ar flow rate of 20 sccm
- pressure 0.5 Pa.
- an Al film having a thickness of 0.2 nm for the second metal layer 162 can be deposited.
- the first metal oxide layer 121 formed by oxidation of the first metal layer 161 and the second metal oxide layer 161 are oxidized by irradiating with gas containing O 2 without being exposed to the atmosphere.
- the degree of oxidation of the second metal oxide layer 122 formed by the oxidation of the metal layer 162 can be accurately controlled.
- the substrate temperature is set to room temperature.
- the heat treatment after the above-described oxidation treatment is performed by, for example, forming the first metal layer 161 with a 0.5 nm-thick Ti film and the second metal layer 162 with a 0.2 nm-thickness.
- the N 2 and O 2 flow rate is 10/10 sccm
- the pressure is 900 Pa
- the processing time is 30 seconds at a substrate temperature of 400 ° C. or lower.
- the vacuum means a state where the atmospheric pressure in the chamber is as low as possible, and is at least a lower pressure than the above-described oxidation treatment.
- the film thickness of the first metal oxide layer 121 is preferably 1.0 nm or less, and the film thickness of the second metal oxide layer 122 is preferably 0.8 nm or less.
- step A2 when a SiOCH film is used for the solid electrolyte layer 123, the SiOCH film is formed by the plasma CVD method under the following conditions.
- the raw material is liquid SiOCH monomer molecules
- the substrate temperature is 400 ° C. or less
- the He flow rate is 500 to 2000 sccm
- the raw material flow rate is 0.1 to 0.8 g / min
- the plasma CVD chamber pressure is 360 to 700 Pa
- the RF power is 20 to 100 W.
- the SiOCH film for the solid electrolyte layer 123 can be deposited under the conditions of a substrate temperature of 350 ° C., a He flow rate of 1500 sccm, a raw material flow rate of 0.75 g / min, a plasma CVD chamber pressure of 470 Pa, and an RF power of 50 W.
- the inert plasma treatment after depositing the SiOCH film for the solid electrolyte layer 123 uses He as an inert gas
- the substrate temperature is set to 400 ° C. or less
- the He flow rate is 500 to 1500 sccm
- the plasma chamber pressure is 2.7 to 3. This can be done by setting 5 Torr and RF power 20 to 200 W, respectively.
- the adhesion with the first upper electrode 124 to be deposited next can be improved.
- the Ru 0.5 Ti 0.5 alloy film may be deposited by simultaneous DC sputtering using Ru and Ti as targets. It can.
- a Ru 0.5 Ti 0.5 alloy film can be deposited by using the conditions of Ru sputtering power 120 W, Ti sputtering power 150 W, substrate temperature at room temperature, Ar flow rate 20 sccm, and pressure 0.5 Pa. Further, after the first upper electrode 124 is deposited, the second upper electrode 125 is continuously deposited without being exposed to the atmosphere.
- the second upper electrode 125 is made of Ta with a film thickness of 25 nm
- the sputtering power is 300 W
- the substrate temperature is room temperature
- the Ar flow rate is 25 sccm
- the pressure is 0.5 Pa by DC sputtering.
- both the second hard mask film 128 and the third hard mask film 129 can be formed using a general plasma CVD method in the technical field of semiconductor manufacturing.
- the film formation temperature can be selected in the range of 200 ° C. to 400 ° C.
- the film formation temperature can be selected to be 350 ° C. during the film formation by the plasma CVD method.
- the third hard mask film 129 is dry-etched until the second hard mask film 128 appears. Subsequently, after removing the photoresist by O 2 plasma ashing, the second hard mask film 128, the second upper electrode 125, the first upper electrode 124, the solid electrolyte layer 123, and the third hard mask film 129 are used as a mask. The second metal oxide layer 122 and the first metal oxide layer 121 are continuously dry etched. FIG. 9E shows the state after the etching.
- Step A2 the process until the structure shown in FIG. 9E is formed is referred to as Step A3.
- step A3 the dry etching of the third hard mask film 129 is preferably stopped on the upper surface or inside the second hard mask film 128.
- the solid electrolyte switch element 159 is covered with the second hard mask film 128, it is not exposed to O 2 plasma.
- the first upper electrode 124 containing Ru is not exposed to O 2 plasma. Therefore, the occurrence of side etching with respect to the first upper electrode 124 can be suppressed.
- a general parallel plate type dry etching apparatus can be used for the dry etching of the third hard mask film 129.
- Step A3 each etching of the second hard mask film 128, the second upper electrode 125, the first upper electrode 124, the solid electrolyte layer 123, the second metal oxide layer 122, and the first metal oxide layer 121 is performed. Also, it can be performed collectively using a parallel plate type dry etcher.
- the substrate bias power can be 100 to 300 W.
- the solid electrolyte layer 123 eg, SiOCH film
- the first upper electrode 124 Ru 0.5 Ti 0.5 alloy film
- the second metal oxide layer 122 for example, an AlO x1 film having a thickness of 0.3 nm where the oxygen composition x1 satisfies 1.3 ⁇ x1 ⁇ 1.5
- the first metal oxide layer 121 for example, In the etching of a 0.5 nm-thick TiO y1 film in which the oxygen composition y1 satisfies 1.5 ⁇ y1 ⁇ 2.0, when a Ru 0.5 Ti 0.5 alloy film is used for the first upper electrode 124, the solid electrolyte layer Similarly to 123 (SiOCH film), the etching can be performed under the same conditions as those for etching the first upper electrode 124 (Ru 0.5 Ti 0.5 alloy film).
- the second metal oxide layer 122 (AlO x1 film) and the first metal oxide layer 121 (TiO y1 film) are replaced with the first upper electrode 124 (Ru 0.5 Ti 0.5 alloy film) and the solid electrolyte layer 123 (SiOCH film). Etching can be performed at once.
- the second hard mask film 128, the second upper electrode 125, the first upper electrode 124, the solid electrolyte layer 123, the second metal oxide layer 122, and the first metal oxide are formed under the above-described conditions.
- the remaining thickness of the third hard mask film 129 made of a 100 nm thick SiO 2 film can be set to 50 nm.
- a third hard mask film 129, a second hard mask film 128, a second upper electrode 125, a first upper electrode 124, a solid electrolyte layer 123, a second metal oxide layer 122, and A protective insulating film 130 is deposited on the top and side walls of the laminated structure composed of the first metal oxide layer 121 and the first barrier insulating film 107.
- the protective insulating film 130 is preferably made of the same material as the first barrier insulating film 107 and the second hard mask film 128, and can be made of, for example, a SiCN film having a thickness of 30 nm.
- a first via interlayer insulating film 140 is deposited on the protective insulating film 130 by using a plasma CVD method.
- the first via interlayer insulating film 140 can be made of, for example, a SiO 2 film having a thickness of 210 nm.
- the first via interlayer insulating film 140 is planarized using a CMP method.
- a third interlayer insulating film 141 and a second cap insulating film 142 are deposited in this order on the first via interlayer insulating film 140 as shown in FIG. 9G.
- the third interlayer insulating film 141 is formed of a material different from that of the first via interlayer insulating film 140 in order to use the first via interlayer insulating film 140 that is in contact with the lower portion during etching processing as an etching stopper layer.
- the third interlayer insulating film 141 can be formed by a SiOCH film having a film thickness of 150 nm, for example.
- step S3 the process until the structure shown in FIG. 9G is formed is referred to as step A4.
- step A4 for example, when a SiCN film is used to form the protective insulating film 130, it can be formed using plasma CVD at a substrate temperature of 200 ° C. using tetramethylsilane and ammonia as source gases.
- the protective insulating film 130 By forming the protective insulating film 130 using the SiCN film, the first barrier insulating film 107, the protective insulating film 130, and the second hard mask film 128 can all be formed of the SiCN film.
- the first barrier insulating film 107, the protective insulating film 130, and the second hard mask film 128 are formed of the same material, and the periphery of the solid electrolyte switch element 159 is integrated and protected, thereby improving the adhesion at the interface and absorbing moisture. Performance, water resistance and oxygen desorption resistance can be improved, and the yield and reliability of the device can be improved.
- step A4 in the planarization of the first via interlayer insulating film 140, about 100 nm can be removed from the top surface of the first via interlayer insulating film 140, and the remaining film thickness can be set to about 110 nm.
- CMP chemical-mechanical polishing
- for the first via interlayer insulating film 140 can be polished using a general colloidal silica or ceria-based slurry.
- Step A4 the third interlayer insulating film 141 and the second cap insulating film 142 can be deposited using a general plasma CVD method.
- the upper wiring 145 and the via plug 144 shown in FIG. 9J are formed by using the dual damascene via first method.
- a photoresist having the pattern of the via hole 147 for the via plug 144 shown in FIG. 9J is formed on the second cap insulating film 142.
- the second cap insulating film 142, the third interlayer insulating film 141, the first via interlayer insulating film 140, the protective insulating film 130, and the third hard mask film 129 are penetrated by dry etching, as shown in FIG. 9H.
- a via hole 147 for the via plug 144 is formed.
- the photoresist is removed by performing plasma ashing including H 2 gas and organic peeling.
- the second cap insulating film 142 and the third interlayer insulating film are formed by dry etching.
- a wiring groove 148 for the upper wiring 145 shown in FIG. 9J is formed in the film 141.
- plasma ashing including H 2 gas and organic peeling are performed to remove the photoresist.
- Step A5 the process until the structure shown in FIG. 9I is formed is referred to as Step A5.
- step A5 after forming the via hole 147, an ARC (Anti-Reflection Coating: antireflection film) or the like is buried on the via hole 147, thereby preventing the bottom of the via hole 147 from penetrating when the wiring trench 148 is formed by dry etching. can do.
- ARC Anti-Reflection Coating: antireflection film
- the second upper electrode 125 is exposed from the via hole 147 by etching the second hard mask film 128 at the bottom of the via hole 147.
- an upper wiring 145 for example, Cu
- a via plug 144 for example, Cu
- a second barrier metal 143 for example, a Ta film having a thickness of 10 nm.
- a second barrier insulating film 146 is deposited on the second cap insulating film 142 including the upper wiring 145, thereby forming the structure shown in FIG. 9J.
- step A6 the process until the structure shown in FIG. 9J is formed is referred to as step A6.
- the upper wiring 145 can be formed by using the same process as the formation of the lower wiring 106 in the lower layer.
- the diameter of the bottom of the via plug 144 is preferably smaller than the diameter of the opening of the first barrier insulating film 107.
- the diameter of the bottom of the via plug 144 is selected to be 60 nm, and the diameter of the opening of the first barrier insulating film 107 is selected to be 100 nm. be able to.
- step A6 the second barrier metal 143 and the second upper electrode 125 are made of the same material, so that the contact resistance between the via plug 144 and the second upper electrode 125 is reduced, and the solid electrolyte switch element in the on state is turned on.
- the resistance of 159 can be reduced. As a result, device performance can be improved.
- variable resistance element Next, an embodiment of the above-described variable resistance element will be described.
- the first metal oxide layer 6 and the second metal shown in FIG. 7B are used for the variable resistance element 126 of the third embodiment that employs a variable resistance layer composed of a buffer layer and a solid electrolyte layer.
- the buffer layer 4 composed of the oxide layer 7 is employed.
- the configuration of the solid electrolyte switch element 159 shown in FIG. 9J is adopted, elements having different combinations of the first metal oxide layer 121 and the second metal oxide layer 122 are manufactured, and the characteristics of the manufactured variable resistance element are evaluated. did.
- the first embodiment a total of nine types including different combinations of the first metal oxide layer 121 and the second metal oxide layer 122 constituting the buffer layer with the resistance change element 126 of the third embodiment as a basic structure.
- the variable resistance element was manufactured. Specifically, the following nine types of combinations of the first metal oxide layer 121 and the second metal oxide layer 122 formed on the lower wiring 106 mainly composed of Cu are provided.
- the film thickness of the first metal layer 161 for forming the first metal oxide layer 121 is 0.5 nm, and the film thickness of the second metal layer 162 for forming the second metal oxide layer 122 is , 0.2 nm is selected.
- the second metal layer of the first metal layer After forming the second metal layer of the first metal layer and the thickness 0.2nm in thickness 0.5 nm, without exposure to the atmosphere, pressure 0.5 Pa, at room temperature, O 2 in the O 2 flow rate 10sccm To oxidize.
- the first metal layer becomes the first metal oxide layer 121
- the second metal layer becomes the second metal oxide layer 122.
- the solid electrolyte layer is formed using a SiOCH film having a thickness of 6 nm.
- the atomic radius of Cu is 128 pm, and the covalent bond radius is 132 ⁇ 4 pm;
- the atomic radius of Al is 143 pm, and the covalent bond radius is 121 ⁇ 4 pm;
- Nb has an atomic radius of 146 pm and a covalent bond radius of 164 ⁇ 6 pm;
- the atomic radius of Ta is 146 pm, and the covalent bond radius is 170 ⁇ 8 pm;
- Ti has an atomic radius of 147 pm and a covalent bond radius of 160 ⁇ 8 pm;
- the atomic radius of Zr is 160 pm, the covalent bond radius is 175 ⁇ 7 pm;
- the atomic radius of Hf is reported to be 159 pm, and the covalent bond radius is 175 ⁇ 10 pm.
- the film thickness of 0.2 nm of the second metal layer is a value not exceeding twice the atomic radius of Al, Nb, and Ta.
- the film thickness of 0.5 nm of the first metal layer is a value that does not exceed four times the atomic radius of Ti, Zr, and Hf.
- variable resistance element selected in the first embodiment in order to compare the characteristics of the variable resistance element selected in the first embodiment with the variable resistance element for selecting the combination of the first metal oxide layer 121 and the second metal oxide layer 122, a variable resistance element as a comparative example below is used. Got ready.
- the variable resistance element as a comparative example employs a structure in which the buffer layer is composed of one kind of metal oxide layer.
- the metal oxide layer (TiO y1 , ZrO y2 , and HfO y3 ) used for the first metal oxide layer 121 and the first metal oxide layer formed on the lower wiring 106 containing Cu as a main component are used.
- the metal oxides (AlO x1 , NbO x2 , and TaO x3 ) used for the two-metal oxide layer 122 only one kind of metal oxide is formed.
- the thickness of the metal layer for forming one kind of metal oxide layer is selected to be 0.7 nm.
- oxidation treatment is performed by irradiating O 2 at a pressure of 0.5 Pa and an O 2 flow rate of 10 sccm at a room temperature without exposing to the atmosphere.
- O 2 irradiating O 2 at a pressure of 0.5 Pa and an O 2 flow rate of 10 sccm at a room temperature without exposing to the atmosphere.
- the oxidation treatment the metal layer becomes a metal oxide layer.
- the solid electrolyte layer is formed using a SiOCH film having a thickness of 6 nm.
- FIG. 11 is a table showing the results of measuring the off-leakage current when set, specifically, the off-leakage current when applying a negative voltage of 1 V, for the resistance change element of Embodiment 1 and the resistance change element as a comparative example. It is.
- the unit of numerical values shown in FIG. 11 is ampere (A).
- any combination of the first metal oxide layer 121 and the second metal oxide layer 122 is the same as the first metal oxide layer 121.
- a reduction in off-leakage current at the time of setting is recognized as compared with a resistance change element as a comparative example that employs a buffer layer made of only a kind of metal oxide.
- FIG. 12 is a table showing the results of measuring the dielectric breakdown voltage at reset for the variable resistance element of Embodiment 1 and the variable resistance element as a comparative example.
- the unit of the numerical values shown in FIG. 12 is volts (V).
- the configuration of the second embodiment that employs a variable resistance layer including a buffer layer and a solid electrolyte layer is applied.
- the buffer layer 4 composed of the first metal oxide layer 6 and the second metal oxide layer 7 shown in FIG. 7B is employed. Therefore, the resistance change layer includes the first metal oxide layer 121, the second metal oxide layer 122, and the solid electrolyte layer 123.
- variable resistance element 126 of the third embodiment is used as a basic structure, and the first metal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8 shown in FIG. 7C.
- a total of seven types of variable resistance elements with different combinations were prepared.
- the combinations of the first metal oxide layer 6, the second metal oxide layer 7 and the third metal oxide layer 8 formed on the lower wiring mainly composed of Cu include the following seven types: It is.
- TiO y1 / AlO x1 / TiO y4 , TiO y1 / NbO x2 / TiO y4, TiO y1 / TaO x3 / TiO y4, ZrO y2 / AlO x1 / ZrO y5, ZrO y2 / NbO x2, ZrO y2 / TaO x3 / ZrO y5 , HfO y3 / AlO x1 / HfO y6 y4, y5, and y6 are the oxygen compositions in the oxides of Ti, Zr, and Hf (TiO y4 , ZrO y5 , HfO y6 ) constituting the third metal oxide layer 8, respectively.
- the third metal layer for forming the third metal oxide layer 8 was continuously deposited on the second metal layer for forming the second metal oxide layer 7.
- the film thickness of the third metal layer for forming the third metal oxide layer 8 is selected to be 0.2 nm.
- the variable resistance element according to Embodiment 2 has the basic structure except that the buffer layer is composed of the first metal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8. , which is the same as the variable resistance element 126 shown in FIG. 9J.
- the resistance change element of the comparative example which employs the seven variable resistance elements of Embodiment 2 and a buffer layer made of only the same type of metal oxide as the first metal oxide layer 121, respectively. It was confirmed that the off-leakage and the breakdown voltage were improved to the same extent as the evaluation results of the resistance change element of the first embodiment.
- the off-leakage current measured when a voltage of 1 V was applied was 7 ⁇ 10 ⁇ 7 A.
- the combination of the first metal oxide layer 6, the second metal oxide layer 7 and the third metal oxide layer 8 constituting the buffer layer is TiO y1 /
- the off-leakage current measured when applying a negative voltage of 1 V was reduced to 4 ⁇ 10 ⁇ 8 A.
- a resistance change element as a comparative example, which is composed of only the same type of metal oxide (TiO y1 ) as the first metal oxide layer 121 (TiO y1 ), as shown in FIG.
- the measured breakdown voltage is 3.5V.
- the variable resistance element according to Embodiment 2 for example, a combination of the first metal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8 constituting the buffer layer.
- TiO y1 / AlO x1 / TiO y4 the dielectric breakdown voltage measured when a positive voltage is applied rises to 4.5V.
- the third embodiment is based on the variable resistance element having the configuration shown in FIG. 9J and the manufacturing method thereof described in the fourth embodiment, and a three-terminal variable resistance element in a multilayer wiring structure on a semiconductor substrate. Is provided.
- FIG. 10 is a partial cross-sectional view schematically showing a configuration in which the three-terminal variable resistance element according to Embodiment 3 is provided inside a multilayer wiring structure on a semiconductor substrate.
- a first lower wiring 206a and a second lower wiring 206b are provided as lower electrodes.
- the upper surfaces of the first lower wiring 206a and the second lower wiring 206b that are separated from each other with the first cap insulating film 104 interposed therebetween are partially exposed in one opening formed in the first barrier insulating film 107. is doing.
- the exposed portions of the upper surfaces of the first lower wiring 206a and the second lower wiring 206b are in contact with the upper first metal oxide layer 121 through the opening together with the upper surface of the first cap insulating film 104.
- the area of the copper surface of the first lower wiring 206a and the area of the copper surface of the second lower wiring 206b exposed in the opening are both less than half of the opening area.
- both the first lower wiring 206a and the second lower wiring 206b are made of, for example, Cu
- the same configuration as the lower wiring 106 having the configuration shown in FIG. It can be formed by the method described in the manufacturing process of the variable resistance element having the configuration shown in FIG. 9J described in the fourth embodiment.
- the first electrode and the third electrode are provided in the same layer.
- the second electrode is provided in a different layer from the first electrode and the third electrode.
- the surface of the first cap insulating film 104 sandwiched between the first lower wiring 206a and the second lower wiring 206b is dry etched.
- the first metal layer used for forming the first metal oxide layer 121 is formed on the opening including the surfaces of the first lower wiring 206a and the second lower wiring 206b by DC sputtering. 161 and the second metal layer 162 used to form the second metal oxide layer 122 were successively deposited in this order.
- Zr having a thickness of 0.5 nm is selected as the first metal layer 161
- Al having a thickness of 0.2 nm is selected as the second metal layer 162.
- the first metal layer 161 and the second metal layer 162 are formed by O 2 gas irradiation at an O 2 flow rate of 10 sccm, a pressure of 0.5 Pa, and an irradiation time of 60 seconds without exposing to the atmosphere at room temperature.
- Oxidation treatment was performed to form ZrO y2 as the first metal oxide layer 121 and AlO x1 as the second metal oxide layer 122.
- heat treatment was performed at a substrate temperature of 400 ° C.
- the Zr metal component remaining unreacted between the first lower wiring 206a and the second lower wiring 206b and ZrO y2 which is the first metal oxide layer 121 is the first metal composed of Cu. It is removed by alloying and diffusion to the surfaces of the lower wiring 206a and the second lower wiring 206b.
- a solid electrolyte layer 123 was deposited on the second metal oxide layer 122.
- a formation method similar to that of the resistance change element 126 having the configuration shown in FIG. 9J is used, so that a three-terminal resistance change element is formed in the multilayer wiring structure as shown in FIG. 224 can be formed.
- variable resistance layer adopts a configuration in which it is integrally formed.
- 2nd electrode also employ
- variable resistance element of the first embodiment also in the three-terminal variable resistance element 224 of the third embodiment, which is formed by the above manufacturing process, only the same type of metal oxide as the first metal oxide layer 121 is used. Compared with the three-terminal variable resistance element according to the comparative example that employs the buffer layer, the reduction of off-leakage and the improvement of the dielectric breakdown voltage were confirmed.
- a three-terminal variable resistance element as a comparative example that employs a 0.7 nm-thick buffer layer made of only the same type of metal oxide (ZrO y2 ) as the first metal oxide layer 121 is used.
- the off-leakage current measured when applying a negative voltage of 1 V is 5 ⁇ 10 ⁇ 7 A.
- a negative voltage is applied in the case of the three-terminal resistance change element 224 of the third embodiment in which ZrO y2 is used as the first metal oxide layer 121 and AlO x1 is used as the second metal oxide layer 122.
- the off-leakage current measured when 1 V was applied was 8 ⁇ 10 ⁇ 8 A, which was confirmed to be sufficiently reduced.
- the dielectric breakdown voltage measured when a positive voltage is applied is 3.6V.
- the dielectric breakdown voltage measured when a positive voltage was applied increased to 4.3V.
- the three-terminal variable resistance element 224 using ZrO y2 as the first metal oxide layer 121 and AlO x1 as the second metal oxide layer 122 has been described.
- the combination of the first metal oxide layer 121 and the second metal oxide layer 122 constituting the buffer layer is not limited to this combination of material configurations (ZrO y2 / AlO x1 ), and is exemplified in Embodiment 1. Other 8 types of combinations may be used.
- variable resistance element of the present invention by applying the variable resistance element of the present invention and the manufacturing method thereof not only to the two-terminal variable resistance element but also to the three-terminal variable resistance element, the off-leakage current when applying a negative voltage is reduced, It was also found that the dielectric breakdown voltage was improved when a positive voltage was applied (at reset).
- the present invention relates to semiconductor products having memory circuits such as DRAM, SRAM (Static RAM), flash memory, FRAM (Ferro-Electric RAM), capacitors, bipolar transistors, etc., and semiconductor products having logic circuits such as microprocessors.
- the present invention can also be applied to a metal wiring forming process of a board or package on which they are simultaneously mounted.
- the present invention can also be applied to a wiring formation process for connecting a semiconductor device to an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro-Electro-Mechanical Systems), or the like.
- the solid electrolyte switching element produced in the copper wiring layer according to the present invention and formed by connecting a plurality of resistance change elements in parallel is, for example, a programmable element used in the configuration of an FPGA (Field Programmable Gate Array). As used.
- FPGA Field Programmable Gate Array
- the solid electrolyte switching element type semiconductor device uses a non-volatile memory or a non-volatile switch by using its “programming” operation, in particular, the effect of suppressing variation in set voltage during the “set” operation.
- the present invention can be applied to logic circuits such as semiconductor products having a memory circuit and microprocessors.
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
The present invention provides a resistance change element that improves set voltage variation between elements. Provided is a semiconductor device that includes at least two resistance change elements, a first terminal, and a second terminal. The resistance change elements each have a first electrode, a second electrode, and a resistance change layer interposed between the first electrode and the second electrode, and has a function of changing a resistance value reversibly on the basis of an electric signal applied between two electrodes, that is to say, the first electrode and the second electrode. The first electrode of each resistance change element is electrically connected to the first terminal, the second electrode of each resistance change element is electrically connected to the second terminal, the resistance change layers are separated from each other between the resistance change elements, and the second electrodes are separated from each other between the resistance change elements and are electrically connected to each other only via the second terminals.
Description
本発明は、半導体装置およびその製造方法に関する。
The present invention relates to a semiconductor device and a manufacturing method thereof.
半導体デバイス(特にシリコンデバイス)は、微細化(スケーリング則:Mooreの法則)によってデバイスの集積化・低電力化が進められ、3年4倍のペースで開発が進められてきた。近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート長は20nm以下となり、リソグラフィプロセスの高騰(装置価格およびマスクセット価格)、およびデバイス寸法の物理的限界(動作限界・ばらつき限界)により、これまでのスケーリング則とは異なるアプローチでのデバイス性能の改善が求められている。
Semiconductor devices (especially silicon devices) have been developed at a pace of 3 years, with the integration and low power consumption of the devices advanced by miniaturization (scaling law: Moore's law). In recent years, the gate length of MOSFET (Metal Oxide Semiconductor Field Effect Transistor) has become 20 nm or less, so far due to soaring lithography process (apparatus price and mask set price), and physical limits (operation limits and dispersion limits) of device dimensions. There is a need to improve device performance with an approach different from the scaling law.
半導体装置上の銅多層配線構造の内部に形成される機能素子としては、例えば抵抗変化型不揮発素子(以下では、「抵抗変化素子」と称する)やキャパシタ(容量素子)等がある。
Examples of functional elements formed inside a copper multilayer wiring structure on a semiconductor device include a variable resistance nonvolatile element (hereinafter referred to as “resistance variable element”) and a capacitor (capacitance element).
ロジックLSI(Large Scale Integration)上に混載するキャパシタとしては、エンベデッドDRAM(Dynamic Random Access Memory)や、デカップリングキャパシタなどがある。これらのキャパシタを銅配線上に搭載することで、キャパシタの大容量化や小面積化を実現可能になる。
Capacitors embedded on a logic LSI (Large Scale Integration) include an embedded DRAM (Dynamic Random Access Memory) and a decoupling capacitor. By mounting these capacitors on the copper wiring, it is possible to increase the capacity and area of the capacitor.
ゲートアレイとスタンダードセルの中間的な位置づけとしてFPGA(Field Programmable Gate Array)と呼ばれるデバイスが開発されている。これは顧客自身がチップの製造後に任意の回路構成を行うことを可能とするものである。プログラマブル素子として、抵抗変化素子等を配線接続部に介在させ、顧客自身が任意に配線の電気的接続をできるようにしたものである。このような半導体装置を用いることで、回路の自由度を向上させることができる。
A device called FPGA (Field Programmable Gate Array) has been developed as an intermediate position between the gate array and the standard cell. This makes it possible for the customer himself to perform an arbitrary circuit configuration after manufacturing the chip. As the programmable element, a resistance change element or the like is interposed in the wiring connection portion, so that the customer himself can arbitrarily connect the wiring. By using such a semiconductor device, the degree of freedom of the circuit can be improved.
抵抗変化素子とは、抵抗状態の変化によって情報を記憶する素子の総称であり、下部電極と上部電極によって抵抗変化層を挟んだ3層構造を有しており、両電極間に電圧を印加することで抵抗変化層の抵抗変化が生じる現象を利用している。例えば、金属架橋形成を利用する、抵抗変化素子としては、抵抗変化層として、金属酸化物層を用いる、ReRAM(Resistive RAM)や、固体電解質を用いる、固体電解質スイッチ素子などがある。
A resistance change element is a generic term for elements that store information by changing a resistance state, and has a three-layer structure in which a resistance change layer is sandwiched between a lower electrode and an upper electrode, and a voltage is applied between the two electrodes. This utilizes the phenomenon that the resistance change of the resistance change layer occurs. For example, as a resistance change element using metal bridge formation, there are a ReRAM (Resistive RAM) using a metal oxide layer as a resistance change layer, a solid electrolyte switch element using a solid electrolyte, and the like.
固体電解質スイッチ素子の研究については、1990年代後半からいくつか報告されており、さまざまな固体電解質材料による抵抗変化現象が確認されている。例えば、非特許文献1および非特許文献2には、固体電解質として、カルコゲナイド化合物を用いた抵抗変化現象が報告されている。
Several studies on solid electrolyte switch elements have been reported since the late 1990s, and resistance change phenomena due to various solid electrolyte materials have been confirmed. For example, Non-Patent Document 1 and Non-Patent Document 2 report a resistance change phenomenon using a chalcogenide compound as a solid electrolyte.
以下に、抵抗変化素子の一例である、固体電解質スイッチ素子の構造およびスイッチング動作について簡単に説明する。
Hereinafter, the structure and switching operation of a solid electrolyte switch element, which is an example of a resistance change element, will be briefly described.
固体電解質スイッチ素子は、固体電解質層を2つの電極(下部電極および上部電極)で挟んだ構造を有している。ここで、2つの電極のうち一方には、化学的に活性であり、電圧印加により容易に酸化および還元が可能な金属が用いられ、他方の電極には、化学的に不活性な金属材料が用いられる。
The solid electrolyte switch element has a structure in which a solid electrolyte layer is sandwiched between two electrodes (a lower electrode and an upper electrode). Here, a metal that is chemically active and can be easily oxidized and reduced by voltage application is used for one of the two electrodes, and a chemically inert metal material is used for the other electrode. Used.
次に、固体電解質スイッチ素子の動作について説明する。以下に、例として、化学的に活性な電極を下部電極とする構造を採用し、説明する。
Next, the operation of the solid electrolyte switch element will be described. As an example, a structure using a chemically active electrode as the lower electrode will be described below.
例えば、オフ状態(高抵抗状態)にある固体電解質スイッチ素子において、下部電極(化学的に活性な電極)を接地し、上部電極(化学的に不活性な電極)に負電圧を印加すると、下部電極を構成する金属原子がイオン化して固体電解質層中に溶出する。そして、金属イオンは、上部電極(化学的に不活性な電極)側に引き寄せられ、さらに、電子を受け取り金属原子となり、この金属原子によって、導電性を有する金属架橋が形成される。この固体電解質中に形成された金属架橋により両電極が電気的に接続されることで、スイッチがオン状態(低抵抗状態)に変化する。この負電圧印加によって、「オフ状態」から「オン状態」へ変化させる動作を「セット」と呼ぶ。
For example, in a solid electrolyte switch element in an off state (high resistance state), when the lower electrode (chemically active electrode) is grounded and a negative voltage is applied to the upper electrode (chemically inactive electrode), Metal atoms constituting the electrode are ionized and eluted into the solid electrolyte layer. The metal ions are attracted to the upper electrode (chemically inactive electrode) side, further receive electrons and become metal atoms, and the metal atoms form conductive metal bridges. When both electrodes are electrically connected by the metal bridge formed in the solid electrolyte, the switch is turned on (low resistance state). The operation of changing from the “off state” to the “on state” by applying the negative voltage is referred to as “set”.
一方で上記オン状態において、下部電極を再び接地し、上部電極に正電圧を印加すると、上記金属架橋を構成する金属原子がイオン化して、固体電解質層中に溶解する。そして、金属イオンは、下部電極側に引き戻され、電子を受け取り金属原子となる。その結果、金属架橋による接続が消失し、両電極が電気的に絶縁されることで、スイッチが高抵抗のオフ状態に変化する。この正電圧印加によって、「オン状態」から「オフ状態」へ変化させる動作を「リセット」と呼ぶ。「セット」動作と「リセット」動作を合わせて、「プログラミング」動作と呼ぶ。
On the other hand, when the lower electrode is grounded again and a positive voltage is applied to the upper electrode in the ON state, the metal atoms constituting the metal bridge are ionized and dissolved in the solid electrolyte layer. Then, the metal ions are pulled back to the lower electrode side, receive electrons, and become metal atoms. As a result, the connection due to the metal bridge disappears, and both the electrodes are electrically insulated, so that the switch changes to a high resistance OFF state. The operation of changing from the “on state” to the “off state” by applying the positive voltage is referred to as “reset”. The “set” operation and the “reset” operation are collectively referred to as a “programming” operation.
このように固体電解質スイッチ素子は、電圧印加がなされていない間、この「オン状態」と「オフ状態」を不揮発的に保持でき、かつ、繰り返し「プログラミング」動作が可能である。この固体電解質スイッチ素子の特性を利用することで、不揮発性メモリあるいは不揮発性スイッチへの応用が可能になる。
As described above, the solid electrolyte switch element can hold the “on state” and the “off state” in a non-volatile manner while no voltage is applied, and can repeatedly perform “programming” operation. By utilizing the characteristics of the solid electrolyte switch element, application to a nonvolatile memory or a nonvolatile switch becomes possible.
固体電解質を利用した記憶素子の一例が、特許文献1に開示されている。特許文献1に開示された記憶素子は、下部電極と上部電極との間に、抵抗変化層およびイオン源層が積層された記憶層が設けられた構成である。この記憶素子の構成を上記の固体電解質スイッチ素子の構成と対比すると、抵抗変化層は固体電解質層に相当し、イオン源層は金属イオンを供給する電極に相当する。特許文献1に開示された記憶素子は、上記の固体電解質スイッチ素子が採用している、化学的に活性な電極を下部電極とする構造と、上下の構造が逆になった構成である。
An example of a memory element using a solid electrolyte is disclosed in Patent Document 1. The memory element disclosed in Patent Document 1 has a configuration in which a memory layer in which a resistance change layer and an ion source layer are stacked is provided between a lower electrode and an upper electrode. When the configuration of the memory element is compared with the configuration of the solid electrolyte switch element, the resistance change layer corresponds to a solid electrolyte layer, and the ion source layer corresponds to an electrode that supplies metal ions. The memory element disclosed in Patent Document 1 has a structure in which a vertically active structure is reversed from a structure in which a chemically active electrode is used as a lower electrode, which is employed in the solid electrolyte switch element.
固体電解質スイッチ素子の不揮発性メモリおよび不揮発性スイッチへの応用においては、「オフ状態」は、より低いリーク電流、すなわち、より高抵抗であることが好ましい。したがって、「オフ状態」の高抵抗化を図るためには、一般的に、「リセット」動作時により高い正電圧を印加することが行われる。しかしながら、「リセット」動作時に、ある電圧以上の高い正電圧を印加すると、固体電解質層内にて絶縁破壊を生じる。一旦、絶縁破壊が生じると、正常なオン状態よりも低抵抗の状態に遷移したままとなり、それ以降、抵抗変化を示さなくなる。この正電圧印加時、絶縁破壊に至る電圧を、絶縁破壊電圧と呼ぶ。したがって、絶縁破壊電圧が高くなるように素子を設計し、製造することで、高いリセット電圧を印加でき、より高抵抗のオフ状態が得られる。
In application of the solid electrolyte switch element to a nonvolatile memory and a nonvolatile switch, it is preferable that the “off state” has a lower leakage current, that is, a higher resistance. Therefore, in order to increase the resistance in the “off state”, a higher positive voltage is generally applied during the “reset” operation. However, when a positive voltage higher than a certain voltage is applied during the “reset” operation, dielectric breakdown occurs in the solid electrolyte layer. Once dielectric breakdown occurs, the state remains in a state of lower resistance than the normal ON state, and thereafter no resistance change is shown. The voltage that causes dielectric breakdown when this positive voltage is applied is called dielectric breakdown voltage. Therefore, a high reset voltage can be applied and a higher resistance OFF state can be obtained by designing and manufacturing the element so that the dielectric breakdown voltage becomes high.
金属架橋形成を利用する、抵抗変化素子、特には、これらの固体電解質スイッチ素子を、半導体装置上の銅多層配線内部に形成する手法について知られている。例えば、特許文献2および特許文献3には、CMOS基板上の銅多層配線構造の内部に設けられた2端子型固体電解質スイッチ素子と、その製造方法が開示されている。特許文献2および特許文献3には、CMOS基板上の銅多層配線構造の内部において、絶縁層の一部を開口加工して露出した銅配線そのものを、金属イオンを固体電解質中へ供給する活性電極として用いて、2端子型固体電解質スイッチ素子を作製する形態が開示されている。
A method of forming a resistance change element utilizing metal bridge formation, in particular, these solid electrolyte switch elements inside a copper multilayer wiring on a semiconductor device is known. For example, Patent Document 2 and Patent Document 3 disclose a two-terminal solid electrolyte switch element provided in a copper multilayer wiring structure on a CMOS substrate and a method for manufacturing the same. In Patent Document 2 and Patent Document 3, an active electrode for supplying metal ions into a solid electrolyte is formed by exposing a copper wiring itself exposed by opening a part of an insulating layer in a copper multilayer wiring structure on a CMOS substrate. A mode for producing a two-terminal solid electrolyte switch element is disclosed.
固体電解質スイッチ素子を製造するにあたり、下部電極として銅電極を用いる場合、銅電極表面が酸化すると、負電圧印加時の「オフ状態」におけるリーク電流、オフリーク電流のばらつきが増大する。さらに、正電圧印加による、「リセット」動作時の絶縁破壊電圧の低下を生じる。この課題を解決する方法が、非特許文献3に開示されている。非特許文献3では、固体電解質スイッチ素子の積層構造の形成過程において、下部電極である銅と固体電解質層の間に、銅表面の酸化を防止するため、銅よりも酸化の自由エネルギーが負に大きい金属をバルブメタルとして堆積し、バルブメタルが酸化することで銅の酸化を抑制する「バッファ構造」を設けることを提案している。
When a copper electrode is used as the lower electrode in manufacturing a solid electrolyte switch element, if the surface of the copper electrode is oxidized, variations in leakage current and off-leakage current in the “off state” when a negative voltage is applied increase. Furthermore, the breakdown voltage during the “reset” operation is lowered due to the positive voltage application. A method for solving this problem is disclosed in Non-Patent Document 3. In Non-Patent Document 3, in the formation process of the laminated structure of the solid electrolyte switch element, the oxidation free energy is made more negative than copper in order to prevent the copper surface from being oxidized between the lower electrode copper and the solid electrolyte layer. It has been proposed to deposit a large metal as a valve metal and provide a “buffer structure” that suppresses copper oxidation by oxidizing the valve metal.
非特許文献4には、同一の開口部に露出した2つの下部電極を対向させた構造からなる2つの抵抗変化素子を直列に接続した相補型抵抗変化素子を構成し、抵抗状態の信頼性を向上する技術が開示されている。
Non-Patent Document 4 includes a complementary resistance change element in which two resistance change elements having a structure in which two lower electrodes exposed in the same opening are opposed to each other are connected in series, and the reliability of the resistance state is improved. Techniques for improving are disclosed.
特許文献4は、イオン伝導体を用いたスイッチング素子に関するものであり、複数のスイッチ要素を並列接続し、イオン伝導層などを共通接続してセレクタ素子を構成することが、提案されている。特許文献5は、イオン伝導体を用いた抵抗変化素子に関するものであり、共通の電極を介して抵抗変化素子二つを連結すること、これによって3端子固体電解質スイッチとして機能させることが、提案されている。
Patent Document 4 relates to a switching element using an ion conductor, and it has been proposed to configure a selector element by connecting a plurality of switch elements in parallel and commonly connecting ion conduction layers and the like. Patent Document 5 relates to a resistance change element using an ionic conductor, and it is proposed that two resistance change elements are connected through a common electrode, thereby functioning as a three-terminal solid electrolyte switch. ing.
多層銅配線層内への形成された抵抗変化素子の動作歩留まりを向上するためには、「オフ状態」から「オン状態」へ変化させるのに必要な「セット電圧」のばらつきを抑制することが求められる。
In order to improve the operation yield of the resistance change element formed in the multilayer copper wiring layer, it is necessary to suppress variations in the “set voltage” necessary for changing from the “off state” to the “on state”. Desired.
しかしながら、非特許文献3および非特許文献4に開示される構成では、「セット電圧」のばらつきを改善する効果は得られていなかった。
However, in the configurations disclosed in Non-Patent Document 3 and Non-Patent Document 4, an effect of improving variation in “set voltage” has not been obtained.
また、相補型素子間の「セット電圧」のばらつきに因り、セットに要する電圧が所定の印加プログラミング電圧よりも高い場合は、セットできず、素子の動作歩留りを改善することはできていない。
Also, due to variations in “set voltage” between complementary elements, when the voltage required for setting is higher than a predetermined applied programming voltage, it cannot be set, and the operation yield of the element cannot be improved.
したがって、相補型抵抗変化素子間の「セット電圧」のばらつきを抑制し、動作歩留まりが改善された相補型抵抗変化素子が求められている。
Therefore, there is a need for a complementary resistance change element that suppresses variations in “set voltage” between complementary resistance change elements and has improved operation yield.
本発明は上述したような技術が有する問題点を解決するためになされたものである。本発明は、素子間のセット電圧のばらつきが改善された抵抗変化素子の構成を採用する半導体装置およびその形成方法を提供することを目的とする。
The present invention has been made to solve the problems of the technology as described above. It is an object of the present invention to provide a semiconductor device that employs a configuration of a variable resistance element in which variation in set voltage between elements is improved and a method for forming the same.
上記目的を達成するための本発明の半導体装置は、
少なくとも2つ以上の抵抗変化素子と、第1端子(第1配線)と、第2端子(第2配線)とを含む半導体装置であって、
前記抵抗変化素子は、それぞれ、
第1電極と、第2電極と、第1電極および第2電極に挟まれた抵抗変化層と、を有し、
第1電極と第2電極の2電極間に印加される電気的信号に基づいて、可逆的に抵抗値が変化する機能を有しており、
前記抵抗変化素子の各第1電極は、第1端子と電気的に接続されており、かつ、各第2電極は、第2端子と電気的に接続され、かつ、
各抵抗変化層は、各少なくとも2つ以上の抵抗変化素子間で互いに分離されており、
各第2電極は、各抵抗変化素子間で互いに分離され、第2端子を介してのみ互いに電気的に接続されている。 In order to achieve the above object, a semiconductor device of the present invention provides:
A semiconductor device including at least two or more resistance change elements, a first terminal (first wiring), and a second terminal (second wiring),
The variable resistance elements are respectively
Having a first electrode, a second electrode, and a resistance change layer sandwiched between the first electrode and the second electrode,
Based on an electrical signal applied between the first electrode and the second electrode, the resistance value reversibly changes,
Each first electrode of the variable resistance element is electrically connected to a first terminal, and each second electrode is electrically connected to a second terminal, and
Each resistance change layer is separated from each other between at least two resistance change elements,
The second electrodes are separated from each other between the variable resistance elements, and are electrically connected to each other only via the second terminal.
少なくとも2つ以上の抵抗変化素子と、第1端子(第1配線)と、第2端子(第2配線)とを含む半導体装置であって、
前記抵抗変化素子は、それぞれ、
第1電極と、第2電極と、第1電極および第2電極に挟まれた抵抗変化層と、を有し、
第1電極と第2電極の2電極間に印加される電気的信号に基づいて、可逆的に抵抗値が変化する機能を有しており、
前記抵抗変化素子の各第1電極は、第1端子と電気的に接続されており、かつ、各第2電極は、第2端子と電気的に接続され、かつ、
各抵抗変化層は、各少なくとも2つ以上の抵抗変化素子間で互いに分離されており、
各第2電極は、各抵抗変化素子間で互いに分離され、第2端子を介してのみ互いに電気的に接続されている。 In order to achieve the above object, a semiconductor device of the present invention provides:
A semiconductor device including at least two or more resistance change elements, a first terminal (first wiring), and a second terminal (second wiring),
The variable resistance elements are respectively
Having a first electrode, a second electrode, and a resistance change layer sandwiched between the first electrode and the second electrode,
Based on an electrical signal applied between the first electrode and the second electrode, the resistance value reversibly changes,
Each first electrode of the variable resistance element is electrically connected to a first terminal, and each second electrode is electrically connected to a second terminal, and
Each resistance change layer is separated from each other between at least two resistance change elements,
The second electrodes are separated from each other between the variable resistance elements, and are electrically connected to each other only via the second terminal.
また、本発明の半導体装置の製造方法は、
半導体基板上の多層銅配線層内に設けられている複数の抵抗変化素子を有する半導体装置の製造方法であって、
第1端子に電気的に接続された第1電極を兼ねる銅配線上に絶縁性バリア膜を形成する工程と、
前記絶縁性バリア膜に開口部を形成し、前記第1電極を兼ねる銅配線表面を露出させる工程と、
開口部を含む全面に、バッファ層および固体電解質層を順に形成する工程と、
前記固体電解質層上に、第2端子に接続された第2電極を形成する工程と、を含むプロセスを採用している。 In addition, a method for manufacturing a semiconductor device of the present invention includes:
A method of manufacturing a semiconductor device having a plurality of resistance change elements provided in a multilayer copper wiring layer on a semiconductor substrate,
Forming an insulating barrier film on the copper wiring also serving as the first electrode electrically connected to the first terminal;
Forming an opening in the insulating barrier film and exposing a copper wiring surface also serving as the first electrode;
A step of sequentially forming a buffer layer and a solid electrolyte layer on the entire surface including the opening;
Forming a second electrode connected to the second terminal on the solid electrolyte layer.
半導体基板上の多層銅配線層内に設けられている複数の抵抗変化素子を有する半導体装置の製造方法であって、
第1端子に電気的に接続された第1電極を兼ねる銅配線上に絶縁性バリア膜を形成する工程と、
前記絶縁性バリア膜に開口部を形成し、前記第1電極を兼ねる銅配線表面を露出させる工程と、
開口部を含む全面に、バッファ層および固体電解質層を順に形成する工程と、
前記固体電解質層上に、第2端子に接続された第2電極を形成する工程と、を含むプロセスを採用している。 In addition, a method for manufacturing a semiconductor device of the present invention includes:
A method of manufacturing a semiconductor device having a plurality of resistance change elements provided in a multilayer copper wiring layer on a semiconductor substrate,
Forming an insulating barrier film on the copper wiring also serving as the first electrode electrically connected to the first terminal;
Forming an opening in the insulating barrier film and exposing a copper wiring surface also serving as the first electrode;
A step of sequentially forming a buffer layer and a solid electrolyte layer on the entire surface including the opening;
Forming a second electrode connected to the second terminal on the solid electrolyte layer.
本発明によれば、並列接続された複数の抵抗変化素子に同時にプログラミング電圧が印加され、そのうち、最も低いセット電圧を有する抵抗変化素子が「オン状態」となると、複数の抵抗変化素子を構成要素としている半導体装置は「セット」されるので、半導体装置の「セット電圧」のばらつきを抑制することができる。換言すると、半導体装置の構成要素である、複数の抵抗変化素子間の「セット電圧」のばらつき自体は抑制されていないが、本発明の半導体装置の「セット電圧」のばらつきは抑制されている。
According to the present invention, when a programming voltage is simultaneously applied to a plurality of resistance change elements connected in parallel, and the resistance change element having the lowest set voltage is in an “on state”, the plurality of resistance change elements are configured as components. Since the set semiconductor device is “set”, variation in the “set voltage” of the semiconductor device can be suppressed. In other words, the variation of the “set voltage” between the plurality of variable resistance elements, which is a component of the semiconductor device, is not suppressed, but the variation of the “set voltage” of the semiconductor device of the present invention is suppressed.
本発明の実施形態を詳細に説明する前に、明細書中で用いる用語の意味を説明する。
Before describing embodiments of the present invention in detail, the meanings of terms used in the specification will be described.
半導体基板は、MOSトランジスタおよび抵抗素子を含む半導体素子、ならびにこれらの半導体素子が組み合わされた半導体装置が構成された基板を含む。また、半導体基板は、単結晶基板、SOI(Silicon on Insulator)基板やTFT(Thin Film Transistor)基板、液晶製造用基板などの基板も含む。
The semiconductor substrate includes a substrate on which a semiconductor element including a MOS transistor and a resistance element and a semiconductor device in which these semiconductor elements are combined are configured. The semiconductor substrate also includes a substrate such as a single crystal substrate, an SOI (Silicon on Insulator) substrate, a TFT (Thin on Film Transistor) substrate, a liquid crystal manufacturing substrate.
プラズマCVD(Chemical Vapor Deposition)法とは、例えば、気体原料、または液体原料を気化させたもの(気体分子)を減圧下の反応室に連続的に供給し、プラズマエネルギーによって、分子を励起状態にし、気相反応、または基板表面反応などによって基板上に連続膜を形成する手法である。
The plasma CVD (Chemical Vapor Deposition) method is, for example, a method in which a gaseous material or a vaporized liquid material (gas molecules) is continuously supplied to a reaction chamber under reduced pressure, and the molecules are excited by plasma energy. In this method, a continuous film is formed on a substrate by vapor phase reaction or substrate surface reaction.
CMP(Chemical Mechanical Polishing)法とは、多層配線形成プロセス中に生じるウェハ表面の凹凸を、研磨液をウェハ表面に流しながら回転させた研磨パッドに接触させて研磨することによって平坦化する方法である。CMP法は、層間絶縁膜を研磨して平坦化する場合の他、ダマシン配線と呼ばれる埋め込み配線の形成にも用いられる。配線材料に銅(Cu)を用いる場合で、ダマシン配線の形成方法を簡単に説明する。予め溝が形成された絶縁膜上にCuを形成する。その後、CMP法によって、溝に埋め込まれたCuを残し、絶縁膜上の余剰のCuを研磨して除去する。このようにして、溝にCuが埋め込まれたダマシン配線が形成される。
The CMP (Chemical Mechanical Polishing) method is a method of flattening the unevenness of the wafer surface that occurs during the multilayer wiring formation process by bringing the polishing liquid into contact with a rotating polishing pad while flowing the polishing liquid over the wafer surface and polishing it. . The CMP method is used not only for polishing and planarizing an interlayer insulating film, but also for forming a buried wiring called a damascene wiring. A method of forming damascene wiring will be briefly described in the case of using copper (Cu) as a wiring material. Cu is formed on the insulating film in which the groove is formed in advance. Thereafter, by the CMP method, the Cu buried in the trench is left, and excess Cu on the insulating film is polished and removed. In this way, a damascene wiring in which Cu is embedded in the groove is formed.
バリアメタルとは、配線を構成する金属元素が層間絶縁膜や下層へ拡散することを防止するために、配線の側面および底面を被覆する、バリア性を有する導電性膜を示す。例えば、配線を構成する材料がCuを主成分とする金属である場合、例えば銅(Cu)の拡散を防止するため、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)、炭窒化タングステン(WCN)のような高融点金属やその窒化物等、またはそれらの積層膜がバリアメタルとして使用される。これらの膜は、ドライエッチングによる加工が容易であり、配線材料としてCuが使用される前のLSI製造プロセスとの整合性がよい。
Barrier metal refers to a conductive film having a barrier property that covers the side and bottom surfaces of the wiring in order to prevent the metal elements constituting the wiring from diffusing into the interlayer insulating film or the lower layer. For example, when the material constituting the wiring is a metal containing Cu as a main component, for example, tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), carbonitride is used to prevent diffusion of copper (Cu). A refractory metal such as tungsten (WCN), a nitride thereof, or a laminated film thereof is used as a barrier metal. These films are easy to process by dry etching and have good consistency with the LSI manufacturing process before Cu is used as a wiring material.
バリア絶縁膜とはCu配線の上面に形成され、Cuの酸化や絶縁膜中へのCuの拡散を防ぐ機能、および加工時にエッチングストッパ層としての役割を有する。例えば、SiC膜、SiCN膜、SiN膜またはこれらの積層膜などがバリア絶縁膜として用いられる。
The barrier insulating film is formed on the upper surface of the Cu wiring and has a function to prevent Cu oxidation and diffusion of Cu into the insulating film and a role as an etching stopper layer during processing. For example, a SiC film, a SiCN film, a SiN film, or a laminated film thereof is used as the barrier insulating film.
以下に、本発明の好適な実施形態の抵抗変化素子およびその製造方法について、図面を参照しながら詳細に説明する。ただし、各実施形態においては、本発明を実施するために技術的に好ましい形態で説明するが、発明の範囲は以下で説明される実施形態に限定されるものではない。
Hereinafter, a variable resistance element and a manufacturing method thereof according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. However, although each embodiment will be described in a technically preferable form for carrying out the present invention, the scope of the invention is not limited to the embodiment described below.
(第1の実施形態)
本発明の第1の実施形態の半導体装置の構成を説明する。 (First embodiment)
The configuration of the semiconductor device according to the first embodiment of the present invention will be described.
本発明の第1の実施形態の半導体装置の構成を説明する。 (First embodiment)
The configuration of the semiconductor device according to the first embodiment of the present invention will be described.
図1は、本発明の半導体装置の構成要素である、抵抗変化素子の構成を示す部分断面図であり、「抵抗変化素子」を表記する記号として、「レオスタット(2端子型可変抵抗器)」の表記を採用している。
FIG. 1 is a partial cross-sectional view showing the configuration of a variable resistance element, which is a component of the semiconductor device of the present invention. As a symbol indicating “resistance variable element”, “Rheostat (two-terminal variable resistor)” The notation is adopted.
図2は、第1の実施形態の2端子型半導体装置の一構成例を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a configuration example of the two-terminal semiconductor device according to the first embodiment.
図3は、図2で示される、第1の実施形態の2端子型半導体装置の一構成例の回路構成を示す回路図である。回路図中、各抵抗変化素子の端子の接続形態を、記号にて示している。
FIG. 3 is a circuit diagram showing a circuit configuration of a configuration example of the two-terminal semiconductor device according to the first embodiment shown in FIG. In the circuit diagram, the connection form of the terminals of each variable resistance element is indicated by a symbol.
本第1の実施形態の2端子型半導体装置は、二つの抵抗変化素子151a、151bと、第1端子153と、第2端子154と、で構成される2端子型半導体装置150であって、
前記二つの抵抗変化素子151a、151bは、それぞれ、第1電極1と、第2電極2と、第1電極1および第2電極2に挟まれた抵抗変化層3と、を有し、第1電極1と第2電極2の間に印加した電気的信号に基づいて、可逆的に抵抗値が変化する機能を有しており、
前記二つの抵抗変化素子151a、151bの各第1電極1と第1端子153が電気的に接続されており、かつ各第2電極2と第2端子154が電気的に並列接続されている。 The two-terminal semiconductor device of the first embodiment is a two-terminal semiconductor device 150 including two resistance change elements 151a and 151b, a first terminal 153, and a second terminal 154.
Each of the two resistance change elements 151a and 151b includes a first electrode 1, a second electrode 2, and a resistance change layer 3 sandwiched between the first electrode 1 and the second electrode 2, Based on the electrical signal applied between the electrode 1 and the second electrode 2, it has a function of reversibly changing the resistance value,
Thefirst electrodes 1 and the first terminals 153 of the two variable resistance elements 151a and 151b are electrically connected, and the second electrodes 2 and the second terminals 154 are electrically connected in parallel.
前記二つの抵抗変化素子151a、151bは、それぞれ、第1電極1と、第2電極2と、第1電極1および第2電極2に挟まれた抵抗変化層3と、を有し、第1電極1と第2電極2の間に印加した電気的信号に基づいて、可逆的に抵抗値が変化する機能を有しており、
前記二つの抵抗変化素子151a、151bの各第1電極1と第1端子153が電気的に接続されており、かつ各第2電極2と第2端子154が電気的に並列接続されている。 The two-terminal semiconductor device of the first embodiment is a two-
Each of the two
The
また、図2に示されるように、個々の抵抗変化素子151a、151bの抵抗変化層3は、互いに分離され独立している。抵抗変化層3、ならびに、第2電極2を、並列接続された個々の抵抗変化素子間で分離加工せず、それぞれ、共通抵抗変化層、ならびに、共通第2電極を用いると、二つの抵抗変化素子の形状が互いに異なる場合、二つの抵抗変化素子間の形状の相違に起因し、二つの抵抗変化素子間の特性のばらつき(差異)が増加してしまう。複数の抵抗変化素子間で、抵抗変化層3、ならびに、第2電極2を分離加工することで、並列接続される、個々の抵抗変化素子の形状を均一化でき、結果的に、二つの抵抗変化素子間の特性のばらつき(差異)を低減することができる。
Also, as shown in FIG. 2, the resistance change layers 3 of the individual resistance change elements 151a and 151b are separated from each other and independent. When the resistance change layer 3 and the second electrode 2 are not separated between individual resistance change elements connected in parallel, and the common resistance change layer and the common second electrode are used, respectively, two resistance changes When the shapes of the elements are different from each other, the variation (difference) in characteristics between the two resistance change elements increases due to the difference in shape between the two resistance change elements. By separating the variable resistance layer 3 and the second electrode 2 between a plurality of variable resistance elements, the shapes of the individual variable resistance elements connected in parallel can be made uniform, resulting in two resistances. Variation (difference) in characteristics between changing elements can be reduced.
なお、図2に示す、2端子型半導体装置の構成例においては、第1端子153および第2端子154は、ともに、配線の形状である。その際、各抵抗変化素子151a、152bの第1電極1は、第1端子153と直接接触しており、第2電極2は、それぞれ、ビアを介して第2端子154と接続している構成である。図2に示す、2端子型半導体装置の構成は、本第1の実施形態の2端子型半導体装置の1例であり、二つの抵抗変化素子151a、151bの第1電極1は、ともに、第1端子153に、第2電極2は、ともに、第2端子154に電気的に接続されていれば、二つの抵抗変化素子は、電気的に並列接続された状態となる。例えば、二つの抵抗変化素子151a、152bの第1電極1は、第1端子153を兼ねている構成を選択することができる。また、第2電極2がビアを介さず、直接第2端子154と電気的に接触している構成を選択することができる。さらには、第1端子153あるいは第2端子154の形状は、配線の形状ではなく、島状の端子形状を選択することもできる。
In the configuration example of the two-terminal semiconductor device shown in FIG. 2, both the first terminal 153 and the second terminal 154 are in the form of wiring. At that time, the first electrode 1 of each of the resistance change elements 151a and 152b is in direct contact with the first terminal 153, and the second electrode 2 is connected to the second terminal 154 via each via. It is. The configuration of the two-terminal semiconductor device shown in FIG. 2 is an example of the two-terminal semiconductor device of the first embodiment, and the first electrodes 1 of the two resistance change elements 151a and 151b are both If the second electrode 2 is electrically connected to the first terminal 153 and the second terminal 154, the two resistance change elements are electrically connected in parallel. For example, the first electrode 1 of the two resistance change elements 151 a and 152 b can be selected as a configuration that also serves as the first terminal 153. In addition, a configuration in which the second electrode 2 is in direct electrical contact with the second terminal 154 without vias can be selected. Furthermore, the shape of the first terminal 153 or the second terminal 154 may be an island-like terminal shape instead of a wiring shape.
本第1の実施形態の2端子型半導体装置において、第1端子153と第2端子154の間にプログラミング電圧を印加していく場合、並列接続された二つの抵抗変化素子151a、151bのうち、「セット電圧」がより低いいずれか一方の抵抗変化素子が、「オフ(高抵抗)状態」から「オン(低抵抗)状態」に変化すると、2端子型半導体装置150全体も、オフ(高抵抗)状態からオン(低抵抗)状態に抵抗変化する。すなわち、印加されるプログラミング電圧が、二つの抵抗変化素子151a、151bの「セット電圧」のうち、より低い「セット電圧」に達すると、2端子型半導体装置150全体が、「セット」される。並列接続された二つの抵抗変化素子の一方が「オン状態」となると、印加される「プログラミング電圧」をさらに高くし、他の抵抗変化素子の「セット電圧」まで上昇させることは困難となる。結果的に、印加されるプログラミング電圧は、すでに「オン状態」となっている、一方の抵抗変化素子の「セット電圧」は超えるが、他方の抵抗変化素子の「セット電圧」には達しない。そのため、プログラミング操作後も、「セット電圧」がより高い、他方の抵抗変化素子は、「オフ状態」に留まる。
In the two-terminal semiconductor device of the first embodiment, when a programming voltage is applied between the first terminal 153 and the second terminal 154, of the two resistance change elements 151a and 151b connected in parallel, When one of the resistance change elements having a lower “set voltage” changes from the “off (high resistance) state” to the “on (low resistance) state”, the entire two-terminal semiconductor device 150 is also turned off (high resistance). ) State changes to ON (low resistance) state. That is, when the applied programming voltage reaches a lower “set voltage” of the “set voltages” of the two resistance change elements 151 a and 151 b, the entire two-terminal semiconductor device 150 is “set”. When one of the two resistance change elements connected in parallel enters the “ON state”, it is difficult to further increase the applied “programming voltage” to the “set voltage” of the other resistance change elements. As a result, the programming voltage applied exceeds the “set voltage” of one resistance change element that is already “ON”, but does not reach the “set voltage” of the other resistance change element. Therefore, even after the programming operation, the other variable resistance element having the higher “set voltage” remains in the “off state”.
ここで、本第1の実施形態の2端子型半導体装置の「セット」動作に必要な「プログラミング電圧」の印加条件は、二つの「抵抗変化素子」の「セット電圧」に加えて、周辺回路の形態、所望する「オン状態」の抵抗値等にも依存して決まる。「プログラミング電圧」の印加は、パルス印加でもスイープ印加でもよい。また、第1端子153の電位を基準として、第2端子154の電位が「負電圧」となる限り、「プログラミング電圧」の印加は、いずれの「印加電圧極性」でもよい。
Here, the application condition of the “programming voltage” necessary for the “set” operation of the two-terminal semiconductor device of the first embodiment is the peripheral circuit in addition to the “set voltage” of the two “resistance change elements” And the desired “on-state” resistance value. The application of the “programming voltage” may be a pulse application or a sweep application. Further, as long as the potential of the second terminal 154 becomes a “negative voltage” with respect to the potential of the first terminal 153, the “programming voltage” may be applied in any “applied voltage polarity”.
次に、「リセット」動作時の場合、「セット」動作時と同様に、第1端子153と第2端子154の間に「リセット電圧」を印加する。この時、「リセット電流」は、「オン状態」となっている、一方の抵抗変化素子のみに流れる。そのため、この「オン状態」となっている、一方の抵抗変化素子では、「リセット動作」が行われる。一方、もともと「オフ状態」に留まっている、他の抵抗変化素子には、電流が供給されないため、何ら影響を与えることはない。その結果、「オン状態」となっていた、一方の抵抗変化素子が、「オフ状態」に戻ると、抵抗変化素子151a、151bが並列接続された2端子型半導体装置150全体も、「オフ状態」に戻る。このように、「セット」動作時と同様に、「リセット」動作時においても、並列接続されている、二つの抵抗変化素子のうち、「セット電圧」がより低い、一方の抵抗変化素子のみで、抵抗変化を生じる。
Next, in the case of the “reset” operation, the “reset voltage” is applied between the first terminal 153 and the second terminal 154 in the same manner as in the “set” operation. At this time, the “reset current” flows only in one of the resistance change elements that is in the “on state”. Therefore, the “reset operation” is performed in one of the resistance change elements that is in the “on state”. On the other hand, since no current is supplied to the other resistance change elements that originally remain in the “off state”, there is no influence. As a result, when one resistance change element that has been in the “on state” returns to the “off state”, the entire two-terminal semiconductor device 150 in which the resistance change elements 151a and 151b are connected in parallel is also in the “off state”. Return to. In this way, as in the “set” operation, during the “reset” operation, of the two resistance change elements connected in parallel, only one of the resistance change elements having the lower “set voltage” is used. , Causing a resistance change.
図4は、本第1の実施形態の2端子型半導体装置において、2Mb規模の抵抗変化素子単体と、二つの抵抗変化素子が並列接続されている2端子型半導体装置を「セット」する場合の、規格化した「セット電圧」分布を比較したグラフである。抵抗変化素子単体の「セット電圧」ばらつき(分布)の中央値を0、その標準偏差を1と規格化して示している。二つの抵抗変化素子を並列接続している、2端子型半導体装置全体の「セット電圧」ばらつき(分布)を表す標準偏差が1から0.83に低減している。同時に、抵抗変化素子単体の場合、2Mb素子全てを「セット」するために必要な規格化最小印加プログラミング電圧は、4.8であるが、二つの抵抗変化素子が並列接続されている2端子型半導体装置の場合、2Mb素子全てを「セット」するために必要な規格化最小印加プログラミング電圧は、3.0に低減することが確認される。
FIG. 4 shows a case where a single 2 Mb variable resistance element and a two-terminal semiconductor device in which two variable resistance elements are connected in parallel are “set” in the two-terminal semiconductor device of the first embodiment. It is the graph which compared standardized "set voltage" distribution. The median value of the “set voltage” variation (distribution) of the variable resistance element alone is normalized to 0, and the standard deviation is normalized to 1. The standard deviation representing the “set voltage” variation (distribution) of the entire two-terminal semiconductor device in which two variable resistance elements are connected in parallel is reduced from 1 to 0.83. At the same time, in the case of a variable resistance element alone, the standardized minimum applied programming voltage required to “set” all the 2Mb elements is 4.8, but the two variable resistance elements are connected in parallel. In the case of a semiconductor device, it is confirmed that the normalized minimum applied programming voltage required to “set” all 2 Mb elements is reduced to 3.0.
本第1の実施形態では、図2および図3に示したように、二つの抵抗変化素子151a、151bが並列接続される2端子型半導体装置を例に採り、本発明の半導体装置の動作原理を説明している。3つ以上の抵抗変化素子が並列接続されている、2端子型半導体装置の構成においても、その動作原理は、本質的に同じである。2端子型半導体装置を構成する、並列接続されている抵抗変化素子の数が多くなるほど、より低い「セット電圧」を有する抵抗変化素子が含まれる確率が高くなる。換言すると、並列接続されている複数個の抵抗変化素子のうちに、抵抗変化素子単体の「セット電圧」分布の中央値よりも低い「セット電圧」を有する抵抗変化素子が含まれる確率が高くなる。その結果、並列接続されている抵抗変化素子の数を増すと、抵抗変化素子が並列接続される2端子型半導体装置の「セット電圧」ばらつきをより低減することができる。
In the first embodiment, as shown in FIGS. 2 and 3, a two-terminal semiconductor device in which two resistance change elements 151a and 151b are connected in parallel is taken as an example. Is explained. Even in the configuration of a two-terminal semiconductor device in which three or more variable resistance elements are connected in parallel, the operation principle is essentially the same. As the number of variable resistance elements that are connected in parallel to configure the two-terminal semiconductor device increases, the probability that a variable resistance element having a lower “set voltage” is included increases. In other words, there is a high probability that a plurality of resistance change elements connected in parallel include a resistance change element having a “set voltage” lower than the median of the “set voltage” distribution of the resistance change element alone. . As a result, when the number of resistance change elements connected in parallel is increased, variation in “set voltage” of the two-terminal semiconductor device to which the resistance change elements are connected in parallel can be further reduced.
なお、実際の抵抗変化素子が並列接続される2端子型半導体装置において、複数の抵抗変化素子の各第1電極1と第1端子153が接続され、かつ各第2電極2と第2端子154が接続された構成であることは、種々の測定器で確認することが可能である。例えば、半導体基板上の多層銅配線層内に2端子型半導体装置150が形成されている場合、透過型電子顕微鏡(TEM)観察、走査型電子顕微鏡(SEM)観察により、個々の「抵抗変化素子」の第1電極1と第2電極2、およびその接続形態を調べることで、上述した構成であることを確認できる。
In a two-terminal semiconductor device in which actual resistance change elements are connected in parallel, each first electrode 1 and first terminal 153 of a plurality of resistance change elements are connected, and each second electrode 2 and second terminal 154 are connected. It can be confirmed with various measuring instruments that the configuration is connected. For example, when the two-terminal type semiconductor device 150 is formed in a multilayer copper wiring layer on a semiconductor substrate, each “resistance change element” is observed by observation with a transmission electron microscope (TEM) or a scanning electron microscope (SEM). By examining the first electrode 1 and the second electrode 2 and the connection form thereof, it can be confirmed that the configuration is as described above.
(第2の実施形態)
本発明の第2の実施形態は、第1の実施形態で説明した2端子型半導体装置150の対で構成された、3端子型半導体装置の構成である。 (Second Embodiment)
The second embodiment of the present invention is a configuration of a three-terminal semiconductor device configured by the pair of the two-terminal semiconductor device 150 described in the first embodiment.
本発明の第2の実施形態は、第1の実施形態で説明した2端子型半導体装置150の対で構成された、3端子型半導体装置の構成である。 (Second Embodiment)
The second embodiment of the present invention is a configuration of a three-terminal semiconductor device configured by the pair of the two-
第2の実施形態の3端子型半導体装置の構成を説明する。図5は、第2の実施形態の3端子型半導体装置の一構成例を示す部分断面図である。
The configuration of the three-terminal semiconductor device of the second embodiment will be described. FIG. 5 is a partial cross-sectional view showing a configuration example of the three-terminal semiconductor device according to the second embodiment.
また、図6は、図5で示された第2の実施形態の3端子型半導体装置の一構成例を示す回路図である。回路図中、各抵抗変化素子の端子の接続形態を、図1に示す記号にて示している。
FIG. 6 is a circuit diagram showing a configuration example of the three-terminal semiconductor device according to the second embodiment shown in FIG. In the circuit diagram, the connection form of the terminals of each variable resistance element is indicated by the symbols shown in FIG.
図5に示すように、本実施形態の3端子型半導体装置は、第1の実施形態で説明した2端子型半導体装置150a、150bの対で構成され、2端子型半導体装置150a、150bの各々を構成する第2端子154a、154bは、制御端子157と電気的に接続されている。一方、2端子型半導体装置150aの第1端子153aと、2端子型半導体装置150bの第1端子153bは、3端子型半導体装置の残る二つの端子と、それぞれ、電気的に接続される。
As shown in FIG. 5, the three-terminal semiconductor device of this embodiment is configured by the pair of the two- terminal semiconductor devices 150a and 150b described in the first embodiment, and each of the two- terminal semiconductor devices 150a and 150b. The second terminals 154a and 154b constituting the are electrically connected to the control terminal 157. On the other hand, the first terminal 153a of the two-terminal semiconductor device 150a and the first terminal 153b of the two-terminal semiconductor device 150b are electrically connected to the remaining two terminals of the three-terminal semiconductor device, respectively.
本第2の実施形態の3端子型半導体装置において、2端子型半導体装置150aを構成する第1端子153aと制御端子157の間に「プログラミング電圧」を印加すると、第1の実施形態の2端子型半導体装置で述べたのと同様に、2端子型半導体装置150aを構成する、並列接続されている、二つの抵抗変化素子151a、151bのうち、「セット電圧」がより低いいずれか一方の抵抗変化素子は、その「セット電圧」に「プログラミング電圧」が達すると、「オフ(高抵抗)状態」から「オン(低抵抗)状態」に抵抗変化する。すなわち、印加される「プログラミング電圧」が、二つの抵抗変化素子151a、151bの「セット電圧」のうち、より低い「セット電圧」に達すると、2端子型半導体装置150a全体が、「セット」される。並列接続された二つの抵抗変化素子の一方が「オン状態」となると、印加される「プログラミング電圧」をさらに高くし、他の抵抗変化素子の「セット電圧」まで上昇させることは困難となる。結果的に、印加されるプログラミング電圧は、すでに「オン状態」となっている、一方の抵抗変化素子の「セット電圧」は超えるが、他方の抵抗変化素子の「セット電圧」には達しない。そのため、「プログラミング操作」後も、「セット電圧」がより高い、他方の抵抗変化素子は、「オフ状態」に留まる。
In the three-terminal semiconductor device according to the second embodiment, when a “programming voltage” is applied between the first terminal 153a and the control terminal 157 constituting the two-terminal semiconductor device 150a, the two terminals according to the first embodiment. As described in the type semiconductor device, one of the two resistance change elements 151a and 151b connected in parallel and constituting the two-terminal type semiconductor device 150a has a lower “set voltage”. When the “programming voltage” reaches the “set voltage”, the change element changes its resistance from the “off (high resistance) state” to the “on (low resistance) state”. That is, when the applied “programming voltage” reaches a lower “set voltage” of the “set voltages” of the two resistance change elements 151a and 151b, the entire two-terminal semiconductor device 150a is “set”. The When one of the two resistance change elements connected in parallel enters the “ON state”, it is difficult to further increase the applied “programming voltage” to the “set voltage” of the other resistance change elements. As a result, the programming voltage applied exceeds the “set voltage” of one resistance change element that is already “ON”, but does not reach the “set voltage” of the other resistance change element. Therefore, after the “programming operation”, the other variable resistance element having the higher “set voltage” remains in the “off state”.
次に、2端子型半導体装置150bを構成する第1端子153aと制御端子157の間に「プログラミング電圧」を印加すると、上述した2端子型半導体装置150aの場合と同様に、2端子型半導体装置150bを構成する、並列接続されている、二つの抵抗変化素子151a、151bのうち、「セット電圧」がより低いいずれか一方の抵抗変化素子は、その「セット電圧」に「プログラミング電圧」が達すると、「オフ(高抵抗)状態」から「オン(低抵抗)状態」に抵抗変化する。すなわち、印加される「プログラミング電圧」が、二つの抵抗変化素子151a、151bの「セット電圧」のうち、より低い「セット電圧」に達すると、2端子型半導体装置150b全体が、「セット」される。
Next, when a “programming voltage” is applied between the first terminal 153a and the control terminal 157 constituting the two-terminal semiconductor device 150b, the two-terminal semiconductor device is the same as the two-terminal semiconductor device 150a described above. Of the two resistance change elements 151a and 151b that are connected in parallel and constitute 150b, one of the resistance change elements having a lower “set voltage” reaches the “programming voltage” of the “set voltage”. Then, the resistance changes from the “off (high resistance) state” to the “on (low resistance) state”. That is, when the applied “programming voltage” reaches a lower “set voltage” of the “set voltages” of the two resistance change elements 151 a and 151 b, the entire two-terminal semiconductor device 150 b is “set”. The
本第2の実施形態の3端子型半導体装置においても、2端子型半導体装置150a、150b、それぞれの「セット」動作に必要な「プログラミング電圧」の印加条件は、各2端子型半導体装置の構成に使用されている、二つの「抵抗変化素子」の「セット電圧」に加えて、周辺回路の形態、所望する「オン状態」の抵抗値等にも依存して決まる。2端子型半導体装置150a、150b、それぞれの「セット」動作時、「プログラミング電圧」の印加は、パルス印加でもスイープ印加でもよい。また、第1端子153aの電位、あるいは、第1端子153bの電位を基準として、制御端子157の電位が「負電圧」となる限り、「プログラミング電圧」の印加は、いずれの「印加電圧極性」でもよい。
Also in the three-terminal semiconductor device of the second embodiment, the application conditions of the “programming voltage” necessary for the “set” operation of the two- terminal semiconductor devices 150a and 150b are the configurations of the two-terminal semiconductor devices. In addition to the “set voltage” of the two “resistance change elements” used in the above, it depends on the form of the peripheral circuit, the desired “ON state” resistance value, and the like. During the “set” operation of each of the two- terminal semiconductor devices 150a and 150b, the “programming voltage” may be applied by applying a pulse or a sweep. In addition, as long as the potential of the first terminal 153a or the potential of the first terminal 153b is used as a reference and the potential of the control terminal 157 is a “negative voltage”, the “programming voltage” is applied in any “applied voltage polarity”. But you can.
2端子型半導体装置150aおよび2端子型半導体装置150bを順に「セット」し、ともに、「オン状態」とすることで、2端子型半導体装置150aを構成する第1端子153aと、2端子型半導体装置150bを構成する第1端子153bの、二つの端子の間は、「高抵抗状態」から「低抵抗状態」へと、スイッチングされる。結果的に、2端子型半導体装置150aを構成する第1端子153aと、2端子型半導体装置150bを構成する第1端子153bの、二つの端子の間は、低抵抗で電気的に接続された状態となる。
The two-terminal type semiconductor device 150a and the two-terminal type semiconductor device 150b are sequentially “set”, and both are turned “on”, whereby the first terminal 153a constituting the two-terminal type semiconductor device 150a and the two-terminal type semiconductor device Switching between the two terminals of the first terminal 153b constituting the device 150b is switched from the “high resistance state” to the “low resistance state”. As a result, the two terminals of the first terminal 153a constituting the two-terminal semiconductor device 150a and the first terminal 153b constituting the two-terminal semiconductor device 150b are electrically connected with low resistance. It becomes a state.
本第2の実施形態の3端子型半導体装置では、2端子型半導体装置150aおよび2端子型半導体装置150bは、いずれも、抵抗変化素子151aおよび151bを並列接続する構成を採用しており、それぞれ「セット電圧」のばらつきを低減しつつ、第1端子153aおよび第1端子153b間に電気信号を伝達することを可能としている。
In the three-terminal semiconductor device of the second embodiment, the two-terminal semiconductor device 150a and the two-terminal semiconductor device 150b both adopt a configuration in which the resistance change elements 151a and 151b are connected in parallel. It is possible to transmit an electrical signal between the first terminal 153a and the first terminal 153b while reducing the variation of the “set voltage”.
2端子型半導体装置150aおよび2端子型半導体装置150bの「リセット」動作の動作メカニズムは、第1の実施形態の2端子型半導体装置で説明した動作メカニズムと本質的に同じである。
The operation mechanism of the “reset” operation of the two-terminal semiconductor device 150a and the two-terminal semiconductor device 150b is essentially the same as the operation mechanism described in the two-terminal semiconductor device of the first embodiment.
「リセット」動作時の場合も、「セット」動作時と同様に、第1端子153aあるいは、第1端子153bと、制御端子157の間に、「リセット電圧」を印加する。この時、「リセット電流」は、「オン状態」となっている、一方の抵抗変化素子のみに流れる。そのため、この「オン状態」となっている、一方の抵抗変化素子では、「リセット動作」が行われる。一方、もともと「オフ状態」に留まっている、他の抵抗変化素子には、電流が供給されないため、何ら影響を与えることはない。その結果、「オン状態」となっていた、一方の抵抗変化素子が、「オフ状態」に戻ると、抵抗変化素子151a、151bが並列接続された2端子型半導体装置150a、あるいは、2端子型半導体装置150b全体も、「オフ状態」に戻る。このように、「セット」動作時と同様に、「リセット」動作時においても、並列接続されている、二つの抵抗変化素子のうち、「セット電圧」がより低い、一方の抵抗変化素子のみで、抵抗変化を生じる。
In the “reset” operation, the “reset voltage” is applied between the first terminal 153a or the first terminal 153b and the control terminal 157 as in the “set” operation. At this time, the “reset current” flows only in one of the resistance change elements that is in the “on state”. Therefore, the “reset operation” is performed in one of the resistance change elements that is in the “on state”. On the other hand, since no current is supplied to the other resistance change elements that originally remain in the “off state”, there is no influence. As a result, when one resistance change element that has been in the “on state” returns to the “off state”, the two-terminal semiconductor device 150a in which the resistance change elements 151a and 151b are connected in parallel, or the two-terminal type The entire semiconductor device 150b also returns to the “off state”. In this way, as in the “set” operation, during the “reset” operation, of the two resistance change elements connected in parallel, only one of the resistance change elements having the lower “set voltage” is used. , Causing a resistance change.
本第2の実施形態では、図5および図6に示したように、二つの抵抗変化素子151a、151bが並列接続される2端子型半導体装置150a、150bを使用する、3端子型半導体装置を例に採り、本発明の半導体装置の動作原理を説明している。3つ以上の抵抗変化素子が並列接続されている、2端子型半導体装置を使用する、3端子型半導体装置の構成においても、その動作原理は、本質的に同じである。3端子型半導体装置の構成に使用される、2端子型半導体装置を構成する、並列接続されている抵抗変化素子の数が多くなるほど、より低い「セット電圧」を有する抵抗変化素子が含まれる確率が高くなる。換言すると、並列接続されている複数個の抵抗変化素子のうちに、抵抗変化素子単体の「セット電圧」分布の中央値よりも低い「セット電圧」を有する抵抗変化素子が含まれる確率が高くなる。その結果、並列接続されている抵抗変化素子の数を増すと、抵抗変化素子が並列接続される2端子型半導体装置の「セット電圧」ばらつきをより低減することができる。
In the second embodiment, as shown in FIGS. 5 and 6, a three-terminal semiconductor device using two- terminal semiconductor devices 150a and 150b in which two resistance change elements 151a and 151b are connected in parallel is used. Taking the example, the operation principle of the semiconductor device of the present invention is described. Even in the configuration of a three-terminal semiconductor device using a two-terminal semiconductor device in which three or more variable resistance elements are connected in parallel, the operation principle is essentially the same. Probability of including a variable resistance element having a lower “set voltage” as the number of variable resistance elements connected in parallel in the two-terminal semiconductor device used in the configuration of the three-terminal semiconductor device increases. Becomes higher. In other words, there is a high probability that a plurality of resistance change elements connected in parallel include a resistance change element having a “set voltage” lower than the median of the “set voltage” distribution of the resistance change element alone. . As a result, when the number of resistance change elements connected in parallel is increased, variation in “set voltage” of the two-terminal semiconductor device to which the resistance change elements are connected in parallel can be further reduced.
なお、本第2の実施形態の3端子型半導体装置は、第1端子153aおよび第1端子153b間を伝達する電気信号スイッチである。一方、第1端子153aおよび第1端子153bを電気的に接続する場合、第1の実施形態で説明した2端子型半導体装置150において、合計四つの抵抗変化素子を並列接続する場合と、同様の構成となる。
Note that the three-terminal semiconductor device of the second embodiment is an electric signal switch that transmits between the first terminal 153a and the first terminal 153b. On the other hand, when the first terminal 153a and the first terminal 153b are electrically connected, the two-terminal semiconductor device 150 described in the first embodiment is similar to the case where a total of four resistance change elements are connected in parallel. It becomes composition.
本第2の実施形態の3端子型半導体装置構成についても、二つの2端子型半導体装置150aおよび150bの対で構成され、2端子型半導体装置150a、150bの各々を構成する第2端子154a、154bが、ともに、制御端子157と電気的に接続された構成であることは、種々の測定器で確認することが可能である。例えば、半導体基板上の多層銅配線層内に本第2の実施形態の3端子型半導体装置が形成されている場合、TEM観察およびSEM観察により、個々の「抵抗変化素子」の第1電極1と第2電極2、および、第2端子154a、154b、制御端子157との間の接続形態を調べることで、上述した構成であることを確認できる。
The three-terminal semiconductor device configuration of the second embodiment is also configured by a pair of two two- terminal semiconductor devices 150a and 150b, and the second terminal 154a that constitutes each of the two- terminal semiconductor devices 150a and 150b, It can be confirmed with various measuring instruments that both 154b are electrically connected to the control terminal 157. For example, when the three-terminal semiconductor device of the second embodiment is formed in a multilayer copper wiring layer on a semiconductor substrate, the first electrode 1 of each “resistance change element” is observed by TEM observation and SEM observation. And the second electrode 2, the second terminals 154a, 154b, and the control terminal 157 can be checked to confirm the configuration described above.
(第3の実施形態)
本第3の実施形態の半導体装置は、第1の実施形態で説明した2端子型半導体装置の構成に使用される抵抗変化素子として、固体電解質スイッチ素子を採用する構成である。 (Third embodiment)
The semiconductor device of the third embodiment is configured to employ a solid electrolyte switch element as a resistance change element used in the configuration of the two-terminal semiconductor device described in the first embodiment.
本第3の実施形態の半導体装置は、第1の実施形態で説明した2端子型半導体装置の構成に使用される抵抗変化素子として、固体電解質スイッチ素子を採用する構成である。 (Third embodiment)
The semiconductor device of the third embodiment is configured to employ a solid electrolyte switch element as a resistance change element used in the configuration of the two-terminal semiconductor device described in the first embodiment.
図7Aは、本第3の実施形態の半導体装置を構成する抵抗変化素子として用いる固体電解質スイッチ素子の構成を模式的に示した部分断面図である。
FIG. 7A is a partial cross-sectional view schematically showing a configuration of a solid electrolyte switch element used as a variable resistance element constituting the semiconductor device of the third embodiment.
図7Aに示すように、本第3の実施形態で用いられる固体電解質スイッチ素子159は、第1電極1と、第2電極2と、第1電極1および第2電極2に挟まれた抵抗変化層3と、を有している。抵抗変化層3は、第1電極1に近い順に、バッファ層4および金属イオンが伝導可能な固体電解質層5で構成される。
As shown in FIG. 7A, the solid electrolyte switch element 159 used in the third embodiment includes a first electrode 1, a second electrode 2, and a resistance change sandwiched between the first electrode 1 and the second electrode 2. Layer 3. The resistance change layer 3 includes a buffer layer 4 and a solid electrolyte layer 5 capable of conducting metal ions in the order closer to the first electrode 1.
第1電極1は、金属イオンの供給源となる材料で構成される。好ましくは、第1電極1は、金属イオン化および供給の制御性の観点から銅を含む金属材料からなり、この金属材料から供給される金属イオンは銅イオンである。
1st electrode 1 is comprised with the material used as the supply source of metal ion. Preferably, the 1st electrode 1 consists of a metal material containing copper from a viewpoint of controllability of metal ionization and supply, and the metal ion supplied from this metal material is a copper ion.
第2電極2は、第1電極1に用いる金属材料よりもイオン化しにくい金属を含む材料で構成される。好ましくは、第2電極2は、電極加工の容易さの観点から、Ruを含む材料で構成される。
The second electrode 2 is made of a material containing a metal that is harder to ionize than the metal material used for the first electrode 1. Preferably, the 2nd electrode 2 is comprised with the material containing Ru from a viewpoint of the ease of electrode processing.
バッファ層4は、第1電極1表面の全面に接触して設けられ、第1電極1表面の酸化を抑制することができる材料で作製される。銅を含む金属材料の酸化を抑制する目的から、好ましくは、バッファ層4は、Al、Hf、Ta、Ti、およびZrのうち、少なくともいずれか1つを含む材料で作製することが好ましい。
The buffer layer 4 is provided in contact with the entire surface of the first electrode 1 and is made of a material capable of suppressing oxidation of the surface of the first electrode 1. For the purpose of suppressing oxidation of a metal material containing copper, the buffer layer 4 is preferably made of a material containing at least one of Al, Hf, Ta, Ti, and Zr.
固体電解質層5は、第1電極1と第2電極2との間の電圧を印加することにより、第1電極1から供給される金属イオンを溶解する役割を持つ。第1電極1と第2電極2との間に印加された電圧に起因する電界により、固体電解質層5中に溶解されている金属イオン、例えば、銅イオンは輸送される。また、印加された電圧に起因する電界により、銅を含む金属材料から銅イオンが容易に溶出され、あるいは、銅イオンを銅に還元して回収することができる、固体電解質材料により、固体電解質層5は作製される。固体電解質層5を作製する固体電解質材料には、スイッチングサイクルによる材料劣化が小さい材料が好ましい。従って、固体電解質層5は、例えば、Al、Co、Fe、Hf、Mn、Si、Ta、Ti、Zn、Zrのうち、すくなくとも1つを含む酸化物、あるいはカルコゲナイド、アモルファスSi、SiOCHなどを使用して作製される。
The solid electrolyte layer 5 has a role of dissolving metal ions supplied from the first electrode 1 by applying a voltage between the first electrode 1 and the second electrode 2. Metal ions dissolved in the solid electrolyte layer 5, for example, copper ions, are transported by an electric field caused by a voltage applied between the first electrode 1 and the second electrode 2. In addition, the solid electrolyte layer can be obtained by a solid electrolyte material in which copper ions are easily eluted from a metal material containing copper or can be recovered by reducing the copper ions to copper by an electric field caused by an applied voltage. 5 is produced. The solid electrolyte material for producing the solid electrolyte layer 5 is preferably a material with little material deterioration due to switching cycles. Therefore, the solid electrolyte layer 5 uses, for example, an oxide containing at least one of Al, Co, Fe, Hf, Mn, Si, Ta, Ti, Zn, and Zr, chalcogenide, amorphous Si, SiOCH, or the like. Is produced.
本第3の実施形態の半導体装置は、抵抗変化素子として固体電解質スイッチ素子を少なくとも2つ以上並列接続した半導体装置である。固体電解質スイッチ素子を使用して作製される、本第3の実施形態の半導体装置でも、第1の実施形態にて説明した構成の2端子型半導体装置と同様に、セット電圧ばらつきを抑制することが可能になる。
The semiconductor device of the third embodiment is a semiconductor device in which at least two solid electrolyte switch elements are connected in parallel as resistance change elements. In the semiconductor device of the third embodiment manufactured using a solid electrolyte switch element, as well as the two-terminal semiconductor device having the configuration described in the first embodiment, the variation in set voltage is suppressed. Is possible.
(第4の実施形態)
本第4の実施形態の半導体装置は、第1の実施形態の2端子型半導体装置を、半導体基板上に形成された多層配線構造の内部に設けた構成である。 (Fourth embodiment)
The semiconductor device according to the fourth embodiment has a configuration in which the two-terminal semiconductor device according to the first embodiment is provided inside a multilayer wiring structure formed on a semiconductor substrate.
本第4の実施形態の半導体装置は、第1の実施形態の2端子型半導体装置を、半導体基板上に形成された多層配線構造の内部に設けた構成である。 (Fourth embodiment)
The semiconductor device according to the fourth embodiment has a configuration in which the two-terminal semiconductor device according to the first embodiment is provided inside a multilayer wiring structure formed on a semiconductor substrate.
図8は、本第4の実施形態の半導体装置について、抵抗変化素子として、固体電解質スイッチ素子を採用して、半導体基板上に形成された多層配線構造の内部に設けた構成の一例を模式的に示した部分断面図である。
FIG. 8 schematically shows an example of the configuration of the semiconductor device of the fourth embodiment, in which a solid electrolyte switch element is employed as a variable resistance element and is provided inside a multilayer wiring structure formed on a semiconductor substrate. It is the fragmentary sectional view shown in.
図8に示すように、半導体基板101の上に第1層間絶縁膜102を介して、抵抗変化素子として、固体電解質スイッチ素子159が設けられている。本第4の実施形態の半導体装置で使用される固体電解質スイッチ素子159は、第3の実施形態の半導体装置の構成に使用される固体電解質スイッチ素子と同様の構成である。
As shown in FIG. 8, a solid electrolyte switch element 159 is provided as a resistance change element on a semiconductor substrate 101 with a first interlayer insulating film 102 interposed therebetween. The solid electrolyte switch element 159 used in the semiconductor device of the fourth embodiment has the same configuration as the solid electrolyte switch element used in the configuration of the semiconductor device of the third embodiment.
第3の実施形態に説明される固体電解質スイッチ素子159は、図7Aに示すように、第1電極1および第2電極2と、第1電極1および第2電極2に挟まれた抵抗変化層3と、を有し、抵抗変化層3は、第1電極1に近い順に、バッファ層4および前記金属イオンが伝導可能な固体電解質層5で構成されている。本第4の実施形態の半導体装置で使用される固体電解質スイッチ素子159では、図7Bに示す構成を採用している。図7Bに示す構成では、バッファ層4を、第1金属酸化物層6と第2金属酸化物層7で構成している。従って、本第4の実施形態の半導体装置で使用される固体電解質スイッチ素子159は、下部配線106と、図示しない第1金属酸化物層と、図示しない第2金属酸化物層と、固体電解質層123と、第1上部電極124と、第2上部電極125と、を有している。
As shown in FIG. 7A, the solid electrolyte switch element 159 described in the third embodiment includes a first electrode 1 and a second electrode 2, and a variable resistance layer sandwiched between the first electrode 1 and the second electrode 2. The resistance change layer 3 includes a buffer layer 4 and a solid electrolyte layer 5 capable of conducting the metal ions in the order closer to the first electrode 1. The solid electrolyte switch element 159 used in the semiconductor device of the fourth embodiment adopts the configuration shown in FIG. 7B. In the configuration shown in FIG. 7B, the buffer layer 4 is composed of a first metal oxide layer 6 and a second metal oxide layer 7. Therefore, the solid electrolyte switch element 159 used in the semiconductor device of the fourth embodiment includes a lower wiring 106, a first metal oxide layer (not shown), a second metal oxide layer (not shown), and a solid electrolyte layer. 123, a first upper electrode 124, and a second upper electrode 125.
下部配線106、第1金属酸化物層、第2金属酸化物層、固体電解質層123および第1上部電極124には、一例として、図8に示す構成を採用することが可能である。下部配線106は、図7Bに示した第1電極1に相当する。第1金属酸化物層121は第1金属酸化物層6に相当し、第2金属酸化物層122は第2金属酸化物層7に相当する。固体電解質層123は固体電解質層5に相当し、第1上部電極124は第2電極2に相当する。図7Bに示す構成の固体電解質スイッチ素子の動作原理は、第3の実施形態で説明した、図7Aに示す構成の固体電解質スイッチ素子の動作原理と同様なため、本第4の実施形態では、その詳細な説明を省略する。
As an example, the configuration shown in FIG. 8 can be adopted for the lower wiring 106, the first metal oxide layer, the second metal oxide layer, the solid electrolyte layer 123, and the first upper electrode 124. The lower wiring 106 corresponds to the first electrode 1 shown in FIG. 7B. The first metal oxide layer 121 corresponds to the first metal oxide layer 6, and the second metal oxide layer 122 corresponds to the second metal oxide layer 7. The solid electrolyte layer 123 corresponds to the solid electrolyte layer 5, and the first upper electrode 124 corresponds to the second electrode 2. The operation principle of the solid electrolyte switch element having the configuration shown in FIG. 7B is the same as the operation principle of the solid electrolyte switch element having the structure shown in FIG. 7A described in the third embodiment. Therefore, in the fourth embodiment, Detailed description thereof is omitted.
本第4の実施形態で使用する、固体電解質スイッチ素子においても、第1金属酸化物層121を設けることで、より効果的に、リーク電流の低減することができるとともに、素子間特性ばらつきを低減することができる。本第4の実施形態で使用する、固体電解質スイッチ素子では、第1金属酸化物層121は、例えば、膜厚0.5nmの酸素組成y1が1.5≦y1≦2.0を満たすTiOy1で作製することができる。
Also in the solid electrolyte switch element used in the fourth embodiment, by providing the first metal oxide layer 121, the leakage current can be reduced more effectively and the characteristic variation between elements can be reduced. can do. In the solid electrolyte switch element used in the fourth embodiment, the first metal oxide layer 121 is, for example, TiO y1 with an oxygen composition y1 with a thickness of 0.5 nm satisfying 1.5 ≦ y1 ≦ 2.0. Can be produced.
また、第2金属酸化物層127は、不動態層として機能し、下層のCuを含む下部配線106の酸化を抑制することができる。本第4の実施形態で使用する、固体電解質スイッチ素子では、第2金属酸化物層122は、例えば、膜厚0.3nmの酸素組成x1が1.3≦x1≦1.5を満たすAlOx1で作製することができる。
Further, the second metal oxide layer 127 functions as a passive layer, and can suppress oxidation of the lower wiring 106 containing Cu in the lower layer. In the solid electrolyte switch element used in the fourth embodiment, the second metal oxide layer 122 is, for example, an AlO x1 having a 0.3 nm-thickness oxygen composition x1 satisfying 1.3 ≦ x1 ≦ 1.5. Can be produced.
固体電解質層123は、例えば、膜厚6nmのSiOCH膜で作製することができる。第1上部電極124は、例えば、膜厚10nmのRu0.5Ti0.5で作製することができる。
The solid electrolyte layer 123 can be made of, for example, a 6 nm thick SiOCH film. The first upper electrode 124 can be made of, for example, Ru 0.5 Ti 0.5 having a thickness of 10 nm.
第2上部電極125は、バリア性を有する導電性膜であり、下部で接する第1上部電極124に含まれる金属がビアプラグ144などに拡散することを防止するために形成される。第2上部電極125は、例えば、膜厚25nmのTaで作製することができる。
The second upper electrode 125 is a conductive film having a barrier property, and is formed to prevent the metal contained in the first upper electrode 124 in contact with the lower part from diffusing into the via plug 144 or the like. The second upper electrode 125 can be made of Ta with a film thickness of 25 nm, for example.
図8に示すように、固体電解質スイッチ素子159における、第1上部電極124および第2上部電極125の積層体の上に第2ハードマスク膜128および第3ハードマスク膜129が形成されている。第1金属酸化物層121、第2金属酸化物層122、固体電解質層123、第1上部電極124、第2上部電極125、第2ハードマスク膜128および第3ハードマスク膜129の側面と、第1バリア絶縁膜107の上面は、保護絶縁膜130で覆われている。
As shown in FIG. 8, a second hard mask film 128 and a third hard mask film 129 are formed on the stacked body of the first upper electrode 124 and the second upper electrode 125 in the solid electrolyte switch element 159. Side surfaces of the first metal oxide layer 121, the second metal oxide layer 122, the solid electrolyte layer 123, the first upper electrode 124, the second upper electrode 125, the second hard mask film 128, and the third hard mask film 129; The upper surface of the first barrier insulating film 107 is covered with a protective insulating film 130.
下部配線106は、第2層間絶縁膜103および第1キャップ絶縁膜104に形成された配線溝に第1バリアメタル105を介して埋め込まれた配線である。下部配線106を、Cuを主成分とする金属材料で構成することで、図7Bに示す構成の固体電解質スイッチ素子における第1電極1に相当する下部電極として使用される。この構成により、下部配線106に、下部配線106内のCu原子をイオン化して固体電解質層123中へ溶出させる機能を持たせることができる。さらに、下部配線106をCu材料構成とすることで、未酸化のまま第1金属酸化物層121を構成しなかった金属成分をCuと合金化して下部配線106内へ拡散させることができる。下部配線106に、例えば、Cuが用いられ、第1金属酸化物層121を構成する主成分がTiからなる酸化物である場合、下部配線106と第1金属酸化物層121の界面には、CuおよびTiを主成分とする合金層が形成される。
The lower wiring 106 is a wiring buried in a wiring groove formed in the second interlayer insulating film 103 and the first cap insulating film 104 via the first barrier metal 105. By forming the lower wiring 106 from a metal material whose main component is Cu, it is used as a lower electrode corresponding to the first electrode 1 in the solid electrolyte switch element having the configuration shown in FIG. 7B. With this configuration, the lower wiring 106 can have a function of ionizing Cu atoms in the lower wiring 106 and eluting them into the solid electrolyte layer 123. Furthermore, by forming the lower wiring 106 with a Cu material structure, a metal component that has not been formed in the first metal oxide layer 121 while being unoxidized can be alloyed with Cu and diffused into the lower wiring 106. For example, when Cu is used for the lower wiring 106 and the main component constituting the first metal oxide layer 121 is an oxide made of Ti, the interface between the lower wiring 106 and the first metal oxide layer 121 is An alloy layer mainly composed of Cu and Ti is formed.
固体電解質層123と下部配線106とは、第1金属酸化物層121および第2金属酸化物層122を介して、第1バリア絶縁膜107の開口部にて接続されている。このとき、固体電解質層123と金属酸化物層を介して接続する下部配線106の幅は、バリア絶縁膜107の開口部の直径よりも大きいことが好ましい。
The solid electrolyte layer 123 and the lower wiring 106 are connected at the opening of the first barrier insulating film 107 via the first metal oxide layer 121 and the second metal oxide layer 122. At this time, the width of the lower wiring 106 connected to the solid electrolyte layer 123 through the metal oxide layer is preferably larger than the diameter of the opening of the barrier insulating film 107.
第1バリアメタル105は、第2上部電極125と同様のバリア性を有する導電性膜である。第1バリアメタル105は、下部配線106の側面および底面を被覆している。バリア性を有する導電性膜で形成される、第1バリアメタル105は、下部配線106に含まれる金属が第1層間絶縁膜102、第2層間絶縁膜103および第1キャップ絶縁膜104などへ拡散することを防止する。第1バリアメタル105の形成には、例えば、下部配線106がCuを主成分とする金属材料からなる場合、Ta、TaN、TiN、WCNのような高融点金属やその窒化物等、またはそれらの積層膜が用いられる。
The first barrier metal 105 is a conductive film having a barrier property similar to that of the second upper electrode 125. The first barrier metal 105 covers the side surface and the bottom surface of the lower wiring 106. In the first barrier metal 105 formed of a conductive film having a barrier property, the metal contained in the lower wiring 106 diffuses into the first interlayer insulating film 102, the second interlayer insulating film 103, the first cap insulating film 104, and the like. To prevent. For the formation of the first barrier metal 105, for example, when the lower wiring 106 is made of a metal material mainly composed of Cu, a refractory metal such as Ta, TaN, TiN, WCN, nitride thereof, or the like A laminated film is used.
上部配線145は、第3層間絶縁膜141および第2キャップ絶縁膜142に形成された配線溝に第2バリアメタル143を介して埋め込まれた配線である。上部配線145は、ビアプラグ144と一体になっている。ビアプラグ144は、保護絶縁膜130、第3ハードマスク膜129および第2ハードマスク膜128に形成された下穴に第2バリアメタル143を介して埋め込まれている。ビアプラグ144は、第2バリアメタル143を介して、固体電解質スイッチ素子159の第1上部電極124および第2上部電極125と電気的に接続されている。上部配線145およびビアプラグ144の作製は、例えば、Cuが用いられる。
The upper wiring 145 is a wiring buried in a wiring groove formed in the third interlayer insulating film 141 and the second cap insulating film 142 via the second barrier metal 143. The upper wiring 145 is integrated with the via plug 144. The via plug 144 is embedded in a prepared hole formed in the protective insulating film 130, the third hard mask film 129, and the second hard mask film 128 via the second barrier metal 143. The via plug 144 is electrically connected to the first upper electrode 124 and the second upper electrode 125 of the solid electrolyte switch element 159 via the second barrier metal 143. For example, Cu is used to manufacture the upper wiring 145 and the via plug 144.
第2バリアメタル143は、第1バリアメタル105と同様のバリア性を有する導電性膜である。第2バリアメタル143は、上部配線145およびビアプラグ144の側面および底面を被覆している。バリア性を有する導電性膜で形成される、第2バリアメタル143は、上部配線145およびビアプラグ144に含まれる金属が第1ビア層間絶縁膜140、第3層間絶縁膜141および第2キャップ絶縁膜142へ拡散することを防止する。第2バリアメタル143の形成には、例えば、上部配線145およびビアプラグ144がCuを主成分とする金属材料からなる場合には、第1バリアメタル105と同様に、Ta、TaN、TiN、WCNのような高融点金属やその窒化物等、またはそれらの積層膜が用いられる。
The second barrier metal 143 is a conductive film having the same barrier properties as the first barrier metal 105. The second barrier metal 143 covers the side surfaces and the bottom surface of the upper wiring 145 and the via plug 144. The second barrier metal 143 formed of a conductive film having a barrier property is such that the metal included in the upper wiring 145 and the via plug 144 is the first via interlayer insulating film 140, the third interlayer insulating film 141, and the second cap insulating film. The diffusion to 142 is prevented. For the formation of the second barrier metal 143, for example, when the upper wiring 145 and the via plug 144 are made of a metal material containing Cu as a main component, Ta, TaN, TiN, WCN are formed as in the first barrier metal 105. Such a refractory metal, a nitride thereof, or a laminated film thereof is used.
第2バリアメタル143は、接触抵抗を低減する観点から、固体電解質スイッチ素子159の構成の一部である第2上部電極125と同一材料であることが好ましい。例えば、第2上部電極125がTaで形成される場合、その上部に接触する第2バリアメタル143の作製にも、Taを用いることが好ましい。
The second barrier metal 143 is preferably made of the same material as the second upper electrode 125 which is a part of the configuration of the solid electrolyte switch element 159 from the viewpoint of reducing the contact resistance. For example, when the second upper electrode 125 is made of Ta, it is preferable to use Ta also for the production of the second barrier metal 143 in contact with the upper portion thereof.
第3ハードマスク膜129は、第2ハードマスク膜128をエッチングする際のハードマスクとなる膜である。第3ハードマスク膜129は、第2ハードマスク膜128と異なる種類の膜であることが好ましい。例えば、第2ハードマスク膜128がSiCN膜である場合、第3ハードマスク膜129にSiO2膜を用いることが可能である。
The third hard mask film 129 is a film that serves as a hard mask when the second hard mask film 128 is etched. The third hard mask film 129 is preferably a different type of film from the second hard mask film 128. For example, when the second hard mask film 128 is a SiCN film, a SiO 2 film can be used for the third hard mask film 129.
保護絶縁膜130は、側面が露出した固体電解質スイッチ素子159にダメージを与えることなく、さらに固体電解質スイッチ素子159から第1ビア層間絶縁膜140への構成原子(例えば、銅イオン)の拡散を防ぐ機能を有する絶縁膜である。保護絶縁膜130の作製には、例えば、SiN膜、SiCN膜等を用いることが可能である。第1バリア絶縁膜107および第2バリア絶縁膜146は、金属(例えば、銅イオン)の拡散を防ぐ機能を有する絶縁膜である。
The protective insulating film 130 further prevents diffusion of constituent atoms (for example, copper ions) from the solid electrolyte switch element 159 to the first via interlayer insulating film 140 without damaging the solid electrolyte switch element 159 whose side surface is exposed. This is an insulating film having a function. For the production of the protective insulating film 130, for example, a SiN film, a SiCN film, or the like can be used. The first barrier insulating film 107 and the second barrier insulating film 146 are insulating films having a function of preventing diffusion of metal (for example, copper ions).
本第4の実施形態の半導体装置では、図8に示すように、第1バリア絶縁膜107に設けられた開口部を介して第1電極1に相当する下部配線106と第1金属酸化物層121とが接する構成となる。この構成により、第1電極1としてCu配線を兼ねるCu電極を用いることができ、CMOS基板上多層配線構造内にCu電極を用いた抵抗変化素子が形成可能になる。抵抗変化素子の下部電極がCu配線の機能を兼ねることで、製造工程を簡略化することが可能となる。
In the semiconductor device of the fourth embodiment, as shown in FIG. 8, the lower wiring 106 corresponding to the first electrode 1 and the first metal oxide layer through the opening provided in the first barrier insulating film 107 121 is in contact. With this configuration, a Cu electrode serving also as a Cu wiring can be used as the first electrode 1, and a resistance change element using a Cu electrode can be formed in the multilayer wiring structure on the CMOS substrate. Since the lower electrode of the variable resistance element also functions as a Cu wiring, the manufacturing process can be simplified.
次に、本第4の実施形態の半導体装置の構成要素として利用可能な、固体電解質スイッチ素子の製造方法を、図7Bに示す構成を採用する、図9Jに示す固体電解質スイッチ素子の場合で説明する。図8に示す第4の実施形態の半導体装置は、抵抗変化素子を半導体基板上の多層配線構造の内部に設ける、図9A乃至図9Jの製造方法を応用することによって製造することができる。
Next, a method for manufacturing a solid electrolyte switch element that can be used as a component of the semiconductor device of the fourth embodiment will be described in the case of the solid electrolyte switch element shown in FIG. 9J that employs the configuration shown in FIG. 7B. To do. The semiconductor device of the fourth embodiment shown in FIG. 8 can be manufactured by applying the manufacturing method of FIGS. 9A to 9J in which the variable resistance element is provided inside the multilayer wiring structure on the semiconductor substrate.
図9Aから図9Jは、図7Bに示す構成を採用する、固体電解質スイッチ素子について、半導体基板上の多層配線構造の内部に設けるための製造方法を説明するための部分断面図である。
FIG. 9A to FIG. 9J are partial cross-sectional views for explaining a manufacturing method for providing a solid electrolyte switch element in a multilayer wiring structure on a semiconductor substrate, which employs the configuration shown in FIG. 7B.
まず、半導体基板101上に第1層間絶縁膜102、第2層間絶縁膜103および第1キャップ絶縁膜104を順に形成する。ここでいう半導体基板101は、半導体基板そのものであってもよく、基板表面に半導体素子(不図示)が形成されている基板であってもよい。例えば、第1層間絶縁膜102は膜厚300nmのSiO2膜で、第2層間絶縁膜103は膜厚150nmのSiOCH膜で、第1キャップ絶縁膜104は膜厚100nmのSiO2膜で、それぞれ作製することができる。
First, a first interlayer insulating film 102, a second interlayer insulating film 103, and a first cap insulating film 104 are sequentially formed on the semiconductor substrate 101. The semiconductor substrate 101 here may be the semiconductor substrate itself or a substrate on which a semiconductor element (not shown) is formed on the surface of the substrate. For example, the first interlayer insulating film 102 is a 300 nm thick SiO 2 film, the second interlayer insulating film 103 is a 150 nm thick SiOCH film, and the first cap insulating film 104 is a 100 nm thick SiO 2 film. Can be produced.
続いて、リソグラフィ法を用いて、第1キャップ絶縁膜104、第2層間絶縁膜103および第1層間絶縁膜102の積層膜に配線溝を形成する。このリソグラフィ法は、第1キャップ絶縁膜104の上に所定のパターンのレジストを形成するフォトレジスト形成処理、積層膜に対してレジストをマスクにして異方性エッチングを行うドライエッチング処理、および、エッチングにより配線溝を形成した後にレジストを除去する処理を含む。
Subsequently, a wiring trench is formed in the laminated film of the first cap insulating film 104, the second interlayer insulating film 103, and the first interlayer insulating film 102 by using a lithography method. This lithography method includes a photoresist forming process for forming a resist with a predetermined pattern on the first cap insulating film 104, a dry etching process for performing anisotropic etching on the laminated film using the resist as a mask, and an etching process. And a process of removing the resist after forming the wiring trench.
その後、配線溝に第1バリアメタル105を介して金属を埋め込んで下部配線106を形成する。第1バリアメタル105は、例えば、TaN(膜厚5nm)/Ta(膜厚5nm)の積層構造で形成することができる。下部配線106の材料には、例えば、Cuを用いることができる。
Thereafter, a metal is buried in the wiring trench through the first barrier metal 105 to form the lower wiring 106. The first barrier metal 105 can be formed with, for example, a stacked structure of TaN (film thickness 5 nm) / Ta (film thickness 5 nm). For example, Cu can be used as the material of the lower wiring 106.
続いて、下部配線106を含む第1キャップ絶縁膜104上に第1バリア絶縁膜107を形成する。第1バリア絶縁膜107は、例えば、膜厚30nmのSiCN膜で形成することができる。次に、図9Aに示すように、第1バリア絶縁膜107上に第1ハードマスク膜108を形成する。第1ハードマスク膜108は、ドライエッチング加工におけるエッチング選択比を大きく保つ観点から、第1バリア絶縁膜107とは異なる材料であることが好ましい。ここでは、第1バリア絶縁膜107を、SiCN膜で形成する場合には、第1ハードマスク膜108は、例えば、SiO2膜を用いて作製することができる。第1バリア絶縁膜107を、膜厚30nmのSiCN膜で形成する場合には、第1ハードマスク膜108は、例えば、膜厚40nmのSiO2膜を用いて作製することができる。
Subsequently, a first barrier insulating film 107 is formed on the first cap insulating film 104 including the lower wiring 106. The first barrier insulating film 107 can be formed of, for example, a SiCN film having a thickness of 30 nm. Next, as shown in FIG. 9A, a first hard mask film 108 is formed on the first barrier insulating film 107. The first hard mask film 108 is preferably made of a material different from that of the first barrier insulating film 107 from the viewpoint of maintaining a high etching selectivity in the dry etching process. Here, when the first barrier insulating film 107 is formed of a SiCN film, the first hard mask film 108 can be manufactured using, for example, a SiO 2 film. When the first barrier insulating film 107 is formed of a SiCN film having a thickness of 30 nm, the first hard mask film 108 can be manufactured using, for example, a SiO 2 film having a thickness of 40 nm.
続いて、第1ハードマスク膜108上に、所定の開口部パターンを有するフォトレジストを形成し、ドライエッチングを行って第1ハードマスク膜108に開口部を形成する。O2プラズマアッシング等によって、フォトレジストを剥離する。そして、第1ハードマスク膜108の開口部底部に露出している第1バリア絶縁膜107をエッチバックすることにより、下部配線106上面の一部を露出させる開口部を第1バリア絶縁膜107に形成する。第1ハードマスク膜108は、膜厚40nmのSiO2膜を用いて作製することで、このエッチバック中にエッチング除去される。このエッチバック後、図9Bに示すように、開口部底部に露出した下部配線106の表面を、有機溶剤、あるいは、H2または不活性ガスを含むガスを用いたプラズマ照射などによって清浄化する。
Subsequently, a photoresist having a predetermined opening pattern is formed on the first hard mask film 108 and dry etching is performed to form openings in the first hard mask film 108. The photoresist is removed by O 2 plasma ashing or the like. Then, the first barrier insulating film 107 exposed at the bottom of the opening of the first hard mask film 108 is etched back, so that an opening exposing a part of the upper surface of the lower wiring 106 is formed in the first barrier insulating film 107. Form. The first hard mask film 108 is formed by using a SiO 2 film having a thickness of 40 nm, and is removed by etching during this etch back. After this etch-back, as shown in FIG. 9B, the surface of the lower wiring 106 exposed at the bottom of the opening is cleaned by plasma irradiation using an organic solvent or a gas containing H 2 or an inert gas.
図9Aから図9Bの順に示した構造を形成するまでをステップA1とする。
9A to 9B are defined as step A1.
ステップA1において、第1バリア絶縁膜107の開口部を形成する際のエッチバックは、第1バリア絶縁膜107がSiN膜あるいはSiCN膜である場合、CF4を含むプラズマを用いて行うことが可能である。その条件は、例えば、CF4/Arのガス流量=25/50sccm、圧力0.53Pa、ソースパワー400W、基板バイアスパワー90Wの条件である。ソースパワーを低下、または基板バイアスを大きくすることで、エッチング時のイオン性を向上させ、第1バリア絶縁膜107側壁を傾斜したテーパー形状にすることができる。また、このエッチバックによって、第1ハードマスク膜108をエッチング除去することができる。
In step A1, the etch back for forming the opening of the first barrier insulating film 107 can be performed using plasma containing CF 4 when the first barrier insulating film 107 is a SiN film or a SiCN film. It is. The conditions are, for example, the conditions of CF 4 / Ar gas flow rate = 25/50 sccm, pressure 0.53 Pa, source power 400 W, and substrate bias power 90 W. By reducing the source power or increasing the substrate bias, the ionicity at the time of etching can be improved, and the side wall of the first barrier insulating film 107 can be tapered. Further, the first hard mask film 108 can be removed by etching by this etch back.
次に、図9Cに示すように、下部配線106が露出した開口部を含む第1バリア絶縁膜107上に、第1金属酸化物層121の形成に使用する、第1の金属層161、および第2金属酸化物層122の形成に使用する、第2の金属層162をこの順に堆積する。第1の金属層161は、Ti、Zr、Hfのうち少なくとも1つを含む。第2の金属層162は、Al、Nb、Taのうち少なくとも1つを含む。一例として、第1の金属層161は、膜厚0.5nmのTi膜で、第2の金属層は、膜厚0.2nmのAl膜で作製することができる。
Next, as shown in FIG. 9C, the first metal layer 161 used for forming the first metal oxide layer 121 on the first barrier insulating film 107 including the opening from which the lower wiring 106 is exposed, and A second metal layer 162 used to form the second metal oxide layer 122 is deposited in this order. The first metal layer 161 includes at least one of Ti, Zr, and Hf. The second metal layer 162 includes at least one of Al, Nb, and Ta. As an example, the first metal layer 161 can be formed using a Ti film having a thickness of 0.5 nm, and the second metal layer can be formed using an Al film having a thickness of 0.2 nm.
第1の金属層161および第2の金属層162を堆積後、減圧下にて、大気に暴露することなく、O2を含むガス照射により、第1の金属層161および第2の金属層162の酸化処理を行う。続いて、減圧下にて、成膜温度より高い温度で真空加熱処理を行うことで、図9Cに示すように、第1金属酸化物層121および第2金属酸化物層122を同時に形成する。
After the first metal layer 161 and the second metal layer 162 are deposited, the first metal layer 161 and the second metal layer 162 are irradiated with a gas containing O 2 under reduced pressure without being exposed to the atmosphere. Oxidation treatment is performed. Subsequently, by performing vacuum heat treatment at a temperature higher than the film formation temperature under reduced pressure, the first metal oxide layer 121 and the second metal oxide layer 122 are simultaneously formed as shown in FIG. 9C.
次に、形成された第2金属酸化物層122上に、固体電解質層123を堆積する。固体電解質層123の作製には、例えば、膜厚6nmのSiOCH膜を利用することができる。この場合、固体電解質層123をプラズマCVD法によって堆積し、続いて不活性ガスプラズマ処理を行う。
Next, a solid electrolyte layer 123 is deposited on the formed second metal oxide layer 122. For production of the solid electrolyte layer 123, for example, a 6-nm-thick SiOCH film can be used. In this case, the solid electrolyte layer 123 is deposited by a plasma CVD method, and then an inert gas plasma process is performed.
続いて、固体電解質層123上にDCスパッタリング法により、第1上部電極124および第2上部電極125をこの順に形成する。下部配線106、第1金属酸化物層121、第2金属酸化物層122、固体電解質層123、第1上部電極124および第2上部電極125は、固体電解質スイッチ素子159となる積層体を構成する。第1上部電極124は、例えば、膜厚10nmのRu0.5Ti0.5膜で形成することができる。第2上部電極125は、例えば、膜厚25nmのTa膜で形成することができる。なお、第1上部電極124を、RuあるいはRu合金で作製する場合、第1上部電極124の表面酸化を防止するため、第1上部電極124の堆積後、大気暴露することなく連続して、第2上部電極125を堆積することが好ましい。
Subsequently, the first upper electrode 124 and the second upper electrode 125 are formed in this order on the solid electrolyte layer 123 by DC sputtering. The lower wiring 106, the first metal oxide layer 121, the second metal oxide layer 122, the solid electrolyte layer 123, the first upper electrode 124, and the second upper electrode 125 constitute a stacked body that becomes the solid electrolyte switch element 159. . The first upper electrode 124 can be formed of, for example, a Ru 0.5 Ti 0.5 film having a thickness of 10 nm. The second upper electrode 125 can be formed of, for example, a Ta film having a thickness of 25 nm. When the first upper electrode 124 is made of Ru or a Ru alloy, the first upper electrode 124 is continuously deposited without being exposed to the atmosphere after the deposition of the first upper electrode 124 in order to prevent surface oxidation of the first upper electrode 124. Preferably, two upper electrodes 125 are deposited.
続いて、図9Dに示すように、第2上部電極125上に、第2ハードマスク膜128、および第3ハードマスク膜129をこの順に積層する。第2ハードマスク膜128は、密着性の観点から、第1バリア絶縁膜107と同一材料を用いることが好ましく、例えば、膜厚30nmのSiCN膜で作製することができる。第3ハードマスク膜129は、例えば、膜厚100nmのSiO2膜で作製することができる。
Subsequently, as illustrated in FIG. 9D, the second hard mask film 128 and the third hard mask film 129 are stacked in this order on the second upper electrode 125. The second hard mask film 128 is preferably made of the same material as that of the first barrier insulating film 107 from the viewpoint of adhesion, and can be made of, for example, a SiCN film having a thickness of 30 nm. The third hard mask film 129 can be made of, for example, a 100 nm thick SiO 2 film.
図9Cから図9Dの順に示した構造を形成するまでをステップA2とする。
9A to 9D is referred to as step A2.
ステップA2において、第1の金属層161および第2の金属層162は、金属原料の抵抗加熱、電子線照射、レーザー照射などによる蒸着法、DCスパッタリング法などにより堆積できる。一例として、第1の金属層161をTi膜で形成する場合、DCスパッタリング法により、Tiをターゲットとして、スパッタパワー100W、基板温度は室温にて、Ar流量20sccm、圧力0.5Paの条件を用いることで、第1の金属層161用の膜厚0.5nmのTi膜を堆積することができる。また、第2の金属層162がAl膜で形成する場合、DCスパッタリング法を用い、Alをターゲットとして、スパッタパワー150W、基板温度は室温にて、Ar流量20sccm、圧力0.5Paの条件を用いることで、第2の金属層162用の膜厚0.2nmのAl膜を堆積することができる。
In step A2, the first metal layer 161 and the second metal layer 162 can be deposited by resistance heating of a metal raw material, electron beam irradiation, laser vapor deposition, DC sputtering, or the like. As an example, when the first metal layer 161 is formed of a Ti film, DC sputtering is used with Ti as a target, sputtering power of 100 W, substrate temperature at room temperature, Ar flow rate of 20 sccm, and pressure of 0.5 Pa. Thus, a Ti film having a thickness of 0.5 nm for the first metal layer 161 can be deposited. When the second metal layer 162 is formed of an Al film, DC sputtering is used, using Al as a target, sputtering power of 150 W, substrate temperature at room temperature, Ar flow rate of 20 sccm, and pressure of 0.5 Pa. Thus, an Al film having a thickness of 0.2 nm for the second metal layer 162 can be deposited.
また、ステップA2において、大気暴露することなく、O2を含むガス照射による酸化処理を行うことで、第1の金属層161の酸化により形成される第1金属酸化物層121、および第2の金属層162の酸化により形成される第2金属酸化物層122の酸化度を精度よく制御することができる。一例として、第1の金属層161を膜厚0.5nmのTi膜で形成し、第2の金属層162を膜厚0.2nmのAl膜で形成している場合、基板温度は、室温にて、O2流量10sccm、圧力0.5Pa、照射時間60秒のO2ガス照射により、Tiの酸化物からなる第1金属酸化物層121、およびAlの酸化物からなる第2金属酸化物層122を形成することができる。
In step A2, the first metal oxide layer 121 formed by oxidation of the first metal layer 161 and the second metal oxide layer 161 are oxidized by irradiating with gas containing O 2 without being exposed to the atmosphere. The degree of oxidation of the second metal oxide layer 122 formed by the oxidation of the metal layer 162 can be accurately controlled. As an example, when the first metal layer 161 is formed of a 0.5 nm thick Ti film and the second metal layer 162 is formed of a 0.2 nm thick Al film, the substrate temperature is set to room temperature. The first metal oxide layer 121 made of an oxide of Ti and the second metal oxide layer made of an oxide of Al by O 2 gas irradiation with an O 2 flow rate of 10 sccm, a pressure of 0.5 Pa, and an irradiation time of 60 seconds. 122 can be formed.
さらに、ステップA2において、前述の酸化処理後の加熱処理は、一例として、第1の金属層161を膜厚0.5nmのTi膜で形成し、第2の金属層162を膜厚0.2nmのAl膜で形成している場合、400℃以下の基板温度にて、N2およびO2各流量10/10sccm、圧力900Pa、処理時間30秒の条件で行うことが好ましい。この加熱処理によって、前述の酸化処理において未反応で残留している、第1金属酸化物層121内の金属成分Tiを、Cuからなる下部配線106表面における合金化拡散により、第1金属酸化物層121から除去することができる。また、真空は、チャンバー内の気圧を極力低くした状態を意味し、少なくとも上述の酸化処理よりも低圧である。第1金属酸化物層121の膜厚は1.0nm以下であることが好ましく、第2金属酸化物層122の膜厚は0.8nm以下であることが好ましい。
Further, in step A2, the heat treatment after the above-described oxidation treatment is performed by, for example, forming the first metal layer 161 with a 0.5 nm-thick Ti film and the second metal layer 162 with a 0.2 nm-thickness. In the case where the Al film is formed, it is preferable that the N 2 and O 2 flow rate is 10/10 sccm, the pressure is 900 Pa, and the processing time is 30 seconds at a substrate temperature of 400 ° C. or lower. By this heat treatment, the metal component Ti in the first metal oxide layer 121 remaining unreacted in the above-described oxidation treatment is transformed into the first metal oxide by alloying diffusion on the surface of the lower wiring 106 made of Cu. It can be removed from layer 121. Further, the vacuum means a state where the atmospheric pressure in the chamber is as low as possible, and is at least a lower pressure than the above-described oxidation treatment. The film thickness of the first metal oxide layer 121 is preferably 1.0 nm or less, and the film thickness of the second metal oxide layer 122 is preferably 0.8 nm or less.
ステップA2において、固体電解質層123にSiOCH膜を用いる場合、プラズマCVD法で次のような条件で、SiOCH膜を形成する。原料には、液体SiOCHモノマー分子を用い、基板温度は400℃以下とし、He流量500~2000sccm、原料流量0.1~0.8g/min、プラズマCVDチャンバー圧力360~700Pa、RFパワー20~100Wにそれぞれ設定することで、固体電解質層123用のSiOCH膜を堆積することができる。具体的には、基板温度350℃、He流量1500sccm、原料流量0.75g/min、プラズマCVDチャンバー圧力470Pa、RFパワー50Wの条件で、固体電解質層123用のSiOCH膜を堆積することができる。また、固体電解質層123用のSiOCH膜堆積後の不活性プラズマ処理は、不活性ガスとしてHeを用い、基板温度は400℃以下とし、He流量500~1500sccm、プラズマチャンバー圧力2.7~3.5Torr、RFパワー20~200Wにそれぞれ設定することで行うことができる。具体的には、基板温度350℃、He流量1000sccm、プラズマチャンバー圧力360Pa、RFパワー50W、処理時間30秒の条件で行うことができる。この不活性プラズマ処理によって、次に堆積する第1上部電極124との密着性を改善することができる。
In step A2, when a SiOCH film is used for the solid electrolyte layer 123, the SiOCH film is formed by the plasma CVD method under the following conditions. The raw material is liquid SiOCH monomer molecules, the substrate temperature is 400 ° C. or less, the He flow rate is 500 to 2000 sccm, the raw material flow rate is 0.1 to 0.8 g / min, the plasma CVD chamber pressure is 360 to 700 Pa, and the RF power is 20 to 100 W. By setting respectively, the SiOCH film for the solid electrolyte layer 123 can be deposited. Specifically, the SiOCH film for the solid electrolyte layer 123 can be deposited under the conditions of a substrate temperature of 350 ° C., a He flow rate of 1500 sccm, a raw material flow rate of 0.75 g / min, a plasma CVD chamber pressure of 470 Pa, and an RF power of 50 W. In addition, the inert plasma treatment after depositing the SiOCH film for the solid electrolyte layer 123 uses He as an inert gas, the substrate temperature is set to 400 ° C. or less, the He flow rate is 500 to 1500 sccm, and the plasma chamber pressure is 2.7 to 3. This can be done by setting 5 Torr and RF power 20 to 200 W, respectively. Specifically, it can be performed under the conditions of a substrate temperature of 350 ° C., a He flow rate of 1000 sccm, a plasma chamber pressure of 360 Pa, an RF power of 50 W, and a processing time of 30 seconds. By this inert plasma treatment, the adhesion with the first upper electrode 124 to be deposited next can be improved.
また、ステップA2において、第1上部電極124の作製に、例えば、Ru0.5Ti0.5合金膜を用いる場合、RuおよびTiをターゲットとした同時DCスパッタリングにより、Ru0.5Ti0.5合金膜を堆積することができる。Ruのスパッタパワー120W、Tiのスパッタパワー150W、基板温度は室温にて、Ar流量20sccm、圧力0.5Paの条件を用いることで、Ru0.5Ti0.5合金膜を堆積することができる。また、第1上部電極124の堆積後、大気暴露することなく連続して、第2上部電極125を堆積する。例えば、第2上部電極125を、膜厚25nmのTaで作製する場合、DCスパッタリングにより、Taをターゲットとして、スパッタパワー300W、基板温度は室温にて、Ar流量25sccm、圧力0.5Paの条件を用いることで、Ru0.5Ti0.5合金膜の堆積後、大気暴露することなく連続して、Ta膜を堆積することができる。
Further, in Step A2, for example, when using a Ru 0.5 Ti 0.5 alloy film to manufacture the first upper electrode 124, the Ru 0.5 Ti 0.5 alloy film may be deposited by simultaneous DC sputtering using Ru and Ti as targets. it can. A Ru 0.5 Ti 0.5 alloy film can be deposited by using the conditions of Ru sputtering power 120 W, Ti sputtering power 150 W, substrate temperature at room temperature, Ar flow rate 20 sccm, and pressure 0.5 Pa. Further, after the first upper electrode 124 is deposited, the second upper electrode 125 is continuously deposited without being exposed to the atmosphere. For example, when the second upper electrode 125 is made of Ta with a film thickness of 25 nm, the sputtering power is 300 W, the substrate temperature is room temperature, the Ar flow rate is 25 sccm, and the pressure is 0.5 Pa by DC sputtering. By using it, a Ta film can be continuously deposited without being exposed to the atmosphere after the Ru 0.5 Ti 0.5 alloy film is deposited.
また、ステップA2において、第2ハードマスク膜128および第3ハードマスク膜129は、いずれも半導体製造の技術分野における一般的なプラズマCVD法を用いて形成することができる。プラズマCVD法による成膜時、成膜温度は、200℃~400℃の範囲を選択することが可能である。ここでは、プラズマCVD法による成膜時、成膜温度を350℃に選択することができる。
In Step A2, both the second hard mask film 128 and the third hard mask film 129 can be formed using a general plasma CVD method in the technical field of semiconductor manufacturing. At the time of film formation by the plasma CVD method, the film formation temperature can be selected in the range of 200 ° C. to 400 ° C. Here, the film formation temperature can be selected to be 350 ° C. during the film formation by the plasma CVD method.
次に、第3ハードマスク膜129上に、抵抗変化素子126の加工パターンを有するフォトレジストを形成後、第2ハードマスク膜128が表れるまで第3ハードマスク膜129をドライエッチングする。続いて、O2プラズマアッシング処理によりフォトレジストを除去した後、第3ハードマスク膜129をマスクとして、第2ハードマスク膜128、第2上部電極125、第1上部電極124、固体電解質層123、第2金属酸化物層122、および第1金属酸化物層121を連続的にドライエッチングする。図9Eは、そのエッチング後の状態を示す。
Next, after forming a photoresist having a processing pattern of the resistance change element 126 on the third hard mask film 129, the third hard mask film 129 is dry-etched until the second hard mask film 128 appears. Subsequently, after removing the photoresist by O 2 plasma ashing, the second hard mask film 128, the second upper electrode 125, the first upper electrode 124, the solid electrolyte layer 123, and the third hard mask film 129 are used as a mask. The second metal oxide layer 122 and the first metal oxide layer 121 are continuously dry etched. FIG. 9E shows the state after the etching.
ステップA2の後、図9Eに示した構造を形成するまでの工程をステップA3とする。
After Step A2, the process until the structure shown in FIG. 9E is formed is referred to as Step A3.
ステップA3において、第3ハードマスク膜129のドライエッチングは、第2ハードマスク膜128の上面または内部で停止していることが好ましい。この場合、固体電解質スイッチ素子159は、第2ハードマスク膜128によって被覆されているため、O2プラズマ中に暴露されることはない。また、Ruを含む第1上部電極124も、O2プラズマに暴露されることがない。そのため、第1上部電極124に対するサイドエッチの発生を抑制することができる。なお、第3ハードマスク膜129のドライエッチングには、一般的な平行平板型のドライエッチング装置を用いることができる。
In step A3, the dry etching of the third hard mask film 129 is preferably stopped on the upper surface or inside the second hard mask film 128. In this case, since the solid electrolyte switch element 159 is covered with the second hard mask film 128, it is not exposed to O 2 plasma. Also, the first upper electrode 124 containing Ru is not exposed to O 2 plasma. Therefore, the occurrence of side etching with respect to the first upper electrode 124 can be suppressed. For the dry etching of the third hard mask film 129, a general parallel plate type dry etching apparatus can be used.
また、ステップA3において、第2ハードマスク膜128、第2上部電極125、第1上部電極124、固体電解質層123、第2金属酸化物層122、および第1金属酸化物層121の各エッチングについても、平行平板型のドライエッチャーを用いて一括して行うことができる。
In Step A3, each etching of the second hard mask film 128, the second upper electrode 125, the first upper electrode 124, the solid electrolyte layer 123, the second metal oxide layer 122, and the first metal oxide layer 121 is performed. Also, it can be performed collectively using a parallel plate type dry etcher.
第2ハードマスク膜128(例えば、SiCN膜)のエッチングは、CF4/Arのガス流量=25/50sccm、圧力0.53Pa、ソースパワー400W、基板バイアスパワー90Wの条件で行うことができる。
Etching of the second hard mask film 128 (for example, SiCN film) can be performed under the conditions of a gas flow rate of CF 4 / Ar = 25/50 sccm, a pressure of 0.53 Pa, a source power of 400 W, and a substrate bias power of 90 W.
また、ステップA3において、第2上部電極125(例えば、Ta膜)のエッチングは、基板温度90℃、Cl2ガス流量=50sccmにて圧力0.53Pa、ソースパワー400W、基板バイアスパワー60Wの条件で行うことができる。
In step A3, the etching of the second upper electrode 125 (eg, Ta film) is performed under the conditions of a substrate temperature of 90 ° C., a Cl 2 gas flow rate = 50 sccm, a pressure of 0.53 Pa, a source power of 400 W, and a substrate bias power of 60 W. It can be carried out.
また、第1上部電極124(例えば、Ru0.5Ti0.5合金膜)のエッチングは、基板温度は室温、O2/Cl2ガス流量=160/30sccmにて圧力0.53Pa、ソースパワー300~600W、基板バイアスパワー100~300Wの条件で行うことができる。
Etching of the first upper electrode 124 (for example, Ru 0.5 Ti 0.5 alloy film) is performed at a substrate temperature of room temperature, an O 2 / Cl 2 gas flow rate = 160/30 sccm, a pressure of 0.53 Pa, a source power of 300 to 600 W, The substrate bias power can be 100 to 300 W.
また、固体電解質層123(例えば、SiOCH膜)のエッチングは、第1上部電極124にRu0.5Ti0.5合金膜を用いる場合、第1上部電極124のエッチングと同条件で行うことができる。したがって、固体電解質層123(SiOCH膜)と第1上部電極124(Ru0.5Ti0.5合金膜)を、一括してエッチングを行うこともできる。
In addition, when the Ru 0.5 Ti 0.5 alloy film is used for the first upper electrode 124, the solid electrolyte layer 123 (eg, SiOCH film) can be etched under the same conditions as the etching of the first upper electrode 124. Therefore, the solid electrolyte layer 123 (SiOCH film) and the first upper electrode 124 (Ru 0.5 Ti 0.5 alloy film) can be etched together.
また、第2金属酸化物層122(例えば、酸素組成x1が1.3≦x1≦1.5を満たす、膜厚0.3nmのAlOx1膜)、および第1金属酸化物層121(例えば、酸素組成y1が1.5≦y1≦2.0を満たす、膜厚0.5nmのTiOy1膜)のエッチングについても、第1上部電極124にRu0.5Ti0.5合金膜を用いる場合、固体電解質層123(SiOCH膜)と同様に、第1上部電極124(Ru0.5Ti0.5合金膜)のエッチングと同条件で行うことができる。したがって、第2金属酸化物層122(AlOx1膜)と第1金属酸化物層121(TiOy1膜)を、第1上部電極124(Ru0.5Ti0.5合金膜)および固体電解質層123(SiOCH膜)と一括してエッチングを行うこともできる。
In addition, the second metal oxide layer 122 (for example, an AlO x1 film having a thickness of 0.3 nm where the oxygen composition x1 satisfies 1.3 ≦ x1 ≦ 1.5), and the first metal oxide layer 121 (for example, In the etching of a 0.5 nm-thick TiO y1 film in which the oxygen composition y1 satisfies 1.5 ≦ y1 ≦ 2.0, when a Ru 0.5 Ti 0.5 alloy film is used for the first upper electrode 124, the solid electrolyte layer Similarly to 123 (SiOCH film), the etching can be performed under the same conditions as those for etching the first upper electrode 124 (Ru 0.5 Ti 0.5 alloy film). Therefore, the second metal oxide layer 122 (AlO x1 film) and the first metal oxide layer 121 (TiO y1 film) are replaced with the first upper electrode 124 (Ru 0.5 Ti 0.5 alloy film) and the solid electrolyte layer 123 (SiOCH film). Etching can be performed at once.
また、ステップA3において、上述の条件にて、第2ハードマスク膜128、第2上部電極125、第1上部電極124、固体電解質層123、第2金属酸化物層122、および第1金属酸化物層121の各エッチングを行った後、膜厚100nmのSiO2膜で作製した第3ハードマスク膜129の残り膜厚を、50nmとすることができる。
In Step A3, the second hard mask film 128, the second upper electrode 125, the first upper electrode 124, the solid electrolyte layer 123, the second metal oxide layer 122, and the first metal oxide are formed under the above-described conditions. After each etching of the layer 121, the remaining thickness of the third hard mask film 129 made of a 100 nm thick SiO 2 film can be set to 50 nm.
次に、図9Fに示すように、第3ハードマスク膜129、第2ハードマスク膜128、第2上部電極125、第1上部電極124、固体電解質層123、第2金属酸化物層122、および第1金属酸化物層121ならびに第1バリア絶縁膜107からなる積層構造の上部および側壁部に、保護絶縁膜130を堆積する。保護絶縁膜130は、第1バリア絶縁膜107および第2ハードマスク膜128と同一材料を用いることが好ましく、例えば、膜厚30nmのSiCN膜で作製することができる。
Next, as shown in FIG. 9F, a third hard mask film 129, a second hard mask film 128, a second upper electrode 125, a first upper electrode 124, a solid electrolyte layer 123, a second metal oxide layer 122, and A protective insulating film 130 is deposited on the top and side walls of the laminated structure composed of the first metal oxide layer 121 and the first barrier insulating film 107. The protective insulating film 130 is preferably made of the same material as the first barrier insulating film 107 and the second hard mask film 128, and can be made of, for example, a SiCN film having a thickness of 30 nm.
続いて、図9Fに示すように、保護絶縁膜130上に、プラズマCVD法を用いて第1ビア層間絶縁膜140を堆積する。第1ビア層間絶縁膜140は、例えば、膜厚210nmのSiO2膜で作製することができる。次に、CMP法を用いて、第1ビア層間絶縁膜140を平坦化する。平坦化後、図9Gに示すように、第1ビア層間絶縁膜140上に、第3層間絶縁膜141、および第2キャップ絶縁膜142をこの順に堆積する。第3層間絶縁膜141は、エッチング加工時に下部で接する第1ビア層間絶縁膜140をエッチングストッパ層とするために、第1ビア層間絶縁膜140とは異なる材料で形成される。第3層間絶縁膜141は、例えば、膜厚150nmのSiOCH膜で形成することができる。
Subsequently, as shown in FIG. 9F, a first via interlayer insulating film 140 is deposited on the protective insulating film 130 by using a plasma CVD method. The first via interlayer insulating film 140 can be made of, for example, a SiO 2 film having a thickness of 210 nm. Next, the first via interlayer insulating film 140 is planarized using a CMP method. After planarization, a third interlayer insulating film 141 and a second cap insulating film 142 are deposited in this order on the first via interlayer insulating film 140 as shown in FIG. 9G. The third interlayer insulating film 141 is formed of a material different from that of the first via interlayer insulating film 140 in order to use the first via interlayer insulating film 140 that is in contact with the lower portion during etching processing as an etching stopper layer. The third interlayer insulating film 141 can be formed by a SiOCH film having a film thickness of 150 nm, for example.
ステップS3の後、図9Gに示した構造を形成するまでの工程をステップA4とする。
After step S3, the process until the structure shown in FIG. 9G is formed is referred to as step A4.
ステップA4において、保護絶縁膜130の形成に、例えば、SiCN膜を用いる場合、テトラメチルシランとアンモニアを原料ガスとし、基板温度200℃にて、プラズマCVD法を用いて形成することができる。SiCN膜を用いて、保護絶縁膜130を形成することより、第1バリア絶縁膜107、保護絶縁膜130、および第2ハードマスク膜128を、いずれも、SiCN膜で形成することができる。第1バリア絶縁膜107、保護絶縁膜130、および第2ハードマスク膜128を同一材料で形成し、固体電解質スイッチ素子159の周囲を一体化し保護することで、界面の密着性が向上し、吸湿性や耐水性、酸素脱離耐性を向上でき、素子の歩留まりと信頼性を向上することができる。
In step A4, for example, when a SiCN film is used to form the protective insulating film 130, it can be formed using plasma CVD at a substrate temperature of 200 ° C. using tetramethylsilane and ammonia as source gases. By forming the protective insulating film 130 using the SiCN film, the first barrier insulating film 107, the protective insulating film 130, and the second hard mask film 128 can all be formed of the SiCN film. The first barrier insulating film 107, the protective insulating film 130, and the second hard mask film 128 are formed of the same material, and the periphery of the solid electrolyte switch element 159 is integrated and protected, thereby improving the adhesion at the interface and absorbing moisture. Performance, water resistance and oxygen desorption resistance can be improved, and the yield and reliability of the device can be improved.
また、ステップA4において、第1ビア層間絶縁膜140の平坦化では、第1ビア層間絶縁膜140の頂面から約100nmを削り取り、残膜厚を約110nmとすることができる。このとき、第1ビア層間絶縁膜140に対するCMP(chemical-mechanical polishing)では、一般的な、コロイダルシリカ、あるいはセリア系のスラリーを用いて研磨することができる。
Further, in step A4, in the planarization of the first via interlayer insulating film 140, about 100 nm can be removed from the top surface of the first via interlayer insulating film 140, and the remaining film thickness can be set to about 110 nm. At this time, CMP (chemical-mechanical polishing) for the first via interlayer insulating film 140 can be polished using a general colloidal silica or ceria-based slurry.
また、ステップA4において、第3層間絶縁膜141および第2キャップ絶縁膜142は、一般的なプラズマCVD法を用いて堆積することができる。
In Step A4, the third interlayer insulating film 141 and the second cap insulating film 142 can be deposited using a general plasma CVD method.
次に、デュアルダマシン法のビアファースト法を用いて、図9Jに示した上部配線145、およびビアプラグ144を形成する。
Next, the upper wiring 145 and the via plug 144 shown in FIG. 9J are formed by using the dual damascene via first method.
ビアファースト法においては、まず、第2キャップ絶縁膜142上に、図9Jに示したビアプラグ144用のビアホール147のパターンを有するフォトレジストを形成する。続いて、ドライエッチングにより、第2キャップ絶縁膜142、第3層間絶縁膜141、第1ビア層間絶縁膜140、保護絶縁膜130、および第3ハードマスク膜129を貫通した、図9Hに示したビアプラグ144用のビアホール147を形成する。その後、図9Hに示すように、H2ガスを含むプラズマアッシングと有機剥離を行うことで、フォトレジストを除去する。
In the via first method, first, a photoresist having the pattern of the via hole 147 for the via plug 144 shown in FIG. 9J is formed on the second cap insulating film 142. Subsequently, the second cap insulating film 142, the third interlayer insulating film 141, the first via interlayer insulating film 140, the protective insulating film 130, and the third hard mask film 129 are penetrated by dry etching, as shown in FIG. 9H. A via hole 147 for the via plug 144 is formed. Thereafter, as shown in FIG. 9H, the photoresist is removed by performing plasma ashing including H 2 gas and organic peeling.
続いて、第2キャップ絶縁膜142上に、図9Jに示した上部配線145用の配線溝148のパターンを有するフォトレジストを形成後、ドライエッチングにより、第2キャップ絶縁膜142および第3層間絶縁膜141に図9Jに示した上部配線145用の配線溝148を形成する。その後、図9Iに示すように、H2ガスを含むプラズマアッシングと有機剥離を行うことで、フォトレジストを除去する。
Subsequently, after forming a photoresist having the pattern of the wiring groove 148 for the upper wiring 145 shown in FIG. 9J on the second cap insulating film 142, the second cap insulating film 142 and the third interlayer insulating film are formed by dry etching. A wiring groove 148 for the upper wiring 145 shown in FIG. 9J is formed in the film 141. Thereafter, as shown in FIG. 9I, plasma ashing including H 2 gas and organic peeling are performed to remove the photoresist.
ステップA5の後、図9Iに示した構造を形成するまでの工程をステップA5とする。
After Step A5, the process until the structure shown in FIG. 9I is formed is referred to as Step A5.
ステップA5において、ビアホール147を形成後、ビアホール147上にARC(Anti-Reflection Coating:反射防止膜)などを埋め込んでおくことで、ドライエッチングによる配線溝148の形成時に、ビアホール147底部の突き抜けを防止することができる。
In step A5, after forming the via hole 147, an ARC (Anti-Reflection Coating: antireflection film) or the like is buried on the via hole 147, thereby preventing the bottom of the via hole 147 from penetrating when the wiring trench 148 is formed by dry etching. can do.
次に、ビアホール147底部の第2ハードマスク膜128をエッチングすることで、ビアホール147から第2上部電極125を露出させる。その後、配線溝148およびビアホール147内に第2バリアメタル143(例えば、膜厚10nmのTa膜)を介して上部配線145(例えば、Cu)およびビアプラグ144(例えば、Cu)を同時に形成する。その後、上部配線145を含む第2キャップ絶縁膜142上に第2バリア絶縁膜146(例えば、50nmのSiCN膜)を堆積することで、図9Jに示した構造が形成される。
Next, the second upper electrode 125 is exposed from the via hole 147 by etching the second hard mask film 128 at the bottom of the via hole 147. Thereafter, an upper wiring 145 (for example, Cu) and a via plug 144 (for example, Cu) are simultaneously formed in the wiring groove 148 and the via hole 147 through a second barrier metal 143 (for example, a Ta film having a thickness of 10 nm). Thereafter, a second barrier insulating film 146 (for example, a 50 nm SiCN film) is deposited on the second cap insulating film 142 including the upper wiring 145, thereby forming the structure shown in FIG. 9J.
ステップA5の後、図9Jに示した構造を形成するまでの工程をステップA6とする。
After step A5, the process until the structure shown in FIG. 9J is formed is referred to as step A6.
ステップA6において、上部配線145の形成は、下層の下部配線106形成と同様のプロセスを用いることができる。このとき、ビアプラグ144の底部の直径は、第1バリア絶縁膜107の開口部の直径よりも小さくしておくことが好ましい。本第4の実施形態の半導体装置の作製に利用される、固体電解質スイッチ素子159では、例えば、ビアプラグ144の底部の直径は60nm、第1バリア絶縁膜107の開口部の直径は100nmに選択することができる。
In step A6, the upper wiring 145 can be formed by using the same process as the formation of the lower wiring 106 in the lower layer. At this time, the diameter of the bottom of the via plug 144 is preferably smaller than the diameter of the opening of the first barrier insulating film 107. In the solid electrolyte switch element 159 used for manufacturing the semiconductor device of the fourth embodiment, for example, the diameter of the bottom of the via plug 144 is selected to be 60 nm, and the diameter of the opening of the first barrier insulating film 107 is selected to be 100 nm. be able to.
また、ステップA6において、第2バリアメタル143と第2上部電極125を同一材料とすることで、ビアプラグ144と第2上部電極125の間の接触抵抗を低減し、オン状態にある固体電解質スイッチ素子159の抵抗を低減できる。その結果、素子性能を向上させることができる。
In step A6, the second barrier metal 143 and the second upper electrode 125 are made of the same material, so that the contact resistance between the via plug 144 and the second upper electrode 125 is reduced, and the solid electrolyte switch element in the on state is turned on. The resistance of 159 can be reduced. As a result, device performance can be improved.
次に、上述した抵抗変化素子の実施態様について説明する。
Next, an embodiment of the above-described variable resistance element will be described.
(実施態様1)
本実施態様1では、バッファ層と固体電解質層からなる抵抗変化層を採用する、第3の実施形態の抵抗変化素子126について、図7Bに示される、第1金属酸化物層6、第2金属酸化物層7で構成されるバッファ層4を採用している。図9Jに示される固体電解質スイッチ素子159の構成を採用し、第1金属酸化物層121および第2金属酸化物層122の組み合わせの異なる素子を作製し、作製された抵抗変化素子の特性を評価した。 (Embodiment 1)
In the first embodiment, the firstmetal oxide layer 6 and the second metal shown in FIG. 7B are used for the variable resistance element 126 of the third embodiment that employs a variable resistance layer composed of a buffer layer and a solid electrolyte layer. The buffer layer 4 composed of the oxide layer 7 is employed. The configuration of the solid electrolyte switch element 159 shown in FIG. 9J is adopted, elements having different combinations of the first metal oxide layer 121 and the second metal oxide layer 122 are manufactured, and the characteristics of the manufactured variable resistance element are evaluated. did.
本実施態様1では、バッファ層と固体電解質層からなる抵抗変化層を採用する、第3の実施形態の抵抗変化素子126について、図7Bに示される、第1金属酸化物層6、第2金属酸化物層7で構成されるバッファ層4を採用している。図9Jに示される固体電解質スイッチ素子159の構成を採用し、第1金属酸化物層121および第2金属酸化物層122の組み合わせの異なる素子を作製し、作製された抵抗変化素子の特性を評価した。 (Embodiment 1)
In the first embodiment, the first
本実施態様1では、第3の実施形態の抵抗変化素子126を基本構造として、バッファ層を構成する、第1金属酸化物層121および第2金属酸化物層122の組み合わせの異なる、合計9種類の抵抗変化素子を作製した。具体的には、Cuを主成分とする下部配線106上に形成した第1金属酸化物層121および第2金属酸化物層122の組み合わせは、下記の9種類である。
In the first embodiment, a total of nine types including different combinations of the first metal oxide layer 121 and the second metal oxide layer 122 constituting the buffer layer with the resistance change element 126 of the third embodiment as a basic structure. The variable resistance element was manufactured. Specifically, the following nine types of combinations of the first metal oxide layer 121 and the second metal oxide layer 122 formed on the lower wiring 106 mainly composed of Cu are provided.
TiOy1/AlOx1、TiOy1/NbOx2、TiOy1/TaOx3、
ZrOy2/AlOx1、ZrOy2/NbOx2、ZrOy2/TaOx3、
HfOy3/AlOx1、HfOy3/NbOx2、HfOy3/TaOx3
第1金属酸化物層121を形成するための第1の金属層161の膜厚は、0.5nmに、第2金属酸化物層122を形成するための第2の金属層162の膜厚は、0.2nmに選択されている。膜厚0.5nmの第1の金属層ならびに膜厚0.2nmの第2の金属層を形成後、大気に露呈することなく、圧力0.5Pa、室温にて、O2流量10sccmでO2を照射して、酸化処理を行っている。酸化処理により、第1の金属層は、第1金属酸化物層121に、第2の金属層は、第2金属酸化物層122となる。固体電解質層は、膜厚6nmのSiOCH膜を用いて形成している。 TiO y1 / AlO x1 , TiO y1 / NbO x2 , TiO y1 / TaO x3 ,
ZrO y2 / AlO x1 , ZrO y2 / NbO x2 , ZrO y2 / TaO x3 ,
HfO y3 / AlO x1 , HfO y3 / NbO x2 , HfO y3 / TaO x3
The film thickness of thefirst metal layer 161 for forming the first metal oxide layer 121 is 0.5 nm, and the film thickness of the second metal layer 162 for forming the second metal oxide layer 122 is , 0.2 nm is selected. After forming the second metal layer of the first metal layer and the thickness 0.2nm in thickness 0.5 nm, without exposure to the atmosphere, pressure 0.5 Pa, at room temperature, O 2 in the O 2 flow rate 10sccm To oxidize. By the oxidation treatment, the first metal layer becomes the first metal oxide layer 121, and the second metal layer becomes the second metal oxide layer 122. The solid electrolyte layer is formed using a SiOCH film having a thickness of 6 nm.
ZrOy2/AlOx1、ZrOy2/NbOx2、ZrOy2/TaOx3、
HfOy3/AlOx1、HfOy3/NbOx2、HfOy3/TaOx3
第1金属酸化物層121を形成するための第1の金属層161の膜厚は、0.5nmに、第2金属酸化物層122を形成するための第2の金属層162の膜厚は、0.2nmに選択されている。膜厚0.5nmの第1の金属層ならびに膜厚0.2nmの第2の金属層を形成後、大気に露呈することなく、圧力0.5Pa、室温にて、O2流量10sccmでO2を照射して、酸化処理を行っている。酸化処理により、第1の金属層は、第1金属酸化物層121に、第2の金属層は、第2金属酸化物層122となる。固体電解質層は、膜厚6nmのSiOCH膜を用いて形成している。 TiO y1 / AlO x1 , TiO y1 / NbO x2 , TiO y1 / TaO x3 ,
ZrO y2 / AlO x1 , ZrO y2 / NbO x2 , ZrO y2 / TaO x3 ,
HfO y3 / AlO x1 , HfO y3 / NbO x2 , HfO y3 / TaO x3
The film thickness of the
なお、Cuの原子半径は、128pm、共有結合半径は、132±4pm;
Alの原子半径は、143pm、共有結合半径は、121±4pm;
Nbの原子半径は、146pm、共有結合半径は、164±6pm;
Taの原子半径は、146pm、共有結合半径は、170±8pm;
Tiの原子半径は、147pm、共有結合半径は、160±8pm;
Zrの原子半径は、160pm、共有結合半径は、175±7pm;
Hfの原子半径は、159pm、共有結合半径は、175±10pmと報告されている。 Note that the atomic radius of Cu is 128 pm, and the covalent bond radius is 132 ± 4 pm;
The atomic radius of Al is 143 pm, and the covalent bond radius is 121 ± 4 pm;
Nb has an atomic radius of 146 pm and a covalent bond radius of 164 ± 6 pm;
The atomic radius of Ta is 146 pm, and the covalent bond radius is 170 ± 8 pm;
Ti has an atomic radius of 147 pm and a covalent bond radius of 160 ± 8 pm;
The atomic radius of Zr is 160 pm, the covalent bond radius is 175 ± 7 pm;
The atomic radius of Hf is reported to be 159 pm, and the covalent bond radius is 175 ± 10 pm.
Alの原子半径は、143pm、共有結合半径は、121±4pm;
Nbの原子半径は、146pm、共有結合半径は、164±6pm;
Taの原子半径は、146pm、共有結合半径は、170±8pm;
Tiの原子半径は、147pm、共有結合半径は、160±8pm;
Zrの原子半径は、160pm、共有結合半径は、175±7pm;
Hfの原子半径は、159pm、共有結合半径は、175±10pmと報告されている。 Note that the atomic radius of Cu is 128 pm, and the covalent bond radius is 132 ± 4 pm;
The atomic radius of Al is 143 pm, and the covalent bond radius is 121 ± 4 pm;
Nb has an atomic radius of 146 pm and a covalent bond radius of 164 ± 6 pm;
The atomic radius of Ta is 146 pm, and the covalent bond radius is 170 ± 8 pm;
Ti has an atomic radius of 147 pm and a covalent bond radius of 160 ± 8 pm;
The atomic radius of Zr is 160 pm, the covalent bond radius is 175 ± 7 pm;
The atomic radius of Hf is reported to be 159 pm, and the covalent bond radius is 175 ± 10 pm.
第2の金属層の膜厚0.2nmは、Al、Nb、Taの原子半径の2倍を超えない値である。第1の金属層の膜厚0.5nmは、Ti、Zr、Hfの原子半径の4倍を超えない値である。
The film thickness of 0.2 nm of the second metal layer is a value not exceeding twice the atomic radius of Al, Nb, and Ta. The film thickness of 0.5 nm of the first metal layer is a value that does not exceed four times the atomic radius of Ti, Zr, and Hf.
また、本実施態様1で作製する、第1金属酸化物層121と第2金属酸化物層122の組み合わせを選択する抵抗変化素子と特性と比較するため、下記の比較例となる抵抗変化素子を準備した。
In addition, in order to compare the characteristics of the variable resistance element selected in the first embodiment with the variable resistance element for selecting the combination of the first metal oxide layer 121 and the second metal oxide layer 122, a variable resistance element as a comparative example below is used. Got ready.
比較例となる抵抗変化素子では、バッファ層を一種類の金属酸化物層で構成する構造を採用している。具体的には、Cuを主成分とする下部配線106上に形成した金属酸化物層を、第1金属酸化物層121に使用する金属酸化物(TiOy1、ZrOy2、およびHfOy3)および第2金属酸化物層122に使用する金属酸化物(AlOx1、NbOx2、およびTaOx3)のうち、いずれか一種類の金属酸化物のみで形成している。一種類の金属酸化物層を形成するための金属層の膜厚は、0.7nmに選択されている。膜厚0.7nmの金属層を形成後、大気に露呈することなく、圧力0.5Pa、室温にて、O2流量10sccmでO2を照射して、酸化処理を行っている。酸化処理により、金属層は、金属酸化物層となる。固体電解質層は、膜厚6nmのSiOCH膜を用いて形成している。
The variable resistance element as a comparative example employs a structure in which the buffer layer is composed of one kind of metal oxide layer. Specifically, the metal oxide layer (TiO y1 , ZrO y2 , and HfO y3 ) used for the first metal oxide layer 121 and the first metal oxide layer formed on the lower wiring 106 containing Cu as a main component are used. Of the metal oxides (AlO x1 , NbO x2 , and TaO x3 ) used for the two-metal oxide layer 122, only one kind of metal oxide is formed. The thickness of the metal layer for forming one kind of metal oxide layer is selected to be 0.7 nm. After forming a 0.7 nm-thick metal layer, oxidation treatment is performed by irradiating O 2 at a pressure of 0.5 Pa and an O 2 flow rate of 10 sccm at a room temperature without exposing to the atmosphere. By the oxidation treatment, the metal layer becomes a metal oxide layer. The solid electrolyte layer is formed using a SiOCH film having a thickness of 6 nm.
次に、本実施態様1の抵抗変化素子と、比較例となる抵抗変化素子について、セット時のオフリーク電流およびリセット時の絶縁破壊電圧を評価した。以下に、その評価結果を説明する。
Next, for the variable resistance element of Embodiment 1 and the variable resistance element as a comparative example, the off-leak current at the time of setting and the dielectric breakdown voltage at the time of reset were evaluated. The evaluation results will be described below.
図11は、本実施態様1の抵抗変化素子と、比較例となる抵抗変化素子について、セット時のオフリーク電流、具体的には、負電圧を1V印加時のオフリーク電流を測定した結果を示す表である。図11に示す数値の単位はアンペア(A)である。
FIG. 11 is a table showing the results of measuring the off-leakage current when set, specifically, the off-leakage current when applying a negative voltage of 1 V, for the resistance change element of Embodiment 1 and the resistance change element as a comparative example. It is. The unit of numerical values shown in FIG. 11 is ampere (A).
図11に示すように、本実施態様1の抵抗変化素子では、第1金属酸化物層121と第2金属酸化物層122のいずれの組み合わせにおいても、それぞれ、第1金属酸化物層121と同一種類の金属酸化物のみからなるバッファ層を採用する、比較例となる抵抗変化素子に比べて、セット時のオフリーク電流の低減が認められる。
As shown in FIG. 11, in the variable resistance element according to Embodiment 1, any combination of the first metal oxide layer 121 and the second metal oxide layer 122 is the same as the first metal oxide layer 121. A reduction in off-leakage current at the time of setting is recognized as compared with a resistance change element as a comparative example that employs a buffer layer made of only a kind of metal oxide.
図12は、本実施態様1の抵抗変化素子と、比較例となる抵抗変化素子について、リセット時の絶縁破壊電圧を測定した結果を示す表である。図12に示す数値の単位はボルト(V)である。
FIG. 12 is a table showing the results of measuring the dielectric breakdown voltage at reset for the variable resistance element of Embodiment 1 and the variable resistance element as a comparative example. The unit of the numerical values shown in FIG. 12 is volts (V).
図12に示すように、リセット時の絶縁破壊電圧についても、本実施態様1の抵抗変化素子では、第1金属酸化物層121と第2金属酸化物層122のいずれの組み合わせにおいても、それぞれ、第1金属酸化物層121または第2金属酸化物層122と同一種類の金属酸化物のみからなるバッファ層を採用する、比較例となる抵抗変化素子に比べて、改善されていることがわかる。
As shown in FIG. 12, regarding the breakdown voltage at the time of resetting, in the resistance change element of the first embodiment, in any combination of the first metal oxide layer 121 and the second metal oxide layer 122, respectively. It can be seen that this is an improvement over the resistance change element of the comparative example that employs a buffer layer made of only the same type of metal oxide as the first metal oxide layer 121 or the second metal oxide layer 122.
(実施態様2)
本実施態様2でも、バッファ層と固体電解質層からなる抵抗変化層を採用する、第2の実施形態の構成を適用している。図9Jに示される抵抗変化素子126では、図7Bに示される、第1金属酸化物層6、第2金属酸化物層7で構成されるバッファ層4を採用している。従って、抵抗変化層は、第1金属酸化物層121と第2金属酸化物層122、ならびに、固体電解質層123で構成されている。一方、本実施態様2では、図7Cに示される、第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8によりバッファ層4が構成されている抵抗変化素子を作製し、作製された抵抗変化素子の特性を評価した。 (Embodiment 2)
Also in the second embodiment, the configuration of the second embodiment that employs a variable resistance layer including a buffer layer and a solid electrolyte layer is applied. In the variable resistance element 126 shown in FIG. 9J, thebuffer layer 4 composed of the first metal oxide layer 6 and the second metal oxide layer 7 shown in FIG. 7B is employed. Therefore, the resistance change layer includes the first metal oxide layer 121, the second metal oxide layer 122, and the solid electrolyte layer 123. On the other hand, in the second embodiment, the variable resistance element in which the buffer layer 4 is configured by the first metal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8 shown in FIG. The produced variable resistance element was evaluated.
本実施態様2でも、バッファ層と固体電解質層からなる抵抗変化層を採用する、第2の実施形態の構成を適用している。図9Jに示される抵抗変化素子126では、図7Bに示される、第1金属酸化物層6、第2金属酸化物層7で構成されるバッファ層4を採用している。従って、抵抗変化層は、第1金属酸化物層121と第2金属酸化物層122、ならびに、固体電解質層123で構成されている。一方、本実施態様2では、図7Cに示される、第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8によりバッファ層4が構成されている抵抗変化素子を作製し、作製された抵抗変化素子の特性を評価した。 (Embodiment 2)
Also in the second embodiment, the configuration of the second embodiment that employs a variable resistance layer including a buffer layer and a solid electrolyte layer is applied. In the variable resistance element 126 shown in FIG. 9J, the
本実施態様2では、第3の実施形態の抵抗変化素子126を基本構造として、図7Cに示される、第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8の組み合わせの異なる、合計7種類の抵抗変化素子を作製した。具体的には、Cuを主成分とする下部配線上に形成した第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8の組み合わせは、は、下記の7種類である。TiOy1/AlOx1/TiOy4、TiOy1/NbOx2/TiOy4、TiOy1/TaOx3/TiOy4、ZrOy2/AlOx1/ZrOy5、ZrOy2/NbOx2、ZrOy2/TaOx3/ZrOy5、HfOy3/AlOx1/HfOy6
y4、y5およびy6は、それぞれ、第3金属酸化物層8を構成する、Ti、ZrおよびHfの酸化物(TiOy4、ZrOy5、HfOy6)における酸素組成である。 In the second embodiment, the variable resistance element 126 of the third embodiment is used as a basic structure, and the firstmetal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8 shown in FIG. 7C. A total of seven types of variable resistance elements with different combinations were prepared. Specifically, the combinations of the first metal oxide layer 6, the second metal oxide layer 7 and the third metal oxide layer 8 formed on the lower wiring mainly composed of Cu include the following seven types: It is. TiO y1 / AlO x1 / TiO y4 , TiO y1 / NbO x2 / TiO y4, TiO y1 / TaO x3 / TiO y4, ZrO y2 / AlO x1 / ZrO y5, ZrO y2 / NbO x2, ZrO y2 / TaO x3 / ZrO y5 , HfO y3 / AlO x1 / HfO y6
y4, y5, and y6 are the oxygen compositions in the oxides of Ti, Zr, and Hf (TiO y4 , ZrO y5 , HfO y6 ) constituting the thirdmetal oxide layer 8, respectively.
y4、y5およびy6は、それぞれ、第3金属酸化物層8を構成する、Ti、ZrおよびHfの酸化物(TiOy4、ZrOy5、HfOy6)における酸素組成である。 In the second embodiment, the variable resistance element 126 of the third embodiment is used as a basic structure, and the first
y4, y5, and y6 are the oxygen compositions in the oxides of Ti, Zr, and Hf (TiO y4 , ZrO y5 , HfO y6 ) constituting the third
第2金属酸化物層7を形成するための第2の金属層上に、連続して、第3金属酸化物層8を形成するための第3の金属層を堆積した。第3金属酸化物層8を形成するための第3の金属層の膜厚は、0.2nmに選択されている。本実施態様2の抵抗変化素子は、バッファ層を第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8で構成している点を除いて、その基本構造は、図9Jに示した抵抗変化素子126と同一である。
The third metal layer for forming the third metal oxide layer 8 was continuously deposited on the second metal layer for forming the second metal oxide layer 7. The film thickness of the third metal layer for forming the third metal oxide layer 8 is selected to be 0.2 nm. The variable resistance element according to Embodiment 2 has the basic structure except that the buffer layer is composed of the first metal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8. , Which is the same as the variable resistance element 126 shown in FIG. 9J.
次に、本実施態様2の抵抗変化素子について、セット時のオフリーク電流およびリセット時の絶縁破壊電圧を評価した。以下に、その評価結果を説明する。
Next, for the variable resistance element of Embodiment 2, the off-leakage current at the time of setting and the breakdown voltage at the time of resetting were evaluated. The evaluation results will be described below.
本実施態様2の7種類の抵抗変化素子と、それぞれ、第1金属酸化物層121と同一種類の金属酸化物のみからなる、バッファ層を採用する、比較例となる抵抗変化素子に比べて、上記実施態様1の抵抗変化素子における評価結果と同程度のオフリークの低減および絶縁破壊電圧の向上が確認された。
Compared to the resistance change element of the comparative example, which employs the seven variable resistance elements of Embodiment 2 and a buffer layer made of only the same type of metal oxide as the first metal oxide layer 121, respectively. It was confirmed that the off-leakage and the breakdown voltage were improved to the same extent as the evaluation results of the resistance change element of the first embodiment.
具体的には、第1金属酸化物層121(TiOy1)と同一種類の金属酸化物(TiOy1)のみからなる、比較例となる抵抗変化素子の場合、図11に示されるように、負電圧を1V印加時に測定されるオフリーク電流は、7×10-7 Aであった。一方、本実施態様2の抵抗変化素子では、例えば、バッファ層を構成する、第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8の組み合わせが、TiOy1/AlOx1/TiOy4である場合、負電圧を1V印加時に測定されるオフリーク電流は、4×10-8 Aに低減していた。
Specifically, in the case of a resistance change element as a comparative example, which is made only of the same type of metal oxide (TiO y1 ) as the first metal oxide layer 121 (TiO y1 ), as shown in FIG. The off-leakage current measured when a voltage of 1 V was applied was 7 × 10 −7 A. On the other hand, in the variable resistance element according to Embodiment 2, for example, the combination of the first metal oxide layer 6, the second metal oxide layer 7 and the third metal oxide layer 8 constituting the buffer layer is TiO y1 / In the case of AlO x1 / TiO y4 , the off-leakage current measured when applying a negative voltage of 1 V was reduced to 4 × 10 −8 A.
また、第1金属酸化物層121(TiOy1)と同一種類の金属酸化物(TiOy1)のみからなる、比較例となる抵抗変化素子の場合、図12に示されるように、正電圧印加時に測定された絶縁破壊電圧は、3.5Vである。これに対して、一方、本実施態様2の抵抗変化素子では、例えば、バッファ層を構成する、第1金属酸化物層6、第2金属酸化物層7および第3金属酸化物層8の組み合わせが、TiOy1/AlOx1/TiOy4である場合、正電圧印加時に測定された絶縁破壊電圧は、4.5Vまで上昇している。これは、第1金属酸化物層6、第2金属酸化物層7に加えて、第3金属酸化物層8を挿入することより、第3金属酸化物層8の下部で接する第2金属酸化物層7の不動態形成による酸素バリア性が制御されているためであると考えられる。
In the case of a resistance change element as a comparative example, which is composed of only the same type of metal oxide (TiO y1 ) as the first metal oxide layer 121 (TiO y1 ), as shown in FIG. The measured breakdown voltage is 3.5V. On the other hand, in the variable resistance element according to Embodiment 2, for example, a combination of the first metal oxide layer 6, the second metal oxide layer 7, and the third metal oxide layer 8 constituting the buffer layer. However, in the case of TiO y1 / AlO x1 / TiO y4 , the dielectric breakdown voltage measured when a positive voltage is applied rises to 4.5V. This is because, by inserting the third metal oxide layer 8 in addition to the first metal oxide layer 6 and the second metal oxide layer 7, the second metal oxide contacting the lower portion of the third metal oxide layer 8 is used. This is presumably because the oxygen barrier property due to the passive formation of the physical layer 7 is controlled.
(実施態様3)
本実施態様3は、第4の実施形態に記載されている、図9Jに示される構成の抵抗変化素子およびその製造方法をベースにして、半導体基板上の多層配線構造に3端子型抵抗変化素子を設けた構成である。 (Embodiment 3)
The third embodiment is based on the variable resistance element having the configuration shown in FIG. 9J and the manufacturing method thereof described in the fourth embodiment, and a three-terminal variable resistance element in a multilayer wiring structure on a semiconductor substrate. Is provided.
本実施態様3は、第4の実施形態に記載されている、図9Jに示される構成の抵抗変化素子およびその製造方法をベースにして、半導体基板上の多層配線構造に3端子型抵抗変化素子を設けた構成である。 (Embodiment 3)
The third embodiment is based on the variable resistance element having the configuration shown in FIG. 9J and the manufacturing method thereof described in the fourth embodiment, and a three-terminal variable resistance element in a multilayer wiring structure on a semiconductor substrate. Is provided.
本実施態様3の3端子型抵抗変化素子の構成を説明する。なお、本実施態様3では、主に、第4の実施形態に記載されている、図9Jに示される構成の抵抗変化素子と異なる構成について説明し、第4の実施形態に記載されている、図9Jに示される構成の抵抗変化素子と同様な構成についての詳細な説明を省略する。
The configuration of the three-terminal variable resistance element according to Embodiment 3 will be described. In the third embodiment, a configuration different from the variable resistance element having the configuration shown in FIG. 9J, which is mainly described in the fourth embodiment, will be described and described in the fourth embodiment. A detailed description of the same configuration as the variable resistance element having the configuration shown in FIG. 9J is omitted.
図10は、本実施態様3の3端子型抵抗変化素子が半導体基板上の多層配線構造の内部に設けられた構成を模式的に示した部分断面図である。
FIG. 10 is a partial cross-sectional view schematically showing a configuration in which the three-terminal variable resistance element according to Embodiment 3 is provided inside a multilayer wiring structure on a semiconductor substrate.
図10に示すように、本実施態様3の3端子型抵抗変化素子224においては、下部電極として第1下部配線206aおよび第2下部配線206bが設けられている。そして、第1バリア絶縁膜107に形成された1つの開口部に、第1キャップ絶縁膜104を挟んで互いに離間した第1下部配線206aおよび第2下部配線206bのそれぞれの上面が部分的に露出している。第1下部配線206aおよび第2下部配線206bのそれぞれの上面の露出部分は、第1キャップ絶縁膜104の上面とともに上記開口部を介して、上層の第1金属酸化物層121に接触している。なお、前記開口部内に露出している、第1下部配線206aの銅表面の面積、ならびに、第2下部配線206bの銅表面の面積は、ともに、開口部面積の半分以下である。
As shown in FIG. 10, in the three-terminal variable resistance element 224 of Embodiment 3, a first lower wiring 206a and a second lower wiring 206b are provided as lower electrodes. The upper surfaces of the first lower wiring 206a and the second lower wiring 206b that are separated from each other with the first cap insulating film 104 interposed therebetween are partially exposed in one opening formed in the first barrier insulating film 107. is doing. The exposed portions of the upper surfaces of the first lower wiring 206a and the second lower wiring 206b are in contact with the upper first metal oxide layer 121 through the opening together with the upper surface of the first cap insulating film 104. . The area of the copper surface of the first lower wiring 206a and the area of the copper surface of the second lower wiring 206b exposed in the opening are both less than half of the opening area.
また、第1下部配線206aおよび第2下部配線206bのいずれもが、例えば、Cuで構成される場合、図9Jに示した構成の下部配線106と同様な構成にすることが可能であり、第4の実施形態に記載されている、図9Jに示される構成の抵抗変化素子の製造プロセスで説明した方法で形成することができる。
Further, when both the first lower wiring 206a and the second lower wiring 206b are made of, for example, Cu, the same configuration as the lower wiring 106 having the configuration shown in FIG. It can be formed by the method described in the manufacturing process of the variable resistance element having the configuration shown in FIG. 9J described in the fourth embodiment.
本実施態様3の3端子型抵抗変化素子224は、第1下部配線206aを第1電極とし、第2下部配線206bを第3電極とすれば、第1電極と第3電極は同一レイヤーに設けられ、第2電極は、第1電極および第3電極とは別のレイヤーに設けられた構成である。
In the three-terminal resistance change element 224 of Embodiment 3, if the first lower wiring 206a is the first electrode and the second lower wiring 206b is the third electrode, the first electrode and the third electrode are provided in the same layer. The second electrode is provided in a different layer from the first electrode and the third electrode.
次に、本実施態様3の3端子型抵抗変化素子224の製造方法を説明する。なお、本実施態様3では、主に、第4の実施形態に記載されている、図9Jに示される構成の抵抗変化素子126の製造プロセスと異なる処理について説明し、図9Jに示される構成の抵抗変化素子126の製造プロセスと同様な処理についての詳細な説明を省略する。
Next, a method for manufacturing the three-terminal variable resistance element 224 of Embodiment 3 will be described. In the third embodiment, processing different from the manufacturing process of the variable resistance element 126 having the configuration shown in FIG. 9J described in the fourth embodiment will be mainly described, and the configuration shown in FIG. 9J will be described. A detailed description of the same process as the manufacturing process of the variable resistance element 126 will be omitted.
本実施態様3では、ドライエッチングによる第1バリア絶縁膜107への開口部の形成において、第1下部配線206aおよび第2下部配線206bに挟まれた第1キャップ絶縁膜104は、表面がドライエッチングされることにより膜減りが生じる。そのため、開口部を形成後、第1下部配線206aおよび第2下部配線206bの表面を含む開口部上に、DCスパッタリング法により、第1金属酸化物層121の形成に利用する第1の金属層161、および第2金属酸化物層122の形成に利用する第2の金属層162をこの順に連続して堆積した。本実施態様3においては、第1の金属層161として、膜厚0.5nmのZrを選択し、第2の金属層162として、膜厚0.2nmのAlを選択している。その後、大気暴露することなく基板温度は室温にて、O2流量10sccm、圧力0.5Pa、照射時間60秒のO2ガス照射により、第1の金属層161、および第2の金属層162を酸化処理して、第1金属酸化物層121であるZrOy2および第2金属酸化物層122であるAlOx1を形成した。続いて、400℃以下の基板温度にて、N2およびO2各流量10/10sccm、圧力900Pa、処理時間30秒の条件で加熱処理を行った。この加熱処理により、第1下部配線206aおよび第2下部配線206bと、第1金属酸化物層121であるZrOy2との間に未反応で残留しているZr金属成分は、Cuからなる第1下部配線206aおよび第2下部配線206b表面への合金化および拡散により除去される。
In the third embodiment, in the formation of the opening in the first barrier insulating film 107 by dry etching, the surface of the first cap insulating film 104 sandwiched between the first lower wiring 206a and the second lower wiring 206b is dry etched. As a result, film loss occurs. Therefore, after forming the opening, the first metal layer used for forming the first metal oxide layer 121 is formed on the opening including the surfaces of the first lower wiring 206a and the second lower wiring 206b by DC sputtering. 161 and the second metal layer 162 used to form the second metal oxide layer 122 were successively deposited in this order. In the third embodiment, Zr having a thickness of 0.5 nm is selected as the first metal layer 161, and Al having a thickness of 0.2 nm is selected as the second metal layer 162. Thereafter, the first metal layer 161 and the second metal layer 162 are formed by O 2 gas irradiation at an O 2 flow rate of 10 sccm, a pressure of 0.5 Pa, and an irradiation time of 60 seconds without exposing to the atmosphere at room temperature. Oxidation treatment was performed to form ZrO y2 as the first metal oxide layer 121 and AlO x1 as the second metal oxide layer 122. Subsequently, heat treatment was performed at a substrate temperature of 400 ° C. or lower under conditions of N 2 and O 2 flow rates of 10/10 sccm, a pressure of 900 Pa, and a treatment time of 30 seconds. By this heat treatment, the Zr metal component remaining unreacted between the first lower wiring 206a and the second lower wiring 206b and ZrO y2 which is the first metal oxide layer 121 is the first metal composed of Cu. It is removed by alloying and diffusion to the surfaces of the lower wiring 206a and the second lower wiring 206b.
次に、固体電解質層123を第2金属酸化物層122上に堆積した。固体電解質層123堆積以降の工程については、図9Jに示される構成の抵抗変化素子126と同様な形成方法を用いることで、図10に示すように、多層配線構造内に3端子型抵抗変化素子224を形成することができる。
Next, a solid electrolyte layer 123 was deposited on the second metal oxide layer 122. With respect to the steps after the deposition of the solid electrolyte layer 123, a formation method similar to that of the resistance change element 126 having the configuration shown in FIG. 9J is used, so that a three-terminal resistance change element is formed in the multilayer wiring structure as shown in FIG. 224 can be formed.
図10に示す3端子型抵抗変化素子224では、抵抗変化層は、一体に形成される構成を採用している。また、第2電極も、一体に形成される構成を採用している。
In the three-terminal variable resistance element 224 shown in FIG. 10, the variable resistance layer adopts a configuration in which it is integrally formed. Moreover, the 2nd electrode also employ | adopts the structure formed integrally.
実施態様1の抵抗変化素子と同様に、上記の製造プロセスにより形成される、本実施態様3の3端子型抵抗変化素子224においても、第1金属酸化物層121と同一種類の金属酸化物のみからなる、バッファ層を採用する、比較例となる3端子型抵抗変化素子に比べて、オフリークの低減、および絶縁破壊電圧の向上が確認された。
Similarly to the variable resistance element of the first embodiment, also in the three-terminal variable resistance element 224 of the third embodiment, which is formed by the above manufacturing process, only the same type of metal oxide as the first metal oxide layer 121 is used. Compared with the three-terminal variable resistance element according to the comparative example that employs the buffer layer, the reduction of off-leakage and the improvement of the dielectric breakdown voltage were confirmed.
具体的には、第1金属酸化物層121と同一種類の金属酸化物(ZrOy2)のみからなる、膜厚0.7nmのバッファ層を採用する、比較例となる3端子型抵抗変化素子の場合、負電圧を1V印加時に測定されるオフリーク電流は、5×10-7 Aである。一方、第1金属酸化物層121として、ZrOy2を、第2金属酸化物層122として、AlOx1を採用している、本実施態様3の3端子型抵抗変化素子224の場合、負電圧を1V印加時に測定されるオフリーク電流は、8×10-8 Aであり、十分に低減していることを確認した。
Specifically, a three-terminal variable resistance element as a comparative example that employs a 0.7 nm-thick buffer layer made of only the same type of metal oxide (ZrO y2 ) as the first metal oxide layer 121 is used. In this case, the off-leakage current measured when applying a negative voltage of 1 V is 5 × 10 −7 A. On the other hand, in the case of the three-terminal resistance change element 224 of the third embodiment in which ZrO y2 is used as the first metal oxide layer 121 and AlO x1 is used as the second metal oxide layer 122, a negative voltage is applied. The off-leakage current measured when 1 V was applied was 8 × 10 −8 A, which was confirmed to be sufficiently reduced.
また、ZrOy2のみからなる、バッファ層を採用する、比較例となる3端子型抵抗変化素子の場合、正電圧印加時に測定された絶縁破壊電圧は、3.6Vである。一方、本実施態様3の3端子型抵抗変化素子224の場合、正電圧印加時に測定された絶縁破壊電圧は、4.3Vまで上昇した。本実施態様3では、一例として、第1金属酸化物層121として、ZrOy2を、第2金属酸化物層122として、AlOx1を用いている、3端子型抵抗変化素子224について述べた。バッファ層を構成する、第1金属酸化物層121および第2金属酸化物層122の組み合わせは、この材料構成の組み合わせ(ZrOy2/AlOx1、)に限定されず、実施態様1に例示した、他の8種類の組み合わせであってもよい。
Further, in the case of a three-terminal resistance change element as a comparative example that employs a buffer layer made of only ZrO y2 , the dielectric breakdown voltage measured when a positive voltage is applied is 3.6V. On the other hand, in the case of the three-terminal variable resistance element 224 of Embodiment 3, the dielectric breakdown voltage measured when a positive voltage was applied increased to 4.3V. In the third embodiment, as an example, the three-terminal variable resistance element 224 using ZrO y2 as the first metal oxide layer 121 and AlO x1 as the second metal oxide layer 122 has been described. The combination of the first metal oxide layer 121 and the second metal oxide layer 122 constituting the buffer layer is not limited to this combination of material configurations (ZrO y2 / AlO x1 ), and is exemplified in Embodiment 1. Other 8 types of combinations may be used.
以上の結果から、本発明の抵抗変化素子およびその製造方法を、2端子型抵抗変化素子のみでなく、3端子型抵抗変化素子に適用することで、負電圧印加時のオフリーク電流が低減され、かつ、正電圧印加時(リセット時)の絶縁破壊電圧が改善されることがわかった。
From the above results, by applying the variable resistance element of the present invention and the manufacturing method thereof not only to the two-terminal variable resistance element but also to the three-terminal variable resistance element, the off-leakage current when applying a negative voltage is reduced, It was also found that the dielectric breakdown voltage was improved when a positive voltage was applied (at reset).
以上、実施形態および実施態様に基づき本発明を説明した。これら実施形態および実施態様は、単に具体例を挙げて、本発明を説明するためのものであって、本発明の技術的範囲を、限定することを意味するものではない。当業者であれば、上記記載に基づき各種変形例および改良例に想到するのは当然であり、これらも本発明の技術的範囲に含まれるものと了解される。
The present invention has been described above based on the embodiments and the embodiments. These embodiments and embodiments are only for the purpose of illustrating the present invention by way of specific examples, and are not meant to limit the technical scope of the present invention. Those skilled in the art will naturally conceive various modifications and improvements based on the above description, and it is understood that these are also included in the technical scope of the present invention.
上記の実施形態ならびに実施態様では、本発明の背景として、本発明の利用分野となるCMOS回路を有する半導体装置に関して詳しく説明し、半導体基板上の多層配線構造内に搭載した抵抗変化素子を形成する例について説明した。しかし、本発明は、例示された実施形態ならびに実施態様に限定されるものではない。
In the above embodiments and embodiments, as a background of the present invention, a semiconductor device having a CMOS circuit as a field of use of the present invention will be described in detail, and a resistance change element mounted in a multilayer wiring structure on a semiconductor substrate is formed. An example was described. However, the present invention is not limited to the illustrated embodiments and implementations.
本発明は、例えば、DRAM、SRAM(Static RAM)、フラッシュメモリ、FRAM(Ferro-Electric RAM)、キャパシタ、バイポーラトランジスタ等のようなメモリ回路を有する半導体製品、マイクロプロセッサなどの論理回路を有する半導体製品、またはそれらを同時に搭載したボードやパッケージの金属配線形成工程にも適用することができる。また、本発明は、半導体装置への、電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMS(Micro-Electro-Mechanical Systems)などに接続する配線形成工程にも適用することができる。
The present invention relates to semiconductor products having memory circuits such as DRAM, SRAM (Static RAM), flash memory, FRAM (Ferro-Electric RAM), capacitors, bipolar transistors, etc., and semiconductor products having logic circuits such as microprocessors. Alternatively, the present invention can also be applied to a metal wiring forming process of a board or package on which they are simultaneously mounted. The present invention can also be applied to a wiring formation process for connecting a semiconductor device to an electronic circuit device, an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro-Electro-Mechanical Systems), or the like.
本発明にかかる、銅配線層内に作製される、複数個の抵抗変化素子が並列接続されてなる固体電解質スイッチング素子は、例えば、FPGA(Field Programmable Gate Array)の構成に使用される、プログラマブル素子として、利用される。
The solid electrolyte switching element produced in the copper wiring layer according to the present invention and formed by connecting a plurality of resistance change elements in parallel is, for example, a programmable element used in the configuration of an FPGA (Field Programmable Gate Array). As used.
本発明にかかる固体電解質スイッチング素子型半導体装置は、その「プログラミング」動作、特には、「セット」動作時のセット電圧のバラツキが抑えられる効果を使用して、不揮発性メモリあるいは不揮発性スイッチを利用する、メモリ回路を有する半導体製品、マイクロプロセッサなどの論理回路へ応用することができる。
The solid electrolyte switching element type semiconductor device according to the present invention uses a non-volatile memory or a non-volatile switch by using its “programming” operation, in particular, the effect of suppressing variation in set voltage during the “set” operation. The present invention can be applied to logic circuits such as semiconductor products having a memory circuit and microprocessors.
以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
この出願は、2017年3月31日に出願された日本出願特願2017-71485号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2017-71485 filed on Mar. 31, 2017, the entire disclosure of which is incorporated herein.
1 第1電極
2 第2電極
3 抵抗変化層
4 バッファ層
5 固体電解質層
101 半導体基板
102 第1層間絶縁膜
103 第2層間絶縁膜
104 第1キャップ絶縁膜
105 第1バリアメタル
106 下部配線
107 第1バリア絶縁膜
108 第1ハードマスク膜
120 バッファ層
121 第1金属酸化物層
122 第2金属酸化物層
123 固体電解質層
124 第1上部電極
125 第2上部電極
128 第2ハードマスク膜
129 第3ハードマスク膜
130 保護絶縁膜
140 第1ビア層間絶縁膜
141 第3層間絶縁膜
142 第2キャップ絶縁膜
143 第2バリアメタル
144 ビアプラグ
145 上部配線
146 第2バリア絶縁膜
147 ビアホール
148 上部配線用の配線溝
126、151、151a、151b 抵抗変化素子
150、150a、150b 2端子型半導体装置
153、153a、153b 第1端子
154、154a、154b 第2端子
157 制御端子
159 固体電解質スイッチ素子
161 第1の金属層
162 第2の金属層
206a 第1下部配線
206b 第2下部配線
224 3端子型抵抗変化素子 DESCRIPTION OFSYMBOLS 1 1st electrode 2 2nd electrode 3 Variable resistance layer 4 Buffer layer 5 Solid electrolyte layer 101 Semiconductor substrate 102 1st interlayer insulation film 103 2nd interlayer insulation film 104 1st cap insulation film 105 1st barrier metal 106 Lower wiring 107 1st 1 barrier insulating film 108 first hard mask film 120 buffer layer 121 first metal oxide layer 122 second metal oxide layer 123 solid electrolyte layer 124 first upper electrode 125 second upper electrode 128 second hard mask film 129 third Hard mask film 130 Protective insulating film 140 First via interlayer insulating film 141 Third interlayer insulating film 142 Second cap insulating film 143 Second barrier metal 144 Via plug 145 Upper wiring 146 Second barrier insulating film 147 Via hole 148 Wiring for upper wiring Groove 126, 151, 151a 151b Resistance change element 150, 150a, 150b Two-terminal type semiconductor device 153, 153a, 153b First terminal 154, 154a, 154b Second terminal 157 Control terminal 159 Solid electrolyte switch element 161 First metal layer 162 Second metal layer 206a First lower wiring 206b Second lower wiring 224 Three-terminal variable resistance element
2 第2電極
3 抵抗変化層
4 バッファ層
5 固体電解質層
101 半導体基板
102 第1層間絶縁膜
103 第2層間絶縁膜
104 第1キャップ絶縁膜
105 第1バリアメタル
106 下部配線
107 第1バリア絶縁膜
108 第1ハードマスク膜
120 バッファ層
121 第1金属酸化物層
122 第2金属酸化物層
123 固体電解質層
124 第1上部電極
125 第2上部電極
128 第2ハードマスク膜
129 第3ハードマスク膜
130 保護絶縁膜
140 第1ビア層間絶縁膜
141 第3層間絶縁膜
142 第2キャップ絶縁膜
143 第2バリアメタル
144 ビアプラグ
145 上部配線
146 第2バリア絶縁膜
147 ビアホール
148 上部配線用の配線溝
126、151、151a、151b 抵抗変化素子
150、150a、150b 2端子型半導体装置
153、153a、153b 第1端子
154、154a、154b 第2端子
157 制御端子
159 固体電解質スイッチ素子
161 第1の金属層
162 第2の金属層
206a 第1下部配線
206b 第2下部配線
224 3端子型抵抗変化素子 DESCRIPTION OF
Claims (10)
- 少なくとも2つ以上の抵抗変化素子と、第1端子(第1配線)と、第2端子(第2配線)とを含む半導体装置であって、
前記抵抗変化素子は、それぞれ、
第1電極と、第2電極と、第1電極および第2電極に挟まれた抵抗変化層と、を有し、
第1電極と第2電極の2電極間に印加される電気的信号に基づいて、可逆的に抵抗値が変化する機能を有しており、
前記抵抗変化素子の各第1電極は、第1端子と電気的に接続されており、かつ、各第2電極は、第2端子と電気的に接続され、かつ、
各抵抗変化層は、各少なくとも2つ以上の抵抗変化素子間で互いに分離されており、
各第2電極は、各抵抗変化素子間で互いに分離され、第2端子を介してのみ互いに電気的に接続されていることを特徴とする、半導体装置。 A semiconductor device including at least two or more resistance change elements, a first terminal (first wiring), and a second terminal (second wiring),
The variable resistance elements are respectively
Having a first electrode, a second electrode, and a resistance change layer sandwiched between the first electrode and the second electrode,
Based on an electrical signal applied between the first electrode and the second electrode, the resistance value reversibly changes,
Each first electrode of the variable resistance element is electrically connected to a first terminal, and each second electrode is electrically connected to a second terminal, and
Each resistance change layer is separated from each other between at least two resistance change elements,
Each of the second electrodes is separated from each other between the variable resistance elements, and is electrically connected to each other only through the second terminal. - 構成要素として、請求項1に記載の半導体装置の対を含む半導体装置であって、
前記半導体装置の対は、
各半導体装置を構成する前記第2端子同士が電気的に直列接続されていることを特徴とする、半導体装置。 A semiconductor device comprising a pair of semiconductor devices according to claim 1 as a component,
The semiconductor device pair is:
The semiconductor device, wherein the second terminals constituting each semiconductor device are electrically connected in series. - 前記抵抗変化素子の第1電極は、金属イオンの供給源となる金属原子を含む材料で構成され、
前記第2電極は、前記第1電極を構成する材料に含まれる、前記金属原子よりもイオン化しにくい金属原子からなる材料で構成され、
前記抵抗変化層は、バッファ層と、前記金属イオンが伝導可能な固体電解質層とからなり、
前記バッファ層は、前記第1電極に接しており、前記固体電解質層は、前記第2電極に接しており、
前記抵抗変化素子は、
第1電極および第2電極間に電圧が印加されると、第1電極に含まれる前記金属原子がイオン化し、
前記第1電極から供給される金属イオンが、前記バッファ層を介して前記固体電解質層内に注入されることで、可逆的に抵抗が変化する、固体電解質スイッチ素子であることを特徴とする、請求項2に記載の半導体装置。 The first electrode of the resistance change element is made of a material containing a metal atom that serves as a supply source of metal ions,
The second electrode is composed of a material made of a metal atom that is included in the material constituting the first electrode and is less likely to be ionized than the metal atom,
The resistance change layer includes a buffer layer and a solid electrolyte layer capable of conducting the metal ions,
The buffer layer is in contact with the first electrode, and the solid electrolyte layer is in contact with the second electrode;
The variable resistance element is
When a voltage is applied between the first electrode and the second electrode, the metal atoms contained in the first electrode are ionized,
The metal ion supplied from the first electrode is a solid electrolyte switch element whose resistance is reversibly changed by being injected into the solid electrolyte layer through the buffer layer. The semiconductor device according to claim 2. - 前記金属イオンは銅イオンであり、
前記抵抗変化素子の前記第1電極は、銅を含む材料で構成され、
前記第2電極は、Ruを含む材料で構成され、
前記バッファ層は、Al、Hf、Ta、Ti、およびZrからなる群から選択される少なくとも1つの金属元素を含んでいることを特徴とする、請求項3に記載の半導体装置。 The metal ions are copper ions;
The first electrode of the variable resistance element is made of a material containing copper,
The second electrode is made of a material containing Ru,
4. The semiconductor device according to claim 3, wherein the buffer layer contains at least one metal element selected from the group consisting of Al, Hf, Ta, Ti, and Zr. - 前記抵抗変化素子は半導体基板上の多層銅配線層内に設けられていることを特徴とする、請求項1~4のいずれか一項に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the variable resistance element is provided in a multilayer copper wiring layer on a semiconductor substrate.
- 前記抵抗変化素子は銅配線上に設けられ、
前記抵抗変化素子を構成する前記第1電極は、前記銅配線の一部を兼ね、
前記第1電極上に設けられた絶縁性バリア膜の一部に、少なくとも1つ以上の開口部を有し、
前記開口部を介して、開口部の底に部分的に露出した少なくとも1つ以上の前記第1電極の表面と前記バッファ層とが接している構成であることを特徴とする、請求項1~5のいずれか一項に記載の半導体装置。 The variable resistance element is provided on a copper wiring,
The first electrode constituting the variable resistance element also serves as a part of the copper wiring,
A portion of the insulating barrier film provided on the first electrode has at least one opening;
The surface of at least one of the first electrodes partially exposed at the bottom of the opening and the buffer layer are in contact with each other through the opening. The semiconductor device according to any one of 5. - 前記半導体装置を構成する各々の抵抗変化素子について、
前記開口部の底部に部分的に露出した第1電極を兼ねる銅配線の形状は、同一であることを特徴とする、請求項6に記載の半導体装置。 About each variable resistance element constituting the semiconductor device,
The semiconductor device according to claim 6, wherein the shape of the copper wiring also serving as the first electrode partially exposed at the bottom of the opening is the same. - 前記半導体装置を構成する各々の抵抗変化素子について、
前記開口部の底部に部分的に露出した第1電極を兼ねる銅配線の形状は、
半導体基板面内の同一方向に配向、もしくは180°回転し対向した構成であることを特徴とする、請求項6又は7に記載の半導体装置。 About each variable resistance element constituting the semiconductor device,
The shape of the copper wiring also serving as the first electrode partially exposed at the bottom of the opening is:
8. The semiconductor device according to claim 6, wherein the semiconductor device is oriented in the same direction within the surface of the semiconductor substrate or is rotated by 180 ° to face each other. - 前記半導体装置を構成する各々の抵抗変化素子について、
前記開口部の底部に部分的に露出した第1電極を兼ねる銅配線の形状は、
前記銅配線の先端部が、前記開口部の底部の一端から前記配向の方向に沿って突き出した形状であることを特徴とする、請求項8に記載の半導体装置。 About each variable resistance element constituting the semiconductor device,
The shape of the copper wiring also serving as the first electrode partially exposed at the bottom of the opening is:
The semiconductor device according to claim 8, wherein a tip end portion of the copper wiring has a shape protruding from one end of a bottom portion of the opening portion along the orientation direction. - 半導体基板上の多層銅配線層内に設けられている複数の抵抗変化素子を有する半導体装置の製造方法であって、
第1端子に電気的に接続された第1電極を兼ねる銅配線上に絶縁性バリア膜を形成し、
前記絶縁性バリア膜に開口部を形成し、前記第1電極を兼ねる銅配線表面を露出させ、
前記開口部を含む全面に、バッファ層および固体電解質層を順に形成し、
固体電解質層上に、第2端子に接続された第2電極を形成し、
前記半導体装置は、請求項1に記載の半導体装置であることを特徴とする半導体装置の製造方法。 A method of manufacturing a semiconductor device having a plurality of resistance change elements provided in a multilayer copper wiring layer on a semiconductor substrate,
Forming an insulating barrier film on the copper wiring also serving as the first electrode electrically connected to the first terminal;
Forming an opening in the insulating barrier film, exposing a copper wiring surface also serving as the first electrode;
A buffer layer and a solid electrolyte layer are sequentially formed on the entire surface including the opening,
Forming a second electrode connected to the second terminal on the solid electrolyte layer;
The semiconductor device according to claim 1, wherein the semiconductor device is a semiconductor device manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019509719A JPWO2018181019A1 (en) | 2017-03-31 | 2018-03-23 | Semiconductor device and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-071485 | 2017-03-31 | ||
JP2017071485 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181019A1 true WO2018181019A1 (en) | 2018-10-04 |
Family
ID=63675847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011766 WO2018181019A1 (en) | 2017-03-31 | 2018-03-23 | Semiconductor device and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018181019A1 (en) |
WO (1) | WO2018181019A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993154A (en) * | 2019-12-12 | 2021-06-18 | 爱思开海力士有限公司 | Semiconductor device including variable resistance element |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008001712A1 (en) * | 2006-06-26 | 2008-01-03 | Nec Corporation | Switching element, semiconductor device, rewritable logical integrated circuit, and memory element |
JP2010040665A (en) * | 2008-08-01 | 2010-02-18 | Fujitsu Microelectronics Ltd | Resistance change element, method of manufacturing the same, and semiconductor memory device |
JP2016063118A (en) * | 2014-09-19 | 2016-04-25 | 株式会社東芝 | Imaging element, imaging device, and semiconductor device |
WO2016157820A1 (en) * | 2015-03-31 | 2016-10-06 | 日本電気株式会社 | Switching element, semiconductor device, and method for manufacturing switching element |
JP2016192510A (en) * | 2015-03-31 | 2016-11-10 | 日本電気株式会社 | Resistance change element and formation method therefor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10305034B2 (en) * | 2015-06-11 | 2019-05-28 | Nec Corporation | Variable resistance element and method for producing variable resistance element |
-
2018
- 2018-03-23 JP JP2019509719A patent/JPWO2018181019A1/en active Pending
- 2018-03-23 WO PCT/JP2018/011766 patent/WO2018181019A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008001712A1 (en) * | 2006-06-26 | 2008-01-03 | Nec Corporation | Switching element, semiconductor device, rewritable logical integrated circuit, and memory element |
JP2010040665A (en) * | 2008-08-01 | 2010-02-18 | Fujitsu Microelectronics Ltd | Resistance change element, method of manufacturing the same, and semiconductor memory device |
JP2016063118A (en) * | 2014-09-19 | 2016-04-25 | 株式会社東芝 | Imaging element, imaging device, and semiconductor device |
WO2016157820A1 (en) * | 2015-03-31 | 2016-10-06 | 日本電気株式会社 | Switching element, semiconductor device, and method for manufacturing switching element |
JP2016192510A (en) * | 2015-03-31 | 2016-11-10 | 日本電気株式会社 | Resistance change element and formation method therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112993154A (en) * | 2019-12-12 | 2021-06-18 | 爱思开海力士有限公司 | Semiconductor device including variable resistance element |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018181019A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6056868B2 (en) | Wiring formation method | |
US9029825B2 (en) | Semiconductor device and manufacturing method for semiconductor device | |
US9012307B2 (en) | Two terminal resistive switching device structure and method of fabricating | |
US10312288B2 (en) | Switching element, semiconductor device, and semiconductor device manufacturing method | |
WO2014112365A1 (en) | Switching element, and method for manufacturing semiconductor switching device | |
WO2014030393A1 (en) | Resistance changing element, and method for manufacturing resistance changing element | |
JP5799504B2 (en) | Semiconductor device and manufacturing method thereof | |
WO2016199412A1 (en) | Variable resistance element and method for producing variable resistance element | |
JP5527321B2 (en) | Resistance change element and manufacturing method thereof | |
TWI582954B (en) | Capped contact structure with variable adhesion layer thickness | |
JP2016192510A (en) | Resistance change element and formation method therefor | |
JPWO2016203751A1 (en) | Rectifying element, switching element, and method of manufacturing rectifying element | |
WO2018181019A1 (en) | Semiconductor device and manufacturing method therefor | |
WO2011158691A1 (en) | Variable resistance element and method for manufacturing the same | |
JP2014216386A (en) | Resistance change element and formation method therefor | |
JP2015065240A (en) | Current control element and method for manufacturing the same | |
JP6040544B2 (en) | Method for surface treatment of copper wiring and method for manufacturing functional element mounted thereon | |
JP2018174227A (en) | Method for manufacturing variable-resistance element in copper wiring layer | |
JP7165976B2 (en) | Variable resistance element and method for manufacturing variable resistance element | |
WO2019176833A1 (en) | Semiconductor device and method for manufacturing same | |
JP6662289B2 (en) | Semiconductor device and method of manufacturing the same | |
JP2015146343A (en) | Nonvolatile storage device and manufacturing method of the same | |
TWI856305B (en) | Integrated chip and method for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18778129 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019509719 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18778129 Country of ref document: EP Kind code of ref document: A1 |