WO2018178435A1 - Holographic sensor for detection of adulterants in essential oils and method of obtaining such sensor - Google Patents
Holographic sensor for detection of adulterants in essential oils and method of obtaining such sensor Download PDFInfo
- Publication number
- WO2018178435A1 WO2018178435A1 PCT/ES2018/070153 ES2018070153W WO2018178435A1 WO 2018178435 A1 WO2018178435 A1 WO 2018178435A1 ES 2018070153 W ES2018070153 W ES 2018070153W WO 2018178435 A1 WO2018178435 A1 WO 2018178435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adulterants
- essential oils
- determination
- holographic sensor
- sensor
- Prior art date
Links
- 239000000341 volatile oil Substances 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000001514 detection method Methods 0.000 title abstract description 10
- 239000000203 mixture Substances 0.000 claims description 9
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 239000004988 Nematic liquid crystal Substances 0.000 claims description 6
- UKZQEOHHLOYJLY-UHFFFAOYSA-M ethyl eosin Chemical compound [K+].CCOC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 UKZQEOHHLOYJLY-UHFFFAOYSA-M 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical compound OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 239000003505 polymerization initiator Substances 0.000 claims description 5
- 230000001235 sensitizing effect Effects 0.000 claims description 5
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 claims description 4
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 claims description 4
- 230000005670 electromagnetic radiation Effects 0.000 claims description 4
- INXWLSDYDXPENO-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CO)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C INXWLSDYDXPENO-UHFFFAOYSA-N 0.000 claims description 3
- 238000009472 formulation Methods 0.000 claims description 3
- 238000001429 visible spectrum Methods 0.000 claims description 3
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 claims description 2
- OYKPJMYWPYIXGG-UHFFFAOYSA-N 2,2-dimethylbutane;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(C)(C)C OYKPJMYWPYIXGG-UHFFFAOYSA-N 0.000 claims description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 claims description 2
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 claims description 2
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 claims description 2
- 150000001412 amines Chemical class 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims description 2
- 238000004873 anchoring Methods 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- ZBQZBWKNGDEDOA-UHFFFAOYSA-N eosin B Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC([N+]([O-])=O)=C(O)C(Br)=C1OC1=C2C=C([N+]([O-])=O)C(O)=C1Br ZBQZBWKNGDEDOA-UHFFFAOYSA-N 0.000 claims description 2
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 claims description 2
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 claims description 2
- 239000004174 erythrosine Substances 0.000 claims description 2
- 229940011411 erythrosine Drugs 0.000 claims description 2
- 235000012732 erythrosine Nutrition 0.000 claims description 2
- 229940072686 floxin Drugs 0.000 claims description 2
- 229960000907 methylthioninium chloride Drugs 0.000 claims description 2
- 150000007524 organic acids Chemical class 0.000 claims description 2
- 235000019192 riboflavin Nutrition 0.000 claims description 2
- 239000002151 riboflavin Substances 0.000 claims description 2
- 229960002477 riboflavin Drugs 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000000975 dye Substances 0.000 claims 1
- 125000005473 octanoic acid group Chemical group 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 4
- 238000004817 gas chromatography Methods 0.000 abstract description 4
- 238000004128 high performance liquid chromatography Methods 0.000 abstract description 4
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 7
- 235000013769 triethyl citrate Nutrition 0.000 description 7
- 239000001069 triethyl citrate Substances 0.000 description 7
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 7
- 235000013305 food Nutrition 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- GKZPEYIPJQHPNC-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GKZPEYIPJQHPNC-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000220317 Rosa Species 0.000 description 3
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 2
- 244000042664 Matricaria chamomilla Species 0.000 description 2
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 2
- 244000246386 Mentha pulegium Species 0.000 description 2
- 235000016257 Mentha pulegium Nutrition 0.000 description 2
- 235000004357 Mentha x piperita Nutrition 0.000 description 2
- 235000019568 aromas Nutrition 0.000 description 2
- 239000010495 camellia oil Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 239000001087 glyceryl triacetate Substances 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 235000001050 hortel pimenta Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- -1 N-phenyl-glycine Chemical class 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/20—Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03H—HOLOGRAPHIC PROCESSES OR APPARATUS
- G03H1/00—Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
Definitions
- Holographic sensor for detection of adulterants in essential oils and method of obtaining said sensor.
- the present invention relates to a holographic sensor for detecting adulterants in essential oils and the method of obtaining said sensor.
- Essential oils are used in a large number of consumer products, from food and aromas for food, to cosmetics and perfumery.
- Essential oils are mixtures of intensely aromatic substances obtained from plants, flowers, fruits, wood, resins or roots by various physical processes such as distillation, solvent extraction or compression. They can reach a very high price in the market given the small percentage in which they are found in the plant species from which they come.
- the invention IN3624MU2015 (A) relates to a sensor for detecting adulterants in fish oil.
- Other patents cover a wide range of natural products or derivatives in which adulterations are detected.
- document CN 103399091 deals with the adulteration of milk proteins
- the invention CN203224450 (U) refers to a kit for detection of adulteration in sesame oil
- patent TWI261070 refers to the detection adulteration in juices from citrus processing.
- CN Patent 104697954 (A) describes an apparatus for detecting adulterations in camellia oil by using electromagnetic radiation in the near infrared. None of the matrices mentioned in these studies are comparable to essential oils: neither milk, nor juice, nor sesame or camellia oils. These oils are vegetable oils that contain mainly fatty acids, unlike the essential oils to which the present invention relates. Therefore, none of the previous inventions solves the problem of the detection of adulterants in essential oils.
- patent DE10147447 (A1) refers to a holographic sensor for recognizing moisture on a window of a motor vehicle.
- A1 refers to a holographic sensor for recognizing moisture on a window of a motor vehicle.
- a great research activity has been developed worldwide in relation to holographic sensors.
- Numerous publications show the application of holographic techniques for the development of temperature, humidity and different types of analyte sensors. Some examples are the works of Yetisen, AK (2014), Naydenova, I. (2009), Leite, E. (2010), Shi, J. (2007), Blyth, J. (1996) or Bianco, G. ( 2015).
- Essential oils are used in a large number of consumer products, from food and aromas for food, to cosmetics and perfumery.
- the number of companies that use essential oils as raw material for their products is very However, most of them do not have the economic resources and qualified personnel necessary to carry out analyzes by means of high performance liquid chromatography or gas chromatography. Therefore, a practical way is necessary to determine adulterations in essential oils without the need for specialized personnel or an expensive investment in analysis equipment. At the same time, it is required that analyzes can be performed quickly and at a low cost per analysis.
- the novelty introduced in the present invention consists in using the essential oil which is intended to measure its degree of adulteration as a component of the photopolymer used as a recording material in the art.
- a standard formulation of a photopolymer is chosen that is compatible with the essential oil from which its degree of adulteration is to be measured.
- the formulation of that photopolymer is then modified by adding the essential oil as an additional component thereof.
- the modification introduced by the essential oil in the photopolymer means that the degree of adulteration of the essential oil can be detected by the holographic technique used.
- the essential oil modifies the viscosity of the photopolymer and / or the size of the gaps in the polymer network formed by using the holographic technique.
- the presence of adulterants in the essential oil affects the viscosity and / or the size of the holes in the polymer network, allowing the holographic technique to detect if the essential oil is adulterated and to what degree.
- the present invention relates to a sensor that uses a holographic recording technique, to detect adulterations in essential oils.
- the sensor consists of at least two laser beams that emit electromagnetic radiation within the visible spectrum, with a wavelength within the 380-780 nanometer range.
- the beams hit a point where the modified photopolymer is placed on a glass or plastic support, forming a liquid or solid film.
- Radiometers or semiconductor light detectors are located on both sides of the point of incidence of the laser beams to detect the diffracted, transmitted and reflected light. The relationship between diffracted light and the incident light allows to determine if the essential oil incorporated in the photopolymer is adulterated, knowing in advance the relationship obtained with the pure essential oil.
- the modified photopolymer referred to above is a mixture of the following components:
- Polyfunctional acrylic monomer selectable from the following, but not limited: dipentaerythritol penta- / hexa acrylate, pentaerythritol tetra acrylate, trimethylpropane triacrylate, with a concentration of 10-90%.
- Sensitizing dye selectable from the following, but not limited: ethyl eosin, eosin Y, eosin B, methylene blue, riboflavin, floxin B, erythrosine, rose bengal, with a concentration of 0.01-10.00%.
- Polymerization initiator selectable from the following, but not limited: amino acids such as N-phenyl-glycine, organic amines, with a concentration of 0.1 to 10.0%.
- a solvent and / or a surfactant can be added to facilitate homogenization of the above components.
- the solvent is selectable from the following, but not limited: a straight-chain organic acid with a number of carbon atoms between 5 and 12.
- the concentration may be between 0-30%.
- the surfactant is preferred among those that are nonionic, although some ionic surfactants could be used.
- the concentration is 0-20%.
- the present invention also relates to the method for obtaining the holographic sensor for determination of adulterants in essential oils, which comprises the following steps:
- the sensor is capable of detecting adulterants with different physicochemical properties and not only a certain type of adulterant, that is, it can detect different types of adulterants without having to modify the sensor;
- the sensor can work with essential oil samples of the order of microliters.
- Determination of adulterants in essential oils is carried out by holographic techniques in which laser beams are emitted that emit electromagnetic radiation within the visible spectrum, with a wavelength within the 380-780 nanometer range.
- the beams are filtered and adjust its diameter between 0, 1-12.0 mm.
- the beams combine to form an angle between each other between 10-350 degrees.
- the beams hit a point where the modified photopolymer is placed on a glass or plastic support, forming a liquid film with a thickness of 1-200 micrometers by applying a pressure of 0.01-100 millipascals.
- EXAMPLE 1 Sensor to detect adulterants in chamomile essential oil
- the sensor consists of a 532 nm laser whose beam is filtered and expanded to a diameter of 5 mm. This beam is divided into two forming an angle of 32 degrees. Additionally a 650 nm laser also filtered and with a diameter of 5 millimeters is combined with the previous ones forming an angle of 19.7 degrees with the bisector formed by the other two beams.
- the beams strike a point where 16 microliters of the photopolymer are described, which is described below on a glass plate, applying a pressure of 0.3 millipascals.
- Two radiometers located behind the point of incidence of the laser beams detect the light diffracted and transmitted by the photopolymer and the essential oil sample. The relationship between the intensity of diffracted light and the incident makes it possible to determine if the essential oil is adulterated. To do this, the aforementioned relationship for pure essential oil must be previously known.
- the photopolymer is a mixture of the following components:
- the sensor consists of a 532 nm laser whose beam is filtered and expanded to a diameter of 6 mm. This beam is divided into two forming an angle of 32 degrees. Additionally a 632.8 nm laser also filtered and with a diameter of 6 millimeters is combined with the previous ones forming an angle of 19.1 degrees with the bisector formed by the other two beams.
- the beams strike at a point where 20 microliters of the photopolymer described below are placed on a glass, which includes a sample of 10 microliters containing varying amounts of essential oil of peppermint and triethyl citrate, by applying a pressure of 0 , 6 millipascals.
- Two radiometers located behind the point of incidence of the laser beams detect the light diffracted and transmitted by the photopolymer and the essential oil samples with triethyl citrate. Representing the relationship between the intensity of diffracted light and the incident against the concentration of triethyl citrate, a mathematical equation of adjustment is obtained that allows to obtain the sensor calibration.
- the process is subsequently repeated with a sample of adulterated essential oil with an unknown amount of triethyl citrate.
- the comparison of the relationship between the intensity of diffracted light and the incident with the mathematical calibration equation obtained above allows to determine the percentage of triethyl citrate in the adulterated essential oil sample.
- the photopolymer is a mixture of the following components:
- the sensor consists of a 532 nm laser whose beam is filtered and expanded to a diameter of 5 mm. This beam is divided into two forming an angle of 32 degrees. Additionally a 650 nm laser also filtered and with a diameter of 5 millimeters is combined with the previous ones forming an angle of 19.7 degrees with the bisector formed by the other two beams.
- the beams affect a point where 20 microliters of the modified photopolymer described below is placed on a glass, applying a pressure of 0.4 millipascals.
- Two radiometers located behind the point of incidence of the laser beams detect the light diffracted and transmitted by the photopolymer and the essential oil sample. Subsequently the process is repeated with a sample of essential oil of rose adulterated with triacetin and with a sample of which it is not known whether it is adulterated or not.
- the comparison of the relationship between the intensity of diffracted light and the incident obtained for each sample allows to determine if the essential oil is adulterated.
- the photopolymer is a mixture of the following components:
Landscapes
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The object of the invention is a holographic sensor for the detection of adulterants in essential oils. It consists of the use of a holographic recording technique and a photopolymer, in combination with the essential oil whose potential adulteration is to be assessed. The sensor is capable of qualitatively detecting different types of adulterants. It can also quantitively measure the degree of adulteration of an essential oil by previously calibrating the sensor for a particular adulterant. It can be miniaturised and manufactured at a reduced cost compared to traditional methods of analysis such as gas chromatography and high performance liquid chromatography. The sensor can be used by unqualifed personnel.
Description
SENSOR HOLOGRÁFICO PARA DETECCIÓN DE ADULTERANTES EN ACEITES ESENCIALES Y MÉTODO DE OBTENCIÓN DE DICHO SENSOR HOLOGRAPHIC SENSOR FOR DETECTION OF ADULTERANTS IN ESSENTIAL OILS AND METHOD OF OBTAINING SUCH SENSOR
DESCRIPCIÓN DESCRIPTION
Sensor holográfico para detección de adulterantes en aceites esenciales y método de obtención de dicho sensor. Holographic sensor for detection of adulterants in essential oils and method of obtaining said sensor.
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención se refiere a un sensor holográfico para detectar adulterantes en aceites esenciales y el método de obtención de dicho sensor. Los aceites esenciales son utilizados en gran cantidad de productos de consumo, desde alimentos y aromas para alimentación, hasta cosmética y perfumería. The present invention relates to a holographic sensor for detecting adulterants in essential oils and the method of obtaining said sensor. Essential oils are used in a large number of consumer products, from food and aromas for food, to cosmetics and perfumery.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
Los aceites esenciales son mezclas de sustancias intensamente aromáticas obtenidas de plantas, flores, frutos, maderas, resinas o raíces por diversos procesos físicos como la destilación, la extracción con disolventes o la compresión. Pueden alcanzar un precio muy elevado en el mercado dado el pequeño porcentaje en el que se encuentran en las especies vegetales de las que provienen. Essential oils are mixtures of intensely aromatic substances obtained from plants, flowers, fruits, wood, resins or roots by various physical processes such as distillation, solvent extraction or compression. They can reach a very high price in the market given the small percentage in which they are found in the plant species from which they come.
Para comprobar sus características se utilizan diferentes parámetros físicos como la densidad, viscosidad, punto de ebullición, color, etc. No obstante, estas técnicas sencillas no proporcionan datos concluyentes ya que los aceites esenciales presentan variaciones dado su origen natural y el hecho de que factores hídricos, nutricionales, climatológicos o la especie de la planta pueden influir en esta variabilidad. Además, existen potenciales adulterantes que no son detectables mediante mediciones de estos parámetros. To check its characteristics, different physical parameters such as density, viscosity, boiling point, color, etc. are used. However, these simple techniques do not provide conclusive data since essential oils show variations due to their natural origin and the fact that water, nutritional, weather or plant species can influence this variability. In addition, there are potential adulterants that are not detectable by measurements of these parameters.
Para garantizar la pureza de los aceites esenciales se emplean técnicas sofisticadas de análisis químico como la cromatografía de gases o la cromatografía líquida de alta resolución. Estas técnicas tienen el inconveniente del alto coste de los equipos, del gran espacio necesario dado que se trata de máquinas muy voluminosas, y de la necesidad de personal técnico altamente cualificado para realizar los análisis y la interpretación de los resultados. En la actualidad, el desarrollo de sensores de bajo coste, portátiles y fáciles de usar, para detección de sustancias y adulterantes es objeto de una gran actividad inventiva.
La invención IN3624MU2015 (A) se refiere a un sensor para detección de adulterantes en aceite de pescado. Otras patentes cubren un amplio rango de productos naturales o derivados en los que se detectan adulteraciones. Así el documento CN 103399091 (A) trata de la adulteración de las proteínas de la leche, la invención CN203224450(U) se refiere a un kit para detección de adulteración en aceite de sésamo, la patente TWI261070(B) se refiere a la detección de adulteración en zumos procedentes del procesado de cítricos. La patente CN 104697954(A) describe un aparato para detectar adulteraciones en aceite de camelia mediante el empleo de radiación electromagnética en el infrarrojo cercano. Ninguna de las matrices mencionadas en estos estudios es comparable a los aceites esenciales: ni la leche, ni el zumo, ni los aceites de sésamo o camelia. Estos aceites son aceites vegetales que contienen principalmente ácidos grasos, al contrario que los aceites esenciales a los que se refiere la presente invención. Por tanto, ninguna de las invenciones anteriores soluciona el problema de la detección de adulterantes en aceites esenciales. To ensure the purity of essential oils, sophisticated chemical analysis techniques such as gas chromatography or high performance liquid chromatography are used. These techniques have the disadvantage of the high cost of the equipment, the large space required since they are very bulky machines, and the need for highly qualified technical personnel to perform the analysis and interpretation of the results. At present, the development of low-cost, portable and easy-to-use sensors for the detection of substances and adulterants is subject to great inventive activity. The invention IN3624MU2015 (A) relates to a sensor for detecting adulterants in fish oil. Other patents cover a wide range of natural products or derivatives in which adulterations are detected. Thus, document CN 103399091 (A) deals with the adulteration of milk proteins, the invention CN203224450 (U) refers to a kit for detection of adulteration in sesame oil, patent TWI261070 (B) refers to the detection adulteration in juices from citrus processing. CN Patent 104697954 (A) describes an apparatus for detecting adulterations in camellia oil by using electromagnetic radiation in the near infrared. None of the matrices mentioned in these studies are comparable to essential oils: neither milk, nor juice, nor sesame or camellia oils. These oils are vegetable oils that contain mainly fatty acids, unlike the essential oils to which the present invention relates. Therefore, none of the previous inventions solves the problem of the detection of adulterants in essential oils.
En cuanto a los métodos de detección, ninguna de las invenciones anteriores utiliza técnicas holográficas. Sí lo hace la patente DE10147447 (A1) que se refiere a un sensor holográfico para reconocer humedad sobre un cristal de un vehículo de motor. En los últimos años se ha desarrollado a nivel mundial una gran actividad investigadora en relación a sensores holográficos. Numerosas publicaciones muestran la aplicación de técnicas holográficas para el desarrollo de sensores de temperatura, humedad y distintos tipos de analitos. Algunos ejemplos son los trabajos de Yetisen, A. K. (2014), Naydenova, I. (2009), Leite, E. (2010), Shi, J. (2007), Blyth, J. (1996) o Bianco, G. (2015). En la búsqueda realizada no se ha encontrado ningún estudio en el que se utilicen técnicas holográficas para la detección de adulterantes en aceites esenciales ni para medir la calidad de un aceite esencial. Además, hay publicaciones recientes como las de M. Moirangthem (2016) y D.J. Mulder (2014), que utilizan polímeros y cristales líquidos en sensores ópticos y para detectar iones metálicos, con técnicas diferentes de las utilizadas en la presente invención, además de que no están relacionadas con los aceites esenciales. Por tanto, ningún estudio muestra la aplicación de técnicas holográficas a la determinación de adulterantes en aceites esenciales. As for the detection methods, none of the previous inventions use holographic techniques. Yes, patent DE10147447 (A1) refers to a holographic sensor for recognizing moisture on a window of a motor vehicle. In recent years a great research activity has been developed worldwide in relation to holographic sensors. Numerous publications show the application of holographic techniques for the development of temperature, humidity and different types of analyte sensors. Some examples are the works of Yetisen, AK (2014), Naydenova, I. (2009), Leite, E. (2010), Shi, J. (2007), Blyth, J. (1996) or Bianco, G. ( 2015). In the search carried out, no study was found in which holographic techniques are used to detect adulterants in essential oils or to measure the quality of an essential oil. In addition, there are recent publications such as those by M. Moirangthem (2016) and D.J. Mulder (2014), which use polymers and liquid crystals in optical sensors and to detect metal ions, with techniques different from those used in the present invention, in addition to not being related to essential oils. Therefore, no study shows the application of holographic techniques to the determination of adulterants in essential oils.
Los aceites esenciales se usan en gran cantidad de productos de consumo, desde alimentos y aromas para alimentación, hasta cosmética y perfumería. El número de empresas que utilizan aceites esenciales como materia prima para sus productos es muy
elevado, en cambio, la mayoría no disponen de los recursos económicos y del personal cualificado necesario para realizar análisis mediante cromatografía líquida de alta resolución o cromatografía de gases. Por tanto, se hace necesaria una forma práctica para determinar adulteraciones en aceites esenciales sin necesidad de personal especializado ni de una costosa inversión en equipos de análisis. Al mismo tiempo, se requiere que los análisis se puedan realizar de forma rápida y con un bajo coste por análisis. Essential oils are used in a large number of consumer products, from food and aromas for food, to cosmetics and perfumery. The number of companies that use essential oils as raw material for their products is very However, most of them do not have the economic resources and qualified personnel necessary to carry out analyzes by means of high performance liquid chromatography or gas chromatography. Therefore, a practical way is necessary to determine adulterations in essential oils without the need for specialized personnel or an expensive investment in analysis equipment. At the same time, it is required that analyzes can be performed quickly and at a low cost per analysis.
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
Se hace necesario a la luz de lo anteriormente expuesto, desarrollar una nueva tecnología que permita detectar con facilidad adulteraciones en productos de elevado coste como los aceites esenciales. It is necessary in the light of the above, to develop a new technology that can easily detect adulterations in high-cost products such as essential oils.
Aunque las técnicas holográficas y los fotopolímeros utilizados en los estudios citados son similares, la novedad introducida en la presente invención consiste en utilizar el aceite esencial del que se pretende medir su grado de adulteración como un componente del fotopolímero utilizado como material de registro en la técnica holográfica. Es decir, se elige una formulación estándar de un fotopolímero que sea compatible con el aceite esencial del que se quiere medir su grado de adulteración. A continuación se modifica la formulación de ese fotopolímero añadiendo el aceite esencial como un componente adicional del mismo. La modificación que introduce el aceite esencial en el fotopolímero hace que se pueda detectar el grado de adulteración del aceite esencial mediante la técnica holográfica empleada. El aceite esencial modifica la viscosidad del fotopolímero y/o el tamaño de los huecos de la red polimérica formada al utilizar la técnica holográfica. La presencia de adulterantes en el aceite esencial afecta a la viscosidad y/o al tamaño de los huecos de la red polimérica, permitiendo que con la técnica holográfica se pueda detectar si el aceite esencial está adulterado y en qué grado. Although the holographic techniques and photopolymers used in the cited studies are similar, the novelty introduced in the present invention consists in using the essential oil which is intended to measure its degree of adulteration as a component of the photopolymer used as a recording material in the art. Holographic That is, a standard formulation of a photopolymer is chosen that is compatible with the essential oil from which its degree of adulteration is to be measured. The formulation of that photopolymer is then modified by adding the essential oil as an additional component thereof. The modification introduced by the essential oil in the photopolymer means that the degree of adulteration of the essential oil can be detected by the holographic technique used. The essential oil modifies the viscosity of the photopolymer and / or the size of the gaps in the polymer network formed by using the holographic technique. The presence of adulterants in the essential oil affects the viscosity and / or the size of the holes in the polymer network, allowing the holographic technique to detect if the essential oil is adulterated and to what degree.
Por tanto, en un primer aspecto, la presente invención se refiere a un sensor que utiliza una técnica de registro holográfico, para detectar adulteraciones en aceites esenciales. El sensor consta de al menos dos haces láser que emiten radiación electromagnética dentro del espectro visible, con una longitud de onda comprendida dentro del intervalo 380-780 nanómetros. Los haces inciden en un punto donde se sitúa el fotopolímero modificado sobre un soporte de vidrio o plástico, formando una película líquida o sólida. Radiómetros o semiconductores detectores de luz se sitúan a ambos lados del punto de incidencia de los haces láser para detectar la luz difractada, transmitida y reflejada. La relación entre la
luz difractada y la luz incidente permite determinar si el aceite esencial incorporado en el fotopolímero está adulterado, conociendo previamente la relación que se obtiene con el aceite esencial puro. Dada la gran sensibilidad de las técnicas holográficas, también es posible determinar el grado de adulteración, es decir, realizar un análisis cuantitativo, si previamente se calibra el sensor para un adulterante específico. Los cambios en la relación de haces de luz se relacionan con el porcentaje de adulterante en el aceite esencial. El fotopolímero modificado referido anteriormente es una mezcla de los siguientes componentes: Therefore, in a first aspect, the present invention relates to a sensor that uses a holographic recording technique, to detect adulterations in essential oils. The sensor consists of at least two laser beams that emit electromagnetic radiation within the visible spectrum, with a wavelength within the 380-780 nanometer range. The beams hit a point where the modified photopolymer is placed on a glass or plastic support, forming a liquid or solid film. Radiometers or semiconductor light detectors are located on both sides of the point of incidence of the laser beams to detect the diffracted, transmitted and reflected light. The relationship between diffracted light and the incident light allows to determine if the essential oil incorporated in the photopolymer is adulterated, knowing in advance the relationship obtained with the pure essential oil. Given the high sensitivity of holographic techniques, it is also possible to determine the degree of adulteration, that is, to perform a quantitative analysis, if the sensor is previously calibrated for a specific adulterant. Changes in the light beam ratio are related to the percentage of adulterant in the essential oil. The modified photopolymer referred to above is a mixture of the following components:
Monómero acrílico polifuncional, seleccionable de entre los siguientes, pero no limitado: penta-/hexa-acrilato de dipentaeritritol, tetra-acrilato de pentaeritritol, triacrilato de trimetilpropano, con una concentración de 10-90%. Polyfunctional acrylic monomer, selectable from the following, but not limited: dipentaerythritol penta- / hexa acrylate, pentaerythritol tetra acrylate, trimethylpropane triacrylate, with a concentration of 10-90%.
- Cristal líquido nemático con una concentración de 20-60%. - Nematic liquid crystal with a concentration of 20-60%.
Colorante sensibilizador, seleccionable de entre los siguientes, pero no limitado: eosina de etilo, eosina Y, eosina B, azul de metileno, riboflavina, floxina B, eritrosina, rosa bengala, con una concentración de 0,01-10,00%. Iniciador de la polimerización, seleccionable de entre los siguientes, pero no limitado: aminoácidos como la N-fenil-glicina, aminas orgánicas, con una concentración de 0, 1-10,0%. Sensitizing dye, selectable from the following, but not limited: ethyl eosin, eosin Y, eosin B, methylene blue, riboflavin, floxin B, erythrosine, rose bengal, with a concentration of 0.01-10.00%. Polymerization initiator, selectable from the following, but not limited: amino acids such as N-phenyl-glycine, organic amines, with a concentration of 0.1 to 10.0%.
- Aceite esencial sobre el que se quiere determinar el grado de adulteración, con una concentración de 0, 1-50,0%. En una realización en particular puede añadirse un disolvente y/o un tensoactivo para facilitar la homogeneización de los componentes anteriores. El disolvente es seleccionable de entre los siguientes, pero no limitado: un ácido orgánico de cadena lineal con un número de átomos de carbono comprendido entre 5 y 12. La concentración puede estar comprendida entre 0-30%. El tensoactivo se prefiere entre aquellos que son no iónicos, si bien podrían utilizarse algunos tensoactivos de tipo iónico. La concentración es de 0-20%. - Essential oil on which you want to determine the degree of adulteration, with a concentration of 0, 1-50.0%. In a particular embodiment, a solvent and / or a surfactant can be added to facilitate homogenization of the above components. The solvent is selectable from the following, but not limited: a straight-chain organic acid with a number of carbon atoms between 5 and 12. The concentration may be between 0-30%. The surfactant is preferred among those that are nonionic, although some ionic surfactants could be used. The concentration is 0-20%.
En un segundo aspecto, la presente invención también se refiere al procedimiento para obtener el sensor holográfico para determinación de adulterantes en aceites esenciales, que comprende las siguientes etapas: In a second aspect, the present invention also relates to the method for obtaining the holographic sensor for determination of adulterants in essential oils, which comprises the following steps:
Realización de una malla de orificios roscados con forma de cuadrícula, sobre
una placa soporte con un área comprendida entre 2 y 200 cm2, dependiendo del tamaño y tipo de láser utilizado Making a grid of threaded holes with a grid shape, on a support plate with an area between 2 and 200 cm 2 , depending on the size and type of laser used
Fijación de los siguientes componentes sobre la malla con forma de cuadrícula: Fixing the following components on the grid-shaped mesh:
- Láser de registro - Registration laser
- Láser de reconstrucción o lectura - Reconstruction or reading laser
- Dos radiómetros - Two radiometers
- Circuito electrónico registrador de datos - Electronic data logger circuit
- Interface de conexión a ordenador, teléfono móvil o tablet - Connection interface to computer, mobile phone or tablet
- Soporte del fotopolímero: dos placas de vidrio o plástico una fija y otra móvil o las dos móviles que se unen mediante un mecanismo de bisagra, permitiendo formar una película de fotopolímero a partir de una gota al aplicar una presión mediante un sistema de tornillo micrométrico y muelle o mediante una chapa metálica de curvatura regulable. - Support of the photopolymer: two glass or plastic plates, one fixed and the other mobile or the two mobile that are joined by a hinge mechanism, allowing to form a photopolymer film from a drop when applying a pressure using a micrometric screw system and spring or by means of a metal plate with adjustable curvature.
- Anclaje del soporte de fotopolímero: pieza de plástico o metal que se atornilla a la placa soporte y permite la rápida coloración y extracción del soporte del fotopolímero sin necesidad de quitar tornillos. - Anchoring of the photopolymer support: piece of plastic or metal that is screwed to the support plate and allows the rapid coloration and removal of the photopolymer support without removing screws.
- Fotopolímero modificado - Modified photopolymer
Unión de los componentes a la placa soporte mediante piezas de plástico o metal atornilladas a los taladros de la placa, que permiten el posicionamiento y ajuste de cada componente en la posición correcta. Union of the components to the support plate by means of plastic or metal parts screwed to the holes of the plate, which allow the positioning and adjustment of each component in the correct position.
La presente invención permite detectar la adulteración de un aceite esencial aportando las siguientes ventajas: The present invention allows detecting the adulteration of an essential oil providing the following advantages:
la detección de adulterantes se realiza de forma rápida; the detection of adulterants is carried out quickly;
- el sensor es capaz de detectar adulterantes con diferentes propiedades fisicoquímicas y no solo un determinado tipo de adulterante, es decir, puede detectar distintos tipos de adulterantes sin tener que modificar el sensor; - the sensor is capable of detecting adulterants with different physicochemical properties and not only a certain type of adulterant, that is, it can detect different types of adulterants without having to modify the sensor;
también puede calibrarse para un determinado adulterante de forma que pueda hacerse una estimación cuantitativa de la adulteración que presenta un aceite esencial; It can also be calibrated for a given adulterant so that a quantitative estimate of the adulteration of an essential oil can be made;
el sensor puede trabajar con muestras de aceite esencial del orden de los microlitros. The sensor can work with essential oil samples of the order of microliters.
Así mismo, la determinación de la presente invención permite superar inconvenientes en los aspectos que se enumeran a continuación: Likewise, the determination of the present invention allows to overcome disadvantages in the aspects listed below:
tiene un coste inferior a los métodos utilizados actualmente para esta tarea:
cromatografía de gases y cromatografía líquida de alta resolución; It has a lower cost than the methods currently used for this task: gas chromatography and high performance liquid chromatography;
puede miniaturizarse, con la ventaja de tener un sensor portátil de pequeño tamaño; it can be miniaturized, with the advantage of having a small portable sensor;
puede ser manejado por personal con una formación mínima sin necesidad de ser un titulado superior experto en cromatografía. It can be managed by personnel with minimal training without the need to be a senior expert in chromatography.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
La determinación de adulterantes en aceites esenciales se lleva a cabo mediante técnicas holográficas en las que se usan haces de láser que emiten radiación electromagnética dentro del espectro visible, con una longitud de onda comprendida dentro del intervalo 380-780 nanómetros Los haces son filtrados y se ajusta su diámetro entre 0, 1-12,0 mm. Los haces se combinan formando un ángulo entre sí comprendido entre 10-350 grados. Los haces inciden en un punto donde se sitúa el fotopolímero modificado sobre un soporte de vidrio o plástico, formando una película líquida con un espesor de 1-200 micrómetros mediante la aplicación de una presión de 0,01-100 milipascales. Determination of adulterants in essential oils is carried out by holographic techniques in which laser beams are emitted that emit electromagnetic radiation within the visible spectrum, with a wavelength within the 380-780 nanometer range. The beams are filtered and adjust its diameter between 0, 1-12.0 mm. The beams combine to form an angle between each other between 10-350 degrees. The beams hit a point where the modified photopolymer is placed on a glass or plastic support, forming a liquid film with a thickness of 1-200 micrometers by applying a pressure of 0.01-100 millipascals.
EJEMPLO 1 : Sensor para detectar adulterantes en aceite esencial de manzanillaEXAMPLE 1: Sensor to detect adulterants in chamomile essential oil
El sensor consta de un láser de 532 nm cuyo haz se filtra y se expande a un diámetro de 5 mm. Este haz se divide en dos formando un ángulo de 32 grados. Adicionalmente un láser de 650 nm también filtrado y con un diámetro de 5 milímetros se combina con los anteriores formando un ángulo de 19,7 grados con la bisectriz que forman los otros dos haces. Los haces inciden en un punto donde se sitúan 16 microlitros del fotopolímero que se describe a continuación sobre una placa de vidrio, aplicando una presión de 0,3 milipascales. Dos radiómetros situados tras el punto de incidencia de los haces láser detectan la luz difractada y transmitida por el fotopolímero y la muestra de aceite esencial. La relación entre la intensidad de luz difractada y la incidente permite determinar si el aceite esencial está adulterado. Para ello debe conocerse previamente la citada relación para el aceite esencial puro. The sensor consists of a 532 nm laser whose beam is filtered and expanded to a diameter of 5 mm. This beam is divided into two forming an angle of 32 degrees. Additionally a 650 nm laser also filtered and with a diameter of 5 millimeters is combined with the previous ones forming an angle of 19.7 degrees with the bisector formed by the other two beams. The beams strike a point where 16 microliters of the photopolymer are described, which is described below on a glass plate, applying a pressure of 0.3 millipascals. Two radiometers located behind the point of incidence of the laser beams detect the light diffracted and transmitted by the photopolymer and the essential oil sample. The relationship between the intensity of diffracted light and the incident makes it possible to determine if the essential oil is adulterated. To do this, the aforementioned relationship for pure essential oil must be previously known.
El fotopolímero es una mezcla de los siguientes componentes: The photopolymer is a mixture of the following components:
Penta-/hexa-acrilato de dipentaeritritol 40% Penta- / dipentaerythritol hexa acrylate 40%
Cristal líquido nemático 30% 30% nematic liquid crystal
Eosina de etilo 0,05%
N-fenil-glicina 0,50% 0.05% ethyl eosin N-phenyl-glycine 0.50%
Ácido octanoico 9,45% Octanoic acid 9.45%
Aceite esencial de manzanilla 20% EJEMPLO 2: Sensor para determinación cuantitativa del adulterante citrato de trietilo en aceite esencial de menta Chamomile essential oil 20% EXAMPLE 2: Sensor for quantitative determination of adulterant triethyl citrate in mint essential oil
El sensor consta de un láser de 532 nm cuyo haz se filtra y se expande a un diámetro de 6 mm. Este haz se divide en dos formando un ángulo de 32 grados. Adicionalmente un láser de 632,8 nm también filtrado y con un diámetro de 6 milímetros se combina con los anteriores formando un ángulo de 19,1 grados con la bisectriz que forman los otros dos haces. The sensor consists of a 532 nm laser whose beam is filtered and expanded to a diameter of 6 mm. This beam is divided into two forming an angle of 32 degrees. Additionally a 632.8 nm laser also filtered and with a diameter of 6 millimeters is combined with the previous ones forming an angle of 19.1 degrees with the bisector formed by the other two beams.
Los haces inciden en un punto donde se sitúan sobre un vidrio 20 microlitros del fotopolímero que se describe a continuación, que incluye una muestra de 10 microlitros conteniendo cantidades variables de aceite esencial de menta y citrato de trietilo, mediante la aplicación de una presión de 0,6 milipascales. Dos radiómetros situados tras el punto de incidencia de los haces láser detectan la luz difractada y transmitida por el fotopolímero y las muestras de aceite esencial con citrato de trietilo. Representando la relación entre la intensidad de luz difractada y la incidente frente a la concentración de citrato de trietilo se obtiene una ecuación matemática de ajuste que permite obtener la calibración del sensor. Posteriormente se repite el proceso con una muestra de aceite esencial adulterado con una cantidad desconocida de citrato de trietilo. La comparación de la relación entre la intensidad de luz difractada y la incidente con la ecuación matemática de calibración obtenida anteriormente permite determinar el porcentaje de citrato de trietilo en la muestra de aceite esencial adulterado. The beams strike at a point where 20 microliters of the photopolymer described below are placed on a glass, which includes a sample of 10 microliters containing varying amounts of essential oil of peppermint and triethyl citrate, by applying a pressure of 0 , 6 millipascals. Two radiometers located behind the point of incidence of the laser beams detect the light diffracted and transmitted by the photopolymer and the essential oil samples with triethyl citrate. Representing the relationship between the intensity of diffracted light and the incident against the concentration of triethyl citrate, a mathematical equation of adjustment is obtained that allows to obtain the sensor calibration. The process is subsequently repeated with a sample of adulterated essential oil with an unknown amount of triethyl citrate. The comparison of the relationship between the intensity of diffracted light and the incident with the mathematical calibration equation obtained above allows to determine the percentage of triethyl citrate in the adulterated essential oil sample.
El fotopolímero es una mezcla de los siguientes componentes: The photopolymer is a mixture of the following components:
Penta-/hexa-acrilato de dipentaeritritol 35,33% Penta- / dipentaerythritol hexa acrylate 35.33%
Cristal líquido nemático 24,00% Nematic liquid crystal 24.00%
Eosina de etilo 0,03% 0.03% ethyl eosin
N-fenil-glicina 0,31 % N-phenyl glycine 0.31%
Ácido octanoico 7,00% Octanoic acid 7.00%
Aceite esencial de menta con citrato de trietilo en proporción variable 33,33%
EJEMPLO 3: Sensor para detectar el adulterante triacetina en aceite esencial de rosa Peppermint essential oil with triethyl citrate in variable proportion 33.33% EXAMPLE 3: Sensor to detect adulterant triacetin in rose essential oil
El sensor consta de un láser de 532 nm cuyo haz se filtra y se expande a un diámetro de 5 mm. Este haz se divide en dos formando un ángulo de 32 grados. Adicionalmente un láser de 650 nm también filtrado y con un diámetro de 5 milímetros se combina con los anteriores formando un ángulo de 19,7 grados con la bisectriz que forman los otros dos haces. The sensor consists of a 532 nm laser whose beam is filtered and expanded to a diameter of 5 mm. This beam is divided into two forming an angle of 32 degrees. Additionally a 650 nm laser also filtered and with a diameter of 5 millimeters is combined with the previous ones forming an angle of 19.7 degrees with the bisector formed by the other two beams.
Los haces inciden en un punto donde se sitúan sobre un vidrio 20 microlitros del fotopolímero modificado que se describe a continuación, aplicando una presión de 0,4 milipascales. Dos radiómetros situados tras el punto de incidencia de los haces láser detectan la luz difractada y transmitida por el fotopolímero y la muestra de aceite esencial. Posteriormente se repite el proceso con una muestra de aceite esencial de rosa adulterado con triacetina y con una muestra de la que no se sabe si está adulterada o no. La comparación de la relación entre la intensidad de luz difractada y la incidente obtenida para cada muestra permite determinar si el aceite esencial está adulterado. The beams affect a point where 20 microliters of the modified photopolymer described below is placed on a glass, applying a pressure of 0.4 millipascals. Two radiometers located behind the point of incidence of the laser beams detect the light diffracted and transmitted by the photopolymer and the essential oil sample. Subsequently the process is repeated with a sample of essential oil of rose adulterated with triacetin and with a sample of which it is not known whether it is adulterated or not. The comparison of the relationship between the intensity of diffracted light and the incident obtained for each sample allows to determine if the essential oil is adulterated.
El fotopolímero es una mezcla de los siguientes componentes: The photopolymer is a mixture of the following components:
Penta-/hexa-acrilato de dipentaeritritol 40% Penta- / dipentaerythritol hexa acrylate 40%
Cristal líquido nemático 35% 35% nematic liquid crystal
Eosina de etilo 0,05% 0.05% ethyl eosin
N-Metildietanolamina 0,4% N-Methyldiethanolamine 0.4%
Ácido octanoico 9,55% Octanoic acid 9.55%
Aceite esencial de rosa 15%
Rose essential oil 15%
Claims
1. Sensor holográfico para determinación de adulterantes en aceites esenciales formado por al menos dos haces láser que emiten radiación electromagnética dentro del espectro visible con una longitud de onda comprendida dentro del intervalo 380- 780 nm, un fotopolímero situado en un soporte donde inciden los haces láser y radiómetros o semiconductores detectores de luz que se sitúan a ambos lados del punto de incidencia de los haces láser para detectar la luz difractada y reflejada, caracterizado porque el fotopolímero empleado es una mezcla de: 1. Holographic sensor for determination of adulterants in essential oils formed by at least two laser beams that emit electromagnetic radiation within the visible spectrum with a wavelength within the range 380-780 nm, a photopolymer located on a support where the beams strike laser and radiometers or semiconductor light detectors that are located on both sides of the point of incidence of the laser beams to detect the diffracted and reflected light, characterized in that the photopolymer used is a mixture of:
- monómero acrílico polifuncional, - polyfunctional acrylic monomer,
cristal líquido nemático, nematic liquid crystal,
colorante sensibilizador, sensitizing dye,
iniciador de la polimerización polymerization initiator
y aceite esencial al cual se le quiere determinar el grado de pureza. and essential oil which wants to determine the degree of purity.
2. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde el monómero acrílico polifuncional es seleccionable entre los siguientes, pero no limitado: penta-/hexa-acrilato de dipentaeritritol, tetra- acrilato de pentaeritritol o triacrilato de trimetilpropano. 2. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the polyfunctional acrylic monomer is selectable from the following, but not limited: dipentaerythritol penta- / hexa acrylate, pentaerythritol tetra-acrylate or trimethylpropane triacrylate.
3. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 2, donde el monómero acrílico polifuncional es penta-/hexa- acrilato de dipentaeritritol. 3. Holographic sensor for determination of adulterants in essential oils according to claim 2, wherein the polyfunctional acrylic monomer is dipentaerythritol penta- / hexa acrylate.
4. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde la concentración del monómero acrílico polifuncional está comprendida entre 10-90%. 4. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the concentration of the polyfunctional acrylic monomer is between 10-90%.
5. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde la concentración del cristal líquido nemático está comprendida entre 20-60%. 5. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the concentration of the nematic liquid crystal is between 20-60%.
6. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde el colorante sensibilizador es seleccionable de entre los siguientes, pero no limitado: eosina de etilo, eosina Y, eosina B, azul de metileno,
riboflavina, floxina B, eritrosina o rosa bengala. 6. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the sensitizing dye is selectable from the following, but not limited: ethyl eosin, eosin Y, eosin B, methylene blue, Riboflavin, Floxin B, Erythrosine or Rose Bengal.
7. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 6, donde el colorante sensibilizador es eosina de etilo. 7. Holographic sensor for determination of adulterants in essential oils according to claim 6, wherein the sensitizing dye is ethyl eosin.
8. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde la concentración del colorante sensibilizador está comprendida entre 0,01-10,00%. 8. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the concentration of the sensitizing dye is between 0.01-10.00%.
9. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde el iniciador de la polimerización es seleccionare de entre los siguientes, pero no limitado: aminoácidos como la N-fenil-glicina o aminas orgánicas. 9. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the polymerization initiator is selected from the following, but not limited: amino acids such as N-phenyl-glycine or organic amines.
10. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 9, donde el iniciador de la polimerización es N-fenil-glicina. 10. Holographic sensor for determination of adulterants in essential oils according to claim 9, wherein the polymerization initiator is N-phenyl glycine.
1 1. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde la concentración del iniciador de la polimerización está comprendida entre 0, 1-10,0%. 1 1. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the concentration of the polymerization initiator is between 0.1-10.0%.
12. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 1 , donde la formulación del fotopolímero comprende un disolvente y/o un tensoactivo. 12. Holographic sensor for determination of adulterants in essential oils according to claim 1, wherein the photopolymer formulation comprises a solvent and / or a surfactant.
13. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 12, donde el disolvente es un ácido orgánico de cadena lineal con un número de átomos de carbono comprendido entre 5 y 12. 13. Holographic sensor for determination of adulterants in essential oils according to claim 12, wherein the solvent is a linear chain organic acid with a number of carbon atoms between 5 and 12.
14. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 13, donde el disolvente es ácido octanoico. 14. Holographic sensor for determination of adulterants in essential oils according to claim 13, wherein the solvent is octanoic acid.
15. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 12, donde la concentración del disolvente está comprendida entre 0-30%.
15. Holographic sensor for determination of adulterants in essential oils according to claim 12, wherein the concentration of the solvent is between 0-30%.
16. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 12, donde el tensoactivo puede ser iónico o no iónico. 16. Holographic sensor for determination of adulterants in essential oils according to claim 12, wherein the surfactant can be ionic or non-ionic.
17. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 16, donde el tensoactivo es de tipo no iónico. 17. Holographic sensor for determination of adulterants in essential oils according to claim 16, wherein the surfactant is non-ionic type.
18. Sensor holográfico para determinación de adulterantes en aceites esenciales según la reivindicación 12, donde la concentración del tensoactivo está comprendida entre 0-20%. 18. Holographic sensor for determination of adulterants in essential oils according to claim 12, wherein the concentration of the surfactant is between 0-20%.
19. Procedimiento para la obtención del sensor holográfico para determinación de adulterantes en aceites esenciales descrito en la reivindicación 1 , que comprende las siguientes etapas: 19. Method for obtaining the holographic sensor for determination of adulterants in essential oils described in claim 1, comprising the following steps:
Realización de una malla de orificios roscados con forma de cuadrícula, sobre una placa soporte con un área comprendida entre 2 y 200 cm2, dependiendo del tamaño y tipo de láser utilizado Making a mesh of threaded holes in the form of a grid, on a support plate with an area between 2 and 200 cm 2 , depending on the size and type of laser used
Fijación de los siguientes componentes sobre la malla con forma de cuadrícula: Fixing the following components on the grid-shaped mesh:
- Láser de registro - Registration laser
- Láser de reconstrucción o lectura - Reconstruction or reading laser
- Dos radiómetros - Two radiometers
- Circuito electrónico registrador de datos - Electronic data logger circuit
- Interface de conexión a ordenador, teléfono móvil o tablet - Connection interface to computer, mobile phone or tablet
- Soporte del fotopolímero: dos placas de vidrio o plástico una fija y otra móvil o las dos móviles que se unen mediante un mecanismo de bisagra, permitiendo formar una película de fotopolímero a partir de una gota al aplicar una presión mediante un sistema de tornillo micrométrico y muelle o mediante una chapa metálica de curvatura regulable. - Support of the photopolymer: two glass or plastic plates, one fixed and the other mobile or the two mobile that are joined by a hinge mechanism, allowing to form a photopolymer film from a drop when applying a pressure using a micrometric screw system and spring or by means of a metal plate with adjustable curvature.
- Anclaje del soporte de fotopolímero: pieza de plástico o metal que se atornilla a la placa soporte y permite la rápida coloración y extracción del soporte del fotopolímero sin necesidad de quitar tornillos. - Anchoring of the photopolymer support: piece of plastic or metal that is screwed to the support plate and allows the rapid coloration and removal of the photopolymer support without removing screws.
- Fotopolímero modificado según se describe en la reivindicación 1. - Modified photopolymer as described in claim 1.
Unión de los componentes a la placa soporte mediante piezas de plástico o metal atornilladas a los taladros de la placa, que permiten el posicionamiento y ajuste de cada componente en la posición correcta.
Uso del sensor holográfico descrito según la reivindicación 1 para determinación de adulterantes en aceites esenciales.
Union of the components to the support plate by means of plastic or metal parts screwed to the holes of the plate, which allow the positioning and adjustment of each component in the correct position. Use of the holographic sensor described according to claim 1 for determination of adulterants in essential oils.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201730488A ES2622336B2 (en) | 2017-03-30 | 2017-03-30 | HOLOGRAPHIC SENSOR FOR DETECTION OF ADULTERANTS IN ESSENTIAL OILS AND METHOD OF OBTAINING SUCH SENSOR |
ESP201730488 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018178435A1 true WO2018178435A1 (en) | 2018-10-04 |
Family
ID=59241171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2018/070153 WO2018178435A1 (en) | 2017-03-30 | 2018-03-01 | Holographic sensor for detection of adulterants in essential oils and method of obtaining such sensor |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2622336B2 (en) |
WO (1) | WO2018178435A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000028354A2 (en) * | 1998-10-16 | 2000-05-18 | Digilens, Inc. | Light source locator using switchable holograms |
CN204314215U (en) * | 2014-12-24 | 2015-05-06 | 华东交通大学 | A kind ofly judge based near infrared light line spectrum the pick-up unit that tea oil is adulterated |
CN105424660A (en) * | 2015-11-02 | 2016-03-23 | 天津商业大学 | Method for quantitatively detecting vegetable oil adulteration |
-
2017
- 2017-03-30 ES ES201730488A patent/ES2622336B2/en active Active
-
2018
- 2018-03-01 WO PCT/ES2018/070153 patent/WO2018178435A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000028354A2 (en) * | 1998-10-16 | 2000-05-18 | Digilens, Inc. | Light source locator using switchable holograms |
CN204314215U (en) * | 2014-12-24 | 2015-05-06 | 华东交通大学 | A kind ofly judge based near infrared light line spectrum the pick-up unit that tea oil is adulterated |
CN105424660A (en) * | 2015-11-02 | 2016-03-23 | 天津商业大学 | Method for quantitatively detecting vegetable oil adulteration |
Non-Patent Citations (1)
Title |
---|
LERMA-GARCIA, M.J.: "Rapid determination of sterols in vegetable oils by CEC using methacrylate ester based monolithic columns", ELECTROPHORESIS, vol. 29, no. 22, November 2008 (2008-11-01), pages 4603 - 4611, XP055543877 * |
Also Published As
Publication number | Publication date |
---|---|
ES2622336A1 (en) | 2017-07-06 |
ES2622336B2 (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sindhu et al. | Nondestructive testing methods for pesticide residue in food commodities: A review | |
Knaeps et al. | Hyperspectral-reflectance dataset of dry, wet and submerged marine litter | |
CN107064084B (en) | Micro laser fluorescence spectrometer and spectrum detection method | |
Diaz et al. | Raman spectroscopy for detection of ammonium nitrate as an explosive precursor used in improvised explosive devices | |
Min et al. | On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing | |
Xiao et al. | Detection of pesticide (chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR | |
CN101858786B (en) | Phase modulation stepped array micro-spectrograph | |
CN106442424A (en) | Alcohol concentration measuring device utilizing graphene terahertz surface plasma effect and method thereof | |
CN105548165B (en) | Test paper reflectometer and test paper surface measuring method | |
EP3449239A1 (en) | Method and apparatus for measuring the water concentration in a light-diffusing material | |
Cordeiro et al. | Identification of four wood species by an electronic nose and by LIBS | |
TWI604187B (en) | Surface-enhanced raman spectroscopy for rapid detection of active ingredients of pesticide products and pesticide residues in agricultural products | |
Yoshioka et al. | Multispectral fluorescence imaging for odorant discrimination and visualization | |
Sun et al. | Preliminary verification of hyperspectral LiDAR covering VIS-NIR-SWIR used for objects classification | |
CN103913226A (en) | Spectral measurement device and measurement method | |
Cholleton et al. | Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification | |
ES2622336B2 (en) | HOLOGRAPHIC SENSOR FOR DETECTION OF ADULTERANTS IN ESSENTIAL OILS AND METHOD OF OBTAINING SUCH SENSOR | |
Watarai et al. | Chiral recognition of 2-alkylalcohols with magnetic circular dichroism measurement of porphyrin J-aggregate on silica gel plate | |
Widjaja et al. | Use of Raman microscopy and band-target entropy minimization analysis to identify dyes in a commercial stamp. Implications for authentication and counterfeit detection | |
Liu et al. | Rapid quantitative analysis of dimethoate pesticide using surface-enhanced Raman spectroscopy | |
Xing et al. | Superhydrophobic Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Sensitive Detection of Trace Nanoplastics in Water | |
Suzuki et al. | Characterization of pesticide residue, cis-permethrin by terahertz spectroscopy | |
Hassing et al. | Raman spectroscopy: a non-destructive and on-site tool for control of food quality | |
Adhikari et al. | Spectral and time domain fluorescence spectroscopy of gentisic acid molecule in protic and aprotic polymer matrix | |
Liu et al. | Detection of phosmet residues on navel orange skin by surface-enhanced Raman spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18776635 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18776635 Country of ref document: EP Kind code of ref document: A1 |