WO2018173825A1 - Light device - Google Patents
Light device Download PDFInfo
- Publication number
- WO2018173825A1 WO2018173825A1 PCT/JP2018/009438 JP2018009438W WO2018173825A1 WO 2018173825 A1 WO2018173825 A1 WO 2018173825A1 JP 2018009438 W JP2018009438 W JP 2018009438W WO 2018173825 A1 WO2018173825 A1 WO 2018173825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- light
- optical device
- electrode
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 219
- 230000003287 optical effect Effects 0.000 claims abstract description 91
- 239000012044 organic layer Substances 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims description 47
- 239000002346 layers by function Substances 0.000 claims description 46
- 239000010408 film Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 20
- 238000000295 emission spectrum Methods 0.000 claims description 11
- 239000012788 optical film Substances 0.000 claims description 11
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 230000010363 phase shift Effects 0.000 claims description 3
- 239000011247 coating layer Substances 0.000 claims description 2
- 238000001579 optical reflectometry Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims description 2
- 230000004048 modification Effects 0.000 description 19
- 238000012986 modification Methods 0.000 description 19
- 230000003595 spectral effect Effects 0.000 description 16
- 238000002834 transmittance Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- -1 polyethylene naphthalate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- BSUHXFDAHXCSQL-UHFFFAOYSA-N [Zn+2].[W+4].[O-2].[In+3] Chemical compound [Zn+2].[W+4].[O-2].[In+3] BSUHXFDAHXCSQL-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Definitions
- the light-emitting device described in Patent Document 1 includes a substrate, a first electrode, an organic layer, and a plurality of second electrodes.
- the first electrode and the organic layer are sequentially stacked on the substrate.
- the plurality of second electrodes are, for example, aluminum films, and are arranged in stripes on the organic layer. Light from the outside of the OLED can pass through the region between the adjacent second electrodes. Thereby, OLED has translucency.
- Patent Document 2 describes that a light-emitting device having translucency by making an opaque electrode a stripe is used for a stop lamp of a vehicle.
- Patent Document 3 describes providing a resonator structure inside an organic EL element by providing a translucent reflective layer in an organic EL element having a transparent electrode, an organic layer, and a metal electrode.
- JP 2013-149376 A Japanese Patent Laying-Open No. 2015-195173 JP 2006-147598 A
- light-emitting devices having translucency have been developed.
- such light emitting devices may be used in conjunction with devices (eg, photosensors or imaging devices) having light receiving elements (eg, photodiodes (PD)).
- PD photodiodes
- An example of a problem to be solved by the present invention is to suppress erroneous detection of a light receiving element due to light emitted from a light emitting device.
- the invention according to claim 1 is a plurality of light emitting units having a transflective layer, a first electrode, an organic layer, and a second electrode; A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer; A light receiving element; With The number of layers positioned between the transflective layer of the light emitting unit and the second electrode is an optical device larger than the number of layers of the optical layer of the light transmitting unit.
- the invention according to claim 2 is a light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode; A translucent part located between the two light emitting parts and having the transflective layer; A light receiving element; With The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. The optical device is different from the second film thickness.
- FIG. 3 is a diagram for explaining the optical device according to the first embodiment.
- 6 is a diagram for explaining an optical device according to Embodiment 2.
- FIG. 6 is a plan view of a light emitting device according to Embodiment 3.
- FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is the figure which expanded the area
- FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 1 of Embodiment 3. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
- FIG. It is a figure which shows an example of the emission spectrum of the 2nd surface side (light emission surface side). It is a figure which shows an example of the spectral reflectance of a translucent part.
- FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2 of Embodiment 3. It is a figure which shows an example of the spectral reflectance of a translucent part. It is a figure which shows an example of the spectral transmittance of a translucent part.
- FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3 of Embodiment 3. It is a figure which shows an example of the spectral reflectance of a translucent part. It is a figure which shows an example of the spectral transmittance of a translucent part.
- the light emitting device 10 includes a substrate 100, a plurality of light emitting units 172, and a plurality of light transmitting units 174.
- the substrate 100 has a first surface 100a and a second surface 100b.
- the second surface 100b is on the opposite side of the first surface 100a.
- the plurality of light emitting units 172 are located on the first surface 100 a side of the substrate 100.
- Each of the plurality of light transmitting portions 174 is located between the adjacent light emitting portions 172.
- the light emitting device 10 has translucency due to the plurality of translucent portions 174.
- the light-emitting device 10 shown in FIG. 1 has the same configuration as the light-emitting device 10 described in detail later with reference to FIG.
- light from the plurality of light emitting units 172 is mainly output from the second surface 100 b of the substrate 100.
- the amount of light emitted from each light emitting unit 172 and leaking from the first surface 100a side of the substrate 100 is suppressed.
- the second surface 100b of the substrate 100 when viewed from a direction parallel to the substrate 100. It may be located at a position that does not overlap the first surface 100a or the second surface 100b when viewed from the side and the direction perpendicular to the substrate 100.
- the sensor device 40 performs optical sensing for acquiring information around the optical device 30.
- the sensor device 40 includes a light emitting element 410 and a light receiving element 420.
- the sensor device 40 may be a distance measuring sensor, particularly a LiDAR (Light Detection And Ranging).
- the light emitting element 410 emits light toward the outside of the sensor device 40
- the light receiving element 420 receives light emitted from the light emitting element 410 and reflected by the object.
- the light emitting element 410 can be an element that can convert electrical energy into light energy, such as a laser diode (LD), and the light receiving element 420 can be an element that can convert light energy into electrical energy, such as It can be a photodiode (PD).
- the sensor device 40 can detect the distance from the sensor device 40 to the object based on the time from when light is emitted from the light emitting element 410 to when it is received by the light receiving element 420.
- the light receiving element 420 of the sensor device 40 detects light from outside the sensor device 40. Therefore, in order to prevent erroneous detection of the light receiving element 420, it is desirable to suppress the light emitted from the light emitting device 10 from entering the light receiving element 420 as much as possible.
- the light device 30 can be used for light emitting and light sensing applications, for example, a tail lamp with a distance measuring sensor of an automobile.
- the light emitting device 10 realizes a light emitting function
- the sensor device 40 realizes a light sensing function.
- erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed.
- the amount of light emitted from each light emitting unit 172 and leaking from the first surface 100a side of the substrate 100 is suppressed. Therefore, it can suppress that the light emitted from the light-emitting device 10 injects into the sensor apparatus 40 (light receiving element 420). Therefore, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed.
- the sensor device 40 (light receiving element 420) is in front of or obliquely in front of the first surface 100a of the substrate 100, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 is suppressed. Can do.
- the amount of light emitted from each light emitting unit 172 and leaking from the first surface 100a side of the substrate 100 is suppressed. Therefore, the leakage of light emitted from the light emitting device 10 to the front or obliquely front side of the first surface 100a of the substrate 100 can be suppressed.
- the sensor device 20 (light receiving element 420) is in front of or obliquely in front of the first surface 100a of the substrate 100, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed.
- FIG. 2 is a diagram for explaining the optical device 30 according to the second embodiment, and corresponds to FIG. 1 of the first embodiment.
- the optical device 30 according to the present embodiment is the same as the optical device 30 according to the first embodiment except for the following points.
- the sensor device 40 performs optical sensing for acquiring information around the optical device 30.
- the sensor device 40 includes a plurality of light receiving elements 420.
- the sensor device 40 can be an imaging sensor.
- the plurality of light receiving elements 420 can be elements capable of converting an image into an electric signal, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor.
- each light receiving element 420 can be an element that can convert light energy into electrical energy, such as a photodiode (PD).
- the sensor device 40 can detect an image of an object outside the sensor device 40 by using the plurality of light receiving elements 420.
- the light receiving element 420 of the sensor device 40 detects light from outside the sensor device 40. Therefore, in order to prevent erroneous detection of the light receiving element 420, it is desirable to suppress the amount of light emitted from the light emitting device 10 and incident on the light receiving element 420 as much as possible.
- the optical device 30 can be used for light emission and optical sensing, for example, a tail lamp with an image sensor of an automobile.
- the light emitting device 10 realizes a light emitting function
- the sensor device 40 realizes a light sensing function.
- FIG. 3 is a plan view of the light emitting device 10 according to the third embodiment. 4 is a cross-sectional view taken along the line AA in FIG.
- the light emitting device 10 according to the embodiment includes a plurality of light emitting units 172 and a light transmitting unit 174.
- the light emitting unit 172 includes a transflective layer 140, a first electrode 110, an organic layer 120, and a second electrode 130.
- the translucent part 174 includes a transflective layer 140 and an optical layer 180. The number of layers positioned between the transflective layer 140 and the second electrode 130 of the light emitting unit 172 is larger than the number of layers of the optical layer 180.
- the film thickness (hereinafter referred to as the first film thickness) between the transflective layer 140 and the second electrode 130 of the light emitting unit 172 is the film thickness of the optical layer 180 (hereinafter referred to as the second film thickness). Is different.
- the light emitting device 10 will be described in detail.
- the light emitting device 10 includes a plurality of light emitting units 172.
- Each of the plurality of light emitting units 172 extends linearly (for example, linearly).
- the plurality of light emitting portions 172 extend in parallel to each other. However, at least a part of a certain light emitting unit 172 does not have to be parallel to the light emitting unit 172 located adjacent thereto.
- the plurality of light emitting portions 172 are formed using the substrate 100.
- the light emitting unit 172 is a bottom emission type, and emits light from the second surface 100 b of the substrate 100 to the outside.
- the light emitting unit 172 may be a top emission type.
- the substrate 100 is formed of a light-transmitting material such as glass or a light-transmitting resin.
- the substrate is, for example, a polygon such as a rectangle.
- the substrate 100 may have flexibility.
- the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
- the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
- the material of the substrate 100 is, for example, at least PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), and polyimide.
- PEN polyethylene naphthalate
- PES polyethersulfone
- PET polyethylene terephthalate
- polyimide polyimide
- an inorganic barrier layer such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. Is preferably formed.
- the light emitting unit 172 is formed on the first surface 100a of the substrate 100, and includes the first electrode 110, the organic layer 120, and the second electrode 130 as described above.
- the first electrode 110 is formed of a transparent conductive film.
- This transparent conductive film is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), or ZnO (Zinc Oxide).
- the refractive index of the material of the transparent electrode is, for example, 1.5 or more and 2.2 or less.
- the thickness of the transparent electrode is, for example, 10 nm or more and 500 nm or less.
- the transparent electrode is formed using, for example, a sputtering method or a vapor deposition method.
- the transparent electrode may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
- the second electrode 130 has a metal layer, for example, and has light reflectivity.
- the metal layer included in the second electrode 130 is, for example, a layer made of a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or the first group.
- the second electrode 130 is formed using, for example, a vacuum evaporation method.
- an insulating film 160 is formed on the first electrode 110.
- the insulating film 160 covers the end of the first electrode 110, and has an opening 162 in a region of the first electrode 110 that should become the light emitting portion 172.
- the insulating film 160 is formed by photolithography using a material in which a photosensitive substance is contained in polyimide or the like, for example.
- the insulating film 160 is formed after the first electrode 110 is formed and before the organic layer 120 is formed.
- the cross-sectional shape of the insulating film 160 becomes narrower as the distance from the first surface 100a of the substrate 100 increases.
- An example of the cross-sectional shape of the insulating film 160 is a substantially trapezoid.
- the two side surfaces (including the inner side surface 152) of the insulating film 160 are inclined in a direction facing the substrate 100.
- the insulating film 160 may be a material other than the above, for example, an acrylic resin, an epoxy resin, PMMA (polymethyl methacrylate resin), a fluororesin, or a mixture or laminated film thereof.
- the insulating film 160 may be an inorganic insulating film such as SiO 2 , SiN x , or SiON.
- the light emitting device 10 includes a light shielding unit 102 and light transmitting units 104 and 106.
- the light transmitting part 174 described above is an area where the light transmitting part 104 and the light transmitting part 106 are combined.
- the light shielding portion 102 is a region overlapping the second electrode 130.
- the light transmitting portion 104 is a region including the insulating film 160 among the regions between the plurality of light shielding portions 102.
- the light transmitting portion 106 is a region that does not include the insulating film 160 among the regions between the plurality of light shielding portions 102.
- the translucent portion 106 does not overlap with the first electrode 110.
- the organic layer 120 is not formed on at least a part of the light transmitting portion 106.
- the width of the light transmitting portion 104 is narrower than the width of the light transmitting portion 106. Further, the width of the light transmitting portion 106 may be wider or narrower than the width of the light shielding portion 102.
- the width of the light shielding part 102 is 1, the width of the light transmitting part 104 is, for example, 0 or more (or more than 0) 0.2 or less, and the width of the light transmitting part 106 is, for example, 0.3 or more and 2 or less.
- the light emitting device 10 has a plurality of light transmitting portions 174. For this reason, the light-emitting device 10 has translucency. Further, the light emitting unit 172 overlaps the light shielding unit 102. For this reason, most of the light emitted from the light emitting unit 172 is radiated to the outside from the surface of the substrate 100 where the light emitting unit 172 is not formed (second surface 100b).
- the light emitting device 10 further includes a first terminal 112, a first wiring 114, a second terminal 132, and a second wiring 134.
- the first terminal 112 and the second terminal 132 are terminals for connecting the light emitting unit 172 to an external drive circuit.
- the first wiring 114 connects the first terminal 112 to the first electrode 110
- the second wiring 134 connects the second wiring 134 to the second electrode 130.
- the first terminal 112, the first wiring 114, the second terminal 132, and the second wiring 134 are all formed on the first surface 100 a of 100.
- the light emitting device 10 may further include a sealing portion (not shown).
- This sealing part may have a configuration in which, for example, an inorganic film is laminated, or may have a metal layer such as an aluminum foil and an adhesive layer, or an adhesive layer may be formed on the above laminated film. You may have the structure which attached metal foil via.
- FIG. 5 is an enlarged view of the area surrounded by the dotted line ⁇ in FIG.
- the film thickness ratio is different from that in FIG.
- the organic layer 120 includes a first functional layer 121, a second functional layer 122, a light emitting layer 123, and a third functional layer 124 in this order from the first electrode 110 side.
- the first functional layer 121 is, for example, a hole injection layer
- the second functional layer 122 is, for example, a hole transport layer.
- the light emitting layer 123 includes a light emitting material
- the third functional layer 124 is, for example, an electron transport layer.
- the layer configuration of the organic layer 120 in the light emitting unit 172 is not limited to the example shown in FIG.
- the organic layer 120 may have an electron blocking layer between the second functional layer 122 and the light emitting layer 123, or a hole blocking layer between the light emitting layer 123 and the third functional layer 124. It may be.
- the organic layer 120 is formed by using, for example, a vapor deposition method, but at least a part of the layer (for example, the first functional layer 121) may be formed by a coating method.
- the material constituting the high refractive index layer 141 is preferably a dielectric such as TiO 2 , Nb 2 O 5 , or Ta 2 O 5 , but may be a transparent conductor such as ITO or IZO.
- the low refractive index layer 142 is, for example, SiO 2 or MgF 2 , but may be other materials.
- the surface of the semi-transmissive reflective layer 140 that faces the substrate 100 is the high refractive index layer 141, and the surface of the semi-transmissive reflective layer 140 that faces the first electrode 110 is the low refractive index layer 142.
- the high refractive index layer 141 and the low refractive index layer 142 are formed using, for example, a sputtering method.
- the transflective layer 140 is formed so as to reflect light of this wavelength when any wavelength (for example, peak wavelength) included in the emission spectrum of light emitted from the second surface 100b is ⁇ . .
- both the high refractive index layer 141 and the low refractive index layer 142 have an optical film thickness of 0.9 times or more and 1.1 times or less of ⁇ / 4n.
- the optical film thickness of the first electrode 110 is also 0.9 times to 1.1 times ⁇ / 4n.
- the transflective layer 140 is located between the first electrode 110 and the substrate 100.
- the layer between the transflective layer 140 and the light-reflective second electrode 130, specifically, the first electrode 110 and the organic layer 120 has a wavelength ⁇ .
- a resonator structure 150 for light is configured.
- L 2 satisfy the following equation. m ⁇ 0.8 ⁇ 2L / ⁇ + ⁇ / (2 ⁇ ) ⁇ m ⁇ 1.2 (1)
- ⁇ is a phase shift (in radians) in reflection
- m is 0 or a positive integer.
- FIG. 6 is an enlarged view of a region surrounded by a dotted line ⁇ in FIG. However, the film thickness ratio is different from that in FIG.
- the transflective layer 140 is also formed on the light transmitting part 174.
- the transflective layer 140 located in the light emitting part 172 and the transflective layer 140 located in the translucent part 174 are continuous with each other to form one transflective layer 140.
- a layer (optical layer 180) through which light passes is formed on the transflective layer 140.
- the thickness (second film thickness) of the optical layer 180 is different from the thickness (first film thickness) of the layer located between the transflective layer 140 and the second electrode 130 in the light emitting unit 172.
- the optical layer 180 is adjusted so that the optical film thickness satisfies the following formula (2). 0.9 ⁇ (2m ⁇ 1) / 4 ⁇ L1 ⁇ 1.1 ⁇ (2m ⁇ 1) / 4 (m is a positive integer) (2)
- the optical layer 180 preferably includes at least one of the organic layers 120 and at least one of the first electrodes 110.
- the first electrode 110 is not formed on the transflective layer 140 in the light transmitting portion 174, and a part of the organic layer 120 is not formed.
- the optical layer 180 is composed of a part of the organic layer 120.
- the optical layer 180 is formed.
- the layer formed by the coating method can easily form a pattern as compared with the layer formed by the vapor deposition method. Therefore, preventing the first functional layer 121 from being formed in the light transmitting portion 174 (particularly the light transmitting portion 106) can cause the second functional layer 122, the light emitting layer 123, and the third functional layer 124 to be transparent. In particular, it can be easily performed as compared with the case where the light transmitting portion 106) is not formed.
- at least one refractive index of the second functional layer 122, the light emitting layer 123, and the third functional layer 124 is larger than the refractive index of the low refractive index layer 142.
- the layers common to the light emitting portion 172 and the light transmitting portion 174 are continuous.
- the second functional layer 122, the light emitting layer 123, and the third functional layer 124 are continuous in the light emitting portion 172 and the light transmitting portion 174.
- the first electrode 110 is formed on the substrate 100 using, for example, a vapor deposition method using a mask.
- the insulating film 160 is formed using a photoresist method.
- each layer of the organic layer 120 is formed.
- the second electrode 130 is formed using, for example, an evaporation method using a mask. And a sealing part is provided.
- the optical filter located in the light transmitting portion 174 functions as a filter that reflects at least a part (for example, 30% or more) of light having the wavelength ⁇ . Accordingly, it is possible to particularly reduce light leaking to the second surface 100b side in the light transmitting portion 174.
- FIG. 7 is a diagram illustrating an example of an emission spectrum on the second surface 100 b side (light emitting surface side) of the light emitting device 10.
- the substrate 100 is made of glass (refractive index 1.5).
- the transflective layer 140 has two high refractive index layers 141 and two low refractive index layers 142.
- the high refractive index layer 141 is Nb 2 O 5 (refractive index 2.3) having a thickness of 68 nm
- the low refractive index layer 142 is SiO 2 (refractive index 1.5) having a thickness of 105 nm.
- the electrode 110 is ITO (refractive index 1.9) having a thickness of 85 nm.
- the first functional layer 121 of the organic layer 120 is a coating-type hole injection material (refractive index 1.7) having a thickness of 65 nm.
- the second functional layer 122 is formed using a hole transporting material, and the third functional layer 124 is formed using an electron transporting material.
- the peak wavelength of the emission spectrum of the light emitting layer 123 (that is, the peak wavelength of the emission spectrum of the light emitting device 10) is about 630 nm. For this reason, the optical film thicknesses of the high refractive index layer 141, the low refractive index layer 142, and the first electrode 110 are about ⁇ / 4.
- the sum of the optical film thickness of the first electrode 110 and the optical film thickness of the organic layer 120 (refractive index 1.7 to 1.9) is 1.19 ⁇ , which satisfies the above formula (1).
- the second electrode 130 is an Al film having a thickness of 90 nm.
- the light emitting device 10 has a light emission intensity of the wavelength ⁇ approximately three times that of the light emitting device that does not have the transflective layer 140 (that is, does not have the resonator structure 150). It can be seen that the brightness is increased.
- FIG. 8 shows an example of the spectral reflectance of the light transmitting part 174 of the light emitting device 10 having the same structure as FIG.
- FIG. 9 shows an example of the spectral transmittance of the same light transmitting portion 174 as in FIG.
- the optical layer 180 includes the second functional layer 122, the light emitting layer 123, and the third functional layer 124, and the optical film thickness is 0.76 ⁇ .
- FIG. 8 shows that the light transmitting portion 174 has a high reflectance at the wavelength ⁇ (about 75% in the example shown in FIG. 8).
- the transmissivity of the translucent part 174 is 50% or less, so the visible light transmittance is 50% or more. For this reason, the translucency of the translucent part 174 is sufficiently ensured.
- FIG.10 and FIG.11 is sectional drawing which shows the structure of the light-emitting device 10 which concerns on the modification 1 of 3rd Embodiment.
- FIG. 10 corresponds to FIG. 5 of the third embodiment
- FIG. 11 corresponds to FIG. 6 of the third embodiment.
- the light emitting device 10 according to the present modification is the light emitting device 10 according to the third embodiment, except that the transflective layer 140 has one high refractive index layer 141 and one low refractive index layer 142. It is the same composition as.
- FIG. 12 is a diagram illustrating an example of an emission spectrum on the second surface 100b side (light emitting surface side) of the light emitting device 10 according to the present modification.
- FIG. 13 shows an example of the spectral reflectance of the light transmitting part 174 of the light emitting device 10 according to this modification
- FIG. 14 shows an example of the spectral transmittance of the light transmitting part 174.
- the specific configuration of each layer of the light-emitting device 10 having these spectra is the same as that of the light-emitting device 10 used in FIGS.
- the light emitting device 10 has a light emission intensity of wavelength ⁇ in light emission toward the second surface 100b.
- the translucent portion 174 has a high reflectance (for example, 50% or more) at the wavelength ⁇ , and the translucent portion 174 has a sufficiently high visible light transmittance (for example, 70 higher than that of the embodiment). %more than).
- FIG. 15 is a cross-sectional view illustrating a configuration of a light-emitting device 10 according to Modification 2 of the third embodiment, and corresponds to FIG. 6 of the third embodiment.
- the organic layer 120 is not formed in the light transmitting portion 174, and the first electrode 110 is formed instead.
- the optical layer 180 is the first electrode 110. Except for the point which is comprised, it is the structure similar to the light-emitting device 10 which concerns on 3rd Embodiment.
- the light transmitting portion 174 has a high reflectance (for example, 74% or more) at the wavelength ⁇ , and the light transmitting portion.
- the visible light transmittance of 174 is sufficiently secured (for example, 43% or more).
- the transflective layer 140 has the resonator structure 150 and is not shown, the light emitting device 10 emits light with a wavelength ⁇ in the light emitted to the second surface 100b side.
- FIG. 18 is a cross-sectional view showing a configuration of a light emitting device 10 according to Modification 3 of the third embodiment, and corresponds to FIG. 6 of the third embodiment.
- the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to modification 2, except that the high refractive index layer 141 and the low refractive index layer 142 are one layer each.
- the translucent portion 174 has a wavelength ⁇ . It has a high reflectance (for example, 48% or more), and the visible light transmittance of the light transmitting portion 174 is sufficiently ensured (for example, 58% or more, which is higher than that of Modification 3).
- the transflective layer 140 has the resonator structure 150 and is not shown, the light emitting device 10 emits light with a wavelength ⁇ in the light emitted to the second surface 100b side.
- a plurality of light emitting units having a transflective layer, a first electrode, an organic layer, and a second electrode; A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer; With The light emitting device in which the number of layers positioned between the transflective layer of the light emitting unit and the second electrode is larger than the number of layers of the optical layer of the light transmitting unit. 2.
- a light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode; A translucent part located between the two light emitting parts and having the transflective layer; With The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. A light emitting device different from the second film thickness. 3. In the light-emitting device according to 1 or 2, Equipped with a translucent substrate, The transflective layer, the first electrode, the organic layer, the second electrode, and the optical layer are located on the substrate; The first electrode has a light-transmitting property, and the second electrode has a light-reflecting property. 4).
- the transflective layer includes a high refractive index layer and a low refractive index layer having a lower refractive index than the high refractive index layer. 5).
- the light-emitting device according to 4 or 5 The light-emitting device in which the transflective layer of the light-emitting portion and the transflective layer of the translucent portion are continuous. 7).
- the organic layer has a plurality of layers, The light-emitting device, wherein the optical layer includes at least one of the organic layers and at least one of the first electrodes. 8).
- the light emitting device according to the above 7 The light emitting device, wherein the optical layer includes a part of the organic layer. 9.
- the organic layer includes a first functional layer, a second functional layer, a third functional layer, and a light emitting layer having a light emitting material, The light emitting device, wherein the optical layer includes the second functional layer, the third functional layer, and the light emitting layer. 10.
- the light emitting device according to 9 above, The light emitting device in which the second functional layer, the third functional layer, and the light emitting layer are continuous with the light transmitting portion and the light emitting portion. 11. In the light-emitting device according to 9 or 10, A light emitting device in which the light emitting layer is located between the second functional layer and the third functional layer. 12 In the light emitting device according to any one of the above 9 to 11, The light emitting device, wherein the first functional layer is a coating layer containing a hole injection material. 13. In the light-emitting device according to any one of 9 to 12, The transflective layer is a light emitting device in which the high refractive index layer and the low refractive index layer are repeatedly positioned.
- the light-emitting device in which the reflectance with respect to the peak wavelength of the radiation spectrum of the said light emission part in the said translucent part is 30% or more. 15. 15. The light emitting device according to 14 above, A light-emitting device that satisfies the following formula (1), where L 1 is the optical film thickness of the optical layer and ⁇ is any wavelength included in the emission spectrum of the light-emitting device. 0.9 ⁇ (2m ⁇ 1) / 4 ⁇ L 1 ⁇ 1.1 ⁇ (2m ⁇ 1) / 4 (m is a positive integer) (1) 16. 16.
- the light emitting device When the optical thickness of the layer located between the second electrode and the semitransparent reflective layer has a L 2, A light emitting device satisfying the following formula (2). m ⁇ 0.8 ⁇ 2L / ⁇ + ⁇ / (2 ⁇ ) ⁇ m ⁇ 1.2 (2) Where ⁇ is a phase shift (in radians) in reflection, and n is 0 or a positive integer. 17. In the light emitting device according to 15 or 16, The light emitting device, wherein ⁇ is a peak wavelength of the emission spectrum.
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
This light device (30) is provided with a light emitting device (10) and a sensor device (20) (a light-receiving element (220)). The light emitting device (10) is provided with a plurality of light emitting units (172) and light transmitting units (174). Each light emitting unit (172) comprises a semi-transmissive reflective layer (140), a first electrode (110), an organic layer (120) and a second electrode (130). Each light transmitting unit (174) comprises a semi-transmissive reflective layer (140) and an organic layer (120) that serves as an optical layer. The number of layers interposed between the semi-transmissive reflective layer (140) and the second electrode (130) of each light emitting unit (172) is larger than the number of layers contained in the organic layer (120) that serves as an optical layer. In addition, the film thickness from the semi-transmissive reflective layer (140) to the second electrode (130) of each light emitting unit (172) is different from the film thickness of the organic layer (120) that serves as an optical layer.
Description
本発明は、光装置に関する。
The present invention relates to an optical device.
近年、透光性を有する有機発光層を用いた発光装置に透光性を持たせることが検討されている。例えば特許文献1に記載の発光装置は、基板、第1電極、有機層、及び複数の第2電極を備えている。第1電極及び有機層は、基板上で順に積層されている。複数の第2電極は例えばアルミニウム膜であり、有機層上でストライプ状に配置されている。OLEDの外部からの光は、隣り合う第2電極の間の領域を透過することができる。これにより、OLEDは、透光性を有している。
In recent years, it has been studied to provide a light-emitting device using a light-transmitting organic light-emitting layer. For example, the light-emitting device described in Patent Document 1 includes a substrate, a first electrode, an organic layer, and a plurality of second electrodes. The first electrode and the organic layer are sequentially stacked on the substrate. The plurality of second electrodes are, for example, aluminum films, and are arranged in stripes on the organic layer. Light from the outside of the OLED can pass through the region between the adjacent second electrodes. Thereby, OLED has translucency.
また特許文献2には、不透明な電極をストライプにすることにより透光性を持たせた発光装置を車両のストップランプに使用することが記載されている。
Patent Document 2 describes that a light-emitting device having translucency by making an opaque electrode a stripe is used for a stop lamp of a vehicle.
また、特許文献3には、透明電極、有機層、及び金属電極を有する有機EL素子において、半透明反射層を設けることにより有機EL素子の内部に共振器構造を設けることが記載されている。
Patent Document 3 describes providing a resonator structure inside an organic EL element by providing a translucent reflective layer in an organic EL element having a transparent electrode, an organic layer, and a metal electrode.
上述したように、近年、透光性を有する発光装置が開発されている。一定の用途(例えば、自動車のテールランプ)においては、このような発光装置が、受光素子(例えば、フォトダイオード(PD))を有する装置(例えば、光センサ又は撮像装置)と一緒に用いられる場合がある。この場合、発光装置から発せられる光による受光素子の誤検出を可能な限り抑える必要がある。
As described above, in recent years, light-emitting devices having translucency have been developed. In certain applications (eg, automotive tail lamps), such light emitting devices may be used in conjunction with devices (eg, photosensors or imaging devices) having light receiving elements (eg, photodiodes (PD)). is there. In this case, it is necessary to suppress the erroneous detection of the light receiving element by the light emitted from the light emitting device as much as possible.
本発明が解決しようとする課題としては、発光装置から発せられる光による受光素子の誤検出を抑えることが一例として挙げられる。
An example of a problem to be solved by the present invention is to suppress erroneous detection of a light receiving element due to light emitted from a light emitting device.
請求項1に記載の発明は、半透過反射層、第1電極、有機層、及び第2電極を有する複数の発光部と、
2つの前記発光部の間に位置し、前記半透過反射層及び光学層を有する透光部と、
受光素子と、
を備え、
前記発光部の前記半透過反射層と前記第2電極の間に位置する層の数は、前記透光部の前記光学層が有する層の数よりも大きい光装置である。 The invention according toclaim 1 is a plurality of light emitting units having a transflective layer, a first electrode, an organic layer, and a second electrode;
A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer;
A light receiving element;
With
The number of layers positioned between the transflective layer of the light emitting unit and the second electrode is an optical device larger than the number of layers of the optical layer of the light transmitting unit.
2つの前記発光部の間に位置し、前記半透過反射層及び光学層を有する透光部と、
受光素子と、
を備え、
前記発光部の前記半透過反射層と前記第2電極の間に位置する層の数は、前記透光部の前記光学層が有する層の数よりも大きい光装置である。 The invention according to
A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer;
A light receiving element;
With
The number of layers positioned between the transflective layer of the light emitting unit and the second electrode is an optical device larger than the number of layers of the optical layer of the light transmitting unit.
請求項2に記載の発明は、半透過反射層、第1電極、有機層、及び第2電極を有する発光部と、
2つの前記発光部の間に位置し、前記半透過反射層を有する透光部と、
受光素子と、
を備え、
前記発光部における前記半透過反射層から前記第2電極の間までの膜厚である第1膜厚は、前記透光部は前記半透過反射層の上に位置する光学層の膜厚である第2膜厚とは異なる光装置である。 The invention according to claim 2 is a light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode;
A translucent part located between the two light emitting parts and having the transflective layer;
A light receiving element;
With
The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. The optical device is different from the second film thickness.
2つの前記発光部の間に位置し、前記半透過反射層を有する透光部と、
受光素子と、
を備え、
前記発光部における前記半透過反射層から前記第2電極の間までの膜厚である第1膜厚は、前記透光部は前記半透過反射層の上に位置する光学層の膜厚である第2膜厚とは異なる光装置である。 The invention according to claim 2 is a light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode;
A translucent part located between the two light emitting parts and having the transflective layer;
A light receiving element;
With
The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. The optical device is different from the second film thickness.
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(実施形態1)
図1は、実施形態1に係る光装置30を説明するための図である。光装置30は、発光装置10及びセンサ装置40(受光素子420)を備えている。 (Embodiment 1)
FIG. 1 is a diagram for explaining anoptical device 30 according to the first embodiment. The optical device 30 includes the light emitting device 10 and the sensor device 40 (light receiving element 420).
図1は、実施形態1に係る光装置30を説明するための図である。光装置30は、発光装置10及びセンサ装置40(受光素子420)を備えている。 (Embodiment 1)
FIG. 1 is a diagram for explaining an
発光装置10は、基板100、複数の発光部172及び複数の透光部174を備えている。基板100は、第1面100a及び第2面100bを有している。第2面100bは、第1面100aの反対側にある。複数の発光部172は、基板100の第1面100a側に位置している。複数の透光部174のそれぞれは、隣り合う発光部172の間に位置している。発光装置10は、複数の透光部174によって透光性を有している。
The light emitting device 10 includes a substrate 100, a plurality of light emitting units 172, and a plurality of light transmitting units 174. The substrate 100 has a first surface 100a and a second surface 100b. The second surface 100b is on the opposite side of the first surface 100a. The plurality of light emitting units 172 are located on the first surface 100 a side of the substrate 100. Each of the plurality of light transmitting portions 174 is located between the adjacent light emitting portions 172. The light emitting device 10 has translucency due to the plurality of translucent portions 174.
図1に示す発光装置10は、図3以降の図を用いて詳細を後述する発光装置10と同様の構成を有している。図3以降の図を用いて詳細を後述するように、複数の発光部172からの光は、基板100の第2面100bから主に出力される。特に本実施形態では、各発光部172から発せられて基板100の第1面100a側から漏れる光の量が抑えられている。
The light-emitting device 10 shown in FIG. 1 has the same configuration as the light-emitting device 10 described in detail later with reference to FIG. As will be described in detail later with reference to FIG. 3 and subsequent drawings, light from the plurality of light emitting units 172 is mainly output from the second surface 100 b of the substrate 100. In particular, in the present embodiment, the amount of light emitted from each light emitting unit 172 and leaking from the first surface 100a side of the substrate 100 is suppressed.
センサ装置40は、発光装置10の周囲に設けられている。図1に示す例では、センサ装置40は、基板100の第1面100aの斜め前にあり、具体的には、基板100に平行な方向から見たときの第1面100a側かつ、基板100に垂直な方向から見たときの第1面100a又は第2面100bと重ならない位置に位置している。他の例において、センサ装置40は、基板100の第1面100aの正面にあってもよいし、又は基板100の第1面100aと第2面100bの間の側方にあってもよい。さらに他の例において、センサ装置40は、基板100の第2面100bの斜め前にあってもよく、具体的には、基板100に平行な方向から見たときの基板100の第2面100b側かつ、基板100に垂直な方向から見たときの第1面100a又は第2面100bと重ならない位置に位置していてもよい。
The sensor device 40 is provided around the light emitting device 10. In the example shown in FIG. 1, the sensor device 40 is in front of the first surface 100 a of the substrate 100, specifically, the first surface 100 a side when viewed from a direction parallel to the substrate 100 and the substrate 100. It is located in the position which does not overlap with the 1st surface 100a or the 2nd surface 100b when it sees from the direction perpendicular | vertical to. In another example, the sensor device 40 may be in front of the first surface 100a of the substrate 100, or may be in the side between the first surface 100a and the second surface 100b of the substrate 100. In still another example, the sensor device 40 may be obliquely in front of the second surface 100b of the substrate 100. Specifically, the second surface 100b of the substrate 100 when viewed from a direction parallel to the substrate 100. It may be located at a position that does not overlap the first surface 100a or the second surface 100b when viewed from the side and the direction perpendicular to the substrate 100.
センサ装置40は、光装置30の周囲の情報を取得するための光センシングを行う。図1に示す例において、センサ装置40は、発光素子410及び受光素子420を含んでいる。一例において、センサ装置40は、測距センサ、特にLiDAR(Light Detection And Ranging)にすることができる。この例において、発光素子410は、センサ装置40の外部に向けて光を発し、受光素子420は、発光素子410から発せられて対象物によって反射された光を受ける。一例において、発光素子410は、電気的エネルギーを光エネルギーに変換可能な素子、例えばレーザダイオード(LD)にすることができ、受光素子420は、光エネルギーを電気的エネルギーに変換可能な素子、例えばフォトダイオード(PD)にすることができる。センサ装置40は、光が発光素子410から発せられてから受光素子420によって受けられるまでの時間に基づいて、センサ装置40から対象物までの距離を検出することができる。
The sensor device 40 performs optical sensing for acquiring information around the optical device 30. In the example shown in FIG. 1, the sensor device 40 includes a light emitting element 410 and a light receiving element 420. In one example, the sensor device 40 may be a distance measuring sensor, particularly a LiDAR (Light Detection And Ranging). In this example, the light emitting element 410 emits light toward the outside of the sensor device 40, and the light receiving element 420 receives light emitted from the light emitting element 410 and reflected by the object. In one example, the light emitting element 410 can be an element that can convert electrical energy into light energy, such as a laser diode (LD), and the light receiving element 420 can be an element that can convert light energy into electrical energy, such as It can be a photodiode (PD). The sensor device 40 can detect the distance from the sensor device 40 to the object based on the time from when light is emitted from the light emitting element 410 to when it is received by the light receiving element 420.
センサ装置40の受光素子420は、センサ装置40の外部からの光を検出する。したがって、受光素子420の誤検出を防ぐため、発光装置10から発せられた光が受光素子420に入射されることを可能な限り抑えることが望ましい。
The light receiving element 420 of the sensor device 40 detects light from outside the sensor device 40. Therefore, in order to prevent erroneous detection of the light receiving element 420, it is desirable to suppress the light emitted from the light emitting device 10 from entering the light receiving element 420 as much as possible.
光装置30は、発光及び光センシングを行うための用途、例えば、自動車の、測距センサ付きテールランプに用いることができる。この例においては、発光装置10が発光の機能を実現し、センサ装置40が光センシングの機能を実現する。
The light device 30 can be used for light emitting and light sensing applications, for example, a tail lamp with a distance measuring sensor of an automobile. In this example, the light emitting device 10 realizes a light emitting function, and the sensor device 40 realizes a light sensing function.
上述した構成によれば、発光装置10から発せられる光による受光素子420の誤検出を抑えることができる。具体的には、上述したように、本実施形態では、各発光部172から発せられて基板100の第1面100a側から漏れる光の量が抑えられている。したがって、発光装置10から発せられる光がセンサ装置40(受光素子420)へ入射されることを抑えることができる。したがって、発光装置10から発せられる光による受光素子420の誤検出を抑えることができる。
According to the configuration described above, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed. Specifically, as described above, in this embodiment, the amount of light emitted from each light emitting unit 172 and leaking from the first surface 100a side of the substrate 100 is suppressed. Therefore, it can suppress that the light emitted from the light-emitting device 10 injects into the sensor apparatus 40 (light receiving element 420). Therefore, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed.
特に本実施形態においては、センサ装置40(受光素子420)が基板100の第1面100aの正面又は斜め前にあっても、発光装置10から発せられる光による受光素子420の誤検出を抑えることができる。上述したように、本実施形態では、各発光部172から発せられて基板100の第1面100a側から漏れる光の量が抑えられている。したがって、発光装置10から発せられた光の基板100の第1面100aの正面又は斜め前への漏れを抑えることができる。したがって、センサ装置20(受光素子420)が基板100の第1面100aの正面又は斜め前にあっても、発光装置10から発せられる光による受光素子420の誤検出を抑えることができる。
In particular, in the present embodiment, even if the sensor device 40 (light receiving element 420) is in front of or obliquely in front of the first surface 100a of the substrate 100, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 is suppressed. Can do. As described above, in this embodiment, the amount of light emitted from each light emitting unit 172 and leaking from the first surface 100a side of the substrate 100 is suppressed. Therefore, the leakage of light emitted from the light emitting device 10 to the front or obliquely front side of the first surface 100a of the substrate 100 can be suppressed. Therefore, even when the sensor device 20 (light receiving element 420) is in front of or obliquely in front of the first surface 100a of the substrate 100, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed.
(実施形態2)
図2は、実施形態2に係る光装置30を説明するための図であり、実施形態1の図1に対応する。本実施形態に係る光装置30は、以下の点を除いて、実施形態1に係る光装置30と同様である。 (Embodiment 2)
FIG. 2 is a diagram for explaining theoptical device 30 according to the second embodiment, and corresponds to FIG. 1 of the first embodiment. The optical device 30 according to the present embodiment is the same as the optical device 30 according to the first embodiment except for the following points.
図2は、実施形態2に係る光装置30を説明するための図であり、実施形態1の図1に対応する。本実施形態に係る光装置30は、以下の点を除いて、実施形態1に係る光装置30と同様である。 (Embodiment 2)
FIG. 2 is a diagram for explaining the
センサ装置40は、光装置30の周囲の情報を取得するための光センシングを行う。図2に示す例において、センサ装置40は、複数の受光素子420を含んでいる。一例において、センサ装置40は、撮像センサにすることができる。この例において、複数の受光素子420は、画像を電気信号に変換可能な素子、例えば、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサにすることができる。一例において、各受光素子420は、光エネルギーを電気的エネルギーに変換可能な素子、例えばフォトダイオード(PD)にすることができる。センサ装置40は、複数の受光素子420によって、センサ装置40の外部の対象物の像を検出することができる。
The sensor device 40 performs optical sensing for acquiring information around the optical device 30. In the example shown in FIG. 2, the sensor device 40 includes a plurality of light receiving elements 420. In one example, the sensor device 40 can be an imaging sensor. In this example, the plurality of light receiving elements 420 can be elements capable of converting an image into an electric signal, for example, a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) image sensor. In one example, each light receiving element 420 can be an element that can convert light energy into electrical energy, such as a photodiode (PD). The sensor device 40 can detect an image of an object outside the sensor device 40 by using the plurality of light receiving elements 420.
センサ装置40の受光素子420は、センサ装置40の外部からの光を検出する。したがって、受光素子420の誤検出を防ぐため、発光装置10から発せられて受光素子420に入射される光の量を可能な限り抑えることが望ましい。
The light receiving element 420 of the sensor device 40 detects light from outside the sensor device 40. Therefore, in order to prevent erroneous detection of the light receiving element 420, it is desirable to suppress the amount of light emitted from the light emitting device 10 and incident on the light receiving element 420 as much as possible.
光装置30は、発光及び光センシングを行うための用途、例えば、自動車の、撮像センサ付きテールランプに用いることができる。この例においては、発光装置10が発光の機能を実現し、センサ装置40が光センシングの機能を実現する。
The optical device 30 can be used for light emission and optical sensing, for example, a tail lamp with an image sensor of an automobile. In this example, the light emitting device 10 realizes a light emitting function, and the sensor device 40 realizes a light sensing function.
本実施形態においても、実施形態1と同様にして、発光装置10から発せられる光による受光素子420の誤検出を抑えることができる。
Also in the present embodiment, in the same manner as in the first embodiment, erroneous detection of the light receiving element 420 due to light emitted from the light emitting device 10 can be suppressed.
(第3の実施形態)
図3は、第3の実施形態に係る発光装置10の平面図である。図4は、図3のA-A断面図である。実施形態に係る発光装置10は、図3に示すように、複数の発光部172及び透光部174を備えている。発光部172は、図4に示すように、半透過反射層140、第1電極110、有機層120、及び第2電極130を有している。透光部174は、図6に示すように、半透過反射層140及び光学層180を有している。そして、発光部172の半透過反射層140と第2電極130の間に位置する層の数は、光学層180が有する層の数よりも大きい。また、発光部172の半透過反射層140から第2電極130の間までの膜厚(以下、第1膜厚と記載)は、光学層180の膜厚(以下、第2膜厚と記載)とは異なる。以下、発光装置10について詳細に説明する。 (Third embodiment)
FIG. 3 is a plan view of thelight emitting device 10 according to the third embodiment. 4 is a cross-sectional view taken along the line AA in FIG. As illustrated in FIG. 3, the light emitting device 10 according to the embodiment includes a plurality of light emitting units 172 and a light transmitting unit 174. As shown in FIG. 4, the light emitting unit 172 includes a transflective layer 140, a first electrode 110, an organic layer 120, and a second electrode 130. As shown in FIG. 6, the translucent part 174 includes a transflective layer 140 and an optical layer 180. The number of layers positioned between the transflective layer 140 and the second electrode 130 of the light emitting unit 172 is larger than the number of layers of the optical layer 180. The film thickness (hereinafter referred to as the first film thickness) between the transflective layer 140 and the second electrode 130 of the light emitting unit 172 is the film thickness of the optical layer 180 (hereinafter referred to as the second film thickness). Is different. Hereinafter, the light emitting device 10 will be described in detail.
図3は、第3の実施形態に係る発光装置10の平面図である。図4は、図3のA-A断面図である。実施形態に係る発光装置10は、図3に示すように、複数の発光部172及び透光部174を備えている。発光部172は、図4に示すように、半透過反射層140、第1電極110、有機層120、及び第2電極130を有している。透光部174は、図6に示すように、半透過反射層140及び光学層180を有している。そして、発光部172の半透過反射層140と第2電極130の間に位置する層の数は、光学層180が有する層の数よりも大きい。また、発光部172の半透過反射層140から第2電極130の間までの膜厚(以下、第1膜厚と記載)は、光学層180の膜厚(以下、第2膜厚と記載)とは異なる。以下、発光装置10について詳細に説明する。 (Third embodiment)
FIG. 3 is a plan view of the
上記したように、発光装置10は、複数の発光部172を有している。複数の発光部172は、いずれも線状(例えば直線状)に延在している。本図に示す例において、複数の発光部172は互いに平行に延在している。ただし、ある発光部172の少なくとも一部が、その隣に位置する発光部172と平行でなくてもよい。
As described above, the light emitting device 10 includes a plurality of light emitting units 172. Each of the plurality of light emitting units 172 extends linearly (for example, linearly). In the example shown in the figure, the plurality of light emitting portions 172 extend in parallel to each other. However, at least a part of a certain light emitting unit 172 does not have to be parallel to the light emitting unit 172 located adjacent thereto.
これら複数の発光部172は、基板100を用いて形成されている。発光部172は、ボトムエミッション型であり、基板100の第2面100bから外部に光を放射する。ただし、発光部172はトップエミッション型であってもよい。
The plurality of light emitting portions 172 are formed using the substrate 100. The light emitting unit 172 is a bottom emission type, and emits light from the second surface 100 b of the substrate 100 to the outside. However, the light emitting unit 172 may be a top emission type.
基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されている。基板は、例えば矩形などの多角形である。基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特にガラスを有する基板100に可撓性を持たせる場合、基板100の厚さは、例えば200μm以下である。樹脂材料で形成された基板100に可撓性を持たせる場合、基板100の材料は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、及びポリイミドの少なくとも一つである。なお、基板100が樹脂材料で形成されている場合、水分が基板100を透過することを抑制するために、基板100の少なくとも発光面(好ましくは両面)に、SiNxやSiONなどの無機バリア層が形成されているのが好ましい。
The substrate 100 is formed of a light-transmitting material such as glass or a light-transmitting resin. The substrate is, for example, a polygon such as a rectangle. The substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 having glass is made flexible, the thickness of the substrate 100 is, for example, 200 μm or less. When the substrate 100 formed of a resin material is flexible, the material of the substrate 100 is, for example, at least PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), and polyimide. One. In the case where the substrate 100 is formed of a resin material, an inorganic barrier layer such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. Is preferably formed.
発光部172は基板100の第1面100aに形成されており、上記したように、第1電極110、有機層120、及び第2電極130を有している。
The light emitting unit 172 is formed on the first surface 100a of the substrate 100, and includes the first electrode 110, the organic layer 120, and the second electrode 130 as described above.
第1電極110は透明導電膜で形成されている。この透明導電膜は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。透明電極の材料の屈折率は、例えば1.5以上2.2以下である。透明電極の厚さは、例えば10nm以上500nm以下である。透明電極は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、透明電極は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよいし、薄い金属電極であってもよい。
The first electrode 110 is formed of a transparent conductive film. This transparent conductive film is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), or ZnO (Zinc Oxide). The refractive index of the material of the transparent electrode is, for example, 1.5 or more and 2.2 or less. The thickness of the transparent electrode is, for example, 10 nm or more and 500 nm or less. The transparent electrode is formed using, for example, a sputtering method or a vapor deposition method. The transparent electrode may be a carbon nanotube, a conductive organic material such as PEDOT / PSS, or a thin metal electrode.
本図に示す例において、第1電極110は、複数の発光部172となるべき領域及びその周囲には形成されているが、その他の領域には形成されていない。例えば第1電極110は、発光部172の幅方向において、後述する透光部106の全体、及び透光部104の一部には形成されていない。ただし、第1電極110は、後述する透光部104,106にも形成されていてもよい。この場合、複数の発光部172が有する第1電極110は互いに繋がっている。
In the example shown in the figure, the first electrode 110 is formed in and around the region to be the plurality of light emitting portions 172, but is not formed in other regions. For example, the first electrode 110 is not formed on the entire light-transmitting portion 106 described later and a part of the light-transmitting portion 104 in the width direction of the light-emitting portion 172. However, the 1st electrode 110 may be formed also in the translucent part 104,106 mentioned later. In this case, the first electrodes 110 included in the plurality of light emitting units 172 are connected to each other.
有機層120は、第1電極110と第2電極130の間に位置しており、複数の層を有している。これら複数の層の一つは、後述する発光層123である。有機層120は、発光部172及び透光部174に連続して形成されている。ただし、図5及び図6を用いて後述するように、発光部172に位置する有機層120の層の数(すなわち膜厚)は、透光部174に位置する有機層120の層の数(膜厚)と異なっている。
The organic layer 120 is located between the first electrode 110 and the second electrode 130 and has a plurality of layers. One of the plurality of layers is a light emitting layer 123 described later. The organic layer 120 is formed continuously with the light emitting portion 172 and the light transmitting portion 174. However, as will be described later with reference to FIGS. 5 and 6, the number of layers of the organic layer 120 (that is, the film thickness) positioned in the light emitting portion 172 is the number of layers of the organic layer 120 positioned in the light transmitting portion 174 ( Film thickness).
第2電極130は、例えば金属層を有しており、光反射性を有している。第2電極130が有する金属層は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属からなる層、又はこの第1群から選択される金属の合金からなる層である。第2電極130は、例えば真空蒸着法を用いて形成されている。
The second electrode 130 has a metal layer, for example, and has light reflectivity. The metal layer included in the second electrode 130 is, for example, a layer made of a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or the first group. A layer made of an alloy of selected metals. The second electrode 130 is formed using, for example, a vacuum evaporation method.
また、第1電極110の上には絶縁膜160が形成されている。図4に示す例において、絶縁膜160は第1電極110の端部を覆っており、また、第1電極110のうち発光部172となるべき領域に開口162を有している。絶縁膜160は、例えばポリイミドなどに感光性の物質を含ませた材料を用いて、フォトリソグラフィーを用いて形成されている。絶縁膜160は、第1電極110が形成された後、かつ有機層120が形成される前に形成されている。絶縁膜160の断面形状は、基板100の第1面100aから離れるにつれて幅が狭くなっている。絶縁膜160の断面形状の一例は、略台形である。そして、絶縁膜160の2つの側面(内側の側面152を含む)は、基板100と逆側に向く方向に傾斜している。
In addition, an insulating film 160 is formed on the first electrode 110. In the example shown in FIG. 4, the insulating film 160 covers the end of the first electrode 110, and has an opening 162 in a region of the first electrode 110 that should become the light emitting portion 172. The insulating film 160 is formed by photolithography using a material in which a photosensitive substance is contained in polyimide or the like, for example. The insulating film 160 is formed after the first electrode 110 is formed and before the organic layer 120 is formed. The cross-sectional shape of the insulating film 160 becomes narrower as the distance from the first surface 100a of the substrate 100 increases. An example of the cross-sectional shape of the insulating film 160 is a substantially trapezoid. The two side surfaces (including the inner side surface 152) of the insulating film 160 are inclined in a direction facing the substrate 100.
なお、絶縁膜160は、上記以外の材料、例えばアクリル樹脂、エポキシ樹脂、PMMA(ポリメタクリル酸メチル樹脂)、フッ素樹脂、又はこれらの混合物や積層膜であっても良い。また絶縁膜160は、SiO2、SiNx、又はSiON等の無機絶縁膜であっても良い。
The insulating film 160 may be a material other than the above, for example, an acrylic resin, an epoxy resin, PMMA (polymethyl methacrylate resin), a fluororesin, or a mixture or laminated film thereof. The insulating film 160 may be an inorganic insulating film such as SiO 2 , SiN x , or SiON.
発光装置10は遮光部102、及び透光部104,106を有している。上記した透光部174は、透光部104及び透光部106を合わせた領域である。遮光部102は第2電極130と重なる領域である。透光部104は、複数の遮光部102の間の領域のうち絶縁膜160を含む領域である。透光部106は、複数の遮光部102の間の領域のうち絶縁膜160を含まない領域である。また、透光部106は第1電極110とも重なっていない。本図に示す例において、有機層120は透光部106の少なくとも一部には形成されていない。そして透光部104の幅は、透光部106の幅よりも狭い。また透光部106の幅は遮光部102の幅よりも広くてもよいし、狭くてもよい。遮光部102の幅を1とした場合、透光部104の幅は例えば0以上(又は0超)0.2以下であり、透光部106の幅は例えば0.3以上2以下である。また遮光部102の幅は、例えば50μm以上500μm以下であり、透光部104の幅は例えば0μm以上(又は0μm超)100μm以下であり、透光部106の幅は例えば15μm以上1000μm以下である。
The light emitting device 10 includes a light shielding unit 102 and light transmitting units 104 and 106. The light transmitting part 174 described above is an area where the light transmitting part 104 and the light transmitting part 106 are combined. The light shielding portion 102 is a region overlapping the second electrode 130. The light transmitting portion 104 is a region including the insulating film 160 among the regions between the plurality of light shielding portions 102. The light transmitting portion 106 is a region that does not include the insulating film 160 among the regions between the plurality of light shielding portions 102. Further, the translucent portion 106 does not overlap with the first electrode 110. In the example shown in the drawing, the organic layer 120 is not formed on at least a part of the light transmitting portion 106. The width of the light transmitting portion 104 is narrower than the width of the light transmitting portion 106. Further, the width of the light transmitting portion 106 may be wider or narrower than the width of the light shielding portion 102. When the width of the light shielding part 102 is 1, the width of the light transmitting part 104 is, for example, 0 or more (or more than 0) 0.2 or less, and the width of the light transmitting part 106 is, for example, 0.3 or more and 2 or less. The width of the light shielding part 102 is, for example, 50 μm or more and 500 μm or less, the width of the light transmitting part 104 is, for example, 0 μm or more (or more than 0 μm), 100 μm or less, and the width of the light transmitting part 106 is, for example, 15 μm or more and 1000 μm or less. .
発光装置10は透光部174を複数有している。このため、発光装置10は透光性を有している。また、発光部172は、遮光部102と重なっている。このため、発光部172からの発光の大部分は、基板100のうち発光部172が形成されていない面(第2面100b)から、外部に放射される。
The light emitting device 10 has a plurality of light transmitting portions 174. For this reason, the light-emitting device 10 has translucency. Further, the light emitting unit 172 overlaps the light shielding unit 102. For this reason, most of the light emitted from the light emitting unit 172 is radiated to the outside from the surface of the substrate 100 where the light emitting unit 172 is not formed (second surface 100b).
発光装置10は、さらに第1端子112、第1配線114、第2端子132、及び第2配線134を有している。第1端子112及び第2端子132は、発光部172を外部の駆動回路に接続するための端子である。第1配線114は第1端子112を第1電極110に接続しており、第2配線134は第2配線134を第2電極130に接続している。第1端子112、第1配線114、第2端子132、及び第2配線134は、いずれも100の第1面100aに形成されている。
The light emitting device 10 further includes a first terminal 112, a first wiring 114, a second terminal 132, and a second wiring 134. The first terminal 112 and the second terminal 132 are terminals for connecting the light emitting unit 172 to an external drive circuit. The first wiring 114 connects the first terminal 112 to the first electrode 110, and the second wiring 134 connects the second wiring 134 to the second electrode 130. The first terminal 112, the first wiring 114, the second terminal 132, and the second wiring 134 are all formed on the first surface 100 a of 100.
なお、発光装置10は、封止部(図示せず)をさらに有していてもよい。この封止部は、例えば無機膜を積層した構成を有していてもよいし、アルミ箔などの金属層及び接着層を有していてもよいし、上記した積層膜の上に接着層を介して金属箔を取り付けた構成を有していてもよい。
Note that the light emitting device 10 may further include a sealing portion (not shown). This sealing part may have a configuration in which, for example, an inorganic film is laminated, or may have a metal layer such as an aluminum foil and an adhesive layer, or an adhesive layer may be formed on the above laminated film. You may have the structure which attached metal foil via.
図5は図4の点線αで囲んだ領域を拡大した図である。ただし、膜厚の比は図4と異なっている。図5に示す例では、有機層120は、第1電極110側から、第1機能層121、第2機能層122、発光層123、及び第3機能層124をこの順に有している。第1機能層121は、例えば正孔注入層であり、第2機能層122は、例えば正孔輸送層である。発光層123は発光材料を有しており、第3機能層124は、例えば電子輸送層である。ただし、発光部172における有機層120の層構成は、図5に示す例に限定されない。例えば有機層120は、第2機能層122と発光層123の間に、電子阻止層を有していてもよいし、発光層123と第3機能層124の間に正孔阻止層を有していてもよい。有機層120は、例えば蒸着法を用いて形成されるが、少なくとも一部の層(例えば第1機能層121)が塗布法により形成されていてもよい。
FIG. 5 is an enlarged view of the area surrounded by the dotted line α in FIG. However, the film thickness ratio is different from that in FIG. In the example illustrated in FIG. 5, the organic layer 120 includes a first functional layer 121, a second functional layer 122, a light emitting layer 123, and a third functional layer 124 in this order from the first electrode 110 side. The first functional layer 121 is, for example, a hole injection layer, and the second functional layer 122 is, for example, a hole transport layer. The light emitting layer 123 includes a light emitting material, and the third functional layer 124 is, for example, an electron transport layer. However, the layer configuration of the organic layer 120 in the light emitting unit 172 is not limited to the example shown in FIG. For example, the organic layer 120 may have an electron blocking layer between the second functional layer 122 and the light emitting layer 123, or a hole blocking layer between the light emitting layer 123 and the third functional layer 124. It may be. The organic layer 120 is formed by using, for example, a vapor deposition method, but at least a part of the layer (for example, the first functional layer 121) may be formed by a coating method.
発光装置10は、半透過反射層140を有している。半透過反射層140は、高屈折率層141及び低屈折率層142を積層した積層構造を有している。図5に示す例では、半透過反射層140は、高屈折率層141及び低屈折率層142をこの順に繰り返し2層ずつ有している。ただし、半透過反射層140は、高屈折率層141及び低屈折率層142を3層ずつまたはそれ以上ずつ有していてもよいし、1層ずつ有していてもよい。低屈折率層142は、高屈折率層141よりも屈折率が低い。高屈折率層141を構成する材料は、例えばTiO2、Nb2O5、又はTa2O5など誘電体が好適であるが、ITOやIZOなどの透明導電体であってもよい。低屈折率層142は、例えばSiO2又はMgF2であるが、他の材料であってもよい。半透過反射層140のうち基板100に対向する面は高屈折率層141であり、半透過反射層140のうち第1電極110に対向する面は低屈折率層142である。高屈折率層141及び低屈折率層142は、例えばスパッタリング法を用いて形成されている。
The light emitting device 10 has a transflective layer 140. The transflective layer 140 has a laminated structure in which a high refractive index layer 141 and a low refractive index layer 142 are laminated. In the example shown in FIG. 5, the transflective layer 140 has a high refractive index layer 141 and a low refractive index layer 142 that are repeated in this order in two layers. However, the transflective layer 140 may have three or more high refractive index layers 141 and low refractive index layers 142, or may have one layer each. The low refractive index layer 142 has a lower refractive index than the high refractive index layer 141. The material constituting the high refractive index layer 141 is preferably a dielectric such as TiO 2 , Nb 2 O 5 , or Ta 2 O 5 , but may be a transparent conductor such as ITO or IZO. The low refractive index layer 142 is, for example, SiO 2 or MgF 2 , but may be other materials. The surface of the semi-transmissive reflective layer 140 that faces the substrate 100 is the high refractive index layer 141, and the surface of the semi-transmissive reflective layer 140 that faces the first electrode 110 is the low refractive index layer 142. The high refractive index layer 141 and the low refractive index layer 142 are formed using, for example, a sputtering method.
半透過反射層140は、第2面100bから放射される光の発光スペクトルに含まれるいずれかの波長(例えばピーク波長)をλとしたとき、この波長の光を反射するように形成されている。例えば高屈折率層141と低屈折率層142は、いずれも光学膜厚がλ/4nの0.9倍以上1.1倍以下である。なお、第1電極110も半透過反射層140の一部として設計する場合、第1電極110の光学膜厚も、λ/4nの0.9倍以上1.1倍以下であるのが好ましい。
The transflective layer 140 is formed so as to reflect light of this wavelength when any wavelength (for example, peak wavelength) included in the emission spectrum of light emitted from the second surface 100b is λ. . For example, both the high refractive index layer 141 and the low refractive index layer 142 have an optical film thickness of 0.9 times or more and 1.1 times or less of λ / 4n. When the first electrode 110 is also designed as a part of the transflective layer 140, it is preferable that the optical film thickness of the first electrode 110 is also 0.9 times to 1.1 times λ / 4n.
発光部172において、半透過反射層140は、第1電極110と基板100の間に位置している。そして、図5に示すように、発光部172において、半透過反射層140と光反射性の第2電極130の間の層、具体的には第1電極110及び有機層120により、波長λの光に対する共振器構造150が構成されている。半透過反射層140と第2電極130の間の層の光学膜厚をL2とすると、L2は以下の式を満たす。
m×0.8<2L/λ+φ/(2π)<m×1.2・・・(1)
ただし、φは反射における位相シフト(ラジアン単位)であり、mは0又は正の整数である。 In thelight emitting unit 172, the transflective layer 140 is located between the first electrode 110 and the substrate 100. As shown in FIG. 5, in the light emitting unit 172, the layer between the transflective layer 140 and the light-reflective second electrode 130, specifically, the first electrode 110 and the organic layer 120 has a wavelength λ. A resonator structure 150 for light is configured. When the semitransparent reflective layer 140 of the optical thickness of the layer between the second electrode 130 and L 2, L 2 satisfy the following equation.
m × 0.8 <2L / λ + φ / (2π) <m × 1.2 (1)
Where φ is a phase shift (in radians) in reflection, and m is 0 or a positive integer.
m×0.8<2L/λ+φ/(2π)<m×1.2・・・(1)
ただし、φは反射における位相シフト(ラジアン単位)であり、mは0又は正の整数である。 In the
m × 0.8 <2L / λ + φ / (2π) <m × 1.2 (1)
Where φ is a phase shift (in radians) in reflection, and m is 0 or a positive integer.
これにより、発光部172が放射する光のうち波長λの成分が強まる。なお、発光装置10を車両の標識灯(例えばストップランプ)に使う場合、波長λは、例えば赤色の波長域に含まれることが好ましい。
Thereby, the component of the wavelength λ in the light emitted from the light emitting unit 172 is strengthened. In addition, when using the light-emitting device 10 for the marker lamp (for example, stop lamp) of a vehicle, it is preferable that wavelength (lambda) is contained in the red wavelength range, for example.
図6は図4の点線βで囲んだ領域を拡大した図である。ただし、膜厚の比は図4と異なっている。半透過反射層140は、透光部174にも形成されている。発光部172に位置する半透過反射層140と透光部174に位置する半透過反射層140は、互いに連続しており、一つの半透過反射層140を構成している。
FIG. 6 is an enlarged view of a region surrounded by a dotted line β in FIG. However, the film thickness ratio is different from that in FIG. The transflective layer 140 is also formed on the light transmitting part 174. The transflective layer 140 located in the light emitting part 172 and the transflective layer 140 located in the translucent part 174 are continuous with each other to form one transflective layer 140.
半透過反射層140の上には、光を通す層(光学層180)が形成されている。光学層180の厚さ(第2膜厚)は、発光部172において半透過反射層140と第2電極130の間に位置する層の厚さ(第1膜厚)とは異なる。具体的には光学層180は、光学膜厚が以下の式(2)を満足するように調整されている。
0.9λ(2m-1)/4<L1<1.1λ(2m-1)/4(mは正の整数)・・・(2) On thetransflective layer 140, a layer (optical layer 180) through which light passes is formed. The thickness (second film thickness) of the optical layer 180 is different from the thickness (first film thickness) of the layer located between the transflective layer 140 and the second electrode 130 in the light emitting unit 172. Specifically, the optical layer 180 is adjusted so that the optical film thickness satisfies the following formula (2).
0.9λ (2m−1) / 4 <L1 <1.1λ (2m−1) / 4 (m is a positive integer) (2)
0.9λ(2m-1)/4<L1<1.1λ(2m-1)/4(mは正の整数)・・・(2) On the
0.9λ (2m−1) / 4 <L1 <1.1λ (2m−1) / 4 (m is a positive integer) (2)
製造工程の増加を抑制するためには、光学層180は、有機層120のうちの少なくとも一つの層及び第1電極110の少なくとも一方を含むのが好ましい。例えば図6に示す例では、透光部174において、半透過反射層140の上には第1電極110が形成されておらず、また、有機層120のうち一部の層も形成されていない。言い換えると、光学層180は、有機層120の一部の層で構成されている。例えば第1機能層121がインクジェット法などの塗布法で形成されており、第2機能層122、発光層123、及び第3機能層124がこの順に蒸着法で形成されている場合、光学層180は、第2機能層122、発光層123、及び第3機能層124で構成されている。塗布法で形成されている層は蒸着法で形成されている層と比較してパターンを容易に形成できる。従って、第1機能層121を透光部174(特に透光部106)に形成しないようにすることは、第2機能層122、発光層123、及び第3機能層124を透光部174(特に透光部106)に形成しないようにすることと比較して、容易に行える。なお、第2機能層122、発光層123、及び第3機能層124の少なくとも一つの屈折率は、低屈折率層142の屈折率よりも大きい。
In order to suppress an increase in manufacturing steps, the optical layer 180 preferably includes at least one of the organic layers 120 and at least one of the first electrodes 110. For example, in the example shown in FIG. 6, the first electrode 110 is not formed on the transflective layer 140 in the light transmitting portion 174, and a part of the organic layer 120 is not formed. . In other words, the optical layer 180 is composed of a part of the organic layer 120. For example, when the first functional layer 121 is formed by a coating method such as an inkjet method, and the second functional layer 122, the light emitting layer 123, and the third functional layer 124 are formed in this order by an evaporation method, the optical layer 180 is formed. Includes a second functional layer 122, a light emitting layer 123, and a third functional layer 124. The layer formed by the coating method can easily form a pattern as compared with the layer formed by the vapor deposition method. Therefore, preventing the first functional layer 121 from being formed in the light transmitting portion 174 (particularly the light transmitting portion 106) can cause the second functional layer 122, the light emitting layer 123, and the third functional layer 124 to be transparent. In particular, it can be easily performed as compared with the case where the light transmitting portion 106) is not formed. Note that at least one refractive index of the second functional layer 122, the light emitting layer 123, and the third functional layer 124 is larger than the refractive index of the low refractive index layer 142.
発光部172及び透光部174とで、互いに共通する層は連続しているのが好ましい。例えば図4~図6に示す例では、第2機能層122、発光層123、及び第3機能層124は、発光部172と透光部174とで連続している。
It is preferable that the layers common to the light emitting portion 172 and the light transmitting portion 174 are continuous. For example, in the example shown in FIGS. 4 to 6, the second functional layer 122, the light emitting layer 123, and the third functional layer 124 are continuous in the light emitting portion 172 and the light transmitting portion 174.
次に、発光装置10の製造方法について説明する。まず、基板100に第1電極110を、例えばマスクを用いた蒸着法を用いて形成する。次いで、絶縁膜160をフォトレジスト法を用いて形成する。次いで、有機層120の各層を形成する。次いで、第2電極130を、例えばマスクを用いた蒸着法を用いて形成する。そして、封止部を設ける。
Next, a method for manufacturing the light emitting device 10 will be described. First, the first electrode 110 is formed on the substrate 100 using, for example, a vapor deposition method using a mask. Next, the insulating film 160 is formed using a photoresist method. Next, each layer of the organic layer 120 is formed. Next, the second electrode 130 is formed using, for example, an evaporation method using a mask. And a sealing part is provided.
本実施形態において、発光部172における半透過反射層140と第2電極130の間の層の数(すなわち光学膜厚)は、透光部174における半透過反射層140の上の光学層180の層の数(すなわち光学膜厚)と異なる。このため、発光部172において、半透過反射層140を用いた共振器構造150を設けることができ、かつ、透光部174において、半透過反射層140を用いた光学フィルタを設けることができる。共振器構造150を設けることにより、発光部172の波長λの発光が強くなる。また、透光部174に半透過反射層140を用いた光学フィルタを設けることにより、透光部174において第2面100b側に漏れる光を少なくすることができる。
In the present embodiment, the number of layers (that is, the optical film thickness) between the transflective layer 140 and the second electrode 130 in the light emitting unit 172 is the same as that of the optical layer 180 on the transflective layer 140 in the translucent unit 174. It is different from the number of layers (that is, optical film thickness). Therefore, the resonator structure 150 using the transflective layer 140 can be provided in the light emitting portion 172, and the optical filter using the transflective layer 140 can be provided in the light transmitting portion 174. By providing the resonator structure 150, the light emission unit 172 emits light with the wavelength λ. Further, by providing an optical filter using the transflective layer 140 in the light transmitting portion 174, light leaking to the second surface 100b side in the light transmitting portion 174 can be reduced.
特に光学層180が上記した式(2)を満たすと、透光部174に位置する光学フィルタは波長λの光の少なくとも一部(例えば30%以上)を反射するフィルタとして機能する。従って、透光部174において第2面100b側に漏れる光を特に少なくすることができる。
In particular, when the optical layer 180 satisfies the above formula (2), the optical filter located in the light transmitting portion 174 functions as a filter that reflects at least a part (for example, 30% or more) of light having the wavelength λ. Accordingly, it is possible to particularly reduce light leaking to the second surface 100b side in the light transmitting portion 174.
図7は、発光装置10の第2面100b側(発光面側)の発光スペクトルの一例を示す図である。この発光装置10において、基板100はガラス(屈折率1.5)である。半透過反射層140は図5に示したように、高屈折率層141及び低屈折率層142を2層ずつ有している。高屈折率層141は厚さが68nmのNb2O5(屈折率2.3)であり、低屈折率層142は厚さが105nmのSiO2(屈折率1.5)であり、第1電極110は厚さが85nmのITO(屈折率1.9)である。また、有機層120の第1機能層121は厚さが65nmの塗布型の正孔注入材料(屈折率1.7)である。第2機能層122は正孔輸送性材料を用いて形成されており、第3機能層124は電子輸送性材料を用いて形成されている。発光層123の発光スペクトルのピーク波長(すなわち発光装置10の発光スペクトルのピーク波長)は、約630nmである。このため、高屈折率層141、低屈折率層142、及び第1電極110の光学膜厚は、約λ/4となっている。そして、第1電極110の光学膜厚と有機層120(屈折率1.7~1.9)の光学膜厚の合計は1.19λであり、上記した式(1)を満たしている。また、第2電極130には厚さが90nmのAl膜を用いた。
FIG. 7 is a diagram illustrating an example of an emission spectrum on the second surface 100 b side (light emitting surface side) of the light emitting device 10. In the light emitting device 10, the substrate 100 is made of glass (refractive index 1.5). As shown in FIG. 5, the transflective layer 140 has two high refractive index layers 141 and two low refractive index layers 142. The high refractive index layer 141 is Nb 2 O 5 (refractive index 2.3) having a thickness of 68 nm, and the low refractive index layer 142 is SiO 2 (refractive index 1.5) having a thickness of 105 nm. The electrode 110 is ITO (refractive index 1.9) having a thickness of 85 nm. The first functional layer 121 of the organic layer 120 is a coating-type hole injection material (refractive index 1.7) having a thickness of 65 nm. The second functional layer 122 is formed using a hole transporting material, and the third functional layer 124 is formed using an electron transporting material. The peak wavelength of the emission spectrum of the light emitting layer 123 (that is, the peak wavelength of the emission spectrum of the light emitting device 10) is about 630 nm. For this reason, the optical film thicknesses of the high refractive index layer 141, the low refractive index layer 142, and the first electrode 110 are about λ / 4. The sum of the optical film thickness of the first electrode 110 and the optical film thickness of the organic layer 120 (refractive index 1.7 to 1.9) is 1.19λ, which satisfies the above formula (1). The second electrode 130 is an Al film having a thickness of 90 nm.
そして、図7から、半透過反射層140を有さない(すなわち共振器構造150を有さない)発光装置と比較して、発光装置10は、波長λの発光強度が約3倍になっている(高輝度化している)ことがわかる。
As shown in FIG. 7, the light emitting device 10 has a light emission intensity of the wavelength λ approximately three times that of the light emitting device that does not have the transflective layer 140 (that is, does not have the resonator structure 150). It can be seen that the brightness is increased.
図8は、図7と同じ構造の発光装置10の透光部174の分光反射率の一例を示している。図9は図8と同じ透光部174の分光透過率の一例を示している。透光部174において、光学層180は第2機能層122、発光層123、及び第3機能層124で構成されており、その光学膜厚は0.76λである。図8から、透光部174は波長λにおいて高い反射率(図8に示す例では約75%)を有していることがわかる。一方、可視光域の大部分においては、透光部174の反射率は50%以下であるため、可視光透過率は50%以上となっている。このため、透光部174の透光性は十分確保されている。
FIG. 8 shows an example of the spectral reflectance of the light transmitting part 174 of the light emitting device 10 having the same structure as FIG. FIG. 9 shows an example of the spectral transmittance of the same light transmitting portion 174 as in FIG. In the light transmitting portion 174, the optical layer 180 includes the second functional layer 122, the light emitting layer 123, and the third functional layer 124, and the optical film thickness is 0.76λ. FIG. 8 shows that the light transmitting portion 174 has a high reflectance at the wavelength λ (about 75% in the example shown in FIG. 8). On the other hand, in most of the visible light region, the transmissivity of the translucent part 174 is 50% or less, so the visible light transmittance is 50% or more. For this reason, the translucency of the translucent part 174 is sufficiently ensured.
(変形例1)
図10及び図11は、第3の実施形態の変形例1に係る発光装置10の構成を示す断面図である。図10は第3の実施形態の図5に対応しており、図11は第3の実施形態の図6に対応している。本変形例に係る発光装置10は、半透過反射層140が高屈折率層141及び低屈折率層142を1層ずつ有している点を除いて、第3の実施形態に係る発光装置10と同様の構成である。 (Modification 1)
FIG.10 and FIG.11 is sectional drawing which shows the structure of the light-emittingdevice 10 which concerns on the modification 1 of 3rd Embodiment. FIG. 10 corresponds to FIG. 5 of the third embodiment, and FIG. 11 corresponds to FIG. 6 of the third embodiment. The light emitting device 10 according to the present modification is the light emitting device 10 according to the third embodiment, except that the transflective layer 140 has one high refractive index layer 141 and one low refractive index layer 142. It is the same composition as.
図10及び図11は、第3の実施形態の変形例1に係る発光装置10の構成を示す断面図である。図10は第3の実施形態の図5に対応しており、図11は第3の実施形態の図6に対応している。本変形例に係る発光装置10は、半透過反射層140が高屈折率層141及び低屈折率層142を1層ずつ有している点を除いて、第3の実施形態に係る発光装置10と同様の構成である。 (Modification 1)
FIG.10 and FIG.11 is sectional drawing which shows the structure of the light-emitting
図12は、本変形例に係る発光装置10の第2面100b側(発光面側)の発光スペクトルの一例を示す図である。図13は、本変形例に係る発光装置10の透光部174の分光反射率の一例を示しており、図14は透光部174の分光透過率の一例を示している。これらのスペクトルを有する発光装置10の各層の具体的構成は、図7~図9で用いた発光装置10と同様の構成である。
FIG. 12 is a diagram illustrating an example of an emission spectrum on the second surface 100b side (light emitting surface side) of the light emitting device 10 according to the present modification. FIG. 13 shows an example of the spectral reflectance of the light transmitting part 174 of the light emitting device 10 according to this modification, and FIG. 14 shows an example of the spectral transmittance of the light transmitting part 174. The specific configuration of each layer of the light-emitting device 10 having these spectra is the same as that of the light-emitting device 10 used in FIGS.
これらの図からわかるように、高屈折率層141及び低屈折率層142が1層ずつの場合であっても、発光装置10は、第2面100b側への発光において波長λの発光強度が強くなり、透光部174は波長λにおいて高い反射率(例えば50%以上)を有しており、かつ透光部174の可視光透過率は十分確保されている(例えば実施形態よりも高い70%以上)。
As can be seen from these drawings, even when the high refractive index layer 141 and the low refractive index layer 142 are provided one by one, the light emitting device 10 has a light emission intensity of wavelength λ in light emission toward the second surface 100b. The translucent portion 174 has a high reflectance (for example, 50% or more) at the wavelength λ, and the translucent portion 174 has a sufficiently high visible light transmittance (for example, 70 higher than that of the embodiment). %more than).
(変形例2)
図15は、第3の実施形態の変形例2に係る発光装置10の構成を示す断面図であり、第3の実施形態の図6に対応している。本変形例に係る発光装置10は、透光部174に有機層120が形成されておらず、その代わりに第1電極110が形成されている点、言い換えると光学層180が第1電極110で構成されている点を除いて、第3の実施形態に係る発光装置10と同様の構成である。 (Modification 2)
FIG. 15 is a cross-sectional view illustrating a configuration of a light-emittingdevice 10 according to Modification 2 of the third embodiment, and corresponds to FIG. 6 of the third embodiment. In the light emitting device 10 according to this modification, the organic layer 120 is not formed in the light transmitting portion 174, and the first electrode 110 is formed instead. In other words, the optical layer 180 is the first electrode 110. Except for the point which is comprised, it is the structure similar to the light-emitting device 10 which concerns on 3rd Embodiment.
図15は、第3の実施形態の変形例2に係る発光装置10の構成を示す断面図であり、第3の実施形態の図6に対応している。本変形例に係る発光装置10は、透光部174に有機層120が形成されておらず、その代わりに第1電極110が形成されている点、言い換えると光学層180が第1電極110で構成されている点を除いて、第3の実施形態に係る発光装置10と同様の構成である。 (Modification 2)
FIG. 15 is a cross-sectional view illustrating a configuration of a light-emitting
図16は、本変形例に係る発光装置10の透光部174の分光反射率の一例を示しており、図17は透光部174の分光透過率の一例を示している。これらのスペクトルを有する発光装置10の各層の具体的構成は、図7~図9で用いた発光装置10と同様の構成である。
FIG. 16 shows an example of the spectral reflectance of the light transmitting part 174 of the light emitting device 10 according to this modification, and FIG. 17 shows an example of the spectral transmittance of the light transmitting part 174. The specific configuration of each layer of the light-emitting device 10 having these spectra is the same as that of the light-emitting device 10 used in FIGS.
これらの図からわかるように、光学層180が第1電極110で構成されていても、透光部174は波長λにおいて高い反射率(例えば74%以上)を有しており、かつ透光部174の可視光透過率は十分確保されている(例えば43%以上)。なお、半透過反射層140は共振器構造150を有しているため、図示していないが、発光装置10は、第2面100b側への発光において波長λの発光強度が強くなる。
As can be seen from these drawings, even if the optical layer 180 is composed of the first electrode 110, the light transmitting portion 174 has a high reflectance (for example, 74% or more) at the wavelength λ, and the light transmitting portion. The visible light transmittance of 174 is sufficiently secured (for example, 43% or more). Although the transflective layer 140 has the resonator structure 150 and is not shown, the light emitting device 10 emits light with a wavelength λ in the light emitted to the second surface 100b side.
(変形例3)
図18は、第3の実施形態の変形例3に係る発光装置10の構成を示す断面図であり、第3の実施形態の図6に対応している。本変形例に係る発光装置10は、高屈折率層141及び低屈折率層142が一層ずつである点を除いて、変形例2に係る発光装置10と同様の構成である。 (Modification 3)
FIG. 18 is a cross-sectional view showing a configuration of alight emitting device 10 according to Modification 3 of the third embodiment, and corresponds to FIG. 6 of the third embodiment. The light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to modification 2, except that the high refractive index layer 141 and the low refractive index layer 142 are one layer each.
図18は、第3の実施形態の変形例3に係る発光装置10の構成を示す断面図であり、第3の実施形態の図6に対応している。本変形例に係る発光装置10は、高屈折率層141及び低屈折率層142が一層ずつである点を除いて、変形例2に係る発光装置10と同様の構成である。 (Modification 3)
FIG. 18 is a cross-sectional view showing a configuration of a
図19は、本変形例に係る発光装置10の透光部174の分光反射率の一例を示しており、図20は透光部174の分光透過率の一例を示している。これらのスペクトルを有する発光装置10の各層の具体的構成は、図7~図9で用いた発光装置10と同様の構成である。
FIG. 19 shows an example of the spectral reflectance of the light transmitting part 174 of the light emitting device 10 according to this modification, and FIG. 20 shows an example of the spectral transmittance of the light transmitting part 174. The specific configuration of each layer of the light-emitting device 10 having these spectra is the same as that of the light-emitting device 10 used in FIGS.
これらの図からわかるように、光学層180が第1電極110で構成されており、かつ高屈折率層141及び低屈折率層142が一層ずつであっても、透光部174は波長λにおいて高い反射率(例えば48%以上)を有しており、かつ透光部174の可視光透過率は十分確保されている(例えば変形例3よりも高い58%以上)。なお、半透過反射層140は共振器構造150を有しているため、図示していないが、発光装置10は、第2面100b側への発光において波長λの発光強度が強くなる。
As can be seen from these figures, even though the optical layer 180 is composed of the first electrode 110 and the high refractive index layer 141 and the low refractive index layer 142 are one layer at a time, the translucent portion 174 has a wavelength λ. It has a high reflectance (for example, 48% or more), and the visible light transmittance of the light transmitting portion 174 is sufficiently ensured (for example, 58% or more, which is higher than that of Modification 3). Although the transflective layer 140 has the resonator structure 150 and is not shown, the light emitting device 10 emits light with a wavelength λ in the light emitted to the second surface 100b side.
以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
以下、参考形態の例を付記する。
1.半透過反射層、第1電極、有機層、及び第2電極を有する複数の発光部と、
2つの前記発光部の間に位置し、前記半透過反射層及び光学層を有する透光部と、
を備え、
前記発光部の前記半透過反射層と前記第2電極の間に位置する層の数は、前記透光部の前記光学層が有する層の数よりも大きい発光装置。
2.半透過反射層、第1電極、有機層、及び第2電極を有する発光部と、
2つの前記発光部の間に位置し、前記半透過反射層を有する透光部と、
を備え、
前記発光部における前記半透過反射層から前記第2電極の間までの膜厚である第1膜厚は、前記透光部は前記半透過反射層の上に位置する光学層の膜厚である第2膜厚とは異なる発光装置。
3.上記1又は2に記載の発光装置において、
透光性の基板を備え、
前記半透過反射層、前記第1電極、前記有機層、前記第2電極、及び前記光学層は前記基板の上に位置し、
前記第1電極は透光性を有し、前記第2電極は光反射性を有する発光装置。
4.上記3に記載の発光装置において、
前記半透過反射層は、高屈折率層、及び前記高屈折率層よりも屈折率が低い低屈折率層を含む発光装置。
5.上記4に記載の発光装置において、
前記光学層は、前記低屈折率層よりも屈折率が大きい材料を含む発光装置。
6.上記4又は5に記載の発光装置において、
前記発光部の前記半透過反射層と前記透光部の前記半透過反射層は連続している発光装置。
7.上記6に記載の発光装置において、
前記有機層は複数の層を有し、
前記光学層は前記有機層のうちの少なくとも一つの層及び前記第1電極の少なくとも一方を含む発光装置。
8.上記7に記載の発光装置において、
前記光学層は前記有機層の一部の層を含む発光装置。
9.上記8に記載の発光装置において、
前記有機層は第1機能層、第2機能層、第3機能層、及び発光材料を有する発光層を含み、
前記光学層は前記第2機能層、前記第3機能層、及び前記発光層を有している発光装置。
10.上記9に記載の発光装置において、
前記第2機能層、前記第3機能層、及び前記発光層は、前記透光部及び前記発光部とで連続している発光装置。
11.上記9又は10に記載の発光装置において、
前記第2機能層と前記第3機能層との間に前記発光層が位置する発光装置。
12.上記9~11のいずれか一つに記載の発光装置において、
前記第1機能層は正孔注入材料を含む塗布層である発光装置。
13.上記9~12のいずれか一つに記載の発光装置において、
前記半透過反射層は前記高屈折率層と前記低屈折率層とが繰り返し位置する発光装置。
14.上記1~13のいずれか一つに記載の発光装置において、
前記透光部における、前記発光部の放射スペクトルのピーク波長に対する反射率は30%以上である発光装置。
15.上記14に記載の発光装置において、
前記光学層の光学膜厚をL1とし、発光装置の放射スペクトルに含まれるいずれかの波長をλとしたとき、下記式(1)を満足する発光装置。
0.9λ(2m-1)/4<L1<1.1λ(2m-1)/4(mは正の整数)・・・(1)
16.上記15に記載の発光装置において、
前記半透過反射層と前記第2電極の間に位置する層の光学膜厚をL2としたとき、
下記式(2)を満足する発光装置。
m×0.8<2L/λ+φ/(2π)<m×1.2・・・(2)
ただし、φは反射における位相シフト(ラジアン単位)であり、nは0又は正の整数である。
17.上記15又は16に記載の発光装置において、
前記λは、前記放射スペクトルのピーク波長である発光装置。 Hereinafter, examples of the reference form will be added.
1. A plurality of light emitting units having a transflective layer, a first electrode, an organic layer, and a second electrode;
A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer;
With
The light emitting device in which the number of layers positioned between the transflective layer of the light emitting unit and the second electrode is larger than the number of layers of the optical layer of the light transmitting unit.
2. A light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode;
A translucent part located between the two light emitting parts and having the transflective layer;
With
The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. A light emitting device different from the second film thickness.
3. In the light-emitting device according to 1 or 2,
Equipped with a translucent substrate,
The transflective layer, the first electrode, the organic layer, the second electrode, and the optical layer are located on the substrate;
The first electrode has a light-transmitting property, and the second electrode has a light-reflecting property.
4). In the light emitting device according to the above 3,
The transflective layer includes a high refractive index layer and a low refractive index layer having a lower refractive index than the high refractive index layer.
5). In the light emitting device according to the above 4,
The light emitting device, wherein the optical layer includes a material having a refractive index larger than that of the low refractive index layer.
6). In the light-emitting device according to 4 or 5,
The light-emitting device in which the transflective layer of the light-emitting portion and the transflective layer of the translucent portion are continuous.
7). In the light emitting device according to 6 above,
The organic layer has a plurality of layers,
The light-emitting device, wherein the optical layer includes at least one of the organic layers and at least one of the first electrodes.
8). In the light emitting device according to the above 7,
The light emitting device, wherein the optical layer includes a part of the organic layer.
9. 9. The light emitting device according to 8 above,
The organic layer includes a first functional layer, a second functional layer, a third functional layer, and a light emitting layer having a light emitting material,
The light emitting device, wherein the optical layer includes the second functional layer, the third functional layer, and the light emitting layer.
10. 10. The light emitting device according to 9 above,
The light emitting device in which the second functional layer, the third functional layer, and the light emitting layer are continuous with the light transmitting portion and the light emitting portion.
11. In the light-emitting device according to 9 or 10,
A light emitting device in which the light emitting layer is located between the second functional layer and the third functional layer.
12 In the light emitting device according to any one of the above 9 to 11,
The light emitting device, wherein the first functional layer is a coating layer containing a hole injection material.
13. In the light-emitting device according to any one of 9 to 12,
The transflective layer is a light emitting device in which the high refractive index layer and the low refractive index layer are repeatedly positioned.
14 In the light-emitting device according to any one of 1 to 13,
The light-emitting device in which the reflectance with respect to the peak wavelength of the radiation spectrum of the said light emission part in the said translucent part is 30% or more.
15. 15. The light emitting device according to 14 above,
A light-emitting device that satisfies the following formula (1), where L 1 is the optical film thickness of the optical layer and λ is any wavelength included in the emission spectrum of the light-emitting device.
0.9λ (2m−1) / 4 <L 1 <1.1λ (2m−1) / 4 (m is a positive integer) (1)
16. 16. The light emitting device according to 15 above,
When the optical thickness of the layer located between the second electrode and the semitransparent reflective layer has a L 2,
A light emitting device satisfying the following formula (2).
m × 0.8 <2L / λ + φ / (2π) <m × 1.2 (2)
Where φ is a phase shift (in radians) in reflection, and n is 0 or a positive integer.
17. In the light emitting device according to 15 or 16,
The light emitting device, wherein λ is a peak wavelength of the emission spectrum.
1.半透過反射層、第1電極、有機層、及び第2電極を有する複数の発光部と、
2つの前記発光部の間に位置し、前記半透過反射層及び光学層を有する透光部と、
を備え、
前記発光部の前記半透過反射層と前記第2電極の間に位置する層の数は、前記透光部の前記光学層が有する層の数よりも大きい発光装置。
2.半透過反射層、第1電極、有機層、及び第2電極を有する発光部と、
2つの前記発光部の間に位置し、前記半透過反射層を有する透光部と、
を備え、
前記発光部における前記半透過反射層から前記第2電極の間までの膜厚である第1膜厚は、前記透光部は前記半透過反射層の上に位置する光学層の膜厚である第2膜厚とは異なる発光装置。
3.上記1又は2に記載の発光装置において、
透光性の基板を備え、
前記半透過反射層、前記第1電極、前記有機層、前記第2電極、及び前記光学層は前記基板の上に位置し、
前記第1電極は透光性を有し、前記第2電極は光反射性を有する発光装置。
4.上記3に記載の発光装置において、
前記半透過反射層は、高屈折率層、及び前記高屈折率層よりも屈折率が低い低屈折率層を含む発光装置。
5.上記4に記載の発光装置において、
前記光学層は、前記低屈折率層よりも屈折率が大きい材料を含む発光装置。
6.上記4又は5に記載の発光装置において、
前記発光部の前記半透過反射層と前記透光部の前記半透過反射層は連続している発光装置。
7.上記6に記載の発光装置において、
前記有機層は複数の層を有し、
前記光学層は前記有機層のうちの少なくとも一つの層及び前記第1電極の少なくとも一方を含む発光装置。
8.上記7に記載の発光装置において、
前記光学層は前記有機層の一部の層を含む発光装置。
9.上記8に記載の発光装置において、
前記有機層は第1機能層、第2機能層、第3機能層、及び発光材料を有する発光層を含み、
前記光学層は前記第2機能層、前記第3機能層、及び前記発光層を有している発光装置。
10.上記9に記載の発光装置において、
前記第2機能層、前記第3機能層、及び前記発光層は、前記透光部及び前記発光部とで連続している発光装置。
11.上記9又は10に記載の発光装置において、
前記第2機能層と前記第3機能層との間に前記発光層が位置する発光装置。
12.上記9~11のいずれか一つに記載の発光装置において、
前記第1機能層は正孔注入材料を含む塗布層である発光装置。
13.上記9~12のいずれか一つに記載の発光装置において、
前記半透過反射層は前記高屈折率層と前記低屈折率層とが繰り返し位置する発光装置。
14.上記1~13のいずれか一つに記載の発光装置において、
前記透光部における、前記発光部の放射スペクトルのピーク波長に対する反射率は30%以上である発光装置。
15.上記14に記載の発光装置において、
前記光学層の光学膜厚をL1とし、発光装置の放射スペクトルに含まれるいずれかの波長をλとしたとき、下記式(1)を満足する発光装置。
0.9λ(2m-1)/4<L1<1.1λ(2m-1)/4(mは正の整数)・・・(1)
16.上記15に記載の発光装置において、
前記半透過反射層と前記第2電極の間に位置する層の光学膜厚をL2としたとき、
下記式(2)を満足する発光装置。
m×0.8<2L/λ+φ/(2π)<m×1.2・・・(2)
ただし、φは反射における位相シフト(ラジアン単位)であり、nは0又は正の整数である。
17.上記15又は16に記載の発光装置において、
前記λは、前記放射スペクトルのピーク波長である発光装置。 Hereinafter, examples of the reference form will be added.
1. A plurality of light emitting units having a transflective layer, a first electrode, an organic layer, and a second electrode;
A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer;
With
The light emitting device in which the number of layers positioned between the transflective layer of the light emitting unit and the second electrode is larger than the number of layers of the optical layer of the light transmitting unit.
2. A light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode;
A translucent part located between the two light emitting parts and having the transflective layer;
With
The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. A light emitting device different from the second film thickness.
3. In the light-emitting device according to 1 or 2,
Equipped with a translucent substrate,
The transflective layer, the first electrode, the organic layer, the second electrode, and the optical layer are located on the substrate;
The first electrode has a light-transmitting property, and the second electrode has a light-reflecting property.
4). In the light emitting device according to the above 3,
The transflective layer includes a high refractive index layer and a low refractive index layer having a lower refractive index than the high refractive index layer.
5). In the light emitting device according to the above 4,
The light emitting device, wherein the optical layer includes a material having a refractive index larger than that of the low refractive index layer.
6). In the light-emitting device according to 4 or 5,
The light-emitting device in which the transflective layer of the light-emitting portion and the transflective layer of the translucent portion are continuous.
7). In the light emitting device according to 6 above,
The organic layer has a plurality of layers,
The light-emitting device, wherein the optical layer includes at least one of the organic layers and at least one of the first electrodes.
8). In the light emitting device according to the above 7,
The light emitting device, wherein the optical layer includes a part of the organic layer.
9. 9. The light emitting device according to 8 above,
The organic layer includes a first functional layer, a second functional layer, a third functional layer, and a light emitting layer having a light emitting material,
The light emitting device, wherein the optical layer includes the second functional layer, the third functional layer, and the light emitting layer.
10. 10. The light emitting device according to 9 above,
The light emitting device in which the second functional layer, the third functional layer, and the light emitting layer are continuous with the light transmitting portion and the light emitting portion.
11. In the light-emitting device according to 9 or 10,
A light emitting device in which the light emitting layer is located between the second functional layer and the third functional layer.
12 In the light emitting device according to any one of the above 9 to 11,
The light emitting device, wherein the first functional layer is a coating layer containing a hole injection material.
13. In the light-emitting device according to any one of 9 to 12,
The transflective layer is a light emitting device in which the high refractive index layer and the low refractive index layer are repeatedly positioned.
14 In the light-emitting device according to any one of 1 to 13,
The light-emitting device in which the reflectance with respect to the peak wavelength of the radiation spectrum of the said light emission part in the said translucent part is 30% or more.
15. 15. The light emitting device according to 14 above,
A light-emitting device that satisfies the following formula (1), where L 1 is the optical film thickness of the optical layer and λ is any wavelength included in the emission spectrum of the light-emitting device.
0.9λ (2m−1) / 4 <L 1 <1.1λ (2m−1) / 4 (m is a positive integer) (1)
16. 16. The light emitting device according to 15 above,
When the optical thickness of the layer located between the second electrode and the semitransparent reflective layer has a L 2,
A light emitting device satisfying the following formula (2).
m × 0.8 <2L / λ + φ / (2π) <m × 1.2 (2)
Where φ is a phase shift (in radians) in reflection, and n is 0 or a positive integer.
17. In the light emitting device according to 15 or 16,
The light emitting device, wherein λ is a peak wavelength of the emission spectrum.
この出願は、2017年3月21日に出願された日本出願特願2017-54484を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2017-54484 filed on Mar. 21, 2017, the entire disclosure of which is incorporated herein.
Claims (17)
- 半透過反射層、第1電極、有機層、及び第2電極を有する複数の発光部と、
2つの前記発光部の間に位置し、前記半透過反射層及び光学層を有する透光部と、
受光素子と、
を備え、
前記発光部の前記半透過反射層と前記第2電極の間に位置する層の数は、前記透光部の前記光学層が有する層の数よりも大きい光装置。 A plurality of light emitting units having a transflective layer, a first electrode, an organic layer, and a second electrode;
A light-transmitting part located between the two light-emitting parts and having the transflective layer and the optical layer;
A light receiving element;
With
The optical device in which the number of layers positioned between the transflective layer and the second electrode of the light emitting unit is larger than the number of layers of the optical layer of the light transmitting unit. - 半透過反射層、第1電極、有機層、及び第2電極を有する発光部と、
2つの前記発光部の間に位置し、前記半透過反射層を有する透光部と、
受光素子と、
を備え、
前記発光部における前記半透過反射層から前記第2電極の間までの膜厚である第1膜厚は、前記透光部は前記半透過反射層の上に位置する光学層の膜厚である第2膜厚とは異なる光装置。 A light emitting unit having a transflective layer, a first electrode, an organic layer, and a second electrode;
A translucent part located between the two light emitting parts and having the transflective layer;
A light receiving element;
With
The first film thickness, which is the film thickness between the transflective layer and the second electrode in the light emitting part, is the film thickness of the optical layer where the translucent part is located on the transflective layer. An optical device different from the second film thickness. - 請求項1又は2に記載の光装置において、
透光性の基板を備え、
前記半透過反射層、前記第1電極、前記有機層、前記第2電極、及び前記光学層は前記基板の上に位置し、
前記第1電極は透光性を有し、前記第2電極は光反射性を有する光装置。 The optical device according to claim 1 or 2,
Equipped with a translucent substrate,
The transflective layer, the first electrode, the organic layer, the second electrode, and the optical layer are located on the substrate;
The optical device in which the first electrode has translucency and the second electrode has light reflectivity. - 請求項3に記載の光装置において、
前記半透過反射層は、高屈折率層、及び前記高屈折率層よりも屈折率が低い低屈折率層を含む光装置。 The optical device according to claim 3.
The transflective layer includes a high refractive index layer and a low refractive index layer having a refractive index lower than that of the high refractive index layer. - 請求項4に記載の光装置において、
前記光学層は、前記低屈折率層よりも屈折率が大きい材料を含む光装置。 The optical device according to claim 4.
The optical device, wherein the optical layer includes a material having a refractive index larger than that of the low refractive index layer. - 請求項4又は5に記載の光装置において、
前記発光部の前記半透過反射層と前記透光部の前記半透過反射層は連続している光装置。 The optical device according to claim 4 or 5,
The optical device in which the transflective layer of the light emitting unit and the transflective layer of the translucent unit are continuous. - 請求項6に記載の光装置において、
前記有機層は複数の層を有し、
前記光学層は前記有機層のうちの少なくとも一つの層及び前記第1電極の少なくとも一方を含む光装置。 The optical device according to claim 6.
The organic layer has a plurality of layers,
The optical device includes at least one of the organic layers and at least one of the first electrodes. - 請求項7に記載の光装置において、
前記光学層は前記有機層の一部の層を含む光装置。 The optical device according to claim 7.
The optical device, wherein the optical layer includes a part of the organic layer. - 請求項8に記載の光装置において、
前記有機層は第1機能層、第2機能層、第3機能層、及び発光材料を有する発光層を含み、
前記光学層は前記第2機能層、前記第3機能層、及び前記発光層を有している光装置。 The optical device according to claim 8, wherein
The organic layer includes a first functional layer, a second functional layer, a third functional layer, and a light emitting layer having a light emitting material,
The optical device includes the second functional layer, the third functional layer, and the light emitting layer. - 請求項9に記載の光装置において、
前記第2機能層、前記第3機能層、及び前記発光層は、前記透光部及び前記発光部とで連続している光装置。 The optical device according to claim 9, wherein
The optical device in which the second functional layer, the third functional layer, and the light emitting layer are continuous with the light transmitting portion and the light emitting portion. - 請求項9又は10に記載の光装置において、
前記第2機能層と前記第3機能層との間に前記発光層が位置する光装置。 The optical device according to claim 9 or 10,
An optical device in which the light emitting layer is located between the second functional layer and the third functional layer. - 請求項9~11のいずれか一項に記載の光装置において、
前記第1機能層は正孔注入材料を含む塗布層である光装置。 The optical device according to any one of claims 9 to 11,
The optical device, wherein the first functional layer is a coating layer containing a hole injection material. - 請求項9~12のいずれか一項に記載の光装置において、
前記半透過反射層は前記高屈折率層と前記低屈折率層とが繰り返し位置する光装置。 The optical device according to any one of claims 9 to 12,
The transflective layer is an optical device in which the high refractive index layer and the low refractive index layer are repeatedly positioned. - 請求項1~13のいずれか一項に記載の光装置において、
前記透光部における、前記発光部の放射スペクトルのピーク波長に対する反射率は30%以上である光装置。 The optical device according to any one of claims 1 to 13,
The optical device in which the reflectance with respect to the peak wavelength of the emission spectrum of the light emitting unit is 30% or more. - 請求項14に記載の光装置において、
前記光学層の光学膜厚をL1とし、前記光装置の放射スペクトルに含まれるいずれかの波長をλとしたとき、下記式(1)を満足する光装置。
0.9λ(2m-1)/4<L1<1.1λ(2m-1)/4(mは正の整数)・・・(1) 15. The optical device according to claim 14, wherein
An optical device that satisfies the following formula (1), where L 1 is an optical film thickness of the optical layer, and λ is any wavelength included in the emission spectrum of the optical device.
0.9λ (2m−1) / 4 <L 1 <1.1λ (2m−1) / 4 (m is a positive integer) (1) - 請求項15に記載の光装置において、
前記半透過反射層と前記第2電極の間に位置する層の光学膜厚をL2としたとき、
下記式(2)を満足する光装置。
m×0.8<2L/λ+φ/(2π)<m×1.2・・・(2)
ただし、φは反射における位相シフト(ラジアン単位)であり、nは0又は正の整数である。 The optical device according to claim 15, wherein
When the optical thickness of the layer located between the second electrode and the semitransparent reflective layer has a L 2,
An optical device that satisfies the following formula (2).
m × 0.8 <2L / λ + φ / (2π) <m × 1.2 (2)
Where φ is a phase shift (in radians) in reflection, and n is 0 or a positive integer. - 請求項15又は16に記載の光装置において、
前記λは、前記放射スペクトルのピーク波長である光装置。 The optical device according to claim 15 or 16,
The λ is an optical device that is a peak wavelength of the radiation spectrum.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017054484 | 2017-03-21 | ||
JP2017-054484 | 2017-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173825A1 true WO2018173825A1 (en) | 2018-09-27 |
Family
ID=63585255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009438 WO2018173825A1 (en) | 2017-03-21 | 2018-03-12 | Light device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018173825A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014071800A (en) * | 2012-10-01 | 2014-04-21 | Seiko Epson Corp | Imaging apparatus and medical equipment |
JP2015038859A (en) * | 2013-07-17 | 2015-02-26 | セイコーエプソン株式会社 | Light emitting device, method of manufacturing light emitting device, light emitting and receiving device, and electronic apparatus |
JP2015233001A (en) * | 2014-05-15 | 2015-12-24 | 株式会社半導体エネルギー研究所 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE |
-
2018
- 2018-03-12 WO PCT/JP2018/009438 patent/WO2018173825A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014071800A (en) * | 2012-10-01 | 2014-04-21 | Seiko Epson Corp | Imaging apparatus and medical equipment |
JP2015038859A (en) * | 2013-07-17 | 2015-02-26 | セイコーエプソン株式会社 | Light emitting device, method of manufacturing light emitting device, light emitting and receiving device, and electronic apparatus |
JP2015233001A (en) * | 2014-05-15 | 2015-12-24 | 株式会社半導体エネルギー研究所 | LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100563675B1 (en) | Organic light emitting device and organic light emitting device package | |
US8247820B2 (en) | Utilizing gradient refractive index films for light extraction and distribution control in OLED | |
WO2016042638A1 (en) | Light emitting device | |
JPWO2018061102A1 (en) | Light emitting device | |
WO2018173825A1 (en) | Light device | |
WO2017138633A1 (en) | Light-emitting device | |
US11152585B2 (en) | Optical device | |
US11267392B2 (en) | Light-emitting system | |
US10904963B2 (en) | Optical device | |
JP2022173480A (en) | Light-emitting device | |
JP6595090B2 (en) | Light emitting device and light emitting system | |
JP7392076B2 (en) | light emitting device | |
JP7434511B2 (en) | light emitting device | |
JP2018098024A (en) | Light-emitting device | |
JP6833877B2 (en) | Optical device | |
JP6692889B2 (en) | Light emitting device and light emitting system | |
JP2021128945A (en) | Light emitting device | |
CN118019384A (en) | Display panel | |
WO2017158775A1 (en) | Light emitting device and light emitting system | |
WO2017094498A1 (en) | Light-emitting system | |
JP2018098135A (en) | Light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18771501 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |