WO2018163704A1 - Microparticle number detector - Google Patents
Microparticle number detector Download PDFInfo
- Publication number
- WO2018163704A1 WO2018163704A1 PCT/JP2018/004386 JP2018004386W WO2018163704A1 WO 2018163704 A1 WO2018163704 A1 WO 2018163704A1 JP 2018004386 W JP2018004386 W JP 2018004386W WO 2018163704 A1 WO2018163704 A1 WO 2018163704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- collection
- charged
- fine particles
- charge generation
- Prior art date
Links
- 239000011859 microparticle Substances 0.000 title abstract 8
- 239000010419 fine particle Substances 0.000 claims description 57
- 239000002245 particle Substances 0.000 claims description 38
- 230000005684 electric field Effects 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000009423 ventilation Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/68—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
Definitions
- the present invention relates to a particle number detector.
- ions are generated by a corona discharge in a charge generation element, the particles in the gas to be measured are charged by the ions, the charged particles are collected by a collecting electrode, and the collected particles are collected.
- the number measuring device measures the number of fine particles based on the amount of electric charge is known (for example, see Patent Document 1).
- the present invention has been made to solve such a problem, and has as its main object to suppress the influence of noise generated by discharge in the charge generation section on measurement accuracy.
- the particle number detector of the present invention is A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles; Provided on the downstream side of the gas flow with respect to the charge generation unit, a collection electrode is disposed between the pair of collection electric field generation electrodes, and a collection voltage is applied between the pair of collection electric field generation electrodes A charged particulate collection unit that collects the charged particulates on the collection electrode; A number detection unit that detects the number of the charged fine particles based on a physical quantity that varies according to the number of the charged fine particles collected by the collection electrode; A shielding part provided at least between the charge generation part and the number detection part; It is equipped with.
- the charge generated by the discharge is added to the particles in the gas introduced into the vent tube to form charged particles.
- the charged fine particles are collected by a collection electrode provided on the downstream side of the gas flow with respect to the charge generation unit.
- the number detection unit detects the number of fine particles in the gas based on a physical quantity that changes according to the number of charged fine particles collected by the collection electrode.
- a shielding part is provided between the charge generation part and the number detection part. Even if noise (for example, noise caused by electromagnetic induction or noise caused by electrostatic induction) is generated by electric discharge in the charge generation unit, the noise is shielded by the shielding unit and thus hardly affects the number detection unit. Therefore, it is possible to suppress the influence of noise generated by the discharge on the measurement accuracy.
- charge includes positive charges and negative charges as well as ions.
- Detecting the number of fine particles determines whether or not the number of fine particles falls within a predetermined numerical range (for example, whether or not a predetermined threshold value is exceeded) in addition to measuring the number of fine particles. Including cases.
- the “physical quantity” may be a parameter that changes based on the number of charged fine particles (charge quantity), and examples thereof include current.
- the shielding part may be integrated with a grounded electrode of the pair of collecting electric field generating electrodes.
- the number of components can be reduced as compared with the case where the shielding portion is provided separately from the pair of collection electric field generation electrodes.
- the charge generation unit includes a discharge electrode and a counter electrode that is opposed to the discharge electrode and grounded, and the shielding unit is integrated with the counter electrode. Also good. In this case, the number of parts can be reduced as compared with the case where the shielding portion is provided separately from the counter electrode.
- the shielding part may surround at least the entire periphery of the charge generation part. By doing so, the effects of electromagnetic shielding and electrostatic shielding are further enhanced.
- the particle number detector of the present invention is provided between the charge generation unit and the charged particle collection unit, a removal electrode is disposed between a pair of removal electric field generation electrodes, and the pair of removal electric field generation electrodes When a removal voltage lower than the collection voltage is applied between them, an excess charge that has not been added to the fine particles is collected by the removal electrode, and the shielding unit includes the pair of The removal electric field generation electrode may be integrated with a grounded electrode. In this way, in the fine particle number detector provided with the surplus charge removing unit, the number of parts can be reduced as compared with the case where the shielding unit is provided separately from the pair of removed electric field generating electrodes.
- an upstream end of the gas flow in the shielding portion protrudes from the ventilation pipe to form a protrusion, and is connected to an exhaust pipe that discharges the gas by the protrusion. It may be possible. In this way, it is not necessary to separately provide an attachment portion for attaching the particle number detector to the exhaust pipe.
- the fine particle number detector of the present invention is used in, for example, atmospheric environment surveys, indoor environment surveys, pollution surveys, combustion particle measurement of automobiles, particle generation environment monitoring, particle synthesis environment monitoring, and the like.
- FIG. 3 is a cross-sectional view illustrating a schematic configuration of the particle number detector 10.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG.
- FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 110.
- FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 210.
- FIG. 3 is a cross-sectional view illustrating a schematic configuration of a particle number detector 310.
- FIG. 4 is a cross-sectional view illustrating a schematic configuration of a particle number detector 410.
- FIG. 6 is a cross-sectional view of a modified example of the particle number detector 10.
- FIG. 6 is an explanatory diagram of the charge generation element 120.
- FIG. 1 is a cross-sectional view showing a schematic configuration of the particle number detector 10
- FIG. 1 is a cross-sectional view showing a schematic configuration of the particle number detector 10
- the fine particle number detector 10 measures the number of fine particles contained in a gas (for example, exhaust gas from an automobile). As shown in FIG. 1, the fine particle number detector 10 includes a charge generating element 20, a collecting device 40, a detector main body 50, and a shield 60 in a ceramic vent pipe 12.
- the vent pipe 12 has a gas inlet 12a for introducing gas into the vent pipe 12 and a gas outlet 12b for discharging the gas that has passed through the vent pipe 12.
- the charge generation element 20 includes a needle electrode 22 and a counter electrode 24 provided so as to be exposed on a wall facing the needle electrode 22, provided on the side of the vent pipe 12 close to the gas inlet 12 a. is doing.
- the counter electrode 24 forms part of the shield 60.
- the needle electrode 22 and the counter electrode 24 are connected to a discharge power source 26 that applies a voltage Vp (for example, a pulse voltage).
- Vp for example, a pulse voltage
- the charge generating element 20 generates an air discharge due to a potential difference between the two electrodes when a voltage Vp is applied between the needle-like electrode 22 and the counter electrode 24.
- the fine particles 16 in the gas are added with charges 18 (here, negative charges) to become charged fine particles P.
- the collection device 40 is a device that collects the charged fine particles P, and is provided in the hollow portion 12 c in the vent pipe 12.
- the collection device 40 has a pair of collection electric field generation electrodes (application electrode 42 and ground electrode 44) and a collection electrode 46.
- the application electrode 42 and the ground electrode 44 are embedded at positions facing each other on the wall of the vent pipe 12.
- the application electrode 42 is an electrode having a negative potential ⁇ V1.
- the level of the negative potential ⁇ V1 is from the ⁇ mV order to ⁇ several tens of volts.
- the ground electrode 44 is an electrode connected to the ground.
- the ground electrode 44 forms part of the shield 60.
- the collection electrode 46 is disposed between the application electrode 42 and the ground electrode 44, and is exposed on the wall of the hollow portion 12 c in which the ground electrode 44 is embedded. As a result, an electric field from the ground electrode 44 toward the application electrode 42 is generated inside the hollow portion 12c. Therefore, the charged fine particles P (negatively charged) that have entered the hollow portion 12c are attracted to the ground electrode 44 by the generated electric field and collected by the collecting electrode 46 installed in the middle thereof.
- the detector main body 50 includes a series circuit unit 52 and a number measuring device 56.
- the series circuit unit 52 is provided between the collecting electrode 46 and the number measuring device 56.
- a capacitor 53, a resistor 54, and a switch (preferably a semiconductor switch) 55 are connected in series to the series circuit portion 52 from the collecting electrode 46 side.
- the number measuring device 56 is a device that measures the number of the fine particles 16 based on the charge amount of the charged fine particles P collected by the collecting electrode 46.
- the switch 55 is turned on, a current based on the charge 18 of the charged fine particles P collected by the collecting electrode 46 is transmitted to the number measuring device 56 as a transient response through a series circuit including the capacitor 53 and the resistor 54. Is done.
- the number measuring device 56 measures an electric current value using an ammeter, and calculates the number of fine particles 16 based on the electric current value.
- the shield 60 is made of a conductive material (for example, a metal such as copper, aluminum, or an aluminum alloy).
- the shield 60 is formed in a cylindrical shape having a rectangular cross section including the first shield plate 61 and the second shield plate 62 (see FIG. 2), and is grounded to the ground.
- the first shielding plate 61 is disposed in the wall of the vent pipe 12 so as to partition the charge generating element 20 and the detector main body 50.
- the first shielding plate 61 is formed so as to cover the entire detector main body 50 by extending the ground electrode 44 of the collection device 40 to the downstream side in the gas flow direction, and the counter electrode 24 of the charge generation element 20. It is formed so as to be integrated.
- the second shielding plate 62 is embedded on the side of the wall of the vent pipe 12 close to the outer surface so as to cover the needle electrode 22 of the charge generation element 20 and the application electrode 42 of the collection device 40.
- the cylindrical shield 60 surrounds the entire periphery of the charge generation element 20 and the collection electrode 46.
- the particulate number detector 10 When measuring particulates contained in the exhaust gas of an automobile, the particulate number detector 10 is attached in the exhaust pipe of the engine. At this time, the particulate matter detector 10 is attached so that the exhaust gas is introduced into the vent pipe 12 from the gas inlet 12a of the particulate detector 10 and discharged from the gas outlet 12b.
- the fine particles 16 contained in the exhaust gas introduced into the vent pipe 12 from the gas introduction port 12a are charged with the charge 18 (negative charge in this case) generated by the discharge of the charge generation element 20, and then become the charged fine particles P. Enter 12c.
- the shield 60 prevents the noise from leaking to the detector body 50 side.
- the charged fine particles P entering the hollow portion 12c reach the collection device 40, they are attracted to the ground electrode 44 and collected by the collection electrode 46 installed in the middle thereof.
- a current based on the charge 18 of the charged fine particles P attached to the collecting electrode 46 is transmitted to the number measuring device 56 as a transient response through a series circuit including a capacitor 53 and a resistor 54.
- the number measuring device 56 integrates (accumulates) the current value over a period during which the switch 55 is turned on (switch-on period) to obtain an integrated value (accumulated charge amount) of the current value. After the switch-on period, the accumulated charge amount is divided by the elementary charge to obtain the total number of charges (collected charge number), and the collected charge number is divided by the average value of the number of charges added to one fine particle 16. Thus, the number of fine particles 16 attached to the collecting electrode 46 over a certain time (for example, 5 to 15 seconds) can be obtained.
- the number measuring device 56 repeats and accumulates calculations for calculating the number of the fine particles 16 in a predetermined time over a predetermined period (for example, 1 to 5 minutes), so that the fine particles attached to the collecting electrode 46 over the predetermined period.
- the number of 16 can be calculated. Further, by using the transient response by the capacitor 53 and the resistor 54, it is possible to measure even with a small current, and the number of the fine particles 16 can be detected with high accuracy.
- a minute current at a pA (picoampere) level or an nA (nanoampere) level for example, a minute current can be measured by increasing the time constant using the resistor 54 having a large resistance value.
- the charge generation element 20 of this embodiment corresponds to a charge generation unit of the present invention
- the collection device 40 corresponds to a charged particle collection unit
- the detector main body 50 corresponds to a number detection unit
- the shield 60 shields. It corresponds to the part.
- the shielding body 60 since the shielding body 60 is provided, even if noise is generated by discharge in the charge generation element 20, the noise is shielded by the shielding body 60. The Therefore, it is possible to suppress the influence of noise generated by the discharge on the measurement accuracy. Particularly, since the shield 60 is cylindrical and surrounds the entire periphery of the charge generation element 20 and the collection electrode 46, the effect of electromagnetic shielding and electrostatic shielding is further enhanced.
- the shield 60 is integrated with the counter electrode 24 of the charge generation element 20 and the ground electrode 44 of the collection device 40. Therefore, the number of parts can be reduced as compared with the case where the shield 60 is provided separately from the counter electrode 24 and the ground electrode 44.
- the shield 60 integrated with the counter electrode 24 of the charge generation element 20 and the ground electrode 44 of the collection device 40 is used.
- a shield 160 may be employed.
- the shield 160 is formed in a cylindrical shape including the first shield plate 161 and the second shield plate 62.
- the first shielding plate 161 is integrated with the ground electrode 44 of the collection device 40, but is formed separately from the counter electrode 24 of the charge generation element 20.
- the shield 160 is arranged so as to partition the charge generating element 20 and the detector main body 50, the influence on the measurement accuracy of noise generated by the discharge in the charge generating element 20 can be suppressed. it can. Further, since the shield 160 is integrated with the ground electrode 44 of the collection device 40, the number of parts can be reduced as compared with the case where the shield 160 is provided separately from the ground electrode 44.
- a shield 260 may be employed instead of the shield 60 as in the particle number detector 210 shown in FIG.
- the shield 260 is formed in a cylindrical shape including the first shield plate 261 and the second shield plate 62.
- the first shielding plate 261 is integrated with the counter electrode 24 of the charge generation element 20, but is formed separately from the ground electrode 44 of the collection device 40. Even in this case, since the shield 260 is disposed so as to partition the charge generation element 20 and the detector main body 50, the influence on the measurement accuracy of noise generated by the discharge in the charge generation element 20 can be suppressed. it can. Further, since the shield 260 is integrated with the counter electrode 24 of the charge generation element 20, the number of components can be reduced as compared with the case where the shield 260 is provided separately from the counter electrode 24.
- the particle number detector 310 of FIG. 5 is an example in which the surplus charge removing device 30 is provided between the charge generating element 20 and the collecting device 40.
- the surplus charge removing device 30 has a pair of removing electric field generating electrodes (applying electrode 32 and ground electrode 34) and a removing electrode 36.
- the application electrode 32 and the ground electrode 34 are embedded in positions facing each other on the wall of the vent pipe 12.
- the application electrode 32 is an electrode having a negative potential ⁇ V2.
- the absolute value of the negative potential ⁇ V2 is one digit or more smaller than the absolute value of the negative potential ⁇ V1 of the collection device 40.
- the ground electrode 34 is an electrode connected to the ground.
- the removal electrode 36 is disposed between the application electrode 32 and the ground electrode 34, and is exposed on the wall of the hollow portion 12 c in which the ground electrode 34 is embedded. As a result, a weak electric field is generated between the application electrode 32 and the ground electrode 34 of the surplus charge removing device 30. Therefore, of the electric charges 18 generated by the electric charge generating element 20, the excessive electric charges 18 that have not been added to the fine particles 16 are attracted to the ground electrode 34 by this weak electric field, captured by the removal electrode 36, and then discarded to the ground. .
- the shield 360 is formed in a cylindrical shape including the first shield plate 361 and the second shield plate 62.
- the 1st shielding board 361 is arrange
- the detector body 50 is isolated from other devices by a shield 360. Therefore, it is possible to suppress the influence of noise generated by the discharge in the charge generation element 20 on the measurement accuracy.
- the shield 360 in FIG. 5 is provided separately from each of the counter electrode 24 of the charge generation element 20, the ground electrode 34 of the surplus charge removing device 30, and the ground electrode 44 of the collection device 40. However, the shield 360 is integrated with at least one of these. May be used.
- the particle number detector 410 in FIG. 6 is an example in which the first shielding plate 461 constituting the shielding body 460 is integrated with the counter electrode 24, the ground electrode 34, and the ground electrode 44.
- the same components as those in the above-described embodiment are denoted by the same reference numerals. In this way, the number of parts can be reduced as compared with the shield 360 of FIG.
- the protruding portion 60 a is formed by protruding the upstream end portion of the gas flow in the cylindrical shield 60 from the vent pipe 12. It may be formed. This protrusion 60a can be connected to an exhaust pipe 70 for discharging gas. In this way, it is not necessary to separately provide an attachment portion for attaching the particle number detector 10 to the exhaust pipe 70. 3 to 6 may be similar to this.
- the needle-like electrode 22 is provided so that the tip protrudes into the hollow portion 12c.
- the present invention is not particularly limited to this.
- a flat needle electrode may be provided by printing on the inner wall surface of the vent pipe 12 at a position facing the counter electrode 24.
- the acicular electrode 22 and the counter electrode 24 are used as the charge generating element 20, but the present invention is not particularly limited thereto.
- a charge generating element 120 in which an induction electrode 124, a dielectric layer 123, and a discharge electrode 122 are laminated in this order on the inner surface of the vent pipe 12 may be used.
- the discharge electrode 122 preferably includes a plurality of protrusions 122a on the outer periphery.
- the induction electrode 124 is integrated with the first shielding plate 61. Even when the voltage of the discharge power supply 26 is applied between the discharge electrode 122 and the induction electrode 124, electric charges are generated by air discharge. Even if noise is generated during the discharge, the noise is shielded by the shield 60 and thus hardly affects the detector body 50 (see FIG. 1). Therefore, it is possible to suppress the influence of noise generated by the discharge in the charge generation element 20 on the measurement accuracy.
- the cylindrical shielding body 60 including the first shielding plate 61 and the second shielding plate 62 is adopted, but the lower first shielding plate 61 and the upper second shielding plate 62 are connected. It may be provided separately, or only the lower first shielding plate 61 may be provided. The same applies to FIGS.
- a pipe having a rectangular cross section is used as the vent pipe 12, but a pipe having a circular cross section may be used.
- the shield 60 is also formed in a cylindrical shape having a circular cross section.
- the case of measuring the number of negatively charged fine particles P has been described, but the number of fine particles 16 can be similarly measured even for positively charged fine particles P.
- a positive voltage may be applied to the applying electrode 42 to collect the charged fine particles P on the collecting electrode 46.
- the present invention can be used to detect the number of fine particles in exhaust gas from a power machine such as an automobile.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
This microparticle number detector 10 is provided with an electric charge generating element 20, a collecting device 40, a number detecting device 56, and a shielding body 60. The electric charge generating element 20 adds electric charges generated by electrical discharge to microparticles 16 in a gas to thereby convert the microparticles into charged microparticles P. The collecting device 40 collects the charged microparticles P in a collecting electrode 46 when a voltage is applied between an applying electrode 42 and a ground electrode 44. The number measuring device 56 detects the number of the charged microparticles P on the basis of a current varying according to the number of charged microparticles P collected by the collecting electrode 46. The shielding body 60 is provided between the electric charge generating element 20 and the number measuring device 56. Even when noise due to electrical discharge is generated from the electric charge generating element 20, the noise is shielded by the shielding body 60, and it is thus difficult for the noise to affect the number measuring device 56.
Description
本発明は、微粒子数検出器に関する。
The present invention relates to a particle number detector.
微粒子数検出器としては、電荷発生素子でコロナ放電によりイオンを発生させ、そのイオンにより被測定ガス中の微粒子を帯電し、帯電した微粒子を捕集電極で捕集し、捕集された微粒子の電荷の量に基づいて個数測定器が微粒子数を測定するものが知られている(例えば特許文献1参照)。
As the particle number detector, ions are generated by a corona discharge in a charge generation element, the particles in the gas to be measured are charged by the ions, the charged particles are collected by a collecting electrode, and the collected particles are collected. One in which the number measuring device measures the number of fine particles based on the amount of electric charge is known (for example, see Patent Document 1).
しかしながら、電荷発生素子でコロナ放電によって生じたノイズが漏洩して個数測定器の測定精度を低下させるおそれがあった。
However, there is a possibility that noise generated by corona discharge in the charge generation element may leak and reduce the measurement accuracy of the number measuring device.
本発明はこのような課題を解決するためになされたものであり、電荷発生部で放電によって生じたノイズの測定精度への影響を抑制することを主目的とする。
The present invention has been made to solve such a problem, and has as its main object to suppress the influence of noise generated by discharge in the charge generation section on measurement accuracy.
本発明の微粒子数検出器は、
通気管内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
前記電荷発生部よりも前記ガスの流れの下流側に設けられ、一対の捕集電界生成電極の間に捕集電極が配置され、前記一対の捕集電界生成電極の間に捕集電圧が印加されると前記帯電微粒子を前記捕集電極に捕集する帯電微粒子捕集部と、
前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記帯電微粒子の数を検出する個数検出部と、
少なくとも前記電荷発生部と前記個数検出部との間に設けられた遮蔽部と、
を備えたものである。 The particle number detector of the present invention is
A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
Provided on the downstream side of the gas flow with respect to the charge generation unit, a collection electrode is disposed between the pair of collection electric field generation electrodes, and a collection voltage is applied between the pair of collection electric field generation electrodes A charged particulate collection unit that collects the charged particulates on the collection electrode;
A number detection unit that detects the number of the charged fine particles based on a physical quantity that varies according to the number of the charged fine particles collected by the collection electrode;
A shielding part provided at least between the charge generation part and the number detection part;
It is equipped with.
通気管内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
前記電荷発生部よりも前記ガスの流れの下流側に設けられ、一対の捕集電界生成電極の間に捕集電極が配置され、前記一対の捕集電界生成電極の間に捕集電圧が印加されると前記帯電微粒子を前記捕集電極に捕集する帯電微粒子捕集部と、
前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記帯電微粒子の数を検出する個数検出部と、
少なくとも前記電荷発生部と前記個数検出部との間に設けられた遮蔽部と、
を備えたものである。 The particle number detector of the present invention is
A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
Provided on the downstream side of the gas flow with respect to the charge generation unit, a collection electrode is disposed between the pair of collection electric field generation electrodes, and a collection voltage is applied between the pair of collection electric field generation electrodes A charged particulate collection unit that collects the charged particulates on the collection electrode;
A number detection unit that detects the number of the charged fine particles based on a physical quantity that varies according to the number of the charged fine particles collected by the collection electrode;
A shielding part provided at least between the charge generation part and the number detection part;
It is equipped with.
この微粒子数検出器では、放電によって発生した電荷を通気管内に導入されたガス中の微粒子に付加して帯電微粒子にする。帯電微粒子は、電荷発生部よりもガス流れの下流側に設けられた捕集電極に捕集される。そして、個数検出部が捕集電極に捕集された帯電微粒子の数に応じて変化する物理量に基づいてガス中の微粒子の数を検出する。ここで、電荷発生部と個数検出部との間には遮蔽部が設けられている。電荷発生部で放電によってノイズ(例えば電磁誘導によるノイズや静電誘導によるノイズ)が生じたとしても、そのノイズは遮蔽部によって遮蔽されるため個数検出部に影響しにくい。したがって、放電によって生じたノイズの測定精度への影響を抑制することができる。
In this particle number detector, the charge generated by the discharge is added to the particles in the gas introduced into the vent tube to form charged particles. The charged fine particles are collected by a collection electrode provided on the downstream side of the gas flow with respect to the charge generation unit. Then, the number detection unit detects the number of fine particles in the gas based on a physical quantity that changes according to the number of charged fine particles collected by the collection electrode. Here, a shielding part is provided between the charge generation part and the number detection part. Even if noise (for example, noise caused by electromagnetic induction or noise caused by electrostatic induction) is generated by electric discharge in the charge generation unit, the noise is shielded by the shielding unit and thus hardly affects the number detection unit. Therefore, it is possible to suppress the influence of noise generated by the discharge on the measurement accuracy.
なお、本明細書において、「電荷」とは、正電荷や負電荷のほかイオンを含むものとする。「微粒子の数を検出する」とは、微粒子の数を測定する場合のほか、微粒子の数が所定の数値範囲に入るか否か(例えば所定のしきい値を超えるか否か)を判定する場合も含むものとする。「物理量」とは、帯電微粒子の数(電荷量)に基づいて変化するパラメータであればよく、例えば電流などが挙げられる。
In this specification, “charge” includes positive charges and negative charges as well as ions. “Detecting the number of fine particles” determines whether or not the number of fine particles falls within a predetermined numerical range (for example, whether or not a predetermined threshold value is exceeded) in addition to measuring the number of fine particles. Including cases. The “physical quantity” may be a parameter that changes based on the number of charged fine particles (charge quantity), and examples thereof include current.
本発明の微粒子数検出器において、前記遮蔽部は、前記一対の捕集電界生成電極のうち接地されている側の電極と一体化されていてもよい。こうすれば、遮蔽部を一対の捕集電界生成電極と別々に設ける場合と比べて、部品点数が少なくて済む。
In the particle number detector of the present invention, the shielding part may be integrated with a grounded electrode of the pair of collecting electric field generating electrodes. In this case, the number of components can be reduced as compared with the case where the shielding portion is provided separately from the pair of collection electric field generation electrodes.
本発明の微粒子数検出器において、前記電荷発生部は、放電電極と、前記放電電極に対向し接地されている対向電極とを有し、前記遮蔽部は、前記対向電極と一体化されていてもよい。こうすれば、遮蔽部を対向電極と別々に設ける場合に比べて、部品点数が少なくて済む。
In the particle number detector of the present invention, the charge generation unit includes a discharge electrode and a counter electrode that is opposed to the discharge electrode and grounded, and the shielding unit is integrated with the counter electrode. Also good. In this case, the number of parts can be reduced as compared with the case where the shielding portion is provided separately from the counter electrode.
本発明の微粒子数検出器において、前記遮蔽部は、少なくとも前記電荷発生部の周囲全体を取り囲んでいてもよい。こうすれば、電磁遮蔽や静電遮蔽の効果がより高まる。
In the particle number detector of the present invention, the shielding part may surround at least the entire periphery of the charge generation part. By doing so, the effects of electromagnetic shielding and electrostatic shielding are further enhanced.
本発明の微粒子数検出器は、前記電荷発生部と前記帯電微粒子捕集部との間に設けられ、一対の除去電界生成電極の間に除去電極が配置され、前記一対の除去電界生成電極の間に前記捕集電圧よりも低い除去電圧が印加されると前記微粒子に付加されなかった余剰の電荷が前記除去電極に捕集される余剰電荷除去部を備え、前記遮蔽部は、前記一対の除去電界生成電極のうち接地されている側の電極と一体化されていてもよい。こうすれば、余剰電荷除去部を備えた微粒子数検出器において、遮蔽部を一対の除去電界生成電極と別々に設ける場合と比べて、部品点数が少なくて済む。
The particle number detector of the present invention is provided between the charge generation unit and the charged particle collection unit, a removal electrode is disposed between a pair of removal electric field generation electrodes, and the pair of removal electric field generation electrodes When a removal voltage lower than the collection voltage is applied between them, an excess charge that has not been added to the fine particles is collected by the removal electrode, and the shielding unit includes the pair of The removal electric field generation electrode may be integrated with a grounded electrode. In this way, in the fine particle number detector provided with the surplus charge removing unit, the number of parts can be reduced as compared with the case where the shielding unit is provided separately from the pair of removed electric field generating electrodes.
本発明の微粒子数検出器において、前記遮蔽部のうち前記ガスの流れの上流側の端部は、前記通気管から突出して突出部をなし、前記突出部により前記ガスを排出する排気管と接続可能となっていてもよい。こうすれば、微粒子数検出器を排気管へ取り付けるための取り付け部を別途設ける必要がない。
In the particle number detector according to the present invention, an upstream end of the gas flow in the shielding portion protrudes from the ventilation pipe to form a protrusion, and is connected to an exhaust pipe that discharges the gas by the protrusion. It may be possible. In this way, it is not necessary to separately provide an attachment portion for attaching the particle number detector to the exhaust pipe.
本発明の微粒子数検出器は、例えば、大気環境調査、屋内環境調査、汚染調査、自動車などの燃焼粒子計測、粒子生成環境監視、粒子合成環境監視等で用いられる。
The fine particle number detector of the present invention is used in, for example, atmospheric environment surveys, indoor environment surveys, pollution surveys, combustion particle measurement of automobiles, particle generation environment monitoring, particle synthesis environment monitoring, and the like.
本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は微粒子数検出器10の概略構成を表す断面図、図2は図1のA-A断面図である。
Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of the particle number detector 10, and FIG.
微粒子数検出器10は、ガス(例えば自動車の排ガス)に含まれる微粒子の数を計測するものである。この微粒子数検出器10は、図1に示すように、セラミック製の通気管12内に、電荷発生素子20、捕集装置40、検出器本体50及び遮蔽体60を備えている。通気管12は、ガスを通気管12内に導入するガス導入口12aと、通気管12を通過してきたガスを排出するガス排出口12bとを有している。
The fine particle number detector 10 measures the number of fine particles contained in a gas (for example, exhaust gas from an automobile). As shown in FIG. 1, the fine particle number detector 10 includes a charge generating element 20, a collecting device 40, a detector main body 50, and a shield 60 in a ceramic vent pipe 12. The vent pipe 12 has a gas inlet 12a for introducing gas into the vent pipe 12 and a gas outlet 12b for discharging the gas that has passed through the vent pipe 12.
電荷発生素子20は、通気管12のガス導入口12aに近い側に設けられ、針状電極22と、その針状電極22に対向する壁に露出するように設置された対向電極24とを有している。対向電極24は、遮蔽体60の一部をなす。針状電極22と対向電極24とは、電圧Vp(例えばパルス電圧等)を印加する放電用電源26に接続されている。電荷発生素子20は、針状電極22と対向電極24との間に電圧Vpが印加されることで、両電極間の電位差による気中放電が発生する。この気中放電中をガスが通過することによりガス中の微粒子16は電荷18(ここでは負電荷とする)が付加されて帯電微粒子Pになる。
The charge generation element 20 includes a needle electrode 22 and a counter electrode 24 provided so as to be exposed on a wall facing the needle electrode 22, provided on the side of the vent pipe 12 close to the gas inlet 12 a. is doing. The counter electrode 24 forms part of the shield 60. The needle electrode 22 and the counter electrode 24 are connected to a discharge power source 26 that applies a voltage Vp (for example, a pulse voltage). The charge generating element 20 generates an air discharge due to a potential difference between the two electrodes when a voltage Vp is applied between the needle-like electrode 22 and the counter electrode 24. As the gas passes through the air discharge, the fine particles 16 in the gas are added with charges 18 (here, negative charges) to become charged fine particles P.
捕集装置40は、帯電微粒子Pを捕集する装置であり、通気管12内の中空部12cに設けられている。捕集装置40は、一対の捕集電界発生電極(印加電極42及び接地電極44)と、捕集電極46とを有している。印加電極42と接地電極44とは、通気管12の壁の互いに向かい合う位置に埋設されている。印加電極42は、負電位-V1の電極である。負電位-V1のレベルは-mVオーダーから-数10Vである。接地電極44は、グランドに接続された電極である。この接地電極44は、遮蔽体60の一部をなす。捕集電極46は、印加電極42と接地電極44との間に配置され、接地電極44が埋設された中空部12cの壁に露出している。これにより、中空部12cの内部には接地電極44から印加電極42に向かう電界が発生する。したがって、中空部12cに入り込んだ帯電微粒子P(負に帯電)は、発生している電界によって、接地電極44に引き寄せられ、その途中に設置された捕集電極46に捕集される。
The collection device 40 is a device that collects the charged fine particles P, and is provided in the hollow portion 12 c in the vent pipe 12. The collection device 40 has a pair of collection electric field generation electrodes (application electrode 42 and ground electrode 44) and a collection electrode 46. The application electrode 42 and the ground electrode 44 are embedded at positions facing each other on the wall of the vent pipe 12. The application electrode 42 is an electrode having a negative potential −V1. The level of the negative potential −V1 is from the −mV order to −several tens of volts. The ground electrode 44 is an electrode connected to the ground. The ground electrode 44 forms part of the shield 60. The collection electrode 46 is disposed between the application electrode 42 and the ground electrode 44, and is exposed on the wall of the hollow portion 12 c in which the ground electrode 44 is embedded. As a result, an electric field from the ground electrode 44 toward the application electrode 42 is generated inside the hollow portion 12c. Therefore, the charged fine particles P (negatively charged) that have entered the hollow portion 12c are attracted to the ground electrode 44 by the generated electric field and collected by the collecting electrode 46 installed in the middle thereof.
検出器本体50は、直列回路部52と個数測定装置56とを備えている。直列回路部52は、捕集電極46と個数測定装置56との間に設けられている。この直列回路部52には、捕集電極46側からコンデンサ53と抵抗器54とスイッチ(好ましくは半導体スイッチ)55とが直列に接続されている。個数測定装置56は、捕集電極46に捕集された帯電微粒子Pの電荷量に基づいて微粒子16の個数を測定する装置である。スイッチ55がオンされると、捕集電極46に捕集された帯電微粒子Pの電荷18に基づく電流が、コンデンサ53と抵抗器54からなる直列回路を介して過渡応答として個数測定装置56に伝達される。個数測定装置56は、電流計を用いて電流値を測定し、その電流値に基づいて微粒子16の個数を演算する。
The detector main body 50 includes a series circuit unit 52 and a number measuring device 56. The series circuit unit 52 is provided between the collecting electrode 46 and the number measuring device 56. A capacitor 53, a resistor 54, and a switch (preferably a semiconductor switch) 55 are connected in series to the series circuit portion 52 from the collecting electrode 46 side. The number measuring device 56 is a device that measures the number of the fine particles 16 based on the charge amount of the charged fine particles P collected by the collecting electrode 46. When the switch 55 is turned on, a current based on the charge 18 of the charged fine particles P collected by the collecting electrode 46 is transmitted to the number measuring device 56 as a transient response through a series circuit including the capacitor 53 and the resistor 54. Is done. The number measuring device 56 measures an electric current value using an ammeter, and calculates the number of fine particles 16 based on the electric current value.
遮蔽体60は、導電性材料(例えば銅、アルミ、アルミ合金などの金属)で形成されている。遮蔽体60は、第1遮蔽板61と第2遮蔽板62とを含む断面矩形の筒状に形成され(図2参照)、グランドに接地されている。第1遮蔽板61は、電荷発生素子20と検出器本体50との間を仕切るように通気管12の壁内に配置されている。この第1遮蔽板61は、捕集装置40の接地電極44をガスの流れ方向の下流側に延ばして検出器本体50の全体を覆うように形成されると共に、電荷発生素子20の対向電極24と一体になるように形成されている。一方、第2遮蔽板62は、電荷発生素子20の針状電極22と捕集装置40の印加電極42とを覆うように通気管12の壁のうち外面に近い側に埋設されている。筒状の遮蔽体60は、電荷発生素子20や捕集電極46の周囲全体を取り囲んでいる。
The shield 60 is made of a conductive material (for example, a metal such as copper, aluminum, or an aluminum alloy). The shield 60 is formed in a cylindrical shape having a rectangular cross section including the first shield plate 61 and the second shield plate 62 (see FIG. 2), and is grounded to the ground. The first shielding plate 61 is disposed in the wall of the vent pipe 12 so as to partition the charge generating element 20 and the detector main body 50. The first shielding plate 61 is formed so as to cover the entire detector main body 50 by extending the ground electrode 44 of the collection device 40 to the downstream side in the gas flow direction, and the counter electrode 24 of the charge generation element 20. It is formed so as to be integrated. On the other hand, the second shielding plate 62 is embedded on the side of the wall of the vent pipe 12 close to the outer surface so as to cover the needle electrode 22 of the charge generation element 20 and the application electrode 42 of the collection device 40. The cylindrical shield 60 surrounds the entire periphery of the charge generation element 20 and the collection electrode 46.
次に、微粒子数検出器10の使用例について説明する。自動車の排ガスに含まれる微粒子を計測する場合、エンジンの排気管内に微粒子数検出器10を取り付ける。このとき、排ガスが微粒子数検出器10のガス導入口12aから通気管12内に導入され、ガス排出口12bから排出されるように微粒子数検出器10を取り付ける。
Next, a usage example of the particle number detector 10 will be described. When measuring particulates contained in the exhaust gas of an automobile, the particulate number detector 10 is attached in the exhaust pipe of the engine. At this time, the particulate matter detector 10 is attached so that the exhaust gas is introduced into the vent pipe 12 from the gas inlet 12a of the particulate detector 10 and discharged from the gas outlet 12b.
ガス導入口12aから通気管12内に導入された排ガスに含まれる微粒子16は、電荷発生素子20の放電によって発生した電荷18(ここでは負電荷)を帯びて帯電微粒子Pになったあと中空部12cに入る。このとき、放電によってノイズが生じたとしても、そのノイズが検出器本体50側へ漏洩するのを遮蔽体60が防止する。中空部12cに入った帯電微粒子Pは、捕集装置40に至ると、接地電極44に引き寄せられ、その途中に設置された捕集電極46に捕集される。捕集電極46に付着された帯電微粒子Pの電荷18に基づく電流が、コンデンサ53と抵抗器54からなる直列回路を介して過渡応答として個数測定装置56に伝達される。
The fine particles 16 contained in the exhaust gas introduced into the vent pipe 12 from the gas introduction port 12a are charged with the charge 18 (negative charge in this case) generated by the discharge of the charge generation element 20, and then become the charged fine particles P. Enter 12c. At this time, even if noise is generated by discharge, the shield 60 prevents the noise from leaking to the detector body 50 side. When the charged fine particles P entering the hollow portion 12c reach the collection device 40, they are attracted to the ground electrode 44 and collected by the collection electrode 46 installed in the middle thereof. A current based on the charge 18 of the charged fine particles P attached to the collecting electrode 46 is transmitted to the number measuring device 56 as a transient response through a series circuit including a capacitor 53 and a resistor 54.
電流Iと電荷量qの関係は、I=dq/(dt)、q=∫Idtである。したがって、個数測定装置56は、スイッチ55がオンされている期間(スイッチオン期間)にわたって電流値を積分(累算)して電流値の積分値(蓄積電荷量)を求める。スイッチオン期間の経過後に、蓄積電荷量を素電荷で除算して電荷の総数(捕集電荷数)を求め、その捕集電荷数を1つの微粒子16に付加する電荷の数の平均値で除算することで、一定時間(例えば5~15秒)にわたって捕集電極46に付着していた微粒子16の個数を求めることができる。そして、個数測定装置56は、一定時間における微粒子16の個数を算出する演算を、所定期間(例えば1~5分)にわたって繰り返し行って積算することで、所定期間にわたって捕集電極46に付着した微粒子16の個数を算出することができる。また、コンデンサ53と抵抗器54による過渡応答を利用することで、小さな電流でも測定することが可能となり、微粒子16の個数を高精度に検出することができる。pA(ピコアンペア)レベルやnA(ナノアンペア)レベルの微小な電流であれば、例えば抵抗値の大きい抵抗器54を使用して時定数を大きくすることで、微小な電流の測定が可能となる。
The relationship between the current I and the charge amount q is I = dq / (dt), q = ∫Idt. Therefore, the number measuring device 56 integrates (accumulates) the current value over a period during which the switch 55 is turned on (switch-on period) to obtain an integrated value (accumulated charge amount) of the current value. After the switch-on period, the accumulated charge amount is divided by the elementary charge to obtain the total number of charges (collected charge number), and the collected charge number is divided by the average value of the number of charges added to one fine particle 16. Thus, the number of fine particles 16 attached to the collecting electrode 46 over a certain time (for example, 5 to 15 seconds) can be obtained. The number measuring device 56 repeats and accumulates calculations for calculating the number of the fine particles 16 in a predetermined time over a predetermined period (for example, 1 to 5 minutes), so that the fine particles attached to the collecting electrode 46 over the predetermined period. The number of 16 can be calculated. Further, by using the transient response by the capacitor 53 and the resistor 54, it is possible to measure even with a small current, and the number of the fine particles 16 can be detected with high accuracy. In the case of a minute current at a pA (picoampere) level or an nA (nanoampere) level, for example, a minute current can be measured by increasing the time constant using the resistor 54 having a large resistance value.
ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の電荷発生素子20が本発明の電荷発生部に相当し、捕集装置40が帯電微粒子捕集部に相当し、検出器本体50が個数検出部に相当し、遮蔽体60が遮蔽部に相当する。
Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The charge generation element 20 of this embodiment corresponds to a charge generation unit of the present invention, the collection device 40 corresponds to a charged particle collection unit, the detector main body 50 corresponds to a number detection unit, and the shield 60 shields. It corresponds to the part.
以上詳述した本実施形態の微粒子数検出器10によれば、遮蔽体60が設けられているため、電荷発生素子20で放電によってノイズが生じたとしても、そのノイズは遮蔽体60によって遮蔽される。したがって、放電によって生じたノイズの測定精度への影響を抑制することができる。特に、遮蔽体60は、筒状であり電荷発生素子20や捕集電極46の周囲全体を取り囲んでいるため、電磁遮蔽や静電遮蔽の効果がより高まる。
According to the fine particle number detector 10 of the present embodiment described in detail above, since the shielding body 60 is provided, even if noise is generated by discharge in the charge generation element 20, the noise is shielded by the shielding body 60. The Therefore, it is possible to suppress the influence of noise generated by the discharge on the measurement accuracy. Particularly, since the shield 60 is cylindrical and surrounds the entire periphery of the charge generation element 20 and the collection electrode 46, the effect of electromagnetic shielding and electrostatic shielding is further enhanced.
また、遮蔽体60は、電荷発生素子20の対向電極24や捕集装置40の接地電極44と一体化されている。そのため、遮蔽体60を対向電極24や接地電極44と別々に設ける場合に比べて部品点数が少なくて済む。
Further, the shield 60 is integrated with the counter electrode 24 of the charge generation element 20 and the ground electrode 44 of the collection device 40. Therefore, the number of parts can be reduced as compared with the case where the shield 60 is provided separately from the counter electrode 24 and the ground electrode 44.
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
例えば、上述した実施形態では、電荷発生素子20の対向電極24や捕集装置40の接地電極44と一体化された遮蔽体60を採用したが、図3に示す微粒子数検出器110のように、遮蔽体60の代わりに遮蔽体160を採用してもよい。図3では、上述した実施形態と同じ構成要素については同じ符号を付した。遮蔽体160は、第1遮蔽板161と第2遮蔽板62とを含む筒状に形成されている。第1遮蔽板161は、捕集装置40の接地電極44とは一体化されているが電荷発生素子20の対向電極24とは別々に形成されている。この場合でも、遮蔽体160は電荷発生素子20と検出器本体50との間を仕切るように配置されているため、電荷発生素子20で放電によって生じたノイズの測定精度への影響を抑えることができる。また、遮蔽体160は、捕集装置40の接地電極44と一体化されているため、遮蔽体160を接地電極44と別々に設ける場合に比べて部品点数が少なくて済む。
For example, in the above-described embodiment, the shield 60 integrated with the counter electrode 24 of the charge generation element 20 and the ground electrode 44 of the collection device 40 is used. However, like the particle number detector 110 shown in FIG. Instead of the shield 60, a shield 160 may be employed. In FIG. 3, the same components as those in the above-described embodiment are denoted by the same reference numerals. The shield 160 is formed in a cylindrical shape including the first shield plate 161 and the second shield plate 62. The first shielding plate 161 is integrated with the ground electrode 44 of the collection device 40, but is formed separately from the counter electrode 24 of the charge generation element 20. Even in this case, since the shield 160 is arranged so as to partition the charge generating element 20 and the detector main body 50, the influence on the measurement accuracy of noise generated by the discharge in the charge generating element 20 can be suppressed. it can. Further, since the shield 160 is integrated with the ground electrode 44 of the collection device 40, the number of parts can be reduced as compared with the case where the shield 160 is provided separately from the ground electrode 44.
あるいは、図4に示す微粒子数検出器210のように、遮蔽体60の代わりに遮蔽体260を採用してもよい。図4では、上述した実施形態と同じ構成要素については同じ符号を付した。遮蔽体260は、第1遮蔽板261と第2遮蔽板62とを含む筒状に形成されている。第1遮蔽板261は、電荷発生素子20の対向電極24とは一体化されているが捕集装置40の接地電極44とは別々に形成されている。この場合でも、遮蔽体260は電荷発生素子20と検出器本体50との間を仕切るように配置されているため、電荷発生素子20で放電によって生じたノイズの測定精度への影響を抑えることができる。また、遮蔽体260は、電荷発生素子20の対向電極24と一体化されているため、遮蔽体260を対向電極24と別々に設ける場合に比べて部品点数が少なくて済む。
Alternatively, a shield 260 may be employed instead of the shield 60 as in the particle number detector 210 shown in FIG. In FIG. 4, the same components as those in the above-described embodiment are denoted by the same reference numerals. The shield 260 is formed in a cylindrical shape including the first shield plate 261 and the second shield plate 62. The first shielding plate 261 is integrated with the counter electrode 24 of the charge generation element 20, but is formed separately from the ground electrode 44 of the collection device 40. Even in this case, since the shield 260 is disposed so as to partition the charge generation element 20 and the detector main body 50, the influence on the measurement accuracy of noise generated by the discharge in the charge generation element 20 can be suppressed. it can. Further, since the shield 260 is integrated with the counter electrode 24 of the charge generation element 20, the number of components can be reduced as compared with the case where the shield 260 is provided separately from the counter electrode 24.
上述した実施形態では、電荷発生素子20で発生した電荷18のうち微粒子16に付加されなかった余剰の電荷18を除去しなかったが、こうした余剰の電荷18を除去するようにしてもよい。図5の微粒子数検出器310は、電荷発生素子20と捕集装置40との間に余剰電荷除去装置30を設けた例である。図5では、上述した実施形態と同じ構成要素については同じ符号を付した。余剰電荷除去装置30は、一対の除去電界発生電極(印加電極32及び接地電極34)と、除去電極36とを有している。印加電極32と接地電極34とは、通気管12の壁の互いに向かい合う位置に埋設されている。印加電極32は、負電位-V2の電極である。負電位-V2の絶対値は捕集装置40の負電位-V1の絶対値よりも1桁以上小さい。接地電極34は、グランドに接続された電極である。除去電極36は、印加電極32と接地電極34との間に配置され、接地電極34が埋設された中空部12cの壁に露出している。これにより、余剰電荷除去装置30の印加電極32と接地電極34との間には弱い電界が発生する。したがって、電荷発生素子20で発生した電荷18のうち、微粒子16に付加されなかった余剰の電荷18は、この弱い電界によって接地電極34に引き寄せられ、除去電極36に捕獲されたあとグランドに捨てられる。そのため、余剰の電荷18が捕集装置40の捕集電極46に捕集されて帯電微粒子Pの数にカウントされてしまうことがない。遮蔽体360は、第1遮蔽板361と第2遮蔽板62とを含む筒状に形成されている。第1遮蔽板361は、検出器本体50と他の装置(電荷発生素子20、余剰電荷除去装置30及び捕集装置40)との間を仕切るように配置されている。検出器本体50は、遮蔽体360によって他の装置から隔離されている。そのため、電荷発生素子20で放電によって生じたノイズの測定精度への影響を抑えることができる。
In the above-described embodiment, the surplus charges 18 that have not been added to the fine particles 16 out of the charges 18 generated by the charge generation element 20 are not removed, but such surplus charges 18 may be removed. The particle number detector 310 of FIG. 5 is an example in which the surplus charge removing device 30 is provided between the charge generating element 20 and the collecting device 40. In FIG. 5, the same components as those in the above-described embodiment are denoted by the same reference numerals. The surplus charge removing device 30 has a pair of removing electric field generating electrodes (applying electrode 32 and ground electrode 34) and a removing electrode 36. The application electrode 32 and the ground electrode 34 are embedded in positions facing each other on the wall of the vent pipe 12. The application electrode 32 is an electrode having a negative potential −V2. The absolute value of the negative potential −V2 is one digit or more smaller than the absolute value of the negative potential −V1 of the collection device 40. The ground electrode 34 is an electrode connected to the ground. The removal electrode 36 is disposed between the application electrode 32 and the ground electrode 34, and is exposed on the wall of the hollow portion 12 c in which the ground electrode 34 is embedded. As a result, a weak electric field is generated between the application electrode 32 and the ground electrode 34 of the surplus charge removing device 30. Therefore, of the electric charges 18 generated by the electric charge generating element 20, the excessive electric charges 18 that have not been added to the fine particles 16 are attracted to the ground electrode 34 by this weak electric field, captured by the removal electrode 36, and then discarded to the ground. . Therefore, surplus charges 18 are not collected by the collection electrode 46 of the collection device 40 and counted as the number of charged fine particles P. The shield 360 is formed in a cylindrical shape including the first shield plate 361 and the second shield plate 62. The 1st shielding board 361 is arrange | positioned so that the detector main body 50 and other apparatuses (the charge generation element 20, the surplus charge removal apparatus 30, and the collection apparatus 40) may be partitioned off. The detector body 50 is isolated from other devices by a shield 360. Therefore, it is possible to suppress the influence of noise generated by the discharge in the charge generation element 20 on the measurement accuracy.
図5の遮蔽体360は、電荷発生素子20の対向電極24、余剰電荷除去装置30の接地電極34及び捕集装置40の接地電極44のいずれとも別々に設けたが、これらの少なくとも1つと一体化してもよい。図6の微粒子数検出器410は、遮蔽体460を構成する第1遮蔽板461が対向電極24、接地電極34及びの接地電極44と一体化された例である。図6では、上述した実施形態と同じ構成要素については同じ符号を付した。このようにすれば、図5の遮蔽体360と比べて部品点数を少なくすることができる。
The shield 360 in FIG. 5 is provided separately from each of the counter electrode 24 of the charge generation element 20, the ground electrode 34 of the surplus charge removing device 30, and the ground electrode 44 of the collection device 40. However, the shield 360 is integrated with at least one of these. May be used. The particle number detector 410 in FIG. 6 is an example in which the first shielding plate 461 constituting the shielding body 460 is integrated with the counter electrode 24, the ground electrode 34, and the ground electrode 44. In FIG. 6, the same components as those in the above-described embodiment are denoted by the same reference numerals. In this way, the number of parts can be reduced as compared with the shield 360 of FIG.
上述した実施形態の微粒子数検出器10において、図7に示すように、筒状の遮蔽体60のうちガスの流れの上流側の端部を通気管12から突出させることにより、突出部60aを形成してもよい。この突出部60aは、ガスを排出する排気管70と接続可能なものである。こうすれば、微粒子数検出器10を排気管70へ取り付けるための取り付け部を別途設ける必要がない。図3~図6についてもこれと同様にしてもよい。
In the particle number detector 10 of the above-described embodiment, as shown in FIG. 7, the protruding portion 60 a is formed by protruding the upstream end portion of the gas flow in the cylindrical shield 60 from the vent pipe 12. It may be formed. This protrusion 60a can be connected to an exhaust pipe 70 for discharging gas. In this way, it is not necessary to separately provide an attachment portion for attaching the particle number detector 10 to the exhaust pipe 70. 3 to 6 may be similar to this.
上述した実施形態では、針状電極22をその先端が中空部12cに突出するように設けたが、特にこれに限定されない。例えば、通気管12の内壁面のうち対向電極24と対向する位置に平らな針状電極を印刷により設けてもよい。
In the above-described embodiment, the needle-like electrode 22 is provided so that the tip protrudes into the hollow portion 12c. However, the present invention is not particularly limited to this. For example, a flat needle electrode may be provided by printing on the inner wall surface of the vent pipe 12 at a position facing the counter electrode 24.
上述した実施形態では、電荷発生素子20として、針状電極22と対向電極24とを用いたが、特にこれに限定されない。例えば、図8に示すように、通気管12の内面に、誘導電極124と誘電体層123と放電電極122とがこの順に積層された電荷発生素子120を用いてもよい。放電電極122は、外周に複数の突起122aを備えていることが好ましい。誘導電極124は第1遮蔽板61と一体化されている。このような放電電極122と誘導電極124との間に放電用電源26の電圧を印加しても気中放電によって電荷が発生する。その放電時にノイズが生じたとしても、そのノイズは遮蔽体60によって遮蔽されるため検出器本体50(図1参照)に影響しにくい。したがって、電荷発生素子20で放電によって生じたノイズの測定精度への影響を抑制することができる。
In the embodiment described above, the acicular electrode 22 and the counter electrode 24 are used as the charge generating element 20, but the present invention is not particularly limited thereto. For example, as shown in FIG. 8, a charge generating element 120 in which an induction electrode 124, a dielectric layer 123, and a discharge electrode 122 are laminated in this order on the inner surface of the vent pipe 12 may be used. The discharge electrode 122 preferably includes a plurality of protrusions 122a on the outer periphery. The induction electrode 124 is integrated with the first shielding plate 61. Even when the voltage of the discharge power supply 26 is applied between the discharge electrode 122 and the induction electrode 124, electric charges are generated by air discharge. Even if noise is generated during the discharge, the noise is shielded by the shield 60 and thus hardly affects the detector body 50 (see FIG. 1). Therefore, it is possible to suppress the influence of noise generated by the discharge in the charge generation element 20 on the measurement accuracy.
上述した実施形態では、第1遮蔽板61と第2遮蔽板62とを含む筒状の遮蔽体60を採用したが、下側の第1遮蔽板61と上側の第2遮蔽板62とを連結せず別々に設けてもよいし、下側の第1遮蔽板61のみ設けてもよい。図3~図7についても同様である。
In the above-described embodiment, the cylindrical shielding body 60 including the first shielding plate 61 and the second shielding plate 62 is adopted, but the lower first shielding plate 61 and the upper second shielding plate 62 are connected. It may be provided separately, or only the lower first shielding plate 61 may be provided. The same applies to FIGS.
上述した実施形態では、通気管12として断面矩形の管を用いたが、断面円形の管を用いてもよい。その場合、遮蔽体60も断面円形の筒状に形成する。
In the above-described embodiment, a pipe having a rectangular cross section is used as the vent pipe 12, but a pipe having a circular cross section may be used. In that case, the shield 60 is also formed in a cylindrical shape having a circular cross section.
上述した実施形態では、負に帯電した帯電微粒子Pの個数を測定する場合について説明したが、正に帯電した帯電微粒子Pであっても同様にして微粒子16の個数を測定することができる。正に帯電した帯電微粒子Pの個数を測定する場合、例えば、印加電極42に正電圧を印加して捕集電極46に帯電微粒子Pを捕集してもよい。
In the above-described embodiment, the case of measuring the number of negatively charged fine particles P has been described, but the number of fine particles 16 can be similarly measured even for positively charged fine particles P. When measuring the number of positively charged charged fine particles P, for example, a positive voltage may be applied to the applying electrode 42 to collect the charged fine particles P on the collecting electrode 46.
本出願は、2017年3月10日に出願された日本国特許出願第2017-45634号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
This application is based on Japanese Patent Application No. 2017-45634 filed on Mar. 10, 2017, and the entire contents of which are incorporated herein by reference.
本発明は、例えば自動車などの動力機械の排ガス中の微粒子の数を検出するのに利用可能である。
The present invention can be used to detect the number of fine particles in exhaust gas from a power machine such as an automobile.
10 微粒子数検出器、12 通気管、12a ガス導入口、12b ガス排出口、12c 中空部、16 微粒子、18 電荷、20 電荷発生素子、22 針状電極、24 対向電極、26 放電用電源、30 余剰電荷除去装置、32 印加電極、34 接地電極、36 除去電極、40 捕集装置、42 印加電極、44 接地電極、46 捕集電極、50 検出器本体、52 直列回路部、53 コンデンサ、54 抵抗器、55 スイッチ、56 個数測定装置、60 遮蔽体、60a 突出部、61 第1遮蔽板、62 第2遮蔽板、70 排気管、110,210,310,410 微粒子数検出器、120 電荷発生素子、122 放電電極、122a 突起、123 誘電体層、124 誘導電極、160,260,360,460 遮蔽体、161,261,361,461 第1遮蔽板、P 帯電微粒子。
10 particle number detector, 12 vent tube, 12a gas inlet, 12b gas outlet, 12c hollow part, 16 particles, 18 charge, 20 charge generation element, 22 needle electrode, 24 counter electrode, 26 discharge power supply, 30 Surplus charge removal device, 32 application electrode, 34 ground electrode, 36 removal electrode, 40 collection device, 42 application electrode, 44 ground electrode, 46 collection electrode, 50 detector body, 52 series circuit section, 53 capacitor, 54 resistance , 55 switch, 56 count measuring device, 60 shield, 60a protrusion, 61 first shield plate, 62 second shield plate, 70 exhaust pipe, 110, 210, 310, 410 fine particle number detector, 120 charge generation element , 122 discharge electrode, 122a protrusion, 123 dielectric layer, 124 induction electrode, 160, 260, 3 0,460 shields, 161,261,361,461 first shielding plate, P charged fine particles.
Claims (6)
- 通気管内に導入されたガス中の微粒子に放電によって発生させた電荷を付加して帯電微粒子にする電荷発生部と、
前記電荷発生部よりも前記ガスの流れの下流側に設けられ、一対の捕集電界生成電極の間に捕集電極が配置され、前記一対の捕集電界生成電極の間に捕集電圧が印加されると前記帯電微粒子を前記捕集電極に捕集する帯電微粒子捕集部と、
前記捕集電極に捕集された前記帯電微粒子の数に応じて変化する物理量に基づいて、前記帯電微粒子の数を検出する個数検出部と、
少なくとも前記電荷発生部と前記個数検出部との間に設けられた遮蔽部と、
を備えた微粒子数検出器。 A charge generation unit that adds charged charges generated by discharge to the fine particles in the gas introduced into the vent pipe to form charged fine particles;
Provided on the downstream side of the gas flow with respect to the charge generation unit, a collection electrode is disposed between the pair of collection electric field generation electrodes, and a collection voltage is applied between the pair of collection electric field generation electrodes A charged particulate collection unit that collects the charged particulates on the collection electrode;
A number detection unit that detects the number of the charged fine particles based on a physical quantity that varies according to the number of the charged fine particles collected by the collection electrode;
A shielding part provided at least between the charge generation part and the number detection part;
Particle number detector equipped with. - 前記遮蔽部は、前記一対の捕集電界生成電極のうち接地されている側の電極と一体化されている、
請求項1に記載の微粒子数検出器。 The shield is integrated with the grounded electrode of the pair of collected electric field generating electrodes.
The fine particle number detector according to claim 1. - 前記電荷発生部は、放電電極と、前記放電電極に対向し接地されている対向電極とを有し、
前記遮蔽部は、前記対向電極と一体化されている、
請求項1又は2に記載の微粒子数検出器。 The charge generation unit includes a discharge electrode and a counter electrode that is opposed to the discharge electrode and grounded
The shielding part is integrated with the counter electrode.
The fine particle number detector according to claim 1 or 2. - 前記遮蔽部は、少なくとも前記電荷発生部の周囲全体を取り囲んでいる、
請求項1~3のいずれか1項に記載の微粒子数検出器。 The shielding portion surrounds at least the entire periphery of the charge generation portion;
The fine particle number detector according to any one of claims 1 to 3. - 請求項1~4のいずれか1項に記載の微粒子数検出器であって、
前記電荷発生部と前記帯電微粒子捕集部との間に設けられ、一対の除去電界生成電極の間に除去電極が配置され、前記一対の除去電界生成電極の間に前記捕集電圧よりも低い除去電圧が印加されると前記微粒子に付加されなかった余剰の電荷が前記除去電極に捕集される余剰電荷除去部
を備え、
前記遮蔽部は、前記一対の除去電界生成電極のうち接地されている側の電極と一体化されている、
微粒子数検出器。 The fine particle number detector according to any one of claims 1 to 4,
Provided between the charge generation unit and the charged particulate collection unit, a removal electrode is disposed between the pair of removal electric field generation electrodes, and is lower than the collection voltage between the pair of removal electric field generation electrodes A surplus charge removing unit that collects surplus charges not added to the fine particles when the removal voltage is applied to the removal electrode;
The shield is integrated with the grounded electrode of the pair of removed electric field generating electrodes.
Particle number detector. - 前記遮蔽部のうち前記ガスの流れの上流側の端部は、前記通気管から突出して突出部をなし、前記突出部により前記ガスを排出する排気管と接続可能となっている、
請求項1~5のいずれか1項に記載の微粒子数検出器。 The upstream end portion of the gas flow in the shielding portion protrudes from the ventilation pipe to form a protrusion, and can be connected to an exhaust pipe that discharges the gas by the protrusion.
The fine particle number detector according to any one of claims 1 to 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017045634 | 2017-03-10 | ||
JP2017-045634 | 2017-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163704A1 true WO2018163704A1 (en) | 2018-09-13 |
Family
ID=63447620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004386 WO2018163704A1 (en) | 2017-03-10 | 2018-02-08 | Microparticle number detector |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018163704A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019025236A1 (en) * | 2017-08-03 | 2019-02-07 | Robert Bosch Gmbh | Particle sensor and method for operating same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007514923A (en) * | 2003-06-24 | 2007-06-07 | デカティ オイ | Method and sensor device for measuring particle emission from combustion engine exhaust gas |
JP2012510051A (en) * | 2008-11-25 | 2012-04-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Sensor for detecting suspended particles |
JP2014035292A (en) * | 2012-08-09 | 2014-02-24 | Ngk Spark Plug Co Ltd | Fine particle detection system |
WO2015146456A1 (en) * | 2014-03-26 | 2015-10-01 | 日本碍子株式会社 | Fine-particle number measurement device and fine-particle number measurement method |
-
2018
- 2018-02-08 WO PCT/JP2018/004386 patent/WO2018163704A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007514923A (en) * | 2003-06-24 | 2007-06-07 | デカティ オイ | Method and sensor device for measuring particle emission from combustion engine exhaust gas |
JP2012510051A (en) * | 2008-11-25 | 2012-04-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Sensor for detecting suspended particles |
JP2014035292A (en) * | 2012-08-09 | 2014-02-24 | Ngk Spark Plug Co Ltd | Fine particle detection system |
WO2015146456A1 (en) * | 2014-03-26 | 2015-10-01 | 日本碍子株式会社 | Fine-particle number measurement device and fine-particle number measurement method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019025236A1 (en) * | 2017-08-03 | 2019-02-07 | Robert Bosch Gmbh | Particle sensor and method for operating same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10488316B2 (en) | Fine-particle number measurement device and fine-particle number measurement method | |
US9606038B2 (en) | Particle count measurement device | |
JP2007514923A (en) | Method and sensor device for measuring particle emission from combustion engine exhaust gas | |
JP6321551B2 (en) | Apparatus and method for generating an approved air stream and use of such apparatus in measuring particle concentration in an approved air stream | |
JP2019163975A (en) | Fine particle detector | |
TWI588784B (en) | Method and apparatus for detecting smoke in an ion chamber | |
WO2014033040A1 (en) | Aerosol measuring device and method | |
JP6858135B2 (en) | Particle sensor and detection method | |
WO2018139345A1 (en) | Device for detecting number of fine particles | |
US20190145858A1 (en) | Fine-particle number detector | |
WO2018163704A1 (en) | Microparticle number detector | |
JP6420525B1 (en) | Fine particle detection element and fine particle detector | |
JP2019163976A (en) | Fine particle detector | |
WO2019155920A1 (en) | Fine particle detector | |
JP2018151381A (en) | Particulate count detector | |
JP2017223471A (en) | Fine particle number detector | |
JP6688257B2 (en) | Charged plate monitor | |
WO2020090438A1 (en) | Microparticle detector | |
JPWO2019049570A1 (en) | Particle count detector | |
JP2019045504A (en) | Fine particle detection element and fine particle detector | |
WO2020137416A1 (en) | Fine particle detection element and fine particle detector | |
RU2707270C1 (en) | Charged particle spectrometer | |
WO2020137418A1 (en) | Fine particle detector | |
WO2018163661A1 (en) | Microparrticle number detector | |
WO2020036092A1 (en) | Fine particle detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18764262 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18764262 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |