WO2018161599A1 - 基于叉形结构的可重构缝隙天线 - Google Patents
基于叉形结构的可重构缝隙天线 Download PDFInfo
- Publication number
- WO2018161599A1 WO2018161599A1 PCT/CN2017/107202 CN2017107202W WO2018161599A1 WO 2018161599 A1 WO2018161599 A1 WO 2018161599A1 CN 2017107202 W CN2017107202 W CN 2017107202W WO 2018161599 A1 WO2018161599 A1 WO 2018161599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slot antenna
- fork
- metal plate
- antenna based
- reconfigurable
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/10—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/321—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
Definitions
- the present invention relates to the field of satellite communication technologies, and in particular, to a reconfigurable slot antenna based on a fork structure.
- a primary object of the present invention is to provide a reconfigurable slot antenna based on a fork structure, which aims to solve the technical problem that the antenna cannot be reconfigurable in frequency and pattern in the prior art.
- the present invention provides a reconfigurable slot antenna based on a fork structure, and the reconfigurable slot antenna based on the fork structure includes a substrate and is attached to a lower surface of the substrate.
- Metal plate
- the metal plate is etched with a fork-shaped slit and is bilaterally symmetrical.
- the fork-shaped slit includes a T-shaped groove, two vertical grooves and two diodes, and one vertical groove and the transverse side of the ⁇ -shaped groove One end is connected by one diode, and the other vertical groove is connected to the other end of the lateral side of the ⁇ -shaped groove by another diode.
- the reconfigurable slot antenna based on the fork structure is a rectangular parallelepiped structure, and the metal plate is copper The metal plate has a thickness of 0.5 ounce.
- the substrate is a dielectric substrate of FR4, and the substrate has a thickness of 1.6 cm and a dielectric constant of 4.4.
- the length of the metal plate is 40 mm
- the width of the metal plate is 30 mm
- the height of the vertical groove of the metal plate is 9.3 mm
- the T-shaped groove of the metal plate The length of the horizontal side is 30.4 mm
- the height of the vertical side of the T-shaped groove of the metal plate is 14
- the width of the vertical groove of the metal plate is 3.14 mm, and the width of the horizontal side and the vertical side of the T-shaped groove of the metal plate is 3.14 mm.
- the two tubes of the two sickle-shaped slits are both broken, and the frequency and the pattern can reconstruct the slot antenna.
- the operating frequency band is 3.71 ⁇ 4.21GHz.
- the present invention adopts the above technical solution, and brings the technical effects as follows:
- the reconfigurable slot antenna based on the fork structure of the present invention can change the antenna according to communication requirements while maintaining the polarization mode unchanged.
- the frequency and radiation pattern reduce the spatial noise of wireless communication systems, avoid electronic interference, improve system security, increase channel capacity, and are widely used in many aspects such as automotive and aircraft radar and satellite communication networks.
- FIG. 1 is a schematic structural view of a side surface of a reconfigurable slot antenna based on a fork structure according to the present invention
- FIG. 2 is a schematic view of a fork structure of a preferred embodiment of a reconfigurable slot antenna based on a fork structure of the present invention
- FIG. 3 is a front elevational view of a reconfigurable slot antenna based on a fork structure according to the present invention
- FIGS. 5-1 to 5-2 are schematic diagrams showing simulations of radiation patterns of four states of the reconfigurable slot antenna based on the fork structure of the present invention.
- FIG. 1 is a schematic structural view of a side surface of a reconfigurable slot antenna based on a fork structure according to the present invention
- FIG. 2 is a preferred implementation of a reconfigurable slot antenna based on a fork structure according to the present invention
- Fig. 3 is a front elevational view of a reconfigurable slot antenna based on a fork structure of the present invention.
- the reconfigurable slot antenna 1 based on the fork structure of the present invention includes a substrate 10 and a metal plate 12.
- the reconfigurable slot antenna 1 based on the fork structure is a rectangular parallelepiped structure in which the metal plate 12 is attached to the lower surface of the substrate 10.
- the metal plate 12 is a copper surface and has the same thickness.
- the metal plate 12 has a thickness of 0.5 ounces.
- the substrate 10 is a dielectric substrate of FR4.
- the thickness of the substrate 10 is preferably 1.6 cm, and the dielectric constant is preferably 4.4.
- the metal plate 12 has a length W and a height L.
- a forked slit 120 is etched into the metal plate 12.
- the fork slot 120 includes a T-shaped slot, two vertical slots, and two diodes (a first diode D1 and a second diode D2, respectively), wherein a vertical slot and One end of the lateral side of the T-shaped groove is connected by a first diode D1, and the other vertical groove is connected to the other end of the lateral side of the T-shaped groove by a second diode D2.
- the height of the two vertical grooves is lfeed
- the length of the horizontal side of the T-shaped groove is lstub
- the height of the vertical side of the T-shaped groove is lf
- the width of the vertical side and the horizontal side of the T-shaped groove is Wf
- the width of the vertical groove of the metal plate is also wf
- the width of the two vertical grooves is d.
- the thickness of the fork-shaped slits 120 is the thickness of the metal plate 12.
- the fork-shaped slit 120 is bilaterally symmetrically formed on the metal plate 12.
- the reconfigurable slot antenna 1 based on the fork structure is controlled by two diodes.
- the row state is combined to change the length of the antenna resonant slot to achieve frequency reconfigurability.
- the frequency can be controlled, that is, the frequency can be adjusted, and an antenna can be adjusted in multiple frequency bands.
- the antenna can realize the reconfigurable pattern.
- the antenna is realized by a fork-shaped feed and a symmetrical antenna structure.
- the diode BAR50-02V is selected as the RF switch.
- the different combinations of diodes are shown in the table.
- FIG. 4 shows a reflection coefficient curve simulated for each state of the antenna.
- D1 is turned on
- D2 is broken, that is, statel ⁇
- the working frequency band of the antenna is 3.71 ⁇ 4.21GHz. Due to the symmetrical structure of the antenna, when D2 is turned on and D1 is turned off, that is, state2 ⁇ , the working frequency band of the antenna is the same as state3.
- FIGS. 5-1 to 5-2 show simulated radiation patterns of respective resonant frequencies of the antenna.
- the pattern of the E plane is basically an "8" shape, and the pattern of the H plane (the plane of the wave propagation direction and the magnetic field direction) changes as the state of the gate changes.
- the reconfigurable slot antenna based on the fork structure in the present invention omits a wire connecting the external control device, and a control device for controlling the first diode and the second diode.
- the control device may be, but is not limited to, an electronic switch or a microcontroller or the like.
- the present invention adopts the above technical solution, and brings the technical effects as follows:
- the reconfigurable slot antenna based on the fork structure of the present invention can change the antenna according to communication requirements while maintaining the polarization mode unchanged.
- the frequency and radiation pattern reduce the spatial noise of wireless communication systems, avoid electronic interference, improve system security, increase channel capacity, and are widely used in many aspects such as automotive and aircraft radar and satellite communication networks.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
本发明提供一种基于叉形结构的可重构缝隙天线,本发明所述基于叉形结构的可重构缝隙天线包括基板、贴合于所述基板下表面的金属板;所述金属板内设置有叉形缝隙,所述叉形缝隙包括两个二极管。实施本发明可以实现在保持极化方式不变的情况下,根据通信要求适时改变天线的频率和辐射方向图,减少无线通信系统的空间噪声,避免电子干扰,提高系统安全性,增加信道容量。
Description
基于叉形结构的可重构缝隙天线 技术领域
[0001] 本发明涉及卫星通信技术领域, 尤其涉及一种基于叉形结构的可重构缝隙天线 背景技术
[0002] 近年来, 随着卫星导航、 卫星通信的快速发展和广泛应用, 天线作为这些系统 的前端设备, 其性能指标的优劣, 对于卫星通信手持终端和射频识别读卡设备 的性能起着极其重要的作用。 另外, 为了便于卫星通信终端和射频识别系统的 大规模推广应用, 系统的经济成本和体积大小都是至关重要的考虑因素, 作为 其中重要部件的圆极化天线, 在保证较高性能指标的前提下, 必须具备成本低 廉、 结构紧凑和体积小巧的特点。 在对天线或阵列天线进行馈电吋, 需要对馈 电网络进行设计。 由于现在的卫星通信系统都需要多频化、 宽带化、 小型化。 而现有的馈电网络体积庞大, 无法实现频率及方向图上课重构, 且当大多工作 在单一频点, 不利于在多频或宽带条件下工作。
技术问题
[0003] 本发明的主要目的在于提供一种基于叉形结构的可重构缝隙天线, 旨在解决现 有技术中天线无法在频率及方向图上进行可重构的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种基于叉形结构的可重构缝隙天线, 本发明 所述基于叉形结构的可重构缝隙天线包括基板、 贴合于所述基板下表面的金属 板;
[0005] 所述金属板内刻蚀有叉形缝隙且左右对称, 所述叉形缝隙包括一个 T型槽、 两 个竖槽及两个二极管, 一个竖槽与所述 τ型槽横边的一端通过一个二极管连接, 另一个竖槽与所述 τ型槽横边的另一端通过另一个二极管连接。
[0006] 优选的, 所述基于叉形结构的可重构缝隙天线为长方体结构, 所述金属板为铜
面, 所述金属板的厚度均为 0.5盎司。
[0007] 优选的, 所述基板为 FR4的介质基板, 所述基板的厚度为 1.6厘米且介电常数优 选为 4.4。
[0008] 优选的, 所述金属板的长度均为 40 mm、 所述金属板的宽度均为 30 mm、 所述 金属板的竖槽的高度为 9.3 mm、 所述金属板的 T形槽的水平边的长度为 30.4 mm 、 、 所述金属板的 T型槽的竖直边的高度为 14
mm、 所述金属板的竖槽的宽度为 3.14mm, 所述金属板的 T型槽的水平边及竖直 边的宽度为 3.14 mm。
[0009] 优选的, 当叉形缝隙上的一个二极管幵通且另外一个二极管断幵, 两个镰刀形 缝隙的二级管均断幵吋, 所述的频率及方向图可重构缝隙天线的工作频段为 3.71 ~4.21GHz。
[0010] 优选的, 所述基于叉形结构的可重构缝隙天线的 E面的方向图呈 "8"字型, 所述 基于叉形结构的可重构缝隙天线的 H面的方向图指向 θ=-90°或 θ=+90°。
发明的有益效果
有益效果
[0011] 本发明采用上述技术方案, 带来的技术效果为: 本发明所述基于叉形结构的可 重构缝隙天线可以在保持极化方式不变的情况下, 根据通信要求适吋改变天线 的频率和辐射方向图, 减少无线通信系统的空间噪声, 避免电子干扰, 提高系 统安全性, 增加信道容量, 在汽车和飞机雷达以及卫星通信网络等诸多方面得 到广泛的应用。
对附图的简要说明
附图说明
[0012] 图 1是本发明基于叉形结构的可重构缝隙天线的侧面的结构示意图;
[0013] 图 2是本发明基于叉形结构的可重构缝隙天线的优选实施例的叉形结构的示意 图;
[0014] 图 3是本发明基于叉形结构的可重构缝隙天线的正面示意图;
[0015] 图 4是本发明基于叉形结构的可重构缝隙天线中四种状态的天线发射系数的优 选实施例的示意图;
[0016] 图 5-1至图 5-2是本发明基于叉形结构的可重构缝隙天线的四种状态的辐射方向 图的仿真示意图。
[0017] 本发明目的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0018] 为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效, 详细 说明如下。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用 于限定本发明。
[0019] 参照图 1至 3所示, 图 1是本发明基于叉形结构的可重构缝隙天线的侧面的结构 示意图; 图 2是本发明基于叉形结构的可重构缝隙天线的优选实施例的叉形结构 的示意图; 图 3是本发明基于叉形结构的可重构缝隙天线的正面示意图。
[0020] 本发明所述基于叉形结构的可重构缝隙天线 1包括基板 10及金属板 12。 在本实 施例中, 所述基于叉形结构的可重构缝隙天线 1为长方体结构, 其中, 金属板 12 贴合在所述基板 10的下表面。 所述金属板 12为铜面, 且厚度相同。 优选地, 所 述金属板 12的厚度为 0.5盎司。
[0021] 在本实施例中, 所述基板 10为 FR4的介质基板。 所述基板 10的厚度优选为 1.6厘 米, 介电常数优选为 4.4。
[0022] 所述金属板 12的长度为 W, 高度为 L。 所述金属板 12内刻蚀有叉形缝隙 120。 如 图 3所示, 所述叉形缝隙 120包括一个 T型槽、 两个竖槽及两个二极管 (分别为第 一二极管 D1及第二二极管 D2) , 其中, 一个竖槽与所述 T型槽横边的一端通过 一个第一二极管 D1连接, 另一个竖槽与所述 T型槽横边的另一端通过一个第二二 极管 D2连接。 所述两个竖槽的高度均为 lfeed, T型槽的水平边的长度为 lstub, T 型槽的竖直边的高度为 lf, 所述 T型槽的竖直边及水平边的宽度为 wf, 所述金属 板的竖槽的宽度为也为 wf, 所述两个竖槽的宽度均为 d。 此外, 所述叉形缝隙 12 0的厚度均为金属板 12的厚度。 所述叉形缝隙 120在所述金属板 12上左右对称结 构。
[0023] 需要说明的是, 所述基于叉形结构的可重构缝隙天线 1通过控制两个二极管进
行状态组合, 来改变天线谐振缝隙长度, 从而实现频率可重构。 具体地说, 通 过控制二极管, 可以控制频率, 也就是说可以调频率, 一个天线就可以实现多 个频段的调节。
[0024] 采用叉形馈电的结构, 在叉形馈电结构的水平枝节和垂直枝节的连接处加载两 个二极管, 控制二极管的不同组合状态, 天线可以实现方向图可重构。 同吋, 采用叉形馈电以及对称的天线结构, 天线实现了宽频操作。
[0025] 在本实施例子中, 采用仿真软件 CST对天线各个状态进行仿真分析, 最后优化 的参数为: W = 40 mm、 L = 30 mm、 lfeed= 9.3 mm、 lstub = 30.4 mm、 If = 14 mm、 wf = 3.14 mm及 d = 1 mm。
[0026] 选取二极管 BAR50-02V作为射频幵关。 二极管的不同组合状态如表所示。
[] [表 1]
[0027]
[0028] 图 4给出天线各个状态仿真的反射系数曲线。 当 D1导通, D2断幵, 即 statel吋 , 天线工作频段为 3.71~4.21GHz。 由于天线的结构对称, 当 D2导通, D1断幵, 即 state2吋, 天线的工作频段和 state3相同。
[0029] 图 5-1至图 5-2给出天线各个谐振频率的仿真辐射方向图。 从图中可以看出, E 面的方向图基本呈" 8"字型, H面 (波传播的方向与磁场方向组成的平面) 的方 向图随幵关状态的改变而发生改变。 当 D1断幵且 D2导通, 即 state l吋, 如图 5-1 所示, H面的方向图指向 θ=-90°。 当 D1导通且 D2断幵, 即 state2吋, 如图 5-2所示 , H面的方向图指向 θ=+90°。 由此可见, 天线在 statel , state2两个状态实现了方 向图可重构。
[0030] 需要说明的是, 本发明中的基于叉形结构的可重构缝隙天线省略了连接外界控 制设备的导线, 及对第一二极管、 第二二极管进行控制的控制设备。 在本实施 例中, 所述控制设备可以是, 但不限于, 电子幵关或者微控制器等其它任意能
够控制二极管的幵合及闭合的装置。
[0031] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或之间或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0032] 本发明采用上述技术方案, 带来的技术效果为: 本发明所述基于叉形结构的可 重构缝隙天线可以在保持极化方式不变的情况下, 根据通信要求适吋改变天线 的频率和辐射方向图, 减少无线通信系统的空间噪声, 避免电子干扰, 提高系 统安全性, 增加信道容量, 在汽车和飞机雷达以及卫星通信网络等诸多方面得 到广泛的应用。
Claims
权利要求书
一种基于叉形结构的可重构缝隙天线, 其特征在于, 本发明所述基于 叉形结构的可重构缝隙天线包括基板、 贴合于所述基板下表面的金属 板; 所述金属板内刻蚀有叉形缝隙且左右对称, 所述叉形缝隙包括一 个 τ型槽、 两个竖槽及两个二极管, 一个竖槽与所述 τ型槽横边的一 端通过一个二极管连接, 另一个竖槽与所述 τ型槽横边的另一端通过 另一个二极管连接。
如权利要求 1所述的基于叉形结构的可重构缝隙天线, 其特征在于, 所述基于叉形结构的可重构缝隙天线为长方体结构, 所述金属板为铜 面, 所述金属板的厚度均为 0.5盎司。
如权利要求 2所述的基于叉形结构的可重构缝隙天线, 其特征在于, 所述基板为 FR4的介质基板, 所述基板的厚度为 1.6厘米且介电常数优 选为 4.4。
如权利要求 3所述的基于叉形结构的可重构缝隙天线, 其特征在于, 所述金属板的长度均为 40 mm、 所述金属板的宽度均为 30 mm、 所述 金属板的竖槽的高度为 9.3 mm、 所述金属板的 T形槽的水平边的长度 为 30.4 mm、 、 所述金属板的 T型槽的竖直边的高度为 14 mm、 所述金 属板的竖槽的宽度为 3.14mm, 所述金属板的 T型槽的水平边及竖直边 的宽度为 3.14 mm。
如权利要求 4所述的基于叉形结构的可重构缝隙天线, 其特征在于, 当叉形缝隙上的一个二极管幵通且另外一个二极管断幵, 两个镰刀形 缝隙的二级管均断幵吋, 所述的频率及方向图可重构缝隙天线的工作 频段为 3.71~4.21GHz。
如权利要求 8所述的基于叉形结构的可重构缝隙天线, 其特征在于, 所述基于叉形结构的可重构缝隙天线的 E面的方向图呈 "8"字型, 所述 基于叉形结构的可重构缝隙天线的 H面的方向图指向 θ=-90°或 θ=+90°
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710125523.2 | 2017-03-04 | ||
CN201710125523.2A CN106785411A (zh) | 2017-03-04 | 2017-03-04 | 基于叉形结构的可重构缝隙天线 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018161599A1 true WO2018161599A1 (zh) | 2018-09-13 |
Family
ID=58961243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/107202 WO2018161599A1 (zh) | 2017-03-04 | 2017-10-21 | 基于叉形结构的可重构缝隙天线 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106785411A (zh) |
WO (1) | WO2018161599A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107046178B (zh) * | 2017-03-04 | 2018-11-20 | 深圳市景程信息科技有限公司 | 频率及方向图可重构缝隙天线 |
CN106785411A (zh) * | 2017-03-04 | 2017-05-31 | 深圳市景程信息科技有限公司 | 基于叉形结构的可重构缝隙天线 |
CN107681267A (zh) * | 2017-08-28 | 2018-02-09 | 佛山市顺德区中山大学研究院 | 一种实现定频波束扫描的微带漏波天线 |
CN112216945B (zh) * | 2020-09-22 | 2023-06-13 | 北京六维畅联科技有限公司 | 一种宽带调频雨伞天线系统及其制作方法 |
CN114792888B (zh) * | 2022-05-11 | 2024-08-09 | 领翌技术(横琴)有限公司 | 天线和电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064384A (zh) * | 2010-11-05 | 2011-05-18 | 哈尔滨工程大学 | 一种超宽带天线 |
CN102437418A (zh) * | 2011-08-24 | 2012-05-02 | 清华大学 | 用于移动终端的宽带平面型可重构天线系统 |
KR20120117566A (ko) * | 2011-04-15 | 2012-10-24 | 서울과학기술대학교 산학협력단 | U자형 슬릿빔 조향 단일 안테나 및 이를 통한 빔 조향방법 |
CN106785411A (zh) * | 2017-03-04 | 2017-05-31 | 深圳市景程信息科技有限公司 | 基于叉形结构的可重构缝隙天线 |
CN106877008A (zh) * | 2017-02-09 | 2017-06-20 | 山西大学 | 一种小型化宽带频率‑方向图可重构天线 |
CN107046178A (zh) * | 2017-03-04 | 2017-08-15 | 深圳市景程信息科技有限公司 | 频率及方向图可重构缝隙天线 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003103090A1 (en) * | 2002-05-31 | 2003-12-11 | The Regents Of The University Of Michigan | Switchable slot antenna |
CN101542836B (zh) * | 2007-01-24 | 2012-08-08 | 松下电器产业株式会社 | 差动馈电方向性可变缝隙天线 |
-
2017
- 2017-03-04 CN CN201710125523.2A patent/CN106785411A/zh not_active Withdrawn
- 2017-10-21 WO PCT/CN2017/107202 patent/WO2018161599A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102064384A (zh) * | 2010-11-05 | 2011-05-18 | 哈尔滨工程大学 | 一种超宽带天线 |
KR20120117566A (ko) * | 2011-04-15 | 2012-10-24 | 서울과학기술대학교 산학협력단 | U자형 슬릿빔 조향 단일 안테나 및 이를 통한 빔 조향방법 |
CN102437418A (zh) * | 2011-08-24 | 2012-05-02 | 清华大学 | 用于移动终端的宽带平面型可重构天线系统 |
CN106877008A (zh) * | 2017-02-09 | 2017-06-20 | 山西大学 | 一种小型化宽带频率‑方向图可重构天线 |
CN106785411A (zh) * | 2017-03-04 | 2017-05-31 | 深圳市景程信息科技有限公司 | 基于叉形结构的可重构缝隙天线 |
CN107046178A (zh) * | 2017-03-04 | 2017-08-15 | 深圳市景程信息科技有限公司 | 频率及方向图可重构缝隙天线 |
Also Published As
Publication number | Publication date |
---|---|
CN106785411A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Haraz et al. | Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication Networks | |
WO2018161599A1 (zh) | 基于叉形结构的可重构缝隙天线 | |
EP1684382A1 (en) | Small ultra wideband antenna having unidirectional radiation pattern | |
CN104852150A (zh) | 一种平行双线馈电的双频双极化基站天线 | |
WO2018161597A1 (zh) | 频率及方向图可重构缝隙天线 | |
CN105048079B (zh) | 一种全向性圆极化平面天线 | |
CN114336024B (zh) | 一种应用于毫米波通信系统的宽带圆极化平面天线阵列 | |
KR20190043484A (ko) | 단일 대역 이중 편파 안테나 모듈 구조 | |
CN103414016A (zh) | 用于便携式无线通信设备的分集天线 | |
US20190229416A1 (en) | Antenna system for optimizing isolation and mobile terminal | |
CN103337706A (zh) | 一种工作于uhf频段的小型化、低剖面、三环形rfid标签天线 | |
CN103078182A (zh) | 一种宽带背腔式微波毫米波圆极化天线 | |
CN108808264B (zh) | 一种介质谐振器天线及基站 | |
WO2018161598A1 (zh) | 基于镰刀形结构的可重构缝隙天线 | |
CN108365331A (zh) | 一种面向5g应用的高隔离双极化基站天线单元 | |
CN205376754U (zh) | 一种小型的共面波导馈电的宽带天线 | |
CN106299602A (zh) | 超宽带平面单极子天线阵列、通信器件和终端设备 | |
Sekhar et al. | Quad Band Triangular Ring Slot Antenna | |
Kumar et al. | Beam-steering Transmitarray Antenna for 5G Application | |
Gupta et al. | Dual C-slotted microstrip patch MIMO antenna for multiband wireless applications | |
Hasan et al. | Substrate height and dielectric constant dependent performance of circular micro strip patch array antennas for broadband wireless access | |
Liu et al. | A compact ultrawideband MIMO antenna | |
CN209804897U (zh) | 多输入多输出天线及终端设备 | |
CN111029764B (zh) | 频率和方向图混合可重构天线及通信设备 | |
CN211743404U (zh) | 一种共面波导馈电的高隔离度超宽带mimo天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899381 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899381 Country of ref document: EP Kind code of ref document: A1 |