WO2018161598A1 - 基于镰刀形结构的可重构缝隙天线 - Google Patents
基于镰刀形结构的可重构缝隙天线 Download PDFInfo
- Publication number
- WO2018161598A1 WO2018161598A1 PCT/CN2017/107201 CN2017107201W WO2018161598A1 WO 2018161598 A1 WO2018161598 A1 WO 2018161598A1 CN 2017107201 W CN2017107201 W CN 2017107201W WO 2018161598 A1 WO2018161598 A1 WO 2018161598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sickle
- shaped
- slot antenna
- antenna based
- metal plate
- Prior art date
Links
- 239000002184 metal Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 13
- 230000005855 radiation Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/10—Resonant antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/321—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
Definitions
- the present invention relates to the field of satellite communication technologies, and in particular, to a reconfigurable slot antenna based on a sickle structure.
- a main object of the present invention is to provide a reconfigurable slot antenna based on a sickle structure, which aims to solve the technical problem that the antenna cannot be reconfigurable in frequency and direction in the prior art.
- the present invention provides a reconfigurable slot antenna based on a sickle structure, and the reconfigurable slot antenna based on the sickle structure of the present invention includes a substrate and is attached to the upper surface of the substrate.
- Metal plate
- the metal plate is etched with two left-right symmetric sickle-shaped slits, and the two left-right symmetric sickle-shaped slits are disposed at an intermediate position in a horizontal direction of the metal plate, and each sickle-shaped slit includes an L-shaped shape.
- a groove and a horizontal transverse groove wherein a long side of the L-shaped groove is horizontally disposed on the metal plate, and one end of the horizontal horizontal groove is connected to an end of a long side of the L-shaped groove, and the horizontal horizontal groove is located at the The end of the long side of the L-shaped groove Further, a diode is disposed in the short side of the L-shaped groove, and the diode in the one sickle-shaped slit is connected to the diode in the other sickle-shaped slit.
- the reconfigurable slot antenna based on the sickle structure is a rectangular parallelepiped structure
- the metal plate is a copper surface
- the metal plate has a thickness of 0.5 ounce.
- the substrate is a dielectric substrate of FR4, and the substrate has a thickness of 1.6 cm and a dielectric constant of 4.4.
- the length of the metal plate is 40 mm
- the width of the metal plate is 30 mm
- the length of the horizontal horizontal groove in the sickle-shaped slit 110 is 6.7 mm
- the long side of the L-shaped groove The length of the short side of the L-shaped groove is 4 mm
- the width of the L-shaped groove and the width of the horizontal lateral groove are both 1 mm
- the distance of the sickle-shaped slit from the bottom edge of the metal plate is 17 mm.
- the sickle-shaped slit has a distance of 1.5 mm from the side of the metal plate.
- the working frequency band of the reconfigurable slot antenna based on the sickle structure is between 4.64 and 5.36 GHz.
- the working frequency band of the reconfigurable slot antenna based on the sickle structure is 3.71-4.62 GHz.
- the direction of the E plane of the reconfigurable slot antenna based on the sickle structure is "8", and the H-plane pattern of the reconfigurable slot antenna based on the sickle structure is full Directional.
- the present invention adopts the above technical solution, and brings the technical effects as follows:
- the reconfigurable slot antenna based on the sickle structure of the present invention can change the antenna according to communication requirements while maintaining the polarization mode unchanged.
- the frequency and radiation pattern reduce the spatial noise of wireless communication systems, avoid electronic interference, improve system security, increase channel capacity, and are widely used in many aspects such as automotive and aircraft radar and satellite communication networks.
- FIG. 1 is a schematic structural view of a side surface of a reconfigurable slot antenna based on a sickle structure according to the present invention
- FIG. 2 is a schematic top view of a preferred embodiment of a reconfigurable slot antenna based on a sickle structure of the present invention
- [0014] 3 is a schematic diagram of a preferred embodiment of an antenna transmission coefficient of four states in a reconfigurable slot antenna based on a sickle structure according to the present invention
- 4-1 to 4-2 are simulation diagrams of radiation patterns of four states of the reconfigurable slot antenna based on the sickle structure of the present invention.
- FIG. 1 is a schematic structural view of a side surface of a reconfigurable slot antenna based on a sickle structure according to the present invention
- FIG. 2 is a preferred embodiment of a reconfigurable slot antenna based on a sickle structure of the present invention.
- FIG. 3 is a schematic diagram of a preferred embodiment of an antenna transmission coefficient of four states in a reconfigurable slot antenna based on a sickle structure according to the present invention.
- the reconfigurable slot antenna 1 based on the sickle structure of the present invention includes a substrate 10 and a metal plate 11.
- the reconfigurable slot antenna 1 based on the sickle structure is a rectangular parallelepiped structure in which the metal plate 11 is attached to the upper surface of the substrate 10.
- the metal plate 11 is a copper surface and has the same thickness.
- the metal plate 11 has a thickness of 0.5 ounces.
- the substrate 10 is a dielectric substrate of FR4.
- the thickness of the substrate 10 is preferably 1.6 cm, and the dielectric constant is preferably 4.4.
- the two metal symmetrical serrated slits 110 are etched on the metal plate 11, and the two left and right symmetrical sickle-shaped slits 110 are disposed at an intermediate position in the horizontal direction of the metal plate 11, wherein the boring tool
- the distance of the slit 110 from the bottom edge of the metal plate 11 is preferably 17 mm, and the distance of the sickle-shaped slit 110 from the side of the metal plate 11 is preferably 1.5 mm.
- the sickle-shaped slit 110 includes an L-shaped groove and a horizontal horizontal groove, wherein a long side of the L-shaped groove is horizontally disposed on the metal plate 10, and one end of the horizontal horizontal groove is The end of the long side of the L-shaped groove The ends are connected, and the horizontal lateral grooves are located above the ends of the long sides of the L-shaped grooves.
- a diode is also disposed in the short side of the L-shaped groove. The diode in the one sickle-shaped slit is connected to the diode in the other sickle-shaped slit. As shown in FIG.
- the two left and right symmetrical blade-shaped slits 110 are respectively provided with a first diode D3 and a second diode D4, wherein the first diode D3 is disposed in the left sickle-shaped slit 11 0
- the second diode D4 is disposed in the right side of the sickle-shaped slot 110, and the first diode D3 is electrically connected to the second diode D4.
- the metal plate 11 has a length W and a height L.
- the thickness of the sickle-shaped slit 110 is the thickness of the metal plate 11, the length of the horizontal lateral groove in the sickle-shaped slit 110 is such that the length of the long side of the L-shaped groove is 1 3 , and the length of the short side of the L-shaped groove is 1 4 , The width of the L-shaped groove and the width of the horizontal horizontal groove are both 12.
- the reconfigurable slot antenna 1 based on the sickle structure changes the length of the antenna resonant slot by controlling the state combination of two diodes, thereby realizing frequency reconfigurable. Specifically, by controlling the diode, the frequency can be controlled, that is, the frequency can be adjusted, and an antenna can be adjusted in multiple frequency bands.
- the use of a sickle-shaped slit can reduce the E-plane (ie, the plane of the wave propagation direction of the reconfigurable slot antenna based on the sickle structure and the direction of the electric field direction).
- Cross polarization left-right symmetry, avoiding distortion of the pattern
- Improve the radiation performance of the antenna, and realize the miniaturization of the same antenna the surface of the reconfigurable slot antenna based on the sickle structure has a gap, increasing the effective path of the current, and the current travels along the gap, which is conducive to the concentrated distribution of current, improving The current distribution on the upper surface and the lower surface is realized to achieve miniaturization).
- the antenna can realize the reconfigurable pattern.
- the antenna is realized by a fork-shaped feed and a symmetrical antenna structure.
- the diode BAR50-02V is selected as the RF switch.
- the different combinations of diodes are shown in the table.
- FIG. 3 shows a reflection coefficient curve simulated by each state of the antenna.
- the antenna operating frequency band is 4.64-5.36GHz; when D3 and D4 are broken, that is, state2 inch, the antenna working frequency band is 3.71-4.62. GHz.
- FIGS. 4-1 to 4-2 show simulated radiation patterns of respective resonant frequencies of the antenna.
- the pattern of the E plane is basically an "8" shape
- the pattern of the H plane changes as the state of the gate changes. That is, statel and state2 ⁇ , as shown in Figures 4-1 and 4-2, the H-plane pattern is basically omnidirectional, and the antenna achieves frequency reconfigurability in statel and state2 states.
- the reconfigurable slot antenna based on the sickle structure in the present invention omits the wires connecting the external control devices, and the control device for controlling the first diode and the second diode.
- the control device may be, but is not limited to, any other device capable of controlling the twisting and closing of the diode, such as an electronic switch or a microcontroller.
- the present invention adopts the above technical solution, and brings the technical effects as follows:
- the reconfigurable slot antenna based on the sickle structure of the present invention can change the antenna according to communication requirements while maintaining the polarization mode unchanged.
- the frequency and radiation pattern reduce the spatial noise of wireless communication systems, avoid electronic interference, improve system security, increase channel capacity, and are widely used in many aspects such as automotive and aircraft radar and satellite communication networks.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
本发明提供一种基于镰刀形结构的可重构缝隙天线,本发明所述基于镰刀形结构的可重构缝隙天线包括基板、贴合于所述基板上表面的金属板;所述金属板上刻蚀两个左右对称的镰刀形缝隙,每个镰刀形缝隙中包括一个二极管。实施本发明可以实现在保持极化方式不变的情况下,根据通信要求适时改变天线的频率和辐射方向图,减少无线通信系统的空间噪声,避免电子干扰,提高系统安全性,增加信道容量。
Description
基于镰刀形结构的可重构缝隙天线 技术领域
[0001] 本发明涉及卫星通信技术领域, 尤其涉及一种基于镰刀形结构的可重构缝隙天 线。
背景技术
[0002] 近年来, 随着卫星导航、 卫星通信的快速发展和广泛应用, 天线作为这些系统 的前端设备, 其性能指标的优劣, 对于卫星通信手持终端和射频识别读卡设备 的性能起着极其重要的作用。 另外, 为了便于卫星通信终端和射频识别系统的 大规模推广应用, 系统的经济成本和体积大小都是至关重要的考虑因素, 作为 其中重要部件的圆极化天线, 在保证较高性能指标的前提下, 必须具备成本低 廉、 结构紧凑和体积小巧的特点。 在对天线或阵列天线进行馈电吋, 需要对馈 电网络进行设计。 由于现在的卫星通信系统都需要多频化、 宽带化、 小型化。 而现有的馈电网络体积庞大, 无法实现频率及方向图上课重构, 且当大多工作 在单一频点, 不利于在多频或宽带条件下工作。
技术问题
[0003] 本发明的主要目的在于提供一种基于镰刀形结构的可重构缝隙天线, 旨在解决 现有技术中天线无法在频率及方向图上进行可重构的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明提供了一种基于镰刀形结构的可重构缝隙天线, 本发 明所述基于镰刀形结构的可重构缝隙天线包括基板、 贴合于所述基板上表面的 金属板;
[0005] 所述金属板上刻蚀两个左右对称的镰刀形缝隙, 所述两个左右对称的镰刀形缝 隙设置于所述金属板水平方向的中间位置, 每个镰刀形缝隙包括一个 L型槽及一 个水平横槽, 其中, L型槽的长边水平设置于金属板上, 所述水平横槽的一端与 所述 L型槽的长边的末端连接, 所述水平横槽位于所述 L型槽的长边的末端的上
方, 所述 L型槽的短边内还设置一个二极管, 所述一个镰刀形缝隙中的二极管与 另外一个镰刀形缝隙中的二极管连接。
[0006] 优选的, 所述基于镰刀形结构的可重构缝隙天线为长方体结构, 所述金属板为 铜面, 所述金属板的厚度为 0.5盎司。
[0007] 优选的, 所述基板为 FR4的介质基板, 所述基板的厚度为 1.6厘米且介电常数优 选为 4.4。
[0008] 优选的, 所述金属板的长度均为 40 mm、 所述金属板的宽度均为 30 mm、 所述 镰刀形缝隙 110中水平横槽的长度为 6.7mm、 L型槽的长边的长度为 9 mm、 L型槽 的短边的长度为 4mm、 L型槽的宽度及水平横槽的宽度均为 l mm、 所述镰刀形 缝隙距离所述金属板底边的距离为 17mm、 所述镰刀形缝隙距离所述金属板侧边 的距离为 1.5mm。
[0009] 优选的, 当两个二极管都导通吋, 所述的基于镰刀形结构的可重构缝隙天线的 工作频段为 4.64-5.36GHz之间。
[0010] 优选的, 所述当镰刀形缝隙的两个二级管断幵吋, 所述的基于镰刀形结构的可 重构缝隙天线的工作频段为 3.71-4.62GHz。
[0011] 优选的, 所述基于镰刀形结构的可重构缝隙天线的 E面的方向图呈 "8"字型, 所 述基于镰刀形结构的可重构缝隙天线的 H面方向图呈全向型。
发明的有益效果
有益效果
[0012] 本发明采用上述技术方案, 带来的技术效果为: 本发明所述基于镰刀形结构的 可重构缝隙天线可以在保持极化方式不变的情况下, 根据通信要求适吋改变天 线的频率和辐射方向图, 减少无线通信系统的空间噪声, 避免电子干扰, 提高 系统安全性, 增加信道容量, 在汽车和飞机雷达以及卫星通信网络等诸多方面 得到广泛的应用。
对附图的简要说明
附图说明
[0013] 图 1是本发明基于镰刀形结构的可重构缝隙天线的侧面的结构示意图;
[0014] 图 2是本发明基于镰刀形结构的可重构缝隙天线的优选实施例的上表面示意图
[0015] 图 3是本发明基于镰刀形结构的可重构缝隙天线中四种状态的天线发射系数的 优选实施例的示意图;
[0016] 图 4-1至图 4-2是本发明基于镰刀形结构的可重构缝隙天线的四种状态的辐射方 向图的仿真示意图。
[0017] 本发明目的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0018] 为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结 合附图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效, 详细 说明如下。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用 于限定本发明。
[0019] 参照图 1至 3所示, 图 1是本发明基于镰刀形结构的可重构缝隙天线的侧面的结 构示意图; 图 2是本发明基于镰刀形结构的可重构缝隙天线的优选实施例的上表 面示意图; 图 3是本发明基于镰刀形结构的可重构缝隙天线中四种状态的天线发 射系数的优选实施例的示意图。
[0020] 本发明所述基于镰刀形结构的可重构缝隙天线 1包括基板 10、 金属板 11。 在本 实施例中, 所述基于镰刀形结构的可重构缝隙天线 1为长方体结构, 其中, 金属 板 11贴合在所述基板 10的上表面。 所述金属板 11为铜面, 且厚度相同。 优选地 , 所述金属板 11的厚度为 0.5盎司。
[0021] 在本实施例中, 所述基板 10为 FR4的介质基板。 所述基板 10的厚度优选为 1.6厘 米, 介电常数优选为 4.4。
[0022] 所述金属板 11上刻蚀两个左右对称的镰刀形缝隙 110, 所述两个左右对称的镰 刀形缝隙 110设置于所述金属板 11水平方向的中间位置, 其中, 所述镰刀形缝隙 110距离所述金属板 11底边的距离优选为 17mm, 所述镰刀形缝隙 110距离所述金 属板 11侧边的距离优选为 1.5mm。
[0023] 进一步地, 所述镰刀形缝隙 110包括一个 L型槽及一个水平横槽, 其中, L型槽 的长边水平设置于金属板 10上, 且所述水平横槽的一端与所述 L型槽的长边的末
端连接, 且所述水平横槽位于所述 L型槽的长边的末端的上方。 此外, L型槽的 短边内还设置有二极管。 所述一个镰刀形缝隙中的二极管与另外一个镰刀形缝 隙中的二极管连接。 如图 2所示, 两个左右对称的镰刀形缝隙 110分别设置有第 一二极管 D3及第二二极管 D4, 其中, 第一二极管 D3设置于左边的镰刀形缝隙 11 0内, 第二二极管 D4设置于右边的镰刀形缝隙 110内, 第一二极管 D3与第二二极 管 D4导线连接。
[0024] 所述金属板 11的长度为 W, 高度为 L。 所述镰刀形缝隙 110的厚度为金属板 11的 厚度, 所述镰刀形缝隙 110中水平横槽的长度为 , L型槽的长边的长度为 1 3, L 型槽的短边的长度为 1 4 , L型槽的宽度及水平横槽的宽度均为 12。
[0025] 需要说明的是, 所述基于镰刀形结构的可重构缝隙天线 1通过控制两个个二极 管进行状态组合, 来改变天线谐振缝隙长度, 从而实现频率可重构。 具体地说 , 通过控制二极管, 可以控制频率, 也就是说可以调频率, 一个天线就可以实 现多个频段的调节。
[0026] 其中, 采用镰刀形缝隙可以减少 E面 (即基于镰刀形结构的可重构缝隙天线的 波传播的方向与电场方向组成的平面) 交叉极化 (左右对称, 避免方向图的畸 变) , 改善天线辐射性能, 同吋天线实现了小型化 (基于镰刀形结构的可重构 缝隙天线上表面幵了缝隙, 增加电流的有效路径, 电流沿着缝隙走, 有利于电 流的集中分布, 改善了上表面及下表面的电流分布, 从而实现小型化) 。
[0027] 采用叉形馈电的结构, 在叉形馈电结构的水平枝节和垂直枝节的连接处加载两 个二极管, 控制二极管的不同组合状态, 天线可以实现方向图可重构。 同吋, 采用叉形馈电以及对称的天线结构, 天线实现了宽频操作。
[0028] 在本实施例子中, 采用仿真软件 CST对天线各个状态进行仿真分析, 最后优化 的参数为: W = 40 mm、 L = 30 mm、 1 1 = 6.7mm、 l 2 =l mm、 l 3 = 9 mm、 14 =4mm°
[0029] 选取二极管 BAR50-02V作为射频幵关。 二极管的不同组合状态如表所示。
[]
[表 1]
[0030]
[0031] 图 3给出天线各个状态仿真的反射系数曲线。 当两个二极管 (如图 2中二极管 D3 及 D4) 都导通, 即 statel吋, 天线工作频段为 4.64-5.36GHz; 当 D3及 D4断幵, 即 state2曰寸, 天线工作频段为 3.71-4.62GHz。
[0032] 图 4-1至图 4-2给出天线各个谐振频率的仿真辐射方向图。 从图中可以看出, E 面的方向图基本呈" 8"字型, H面 (波传播的方向与磁场方向组成的平面) 的方 向图随幵关状态的改变而发生改变。 即 statel和 state2吋, 如图 4-1和 4-2所示, H 面方向图基本是全向型, 天线在 statel和 state2两个状态实现了频率可重构。
[0033] 需要说明的是, 本发明中的基于镰刀形结构的可重构缝隙天线省略了连接外界 控制设备的导线, 及对第一二极管、 第二二极管进行控制的控制设备。 在本实 施例中, 所述控制设备可以是, 但不限于, 电子幵关或者微控制器等其它任意 能够控制二极管的幵合及闭合的装置。
[0034] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或之间或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0035] 本发明采用上述技术方案, 带来的技术效果为: 本发明所述基于镰刀形结构的 可重构缝隙天线可以在保持极化方式不变的情况下, 根据通信要求适吋改变天 线的频率和辐射方向图, 减少无线通信系统的空间噪声, 避免电子干扰, 提高 系统安全性, 增加信道容量, 在汽车和飞机雷达以及卫星通信网络等诸多方面 得到广泛的应用。
Claims
权利要求书
一种基于镰刀形结构的可重构缝隙天线, 其特征在于, 本发明所述基 于镰刀形结构的可重构缝隙天线包括基板、 贴合于所述基板上表面的 金属板; 所述金属板上刻蚀两个左右对称的镰刀形缝隙, 所述两个左 右对称的镰刀形缝隙设置于所述金属板水平方向的中间位置, 每个镰 刀形缝隙包括一个 L型槽及一个水平横槽, 其中, L型槽的长边水平 设置于金属板上, 所述水平横槽的一端与所述 L型槽的长边的末端连 接, 所述水平横槽位于所述 L型槽的长边的末端的上方, 所述 L型槽 的短边内还设置一个二极管, 所述一个镰刀形缝隙中的二极管与另外 一个镰刀形缝隙中的二极管连接。
如权利要求 1所述的基于镰刀形结构的可重构缝隙天线, 其特征在于 , 所述基于镰刀形结构的可重构缝隙天线为长方体结构, 所述金属板 为铜面, 所述金属板的厚度为 0.5盎司。
如权利要求 2所述的基于镰刀形结构的可重构缝隙天线, 其特征在于 , 所述基板为 FR4的介质基板, 所述基板的厚度为 1.6厘米且介电常数 优选为 4.4。
如权利要求 3所述的基于镰刀形结构的可重构缝隙天线, 其特征在于 , 所述金属板的长度均为 40 mm、 所述金属板的宽度均为 30 mm、 所 述镰刀形缝隙 110中水平横槽的长度为 6.7mm、 L型槽的长边的长度为 9 mm、 L型槽的短边的长度为 4mm、 L型槽的宽度及水平横槽的宽度 均为 l mm、 所述镰刀形缝隙距离所述金属板底边的距离为 17mm、 所 述镰刀形缝隙距离所述金属板侧边的距离为 1.5mm。
如权利要求 4所述的基于镰刀形结构的可重构缝隙天线, 其特征在于 , 当两个二极管都导通吋, 所述的基于镰刀形结构的可重构缝隙天线 的工作频段为 4.64-5.36GHZ之间。
如权利要求 4所述的基于镰刀形结构的可重构缝隙天线, 其特征在于 , 所述当镰刀形缝隙的两个二级管断幵吋, 所述的基于镰刀形结构的 可重构缝隙天线的工作频段为 3.71-4.62GHz。
[权利要求 7] 如权利要求 5或 6所述的基于镰刀形结构的可重构缝隙天线, 其特征在 于, 所述基于镰刀形结构的可重构缝隙天线的 E面的方向图呈 "8"字型 , 所述基于镰刀形结构的可重构缝隙天线的 H面方向图呈全向型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710125531.7A CN106785412B (zh) | 2017-03-04 | 2017-03-04 | 基于镰刀形结构的可重构缝隙天线 |
CN201710125531.7 | 2017-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018161598A1 true WO2018161598A1 (zh) | 2018-09-13 |
Family
ID=58961242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/107201 WO2018161598A1 (zh) | 2017-03-04 | 2017-10-21 | 基于镰刀形结构的可重构缝隙天线 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106785412B (zh) |
WO (1) | WO2018161598A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106785412B (zh) * | 2017-03-04 | 2019-07-23 | 深圳市景程信息科技有限公司 | 基于镰刀形结构的可重构缝隙天线 |
CN107046178B (zh) * | 2017-03-04 | 2018-11-20 | 深圳市景程信息科技有限公司 | 频率及方向图可重构缝隙天线 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120117566A (ko) * | 2011-04-15 | 2012-10-24 | 서울과학기술대학교 산학협력단 | U자형 슬릿빔 조향 단일 안테나 및 이를 통한 빔 조향방법 |
US20150109180A1 (en) * | 2013-10-22 | 2015-04-23 | Symbol Technologies, Inc. | Extensible and reconfigurable antenna |
CN104852137A (zh) * | 2015-05-21 | 2015-08-19 | 山西大学 | 小型化频率可重构微带缝隙天线 |
CN106252839A (zh) * | 2016-08-30 | 2016-12-21 | 电子科技大学 | 一种带金属环可重构的lte mimo手机天线 |
CN106785412A (zh) * | 2017-03-04 | 2017-05-31 | 深圳市景程信息科技有限公司 | 基于镰刀形结构的可重构缝隙天线 |
CN106877008A (zh) * | 2017-02-09 | 2017-06-20 | 山西大学 | 一种小型化宽带频率‑方向图可重构天线 |
CN107046178A (zh) * | 2017-03-04 | 2017-08-15 | 深圳市景程信息科技有限公司 | 频率及方向图可重构缝隙天线 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003103090A1 (en) * | 2002-05-31 | 2003-12-11 | The Regents Of The University Of Michigan | Switchable slot antenna |
CN101326681B (zh) * | 2006-04-03 | 2013-05-08 | 松下电器产业株式会社 | 差动供电可变缝隙天线 |
CN104269618B (zh) * | 2014-09-24 | 2017-02-15 | 福州大学至诚学院 | 频率可重构微带天线及其开关配置方法 |
-
2017
- 2017-03-04 CN CN201710125531.7A patent/CN106785412B/zh not_active Expired - Fee Related
- 2017-10-21 WO PCT/CN2017/107201 patent/WO2018161598A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120117566A (ko) * | 2011-04-15 | 2012-10-24 | 서울과학기술대학교 산학협력단 | U자형 슬릿빔 조향 단일 안테나 및 이를 통한 빔 조향방법 |
US20150109180A1 (en) * | 2013-10-22 | 2015-04-23 | Symbol Technologies, Inc. | Extensible and reconfigurable antenna |
CN104852137A (zh) * | 2015-05-21 | 2015-08-19 | 山西大学 | 小型化频率可重构微带缝隙天线 |
CN106252839A (zh) * | 2016-08-30 | 2016-12-21 | 电子科技大学 | 一种带金属环可重构的lte mimo手机天线 |
CN106877008A (zh) * | 2017-02-09 | 2017-06-20 | 山西大学 | 一种小型化宽带频率‑方向图可重构天线 |
CN106785412A (zh) * | 2017-03-04 | 2017-05-31 | 深圳市景程信息科技有限公司 | 基于镰刀形结构的可重构缝隙天线 |
CN107046178A (zh) * | 2017-03-04 | 2017-08-15 | 深圳市景程信息科技有限公司 | 频率及方向图可重构缝隙天线 |
Also Published As
Publication number | Publication date |
---|---|
CN106785412A (zh) | 2017-05-31 |
CN106785412B (zh) | 2019-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110911839B (zh) | 一种5g双频带高隔离双端口共地单极子天线 | |
CN110011048B (zh) | 一种无外加电路的宽带双极化滤波偶极子天线 | |
WO2018161597A1 (zh) | 频率及方向图可重构缝隙天线 | |
CN105048081B (zh) | 一种八单元超宽带mimo天线 | |
WO2018161599A1 (zh) | 基于叉形结构的可重构缝隙天线 | |
CN110233349B (zh) | 多输入多输出天线及终端设备 | |
CN109742533B (zh) | 一种差分馈电双极化方向图可重构天线 | |
CN106684550A (zh) | 一种h形缝隙结构的双极化天线 | |
WO2018133538A1 (zh) | 具有陷波特性的可重构超宽带单极天线 | |
CN201699130U (zh) | 双极化天线结构 | |
CN103490154B (zh) | 一种基于双边缘谐振器加载的小型化三频带印刷天线 | |
WO2022242069A1 (zh) | 双极化滤波天线单元和双极化滤波天线阵列 | |
CN204179226U (zh) | 一种基于磁介电材料的七频段多输入多输出手机天线 | |
CN105514598A (zh) | 一种小型的共面波导馈电的宽带天线 | |
WO2018161598A1 (zh) | 基于镰刀形结构的可重构缝隙天线 | |
CN103531914A (zh) | 基于六边形基片集成波导的高阶模谐振缝隙天线 | |
CN105846071A (zh) | 一种具有良好带外抑制特性的电小三阶滤波器天线 | |
CN106876960A (zh) | 一种基于t形槽的单极子超宽带天线 | |
CN205376754U (zh) | 一种小型的共面波导馈电的宽带天线 | |
CN206225537U (zh) | 一种宽带极化可重构基站天线 | |
CN207967300U (zh) | 一种矩形裂缝式5g阵列贴片天线 | |
Sekhar et al. | Quad Band Triangular Ring Slot Antenna | |
CN110233341A (zh) | 一种槽缝低剖面的宽带双极化天线 | |
CN111029764B (zh) | 频率和方向图混合可重构天线及通信设备 | |
CN209804897U (zh) | 多输入多输出天线及终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899707 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899707 Country of ref document: EP Kind code of ref document: A1 |