+

WO2018146801A1 - Vehicle lighting control method and vehicle lighting control apparatus - Google Patents

Vehicle lighting control method and vehicle lighting control apparatus Download PDF

Info

Publication number
WO2018146801A1
WO2018146801A1 PCT/JP2017/004976 JP2017004976W WO2018146801A1 WO 2018146801 A1 WO2018146801 A1 WO 2018146801A1 JP 2017004976 W JP2017004976 W JP 2017004976W WO 2018146801 A1 WO2018146801 A1 WO 2018146801A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
fog
light distribution
host vehicle
lighting control
Prior art date
Application number
PCT/JP2017/004976
Other languages
French (fr)
Japanese (ja)
Inventor
真弥 北勝
隆 蘆田
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to CN201780085790.XA priority Critical patent/CN111278679A/en
Priority to PCT/JP2017/004976 priority patent/WO2018146801A1/en
Publication of WO2018146801A1 publication Critical patent/WO2018146801A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/18Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights being additional front lights
    • B60Q1/20Fog lights

Definitions

  • the present invention relates to a vehicle illumination control method and a vehicle illumination control apparatus for controlling light distribution of illumination mounted on a vehicle.
  • Patent Document 1 when a fog detection unit is provided in a vehicle and the occurrence of fog is detected, the illumination light emitted from the headlamp is reflected by the fog by switching the light distribution of the headlamp from a high beam to a low beam. It is disclosed that a vehicle occupant is prevented from being dazzled.
  • the present invention has been made in order to solve such a conventional problem.
  • the object of the present invention is to prevent the passenger of the own vehicle from being dazzled when fog occurs.
  • An object of the present invention is to provide a vehicle illumination control method and a vehicle illumination control device that can make it easier for pedestrians and oncoming vehicles in the vicinity of the vehicle to recognize the presence of the host vehicle.
  • the headlight transmits a light distribution in an area in front of the host vehicle to a low beam.
  • the light distribution in the area adjacent to the front of the host vehicle is farther than the low beam.
  • a pedestrian around the host vehicle and an occupant of the oncoming vehicle recognize the presence of the host vehicle while suppressing dazzling of the passenger of the host vehicle. It becomes possible to make it easy.
  • FIG. 1 is a block diagram showing the configuration of a vehicle lighting control device and its peripheral devices according to the first embodiment of the present invention.
  • FIG. 2A is an explanatory diagram illustrating a configuration of a headlamp.
  • FIG. 2B is an explanatory diagram illustrating a state in which LEDs in a region to be a low beam among the LEDs included in the headlamp are turned off.
  • FIG. 3 is a block diagram illustrating a detailed configuration of the fog detection unit of the vehicle lighting control apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing a processing procedure of the vehicle lighting control apparatus according to the first embodiment of the present invention.
  • FIG. 5A is an explanatory diagram schematically illustrating a state in which an area in front of the host vehicle is a low beam and an adjacent area is a high beam when fog occurs.
  • FIG. 5B is an explanatory diagram schematically illustrating a state in which the entire area in front of the host vehicle is a high beam when fog is generated.
  • FIG. 6 is an explanatory diagram showing an example in which the headlamp is composed of a headlight and an ADB.
  • FIG. 7 is a block diagram showing the configuration of the vehicle lighting control device and its peripheral devices according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart showing a processing procedure of the control device for vehicle lighting according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the vehicle lighting control apparatus according to the first embodiment of the present invention.
  • the control device 100 controls the lighting, extinguishing, and light distribution of the left and right headlamps 21R and 21L (lighting and headlights) in accordance with the occurrence of fog around the vehicle.
  • the control device 100 includes a fog detection unit 11 that detects the presence or absence of fog generation, and an illumination control unit 12 (illumination control circuit) that controls the headlamps 21R and 21L.
  • the illumination control circuit (illumination control unit 12) can be realized using a microcomputer including a CPU (Central Processing Unit), a memory, and an input / output unit.
  • a computer program (lighting control program) for causing the microcomputer to function as a lighting control circuit is installed in the microcomputer and executed.
  • the microcomputer functions as a plurality of information processing circuits (lighting control unit 13 and lane detection unit 15) included in the illumination control circuit.
  • the illumination control circuit is realized by software is shown.
  • ASIC application specific integrated circuit
  • each information processing circuit (the lighting control unit 13 and the lane detection unit 15) included in the illumination control circuit may be configured by individual hardware.
  • the lighting control circuit may be used also as an electronic control unit (ECU) used for other control related to the vehicle.
  • ECU electronice control unit
  • the headlamps 21R and 21L are adaptive driving beams (ADB) including a plurality of (for example, 120) LEDs arranged in a matrix of a plurality of rows and a plurality of columns.
  • ADB adaptive driving beams
  • the headlamps 21R and 21L can control the number, position, and illuminance of the LEDs to be lit.
  • projector-type illumination can be used as another example of the headlamps 21R and 21L.
  • FIG. 2A is an explanatory diagram schematically showing the configuration of the headlamps 21R and 21L, and shows an example in which 5 rows and 30 columns of LEDs are arranged.
  • a high beam and a low beam can be switched by setting the lighting area
  • a low beam is a light distribution that irradiates light only to a region below the field of view as viewed from the front of the host vehicle.
  • a high beam is a light distribution that irradiates light to a region relatively above the low beam, that is, a low beam. It is a light distribution that makes the irradiation region far away. Therefore, when a low beam is used, light can be irradiated to a region near the host vehicle, and when a high beam is used, light can be irradiated to a relatively far region.
  • FIG. 2B shows an example of lighting and extinguishing of the LED, the LED described in black indicates the extinguishing, and the LED described in white indicates the lighting.
  • the region R1 can be a low beam, and the regions R2 and R3 can be a high beam.
  • FIG. 2 for ease of explanation, 5 rows and 30 columns are shown, but the present invention is not limited to this.
  • the illumination control unit 12 is based on an image captured by a lighting control unit 13 that individually controls lighting and extinguishing of a plurality of LEDs included in the headlamps 21R and 21L and an image captured by a camera 16 mounted on the vehicle.
  • the vehicle includes a lane detector 15 that recognizes a white line on the road surface on which the vehicle travels and detects a lane on which the vehicle travels.
  • FIG. 3 is a configuration diagram illustrating an example of the fog detection unit 11.
  • the first illuminance sensor 31 that detects the illuminance of the area irradiated with the headlamps 21 ⁇ / b> R and 21 ⁇ / b> L and the illuminance of the area not irradiated with light are illustrated.
  • a second illuminance sensor 32 for detection is provided.
  • a comparison control unit 33 is provided that determines whether fog has occurred based on the difference between the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32.
  • a process for determining whether or not fog has occurred will be described.
  • the headlamps 21R and 21L emit light toward the front of the vehicle for a predetermined time.
  • the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32 are acquired, and the difference between them is calculated.
  • the light when the headlamps 21R and 21L are lit is irregularly reflected by the fog and detected by the first illuminance sensor 31.
  • the second illuminance sensor 32 does not detect light.
  • the difference between the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32 is calculated, and when this difference is large, it is estimated that the irregular reflection of light is large, and as a result Can be determined to have occurred.
  • an example in which the generation of fog is detected using the two illuminance sensors 31 and 32 is shown, but a configuration in which the generation of fog is detected using another method is also possible.
  • the occupant monitors the surrounding conditions and determines that fog is generated, it is possible to detect the generation of fog by operating an operation switch (not shown) or the like.
  • the vehicle lighting control device 100 determines that fog is occurring, the light distribution of the headlamps 21R and 21L becomes a low beam for the traveling lane of the host vehicle.
  • the lane (adjacent area) or the road shoulder (adjacent area) adjacent to the traveling lane of the host vehicle is set as a high beam.
  • step S11 the illumination control unit 12 acquires speed data from an ECU (not shown) or the like mounted on the vehicle. Then, it is determined whether or not the traveling speed Vs of the vehicle is within a range of 25 to 60 km / h. When the vehicle is not traveling at the speed of 25 to 60 km / h (NO in step S11), the control of the headlamps 21R and 21L based on the generation of fog is not performed, and the normal light distribution is performed in step S15. The headlamps 21R and 21L are controlled so as to be.
  • the traveling speed is 25 km / h or less, it is a slow driving, and it can be estimated that there is no problem even if the existence of the own vehicle is not noticed by the oncoming vehicle or the pedestrian, so the light distribution control at the time of fog generation is performed. Not performed. Further, when the traveling speed is 60 km / h or more, it can be estimated that smooth traveling is performed without performing the light distribution control at the time of fog generation, so the light distribution control at the time of fog generation is performed. Absent.
  • the normal light distribution is, for example, a light distribution in which the area in front of the host vehicle is a high beam and the other area is a low beam during night driving.
  • the illumination control unit 12 recognizes that fog has been generated in the fog detection unit 11 in step S12. Judge whether or not. As described above, the determination of fog generation is performed by calculating the difference between the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32 in FIG. It is determined whether or not this has occurred.
  • the illumination control unit 12 sets the headlamps 21R and 21L to normal light distribution in step S15.
  • the illumination control unit 12 recognizes the traveling lane of the host vehicle detected by the lane detecting unit 15, and in step S14, the front of the host vehicle is detected.
  • the area of the traveling lane is a low beam
  • the area of the adjacent lane adjacent to the traveling lane and the road shoulder area is a high beam.
  • the “adjacent lane” indicates, for example, an opposite lane in the case of a one-way lane facing traffic lane.
  • a lane for example, an overtaking lane that travels in the same direction as the host vehicle is shown.
  • the illumination light is irradiated to the low beam arrival line q2, and the illumination light is irradiated to the high beam areas Q1 and Q2.
  • a fog lamp mounted on a general vehicle emits light up to the line q1.
  • the illumination light is irradiated to the high beam region Q3, which is a region higher in front of the host vehicle than the low beam arrival line q2, so that the irradiation light is fogged.
  • the dazzling can be avoided.
  • the vehicle lighting control apparatus 100 when fog is generated around the host vehicle, the area of the traveling lane ahead of the host vehicle is set as a low beam. It is possible to avoid the problem that the illumination light irradiated from 21R and 21L is diffusely reflected by fog and the front of the host vehicle becomes difficult to see. Moreover, since the adjacent lanes and road shoulders can be made high beams, for example, a pedestrian walking on the road shoulders can quickly notice the presence of the vehicle. In addition, the vehicle traveling in the adjacent lane can be quickly noticed in the same manner.
  • the adjacent lane is an opposite lane, such as one-way traffic on one side
  • the area of this opposite lane is set to a high beam, so that the host vehicle is present in the oncoming vehicle in the opposite lane.
  • the adjacent lane is an overtaking lane as in the case of a two-lane road
  • the vehicle traveling on the overtaking lane can be made aware of the presence of the own vehicle.
  • the traveling speed Vs when the traveling speed Vs is acquired and the traveling speed Vs is greater than the lower limit speed (for example, 25 km / m) and less than the upper limit speed (for example, 60 km / h), Implement light distribution control. Therefore, when traveling at a speed lower than the lower limit speed, light distribution control at the time of fog generation is not performed, so unnecessary control can be avoided. Similarly, when the vehicle travels at a speed higher than the upper limit speed, the light distribution control at the time of fog generation is not performed, so unnecessary control can be avoided.
  • the lower limit speed and the up / down speed of the traveling speed Vs are set. However, any one of the lower limit speed and the upper limit speed may be set.
  • the front of the vehicle is not necessarily the front area of the own lane.
  • the front of the vehicle may become an adjacent lane. If this area is a low beam, the vehicle traveling in the adjacent lane will be irradiated with a high beam. It becomes difficult to notice the existence of the vehicle.
  • the traveling direction of the host vehicle is estimated by detecting the steering angle of the vehicle, a front region is set according to the traveling direction, and light is emitted so that the front region becomes a low beam. . Furthermore, light is irradiated so that the periphery becomes a high beam. As a result, the vehicle traveling in the adjacent lane can be reliably irradiated with the high beam, and the vehicle traveling in the adjacent lane can be made aware of the presence of the host vehicle.
  • a map of a travel path on which the host vehicle travels is acquired from map data, a lane curve road is recognized according to the map, and a low beam and It is also possible to set the area to be used.
  • the projector control unit can appropriately set the area to be projected, the area in front of the lane in which the host vehicle travels is set as a low beam, the adjacent lane and the road shoulder are set as a high beam, and thus the first embodiment. The same effect can be achieved.
  • the headlamps 21R and 21L made of a plurality of LEDs are provided.
  • the ADB (22) composed of a plurality of LEDs are mounted. At normal times when fog is not generated, light is irradiated forward of the vehicle using a lighting light, and light distribution control using ADB (22) is performed only when fog is generated.
  • the light distribution can be controlled using the ADB, so that the same effect as that of the first embodiment described above can be obtained.
  • FIG. 7 is a block diagram showing the configuration of the vehicle lighting control apparatus according to the second embodiment.
  • the control device 101 shown in FIG. 7 is different from the control device 100 shown in the first embodiment in that the illumination control unit 12a includes an illuminance control unit 14.
  • the illuminance control unit 14 controls the illuminance of each LED mounted on each headlamp 21R, 21L.
  • the fog detection part 11 is equipped with the function to detect not only the presence or absence of fog generation but the density of fog.
  • the fog density is further detected, and the higher the fog density, the higher the illuminance of the LED that is lit with the high beam.
  • step S31 the illumination control unit 12a acquires speed data from an ECU (not shown) or the like mounted on the vehicle. Then, it is determined whether or not the traveling speed Vs of the vehicle is within a range of 25 to 60 km / h. When the vehicle is not traveling at the speed of 25 to 60 km / h (NO in step S31), the control of the headlamps 21R and 21L based on the generation of fog is not performed, and the normal light distribution is performed in step S37. The headlamps 21R and 21L are controlled so as to be.
  • step S32 the lighting control unit 13 recognizes that fog has occurred in the fog detection unit 11. Determine whether or not.
  • step S37 the illumination control unit 12a sets the headlamps 21R and 21L to normal light distribution.
  • the normal light distribution is, for example, a light distribution in which the area in front of the host vehicle is a high beam and the other area is a low beam during night driving.
  • the illumination control unit 12a acquires the fog concentration in step S33.
  • the fog density is calculated by calculating the difference between the illuminance detected by the first illuminance sensor 31 of FIG. 2 and the illuminance detected by the second illuminance sensor 32, and the greater the difference, the higher the density.
  • step S34 the lane detector 15 of the illumination controller 12a analyzes the image captured by the camera 16 and recognizes the traveling lane of the host vehicle.
  • step S35 the illumination control unit 12a sets the area of the traveling lane of the host vehicle detected by the lane detection unit 15 as a low beam, and sets the area of the adjacent lane adjacent to the traveling lane and the road shoulder area as a high beam.
  • step S36 the illuminance control unit 14 of the illumination control unit 12a controls the illuminance when the LED is turned on. Specifically, control is performed such that the higher the fog density, the higher the illuminance of the LED in the high beam area. Therefore, when the fog concentration is high and it is difficult to visually recognize the surrounding situation, the illuminance of the LED to be lit is controlled to be high, so that a pedestrian traveling on the road shoulder or a vehicle traveling in the adjacent lane It becomes possible to make it easier to notice.
  • the mist density is detected, and the higher the mist density, the higher the illuminance of the LED to be a high beam, so the mist density is high.
  • illumination light with higher illuminance can be irradiated. Therefore, even when the fog concentration is high and it is difficult to visually recognize the surrounding situation, the presence of the host vehicle can be effectively recognized by a passenger of another vehicle or a pedestrian walking in the vicinity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

The present invention comprises a fog detection unit (11) which detects the presence or absence of fog around a vehicle. The present invention further comprises a lighting control unit (12) which, when the occurrence of fog is detected by the fog detection unit (11), sets to low beam the distribution of light ahead of the vehicle in the lane being travelled on, and sets to high beam the light distribution in a region adjacent to the travel lane. During the occurrence of fog, the region ahead of the lane that the vehicle is travelling on is set to low beam, and thus it is possible to prevent the light radiated from headlights (21R, 21L) from reflecting diffusely and dazzling the occupants of the vehicle.

Description

車両用照明の制御方法及び車両用照明の制御装置VEHICLE LIGHTING CONTROL METHOD AND VEHICLE LIGHTING CONTROL DEVICE
 本発明は、車両に搭載する照明の配光を制御する車両用照明の制御方法及び車両用照明の制御装置に関する。 The present invention relates to a vehicle illumination control method and a vehicle illumination control apparatus for controlling light distribution of illumination mounted on a vehicle.
 特許文献1には、車両に霧検出部を設け、霧の発生を検出すると、前照灯の配光をハイビームからロービームに切り替えることにより、前照灯より照射した照明光が霧で反射して車両の乗員が眩惑することを防止することが開示されている。 In Patent Document 1, when a fog detection unit is provided in a vehicle and the occurrence of fog is detected, the illumination light emitted from the headlamp is reflected by the fog by switching the light distribution of the headlamp from a high beam to a low beam. It is disclosed that a vehicle occupant is prevented from being dazzled.
特開2015-39902号公報JP 2015-39902 A
 しかしながら、特許文献1に開示された従来例は、霧の発生が検出されたときに前照灯全体の配光がハイビームからロービームに切り替えられるので、前照灯より照射される光が遠くに到達し難くなる。このため、自車両が走行する車線周辺の歩行者や対向車線を走行する車両の乗員は、自車両がある程度の距離に接近するまで、自車両の存在を認識し難くなる可能性がある。 However, in the conventional example disclosed in Patent Document 1, the light distribution of the entire headlamp is switched from the high beam to the low beam when the occurrence of fog is detected, so that the light irradiated from the headlamp reaches far away. It becomes difficult to do. For this reason, a pedestrian around the lane in which the host vehicle travels or an occupant of the vehicle traveling in the oncoming lane may have difficulty recognizing the presence of the host vehicle until the host vehicle approaches a certain distance.
 本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、霧が発生したときに、自車両の乗員が眩惑されることを抑制しつつ、自車両周辺の歩行者や対向車両の乗員が自車両の存在を認識し易くすることが可能な車両用照明の制御方法、及び車両用照明の制御装置を提供することにある。 The present invention has been made in order to solve such a conventional problem. The object of the present invention is to prevent the passenger of the own vehicle from being dazzled when fog occurs. An object of the present invention is to provide a vehicle illumination control method and a vehicle illumination control device that can make it easier for pedestrians and oncoming vehicles in the vicinity of the vehicle to recognize the presence of the host vehicle.
 本発明の一態様は、自車両の周囲に霧が発生しているか否かを判断し、霧が発生していると判断されたとき、ヘッドライトは、自車両正面の領域の配光をロービームとし、自車両正面に隣接する領域の配光を、ロービームよりも遠方にする。 According to one aspect of the present invention, it is determined whether or not fog is generated around the host vehicle, and when it is determined that fog is generated, the headlight transmits a light distribution in an area in front of the host vehicle to a low beam. The light distribution in the area adjacent to the front of the host vehicle is farther than the low beam.
 本発明の一態様によれば、霧が発生しているときに、自車両の乗員が眩惑されることを抑制しつつ、自車両周辺の歩行者や対向車両の乗員が自車両の存在を認識し易くすることが可能となる。 According to one aspect of the present invention, when fog is generated, a pedestrian around the host vehicle and an occupant of the oncoming vehicle recognize the presence of the host vehicle while suppressing dazzling of the passenger of the host vehicle. It becomes possible to make it easy.
図1は、本発明の第1実施形態に係る車両用照明の制御装置、及びその周辺機器の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a vehicle lighting control device and its peripheral devices according to the first embodiment of the present invention. 図2Aは、前照灯の構成を示す説明図である。FIG. 2A is an explanatory diagram illustrating a configuration of a headlamp. 図2Bは、前照灯に含まれる各LEDのうち、ロービームとする領域のLEDを消灯する様子を示す説明図である。FIG. 2B is an explanatory diagram illustrating a state in which LEDs in a region to be a low beam among the LEDs included in the headlamp are turned off. 図3は、本発明の第1実施形態に係る車両用照明の制御装置の、霧検出部の詳細な構成を示すブロック図である。FIG. 3 is a block diagram illustrating a detailed configuration of the fog detection unit of the vehicle lighting control apparatus according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る車両用照明の制御装置の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a processing procedure of the vehicle lighting control apparatus according to the first embodiment of the present invention. 図5Aは、霧発生時に自車両前方の領域をロービームとし、隣接する領域をハイビームとする様子を模式的に示す説明図である。FIG. 5A is an explanatory diagram schematically illustrating a state in which an area in front of the host vehicle is a low beam and an adjacent area is a high beam when fog occurs. 図5Bは、霧発生時に自車両前方の領域全体をハイビームとする様子を模式的に示す説明図である。FIG. 5B is an explanatory diagram schematically illustrating a state in which the entire area in front of the host vehicle is a high beam when fog is generated. 図6は、前照灯をヘッドライトとADBで構成する例を示す説明図である。FIG. 6 is an explanatory diagram showing an example in which the headlamp is composed of a headlight and an ADB. 図7は、本発明の第2実施形態に係る車両用照明の制御装置、及びその周辺機器の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the vehicle lighting control device and its peripheral devices according to the second embodiment of the present invention. 図8は、本発明の第2実施形態に係る車両用照明の制御装置の処理手順を示すフローチャートである。FIG. 8 is a flowchart showing a processing procedure of the control device for vehicle lighting according to the second embodiment of the present invention.
 以下、本発明の実施形態について図面を参照して説明する。
[第1実施形態の説明]
 図1は、本発明の第1実施形態に係る車両用照明の制御装置の構成を示すブロック図である。図1に示すように、制御装置100は、車両周囲の霧の発生状況に応じて、左右の前照灯21R、21L(照明、ヘッドライト)の点灯、消灯、及び配光を制御するものであり、霧発生の有無を検出する霧検出部11と、前照灯21R、21Lを制御する照明制御部12(照明制御回路)、を備えている。
Embodiments of the present invention will be described below with reference to the drawings.
[Description of First Embodiment]
FIG. 1 is a block diagram showing the configuration of the vehicle lighting control apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the control device 100 controls the lighting, extinguishing, and light distribution of the left and right headlamps 21R and 21L (lighting and headlights) in accordance with the occurrence of fog around the vehicle. Yes, it includes a fog detection unit 11 that detects the presence or absence of fog generation, and an illumination control unit 12 (illumination control circuit) that controls the headlamps 21R and 21L.
 照明制御回路(照明制御部12)は、CPU(中央処理装置)、メモリ、及び入出力部を備えるマイクロコンピュータを用いて実現可能である。マイクロコンピュータを照明制御回路として機能させるためのコンピュータプログラム(照明制御プログラム)を、マイクロコンピュータにインストールして実行する。これにより、マイクロコンピュータは、照明制御回路が備える複数の情報処理回路(点灯制御部13、車線検出部15)として機能する。なお、ここでは、ソフトウェアによって照明制御回路を実現する例を示すが、勿論、実施形態に記載した機能を実行するようにアレンジした特定用途向け集積回路(ASIC)や従来型の回路部品のような専用のハードウェアを用意して、照明制御回路を構成することも可能である。また、照明制御回路に含まれる各情報処理回路(点灯制御部13、車線検出部15)を個別のハードウェアにより構成してもよい。更に、照明制御回路は、車両にかかわる他の制御に用いる電子制御ユニット(ECU)と兼用してもよい。 The illumination control circuit (illumination control unit 12) can be realized using a microcomputer including a CPU (Central Processing Unit), a memory, and an input / output unit. A computer program (lighting control program) for causing the microcomputer to function as a lighting control circuit is installed in the microcomputer and executed. Thereby, the microcomputer functions as a plurality of information processing circuits (lighting control unit 13 and lane detection unit 15) included in the illumination control circuit. Here, an example in which the illumination control circuit is realized by software is shown. Of course, such as an application specific integrated circuit (ASIC) or a conventional circuit component arranged to execute the function described in the embodiment. It is also possible to prepare dedicated hardware and configure the lighting control circuit. In addition, each information processing circuit (the lighting control unit 13 and the lane detection unit 15) included in the illumination control circuit may be configured by individual hardware. Furthermore, the lighting control circuit may be used also as an electronic control unit (ECU) used for other control related to the vehicle.
 前照灯21R、21Lは、図2に示すように、複数行、複数列のマトリクス状に配列された複数(例えば、120個)のLEDを備えたアダプティブ・ドライビング・ビーム(ADB)である。該前照灯21R、21Lは、点灯するLEDの個数、位置、及び照度を制御することが可能である。また、前照灯21R、21Lの他の例として、例えばプロジェクタ形式の照明とすることも可能である。 As shown in FIG. 2, the headlamps 21R and 21L are adaptive driving beams (ADB) including a plurality of (for example, 120) LEDs arranged in a matrix of a plurality of rows and a plurality of columns. The headlamps 21R and 21L can control the number, position, and illuminance of the LEDs to be lit. Further, as another example of the headlamps 21R and 21L, for example, projector-type illumination can be used.
 図2Aは、前照灯21R、21Lの構成を模式的に示す説明図であり、5行、30列のLEDが配列された例を示している。そして、複数のLEDの点灯領域を適宜設定することにより、ハイビーム、及びロービームを切り替えることができる。ロービームとは、自車両から前方を見た視界の下方の領域のみに光を照射する配光であり、ハイビームとはロービームよりも相対的に上方の領域まで光を照射する配光、即ち、ロービームよりも照射領域を遠方にする配光である。従って、ロービームとした場合には、自車両から近い領域に光を照射することができ、ハイビームとした場合には、相対的に遠い領域まで光を照射することができる。 FIG. 2A is an explanatory diagram schematically showing the configuration of the headlamps 21R and 21L, and shows an example in which 5 rows and 30 columns of LEDs are arranged. And a high beam and a low beam can be switched by setting the lighting area | region of several LED suitably. A low beam is a light distribution that irradiates light only to a region below the field of view as viewed from the front of the host vehicle. A high beam is a light distribution that irradiates light to a region relatively above the low beam, that is, a low beam. It is a light distribution that makes the irradiation region far away. Therefore, when a low beam is used, light can be irradiated to a region near the host vehicle, and when a high beam is used, light can be irradiated to a relatively far region.
 図2Bは、LEDの点灯、消灯の一例を示しており、黒で記載しているLEDは消灯を示し、白で記載しているLEDは点灯を示している。図2Bに示すように、点灯するLEDを設定することにより、領域R1をロービームとし、領域R2、R3をハイビームとすることができる。なお、図2では説明を簡便にするために5行、30列としているが、本発明はこれに限定されるものではない。 FIG. 2B shows an example of lighting and extinguishing of the LED, the LED described in black indicates the extinguishing, and the LED described in white indicates the lighting. As shown in FIG. 2B, by setting the LED to be lit, the region R1 can be a low beam, and the regions R2 and R3 can be a high beam. In FIG. 2, for ease of explanation, 5 rows and 30 columns are shown, but the present invention is not limited to this.
 照明制御部12は、前照灯21R、21Lに含まれる複数のLEDの点灯、消灯を個々に制御する点灯制御部13と、車両に搭載されるカメラ16で撮像される画像に基づいて、車両が走行する路面の白線を認識し、車両が走行する車線を検出する車線検出部15を備えている。 The illumination control unit 12 is based on an image captured by a lighting control unit 13 that individually controls lighting and extinguishing of a plurality of LEDs included in the headlamps 21R and 21L and an image captured by a camera 16 mounted on the vehicle. The vehicle includes a lane detector 15 that recognizes a white line on the road surface on which the vehicle travels and detects a lane on which the vehicle travels.
 霧検出部11は、車両の周囲に霧が発生しているか否かを判断するものである。図3は、霧検出部11の一例を示す構成図であり、前照灯21R、21Lによる光が照射される領域の照度を検出する第1照度センサ31と、光が照射されない領域の照度を検出する第2照度センサ32を備えている。更に、第1照度センサ31で検出される照度と、第2照度センサ32で検出される照度との差分に基づいて、霧発生の有無を判断する比較制御部33を備えている。以下、霧発生の有無を判断する処理について説明する。 The fog detector 11 determines whether or not fog has occurred around the vehicle. FIG. 3 is a configuration diagram illustrating an example of the fog detection unit 11. The first illuminance sensor 31 that detects the illuminance of the area irradiated with the headlamps 21 </ b> R and 21 </ b> L and the illuminance of the area not irradiated with light are illustrated. A second illuminance sensor 32 for detection is provided. Furthermore, a comparison control unit 33 is provided that determines whether fog has occurred based on the difference between the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32. Hereinafter, a process for determining whether or not fog has occurred will be described.
 初めに、前照灯21R、21Lにより車両の前方に向けて所定時間だけ光を照射する。このとき、第1照度センサ31で検出される照度、第2照度センサ32で検出される照度を取得し、これらの差分を演算する。
 車両の周囲に霧が発生している場合には、前照灯21R、21Lが点灯したときの光が霧により乱反射して第1照度センサ31で検出される。一方、第2照度センサ32では、光は検出されない。
First, the headlamps 21R and 21L emit light toward the front of the vehicle for a predetermined time. At this time, the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32 are acquired, and the difference between them is calculated.
When fog is generated around the vehicle, the light when the headlamps 21R and 21L are lit is irregularly reflected by the fog and detected by the first illuminance sensor 31. On the other hand, the second illuminance sensor 32 does not detect light.
 従って、第1照度センサ31で検出される照度と第2照度センサ32で検出される照度の差分を演算し、この差分が大きい場合には、光の乱反射が大きいものと推定され、ひいては、霧が発生していると判断することができる。 Accordingly, the difference between the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32 is calculated, and when this difference is large, it is estimated that the irregular reflection of light is large, and as a result Can be determined to have occurred.
 なお、本実施形態では、2つの照度センサ31、32を用いて霧の発生を検出する例について示すが、他の方法を用いて霧の発生を検出する構成とすることも可能である。また、乗員が周囲の状況を監視して、霧が発生していると判断した場合に、操作スイッチ(図示省略)を操作する等により、霧の発生を検出する構成とすることも可能である。更に、通信(例えば、スマートフォン等)により気象庁や天候を提供する基地局より送信される霧発生情報を取得し、取得した情報に基づいて霧の発生を判断することも可能である。 In the present embodiment, an example in which the generation of fog is detected using the two illuminance sensors 31 and 32 is shown, but a configuration in which the generation of fog is detected using another method is also possible. In addition, when the occupant monitors the surrounding conditions and determines that fog is generated, it is possible to detect the generation of fog by operating an operation switch (not shown) or the like. . Furthermore, it is also possible to acquire fog generation information transmitted from the Meteorological Agency or a base station providing the weather by communication (for example, a smartphone) and determine the occurrence of fog based on the acquired information.
 また、カメラ16で撮像した画像を解析して霧の発生状況を検出することや、ワイパの作動状態に応じて霧の発生状況を検出することも可能である。 Also, it is possible to detect the fog generation state by analyzing the image captured by the camera 16 and to detect the fog generation state according to the operating state of the wiper.
 そして、本実施形態に係る車両用照明の制御装置100は、霧が発生していると判断された場合に、自車両の走行車線については、前照灯21R、21Lの配光がロービームとなるように制御し、自車両の走行車線に隣接する車線(隣接する領域)、或いは路肩(隣接する領域)については、ハイビームとする。こうすることにより、霧発生時という、他車両、或いは歩行者が自車両に気づき難い状況下においても、自車両の存在を他車両の乗員や歩行者に気づき易くする。更に、自車両前方に照射する光の乱反射の影響を回避する。 When the vehicle lighting control device 100 according to the present embodiment determines that fog is occurring, the light distribution of the headlamps 21R and 21L becomes a low beam for the traveling lane of the host vehicle. Thus, the lane (adjacent area) or the road shoulder (adjacent area) adjacent to the traveling lane of the host vehicle is set as a high beam. By doing so, even when other vehicles or pedestrians are not easily aware of the own vehicle when fog occurs, the presence of the own vehicle can be easily noticed by occupants and pedestrians of the other vehicle. Furthermore, the influence of the irregular reflection of the light irradiated in front of the host vehicle is avoided.
 以下、上述のように構成された本実施形態に係る車両用照明の制御装置100の処理手順を、図4に示すフローチャートを参照して説明する。この処理は、図1に示す照明制御部12によって実行される。
 初めに、ステップS11において、照明制御部12は、車両に搭載されるECU(図示省略)等からの速度データを取得する。そして、車両の走行速度Vsが25~60km/hの範囲内であるか否かを判断する。上記の25~60km/hの速度で走行していない場合には(ステップS11でNO)、霧発生に基づく前照灯21R、21Lの制御を実施せずに、ステップS15において、通常配光となるように前照灯21R、21Lを制御する。
Hereinafter, the processing procedure of the vehicular illumination control device 100 according to the present embodiment configured as described above will be described with reference to the flowchart shown in FIG. This process is executed by the illumination control unit 12 shown in FIG.
First, in step S11, the illumination control unit 12 acquires speed data from an ECU (not shown) or the like mounted on the vehicle. Then, it is determined whether or not the traveling speed Vs of the vehicle is within a range of 25 to 60 km / h. When the vehicle is not traveling at the speed of 25 to 60 km / h (NO in step S11), the control of the headlamps 21R and 21L based on the generation of fog is not performed, and the normal light distribution is performed in step S15. The headlamps 21R and 21L are controlled so as to be.
 即ち、走行速度が25km/h以下である場合は、徐行運転であり、自車両の存在が対向車両や歩行者に気づかれなくても問題ないと推定できるので、霧発生時の配光制御を行わない。更に、走行速度が60km/h以上である場合には、霧発生時の配光制御を実施しなくても円滑な走行が行われていると推定できるので、霧発生時の配光制御を行わない。通常配光は、例えば、夜間走行時において、自車両正面の領域をハイビームとし、それ以外の領域をロービームとする配光である。 That is, when the traveling speed is 25 km / h or less, it is a slow driving, and it can be estimated that there is no problem even if the existence of the own vehicle is not noticed by the oncoming vehicle or the pedestrian, so the light distribution control at the time of fog generation is performed. Not performed. Further, when the traveling speed is 60 km / h or more, it can be estimated that smooth traveling is performed without performing the light distribution control at the time of fog generation, so the light distribution control at the time of fog generation is performed. Absent. The normal light distribution is, for example, a light distribution in which the area in front of the host vehicle is a high beam and the other area is a low beam during night driving.
 一方、自車両が25~60km/hの範囲内の速度で走行している場合には(ステップS11でYES)、ステップS12において、照明制御部12は、霧検出部11にて霧発生と認識しているか否かを判断する。上述したように、霧発生の判断は、図2の第1照度センサ31で検出した照度と第2照度センサ32で検出した照度との差分を演算し、この差分の大きさに基づいて、霧が発生しているか否かを判断する。 On the other hand, when the host vehicle is traveling at a speed in the range of 25 to 60 km / h (YES in step S11), the illumination control unit 12 recognizes that fog has been generated in the fog detection unit 11 in step S12. Judge whether or not. As described above, the determination of fog generation is performed by calculating the difference between the illuminance detected by the first illuminance sensor 31 and the illuminance detected by the second illuminance sensor 32 in FIG. It is determined whether or not this has occurred.
 霧が発生していない場合には(ステップS12でNO)、ステップS15にて、照明制御部12は、前照灯21R、21Lを通常配光とする。
 霧が発生している場合には(ステップS12でYES)、ステップS13において、照明制御部12は、車線検出部15で検出される自車両の走行車線を認識し、ステップS14において、自車両前方の走行車線の領域をロービームとし、走行車線に隣接する隣接車線の領域、及び路肩領域をハイビームとする。ここで、「隣接車線」とは、例えば、片側1車線の対面通行車線の場合には、対向車線を示す。また、片側2車線等の複数車線の場合には、自車両と同一方向に走行する車線(例えば、追い越し車線)を示す。
If fog is not generated (NO in step S12), the illumination control unit 12 sets the headlamps 21R and 21L to normal light distribution in step S15.
When fog is generated (YES in step S12), in step S13, the illumination control unit 12 recognizes the traveling lane of the host vehicle detected by the lane detecting unit 15, and in step S14, the front of the host vehicle is detected. The area of the traveling lane is a low beam, the area of the adjacent lane adjacent to the traveling lane, and the road shoulder area is a high beam. Here, the “adjacent lane” indicates, for example, an opposite lane in the case of a one-way lane facing traffic lane. In the case of a plurality of lanes such as two lanes on one side, a lane (for example, an overtaking lane) that travels in the same direction as the host vehicle is shown.
 その結果、例えば、図5Aに示すように、走行路の路肩、及び隣接車線の領域のみがハイビームとされ、自車両前方の領域はロービームとされる。即ち、図5Aに示すように、ロービーム到達ラインq2まで照明光が照射され、且つ、ハイビーム領域Q1、Q2に照明光が照射される。また、一般的な車両に搭載されるフォグランプはラインq1まで光を照射する。
 これに対して、通常のハイビームの配光では、図5Bに示すように、ロービーム到達ラインq2よりも自車両前方の高い領域であるハイビーム領域Q3まで照明光が照射されるので、照射光が霧に反射して車両の乗員が眩惑されることがあるが、本実施形態では眩惑を回避できる。
As a result, for example, as shown in FIG. 5A, only the road shoulder and the area of the adjacent lane are high beams, and the area in front of the host vehicle is a low beam. That is, as shown in FIG. 5A, the illumination light is irradiated to the low beam arrival line q2, and the illumination light is irradiated to the high beam areas Q1 and Q2. A fog lamp mounted on a general vehicle emits light up to the line q1.
On the other hand, in the normal high beam distribution, as shown in FIG. 5B, the illumination light is irradiated to the high beam region Q3, which is a region higher in front of the host vehicle than the low beam arrival line q2, so that the irradiation light is fogged. However, in this embodiment, the dazzling can be avoided.
 このようにして、本実施形態に係る車両用照明の制御装置100では、自車両周囲に霧が発生している場合には、自車両前方の走行車線の領域をロービームとするので、前照灯21R、21Lより照射した照明光が霧によって乱反射し、自車両の前方が見難くなるという問題の発生を回避することができる。また、隣接する車線、及び路肩をハイビームとすることができるので、例えば、路肩を歩行中の歩行者に自車両の存在をいち早く気づかせることができる。また、隣接する車線を走行する車両についても同様に自車両の存在をいち早く気づかせることができる。 Thus, in the vehicle lighting control apparatus 100 according to the present embodiment, when fog is generated around the host vehicle, the area of the traveling lane ahead of the host vehicle is set as a low beam. It is possible to avoid the problem that the illumination light irradiated from 21R and 21L is diffusely reflected by fog and the front of the host vehicle becomes difficult to see. Moreover, since the adjacent lanes and road shoulders can be made high beams, for example, a pedestrian walking on the road shoulders can quickly notice the presence of the vehicle. In addition, the vehicle traveling in the adjacent lane can be quickly noticed in the same manner.
 従って、例えば片側1車線の対面通行のように、隣接する車線が対向車線である場合には、この対向車線の領域をハイビームとすることにより、対向車線を走行中の対向車両に自車両の存在を認識させることができる。また、2車線道路のように、隣接する車線が追い越し車線である場合には、この追い越し車線を走行中の車両に自車両の存在を気づかせることができる。 Therefore, for example, when the adjacent lane is an opposite lane, such as one-way traffic on one side, the area of this opposite lane is set to a high beam, so that the host vehicle is present in the oncoming vehicle in the opposite lane. Can be recognized. Further, when the adjacent lane is an overtaking lane as in the case of a two-lane road, the vehicle traveling on the overtaking lane can be made aware of the presence of the own vehicle.
 更に、本実施形態では、走行速度Vsを取得し、走行速度Vsが下限速度(例えば、25km/m)よりも大きく、上限速度(例えば、60km/h)未満である場合に、霧発生時の配光制御を実施する。従って、下限速度以下で走行しているときには、霧発生時の配光制御が行われないので、不要な制御を回避することができる。同様に、車両の走行速度が上限速度以上で走行しているときには、霧発生時の配光制御が行われないので、不要な制御を回避することができる。なお、本実施形態では、走行速度Vsの下限速度、及び上下速度を設定したが、下限速度、上限速度のうちいずれか一方を設定する構成とすることも可能である。 Furthermore, in the present embodiment, when the traveling speed Vs is acquired and the traveling speed Vs is greater than the lower limit speed (for example, 25 km / m) and less than the upper limit speed (for example, 60 km / h), Implement light distribution control. Therefore, when traveling at a speed lower than the lower limit speed, light distribution control at the time of fog generation is not performed, so unnecessary control can be avoided. Similarly, when the vehicle travels at a speed higher than the upper limit speed, the light distribution control at the time of fog generation is not performed, so unnecessary control can be avoided. In the present embodiment, the lower limit speed and the up / down speed of the traveling speed Vs are set. However, any one of the lower limit speed and the upper limit speed may be set.
[第1実施形態の第1変形例の説明]
 車両の走行する道路がカーブ路である場合には、車両の前方が自車線の前方領域になるとは限らない。例えば、走行路が左にカーブしている場合には、車両の前方が隣接車線になってしまうことがあり、この領域をロービームとすると、隣接車線を走行する車両に対してハイビームを照射することができず、自車両の存在を気づかせることが難しくなる。
[Description of First Modification of First Embodiment]
When the road on which the vehicle travels is a curved road, the front of the vehicle is not necessarily the front area of the own lane. For example, if the road is curving to the left, the front of the vehicle may become an adjacent lane. If this area is a low beam, the vehicle traveling in the adjacent lane will be irradiated with a high beam. It becomes difficult to notice the existence of the vehicle.
 第1変形例では、車両の操舵角を検出することにより、自車両の進行方向を推定し、この進行方向に応じて前方領域を設定し、この前方領域がロービームとなるように光を照射する。更に、その周辺がハイビームとなるように光を照射する。その結果、確実に隣接車線を走行する車両にハイビームを照射することができるようになり、自車両の存在を隣接車線を走行する車両に気づかせることが可能となる。 In the first modification, the traveling direction of the host vehicle is estimated by detecting the steering angle of the vehicle, a front region is set according to the traveling direction, and light is emitted so that the front region becomes a low beam. . Furthermore, light is irradiated so that the periphery becomes a high beam. As a result, the vehicle traveling in the adjacent lane can be reliably irradiated with the high beam, and the vehicle traveling in the adjacent lane can be made aware of the presence of the host vehicle.
 また、操舵角を用いる方法以外に、例えば、地図データから自車両が走行する走行路のマップを取得し、このマップに応じて車線のカーブ路を認識し、この認識結果に応じて、ロービームとする領域を設定することも可能である。 In addition to the method of using the steering angle, for example, a map of a travel path on which the host vehicle travels is acquired from map data, a lane curve road is recognized according to the map, and a low beam and It is also possible to set the area to be used.
[第1実施形態の第2変形例の説明]
 上述した第1実施形態では、前照灯21R、21Lとして、複数のLEDを有するアダプティブ・ドライビング・ビーム(ADB)を用いてハイビーム及びロービームを制御する例について説明した。第2変形例では、プロジェクタを用いて車両前方に光を照射する例について説明する。プロジェクタは、例えば100万画素程度の画素数を備えており、光を投光することにより、車両前方に照明光を照射することができる。
[Description of Second Modification of First Embodiment]
In the first embodiment described above, the example in which the high beam and the low beam are controlled using the adaptive driving beam (ADB) having a plurality of LEDs as the headlamps 21R and 21L has been described. In the second modification, an example in which light is emitted forward of the vehicle using a projector will be described. The projector has a number of pixels of about 1 million pixels, for example, and can project illumination light in front of the vehicle by projecting light.
 即ち、プロジェクタ制御部により、投光する領域を適宜設定することができるので、自車両が走行する車線前方の領域をロービームとし、隣接する車線、及び路肩をハイビームとすることにより、第1実施形態と同様の効果を達成することが可能となる。 That is, since the projector control unit can appropriately set the area to be projected, the area in front of the lane in which the host vehicle travels is set as a low beam, the adjacent lane and the road shoulder are set as a high beam, and thus the first embodiment. The same effect can be achieved.
[第1実施形態の第3変形例]
 上述した第1実施形態では、複数のLEDからなる前照灯21R、21Lを設ける構成としたが、第3変形例では、図6に示すように、車両の前方に光を照射するハロゲンランプ等の照明と複数のLEDからなるADB(22)の双方を搭載する構成としている。そして、霧が発生していない通常時には、照明用のライトを用いて車両前方に光を照射し、霧が発生したときに限って、ADB(22)を用いた配光制御を実施する。
[Third Modification of First Embodiment]
In the first embodiment described above, the headlamps 21R and 21L made of a plurality of LEDs are provided. However, in the third modification, as shown in FIG. 6, a halogen lamp that irradiates light in front of the vehicle or the like. And the ADB (22) composed of a plurality of LEDs are mounted. At normal times when fog is not generated, light is irradiated forward of the vehicle using a lighting light, and light distribution control using ADB (22) is performed only when fog is generated.
 このような構成においても、霧発生時には、ADBを用いて配光を制御することができるので、前述した第1実施形態と同様の効果を得ることができる。 Even in such a configuration, when fog is generated, the light distribution can be controlled using the ADB, so that the same effect as that of the first embodiment described above can be obtained.
[第2実施形態の説明]
 次に、本発明の第2実施形態について説明する。図7は、第2実施形態に係る車両用照明の制御装置の構成を示すブロック図である。図7に示す制御装置101では、前述した第1実施形態に示した制御装置100と対比して、照明制御部12aが照度制御部14を備えている点で相違する。照度制御部14は、各前照灯21R、21Lに搭載される各LEDの照度を制御する。また、霧検出部11は、霧発生の有無のみならず、霧の濃度を検出する機能を備えている。
[Description of Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 7 is a block diagram showing the configuration of the vehicle lighting control apparatus according to the second embodiment. The control device 101 shown in FIG. 7 is different from the control device 100 shown in the first embodiment in that the illumination control unit 12a includes an illuminance control unit 14. The illuminance control unit 14 controls the illuminance of each LED mounted on each headlamp 21R, 21L. Moreover, the fog detection part 11 is equipped with the function to detect not only the presence or absence of fog generation but the density of fog.
 そして、第2実施形態では、霧が発生したと判断された場合には、更に霧の濃度を検出し、霧の濃度が高いほど、ハイビームで点灯させるLEDの照度を高く設定する。 In the second embodiment, when it is determined that fog has occurred, the fog density is further detected, and the higher the fog density, the higher the illuminance of the LED that is lit with the high beam.
 以下、図7に示すフローチャートを参照して第2実施形態に係る車両用照明の制御装置101の処理手順について説明する。この処理は、図7に示す照明制御部12aによって実行される。
 初めに、ステップS31において、照明制御部12aは、車両に搭載されるECU(図示省略)等から速度データを取得する。そして、車両の走行速度Vsが25~60km/hの範囲内であるか否かを判断する。上記の25~60km/hの速度で走行していない場合には(ステップS31でNO)、霧発生に基づく前照灯21R、21Lの制御を実施せずに、ステップS37において、通常配光となるように前照灯21R、21Lを制御する。
Hereinafter, a processing procedure of the vehicle lighting control apparatus 101 according to the second embodiment will be described with reference to a flowchart shown in FIG. This process is executed by the illumination control unit 12a shown in FIG.
First, in step S31, the illumination control unit 12a acquires speed data from an ECU (not shown) or the like mounted on the vehicle. Then, it is determined whether or not the traveling speed Vs of the vehicle is within a range of 25 to 60 km / h. When the vehicle is not traveling at the speed of 25 to 60 km / h (NO in step S31), the control of the headlamps 21R and 21L based on the generation of fog is not performed, and the normal light distribution is performed in step S37. The headlamps 21R and 21L are controlled so as to be.
 自車両が25~60km/hの範囲内の速度で走行している場合には(ステップS31でYES)、ステップS32において、点灯制御部13は、霧検出部11にて霧発生と認識しているか否かを判断する。 When the host vehicle is traveling at a speed in the range of 25 to 60 km / h (YES in step S31), in step S32, the lighting control unit 13 recognizes that fog has occurred in the fog detection unit 11. Determine whether or not.
 霧が発生していない場合には(ステップS32でNO)、ステップS37にて、照明制御部12aは、前照灯21R、21Lを通常配光とする。通常配光は、例えば、夜間走行時において、自車両正面の領域をハイビームとし、それ以外の領域をロービームとする配光である。 If fog has not occurred (NO in step S32), in step S37, the illumination control unit 12a sets the headlamps 21R and 21L to normal light distribution. The normal light distribution is, for example, a light distribution in which the area in front of the host vehicle is a high beam and the other area is a low beam during night driving.
 また、霧が発生している場合には(ステップS32でYES)、ステップS33にて、照明制御部12aは、霧の濃度を取得する。霧の濃度は、図2の第1照度センサ31で検出した照度と第2照度センサ32で検出した照度との差分を演算し、この差分が大きいほど濃度が高いものと判断することができる。 If fog is generated (YES in step S32), the illumination control unit 12a acquires the fog concentration in step S33. The fog density is calculated by calculating the difference between the illuminance detected by the first illuminance sensor 31 of FIG. 2 and the illuminance detected by the second illuminance sensor 32, and the greater the difference, the higher the density.
 ステップS34において、照明制御部12aの車線検出部15は、カメラ16で撮像された画像を解析して、自車両の走行車線を認識する。 In step S34, the lane detector 15 of the illumination controller 12a analyzes the image captured by the camera 16 and recognizes the traveling lane of the host vehicle.
 ステップS35において、照明制御部12aは、車線検出部15で検出された自車両の走行車線の領域をロービームとし、該走行車線に隣接する隣接車線の領域、及び路肩領域をハイビームとする。 In step S35, the illumination control unit 12a sets the area of the traveling lane of the host vehicle detected by the lane detection unit 15 as a low beam, and sets the area of the adjacent lane adjacent to the traveling lane and the road shoulder area as a high beam.
 更に、ステップS36において、照明制御部12aの照度制御部14は、LEDを点灯させる際の照度を制御する。具体的には、霧の濃度が高いほどハイビームとする領域のLEDの照度が高くなるように制御する。従って、霧の濃度が高く、周囲の状況を視認し難い場合には、点灯するLEDの照度が高くなるように制御されるので、路肩を通行中の歩行者や、隣接車線を走行中の車両に気づき易くすることが可能となる。 Furthermore, in step S36, the illuminance control unit 14 of the illumination control unit 12a controls the illuminance when the LED is turned on. Specifically, control is performed such that the higher the fog density, the higher the illuminance of the LED in the high beam area. Therefore, when the fog concentration is high and it is difficult to visually recognize the surrounding situation, the illuminance of the LED to be lit is controlled to be high, so that a pedestrian traveling on the road shoulder or a vehicle traveling in the adjacent lane It becomes possible to make it easier to notice.
 このようにして、第2実施形態に係る車両用照明の制御装置101では、霧の濃度を検出し、霧の濃度が高いほどハイビームとするLEDの照度を高く設定するので、霧の濃度が高く、視界が悪い場合にはより高い照度の照明光を照射することができる。従って、霧の濃度が高く、周囲の状況を視認し難いような場合でも、自車両の存在を他車両の乗員や付近を歩行する歩行者に効果的に認識させることができる。 Thus, in the vehicle lighting control apparatus 101 according to the second embodiment, the mist density is detected, and the higher the mist density, the higher the illuminance of the LED to be a high beam, so the mist density is high. When the visibility is poor, illumination light with higher illuminance can be irradiated. Therefore, even when the fog concentration is high and it is difficult to visually recognize the surrounding situation, the presence of the host vehicle can be effectively recognized by a passenger of another vehicle or a pedestrian walking in the vicinity.
 以上、本発明の車両用照明の制御方法及び車両用照明の制御装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 The vehicle lighting control method and the vehicle lighting control apparatus according to the present invention have been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part has the same function. It can be replaced with any configuration having
 11 霧検出部
 12、12a 照明制御部(照明制御回路)
 13 点灯制御部
 14 照度制御部
 15 車線検出部
 16 カメラ
 21R、21L 前照灯
 22 ADB
 31 第1照度センサ
 32 第2照度センサ
 33 比較制御部
 100、101 制御装置
 Vs 走行速度
11 Fog detection part 12, 12a Illumination control part (illumination control circuit)
13 lighting control unit 14 illuminance control unit 15 lane detection unit 16 camera 21R, 21L headlamp 22 ADB
31 1st illumination intensity sensor 32 2nd illumination intensity sensor 33 Comparison control part 100,101 Control apparatus Vs Traveling speed

Claims (4)

  1.  自車両に搭載され、自車両の前方に照明光を照射するヘッドライトの配光を制御する車両用照明の制御方法であって、
     前記自車両の周囲に霧が発生しているか否かを判断し、
     霧が発生していると判断されたとき、前記ヘッドライトは、自車両正面の領域の配光をロービームとし、自車両正面に隣接する領域の配光を、前記ロービームよりも遠方にすること
     を特徴とする車両用照明の制御方法。
    A vehicle lighting control method for controlling light distribution of a headlight mounted on the host vehicle and irradiating illumination light in front of the host vehicle,
    Determine whether fog has occurred around the vehicle,
    When it is determined that the fog is generated, the headlight uses a light distribution in a region in front of the host vehicle as a low beam, and a light distribution in a region adjacent to the front of the host vehicle is farther than the low beam. A method for controlling vehicle lighting, which is characterized.
  2.  前記霧の濃度を判断し、霧の濃度が高いほど、ロービームよりも遠方にした配光の照度を高くすること
     を特徴とする請求項1に記載の車両用照明の制御方法。
    2. The vehicle illumination control method according to claim 1, wherein the mist density is determined, and the illuminance of the light distribution farther from the low beam is increased as the mist density is higher.
  3.  車両の下限速度、及び上限速度の少なくとも一方を設定し、車両の走行速度が前記下限速度以下、或いは上限速度以上のときには通常配光とすること
     を特徴とする請求項1または2に記載の車両用照明の制御方法。
    The vehicle according to claim 1 or 2, wherein at least one of a lower limit speed and an upper limit speed of the vehicle is set, and normal light distribution is performed when the traveling speed of the vehicle is equal to or lower than the lower limit speed or higher than the upper limit speed. Lighting control method.
  4.  自車両に搭載される照明の配光を制御する車両用照明の制御装置であって、
     前記自車両の周囲に霧が発生しているときに、自車両正面の領域の配光をロービームとし、自車両正面に隣接する領域の配光を、前記ロービームよりも遠方にする照明制御回路を備えたこと
     を特徴とする車両用照明の制御装置。
    A vehicle lighting control device that controls light distribution of lighting mounted on the host vehicle,
    An illumination control circuit for setting a light distribution in a region in front of the host vehicle to a low beam and a light distribution in a region adjacent to the front of the host vehicle farther than the low beam when fog is generated around the host vehicle; A vehicle lighting control device comprising: a vehicle lighting control device;
PCT/JP2017/004976 2017-02-10 2017-02-10 Vehicle lighting control method and vehicle lighting control apparatus WO2018146801A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780085790.XA CN111278679A (en) 2017-02-10 2017-02-10 Vehicle lighting control method and vehicle lighting control apparatus
PCT/JP2017/004976 WO2018146801A1 (en) 2017-02-10 2017-02-10 Vehicle lighting control method and vehicle lighting control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004976 WO2018146801A1 (en) 2017-02-10 2017-02-10 Vehicle lighting control method and vehicle lighting control apparatus

Publications (1)

Publication Number Publication Date
WO2018146801A1 true WO2018146801A1 (en) 2018-08-16

Family

ID=63107337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004976 WO2018146801A1 (en) 2017-02-10 2017-02-10 Vehicle lighting control method and vehicle lighting control apparatus

Country Status (2)

Country Link
CN (1) CN111278679A (en)
WO (1) WO2018146801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024183216A1 (en) * 2023-03-07 2024-09-12 常州星宇车灯股份有限公司 High and low beam automatic control method and control system and vehicle having the system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023119391A1 (en) * 2023-07-21 2025-01-23 HELLA GmbH & Co. KGaA adjustment procedures and headlights for vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348507A (en) * 1999-03-26 2000-12-15 Koito Mfg Co Ltd Headlights for vehicles
JP2002190202A (en) * 2000-10-12 2002-07-05 Koito Mfg Co Ltd Headlamp
JP2009179113A (en) * 2008-01-29 2009-08-13 Koito Mfg Co Ltd Head lamp device for vehicle and its control method
JP2016016780A (en) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 Vehicle lighting device
JP2016120871A (en) * 2014-12-25 2016-07-07 株式会社小糸製作所 Light distribution variable vehicular lamp fitting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191330B2 (en) * 2013-08-20 2017-09-06 日産自動車株式会社 Vehicle lighting control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348507A (en) * 1999-03-26 2000-12-15 Koito Mfg Co Ltd Headlights for vehicles
JP2002190202A (en) * 2000-10-12 2002-07-05 Koito Mfg Co Ltd Headlamp
JP2009179113A (en) * 2008-01-29 2009-08-13 Koito Mfg Co Ltd Head lamp device for vehicle and its control method
JP2016016780A (en) * 2014-07-09 2016-02-01 トヨタ自動車株式会社 Vehicle lighting device
JP2016120871A (en) * 2014-12-25 2016-07-07 株式会社小糸製作所 Light distribution variable vehicular lamp fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024183216A1 (en) * 2023-03-07 2024-09-12 常州星宇车灯股份有限公司 High and low beam automatic control method and control system and vehicle having the system

Also Published As

Publication number Publication date
CN111278679A (en) 2020-06-12

Similar Documents

Publication Publication Date Title
US9878655B2 (en) Vehicle lamp
US8558443B2 (en) Method for controlling a headlight assembly for a vehicle and headlight assembly therefor
CN105922928A (en) Vehicle headlight control device
JP7436696B2 (en) Automotive ambient monitoring system
JP2009214812A (en) Vehicular headlight device and its control method
JP2013109911A (en) Lighting device
JP2016083987A (en) Vehicle lighting device, in-vehicle system
JP7312913B2 (en) Method for controlling lighting system of motor vehicle
WO2018146801A1 (en) Vehicle lighting control method and vehicle lighting control apparatus
JP6861044B2 (en) Vehicle lighting control method and vehicle lighting control device
JP2013147111A (en) Lighting control device for vehicle front light, and vehicle front light system
JP2015033954A (en) Lighting control device for vehicle headlamp, vehicle headlamp system
JP7137414B2 (en) vehicle lamp
WO2022196296A1 (en) Vehicle lamp control device, vehicle lamp control method and vehicle lamp system
JP2014177186A (en) Lighting control unit of vehicular headlamps and vehicular headlamp system
JP2010143483A (en) Vehicle headlight device and method for controlling the same
JP2022109440A (en) HEADLAMP CONTROL DEVICE, HEADLAMP CONTROL METHOD, HEADLAMP SYSTEM
JP6162012B2 (en) Lighting control device for vehicle headlamp, vehicle headlamp system
JP6725396B2 (en) Vehicle lighting system
JP6866018B2 (en) Headlights for driving vehicles
JP2019108101A (en) Vehicle control unit
JP7165536B2 (en) Vehicle lighting system
WO2024190252A1 (en) Control device for vehicular lamp, and vehicular lamp system
JP7398287B2 (en) Vehicle lights
JP2011143822A (en) Light distribution control system of vehicle headlamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895928

Country of ref document: EP

Effective date: 20190910

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17895928

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载