+

WO2018141646A1 - Catalyseurs de méthanation au nickel dopés par le fer et le manganèse - Google Patents

Catalyseurs de méthanation au nickel dopés par le fer et le manganèse Download PDF

Info

Publication number
WO2018141646A1
WO2018141646A1 PCT/EP2018/051993 EP2018051993W WO2018141646A1 WO 2018141646 A1 WO2018141646 A1 WO 2018141646A1 EP 2018051993 W EP2018051993 W EP 2018051993W WO 2018141646 A1 WO2018141646 A1 WO 2018141646A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
precipitate
solution
methanation
carbon dioxide
Prior art date
Application number
PCT/EP2018/051993
Other languages
German (de)
English (en)
Inventor
Klaus Koehler
Oliver THOMYS
Kai-Olaf Hinrichsen
Franz KOSCHANY
Thomas Burger
Original Assignee
Clariant Produkte (Deutschland) Gmbh
Wacker Chemie Ag
Technische Universität München
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte (Deutschland) Gmbh, Wacker Chemie Ag, Technische Universität München filed Critical Clariant Produkte (Deutschland) Gmbh
Publication of WO2018141646A1 publication Critical patent/WO2018141646A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium

Definitions

  • the energy supply through the so-called renewable energy photovoltaic and wind energy suffers from the problem of weather and daytime dependent fluctuations in electricity production.
  • a way has to be found to intercept weather and time-dependent fluctuations in electricity production.
  • One potential method of chemically storing the energy is the power-to-gas process, which uses excess electricity to split water into hydrogen and oxygen by electrolysis. Hydrogen in which the energy is stored after the electrolysis of water can itself be stored only with great effort or transported to the consumer. After the power-to-gas process, the hydrogen is therefore converted in a further step with carbon dioxide, which acts in the atmosphere as a greenhouse gas harmful to the climate, in the methanation reaction to methane and water.
  • Methane can be easily stored in existing infrastructures, which have capacities for storage in the range of several months, can be transported almost lossless over longer distances and can be reconverted in times of energy demand.
  • the methanation reaction which is associated with high energy release and usually catalyzes, forms the heart of the process.
  • the high exothermicity of the reaction (-165 kJ / mol) gives rise to two direct problems.
  • the thermodynamic equilibrium limits the maximum achievable methane yield at high temperatures.
  • a high level of purity is necessary for the feeding of methane into the natural gas network.
  • there is a demand for high catalyst activity and selectivity so that higher yields of methane can be achieved at industrially applied reaction pressures at low temperatures.
  • catalysts which contain not only an active metal, but are promotiert. It is known from the literature that a promotion with iron or manganese can have a positive influence on the catalyst performance.
  • a doping of nickel-based methanation catalysts with manganese is described, for example, in CN 103464163 A, CN 103752315 A, CN 102600860 A, CN 102553610 A, CN 102527405 A, CN 102513124 A, CN 102463120 A and CN 1024631 19 A and by Zhao et al. , Journal of Natural Gas Chemistry (2012), 21 (2), 170-177.
  • a doping of nickel-based methanation catalysts with iron is described, for example, in CN 104399482 A, CN 104399466 A, CN 104209127 A, CN 102872874 A, CN 101703933 A, CN 101537357 A and WO 2007025691 A1 and by Pandey et al., Journal of Industrial and Engineering Chemistry (2016), 33, 99-107 and Gao et al., RSC Advances (2015), 5 (29), 22759-22776.
  • CN 103706366 A describes a catalyst comprising 15 to 55% an active component, 1 to 6% of a 1. catalytic promoter, 3 to 15% of a second catalytic promoter and, moreover, a catalytic support, wherein the active component is nickel oxide, the catalytic support is Al 2 O 3 , the 1.
  • the catalytic promoter is one selected from lanthanum oxide, cerium oxide or samarium oxide
  • the second catalytic promoter is at least one of magnesium oxide, manganese oxide, iron oxide and zirconium oxide.
  • the production method comprises the steps of dissolving a reducing agent in water to obtain a reducing solution, mixing in nickel nitrate, aluminum nitrate, the 1. Metal salt and the 2nd metal salt in water to obtain a raw material solution, and adding the reducing mixture to the raw material solution with uniform stirring to obtain a 1.
  • the metal salt is one selected from lanthanum nitrate, cerium nitrate and samarium nitrate
  • the second metal salt is at least one selected from magnesium nitrate, manganese nitrate, iron nitrate and zirconium nitrate
  • the alkali solution is an aqueous solution of sodium carbonate, sodium hydroxide, potassium carbonate, ammonium carbonate, urea or NH 3 * H 2 0 is.
  • the catalyst may be mixed with a binder (calcium aluminate), a lubricant (graphite) and water and then pressed in particulate form.
  • the catalyst is suitable for methanating coal gas at high temperature and high pressure to produce synthetic natural gas.
  • CN 104028270 A discloses a methanation catalyst comprising 5 to 60 wt .-% of a catalytically active NiO component, based on the total weight of the catalyst and otherwise Al 2 0 3 , which also 1 to 25 wt .-%, based on the total weight of Catalyst, may participate in participating component M, wherein the co-acting component M is selected from one or more oxides of the metals Ce, Ca, Co, La, Sm, Zr, Ba, Mn, Fe, Mo, Ti and Cu.
  • the document also provides a method of preparing the methanation catalyst which comprises admixing the precursor of the catalytically active component, precursor of the co-acting component M, and a catalyst support according to the proportion in the methanation catalyst composition of an organic fuel and thoroughly mixing and drying to form a gel-like product, carrying out a combustion reaction, cleaning and drying to obtain the final product.
  • CN 101745401 discloses a supported sulfur-resistant methanation catalyst characterized by comprising a main metal M as the active component, a second metal M1 as an excipient and S as a support material, wherein the weight ratio between M1, M and S is between 0.01 to 39 : 1 to 30: 0.01 to 90, M is one or more of Mo, W and / or V, the second metal M1 is one or more of Fe, Co, Ni, Cr, Mn, La, Y or / and Ce and the support S is Zr0 2 , Al 2 0 3 , MgO or Ti0 2 .
  • the supported sulfur-resistant methanation catalyst is prepared by a sol-gel method. It is an object of the invention to provide a methanation catalyst for the methanation of carbon monoxide and / or carbon dioxide, which has a high selectivity compared to the catalysts of the prior art improved activity and stability.
  • a catalyst for the methanation of carbon monoxide and / or carbon dioxide comprising aluminum oxide and a Ni active composition, and Fe and Mn, characterized in that the molar Ni / Fe ratio in the catalyst is 5.0 to 10.0, preferably 5.3 to 7.0 and more preferably 5.4 to 5.7.
  • the stability of the catalyst in the sense of the application means the property of the catalyst to deactivate as little as possible under reaction conditions and to maintain the high selectivity / activity as far as possible.
  • the alumina need not be stoichiometric Al 2 O 3, but may be a non-stoichiometric alumina.
  • the molar Ni / Mn ratio in the catalyst is 5.0 to 32.0, preferably 9.0 to 11.0, more preferably 10 to 10.6, or else 27 to 34, preferably 28 to 32 is.
  • catalysts having a Ni / Mn and Ni / Fe ratio (each in this order) 9.3 to 9.8 and 6.6 to 7.1; 29 to 30 and 6.6 to 7.1; 9.5 to 10.1 and 5.1 to 5.9; and 26 to 27 and 4.9 to 5.9.
  • the catalysts having the following Ni / Mn and Ni / Fe ratios (each in that order): 9.4 and 6.8; 29.5 and 6.9; 9.8 and 5.6; as well as 26.5 and 5.4.
  • the promoters Fe and Mn may be contained completely or partially in the Ni active material.
  • the catalyst may contain further promoters in addition to Mn and Fe, but it may also contain exclusively the promoters Mn and Fe.
  • the oxidation states of Al, Ni and the promoters can vary depending on the treatment of the catalyst.
  • Al, Ni and the promoters are typically present as metal cations (eg Al 3+ , Ni 2+ , Mn 2+ , Mn 3+ , Mn 4+ , Fe 2+ , Fe 3+ ).
  • the catalyst of the present invention may contain other components in addition to alumina (i.e., Al xx of x ⁇ 1.5) Ni, Fe, and Mn (as well as the oxygen anions necessary for charge balance), but may be composed solely of alumina Ni, Fe, and Mn.
  • the catalyst does not contain any of the elements selected from Ta, In, Cu, Ce, Cr, Bi, P, Sb, Sn, B, Si, Ti, Zr, Co, Rh, Ru, Ag, Ir, Pd and Pt.
  • the catalyst does not contain a noble metal.
  • the atomic Al / Ni ratio may be between 0.5 and 1.5, preferably between 0.8 and 1.2, more preferably the Al / Ni ratio is approximately 1.
  • the catalysts according to the invention can advantageously have crystallites in the Ni active composition with a diameter of less than 20 nm, preferably less than 10 nm.
  • the Ni active composition may also consist wholly or substantially of crystallites having a diameter of less than 20 nm, preferably less than 10 nm.
  • the Ni active material is preferably in a metallic state.
  • the C0 2 absorption capacity of the catalysts at 35 ° C may be greater than 200 ⁇ / g and is preferably in the range between 200 to 400 ⁇ / g, more preferably, between 250 to 300 ⁇ / g.
  • the BET surface area of the catalyst according to the invention is preferably greater than 100 m 2 / g, preferably greater than 200 m 2 / g, in particular in the range between 200 and 400 m 2 / g and in particular in the range between 200 and 300 m 2 / g.
  • the specific metal surface area (Swiet) of the catalyst according to the invention may be greater than 5 m 2 / g, preferably greater than 10 m 2 / g, or between 5 and 25 m 2 / g, preferably between 10 and 20 m 2 / g, or in the range between 6 and 9 m 2 / g.
  • the invention relates to a process for the preparation of a methanation catalyst, comprising the steps:
  • step d) calcining the dried precipitate from step c).
  • the solution from step a) is an aqueous solution and Al, Ni, Mn and Fe are present dissolved in the aqueous solution as ionic compounds.
  • Al is preferably dissolved as aluminum nitrate, aluminum trichloride or aluminum sulfate.
  • Mn is preferably present in the oxidation state II or IV and is dissolved as manganese nitrate, manganese acetate, manganese dichloride, manganese sulfate or in the oxidation state VII as a permanganate ion.
  • Ni is preferably dissolved as nickel nitrate, nickel dichloride, nickel sulfate, nickel acetate or nickel carbonate.
  • Fe is preferably in the oxidation state II or III and is dissolved as iron nitrate, iron or trichloride, iron acetate, iron sulfate or iron hydroxide.
  • Al, Ni, Mn and Fe are in dissolved form as ionic compounds in the aqueous solution and have the same anion, which may be, for example, nitrate.
  • the coprecipitation is carried out by adding the solution containing Al, Ni, Mn and Fe to a basic solution or by adding a basic solution to the solution which contains Al, Ni, Mn and Fe.
  • the solution containing Al, Ni, Mn and Fe and the basic solution are simultaneously added to a vessel which may already contain a solvent such as water and is mixed therein.
  • the basic solution has a pH greater than 7, preferably in the range from 8 to 10, and preferably contains an alkali hydroxide and / or an alkali carbonate.
  • the basic solution is an aqueous solution of sodium hydroxide and sodium carbonate.
  • the coprecipitation is preferably carried out under temperature control, so that the temperature of the solution is approximately room temperature or, for example, 30 ° C.
  • the precipitate in the solution is aged for at least 30 minutes, preferably for more than 1 hour, more preferably for longer than 12 hours.
  • the aging preferably takes place in that the precipitate is left in the solution (mother liquor) with stirring at approximately room temperature.
  • the precipitate obtained by the coprecipitation is isolated, for example by filtering.
  • the filtering can be done in a suitable manner, for example by a filter press.
  • the isolated precipitate is preferably washed, for example with distilled water, until a neutral pH is reached.
  • the isolated precipitate can be dried, for example at elevated temperature in air.
  • the drying takes place at a temperature between 70 ° C and 90 ° C for a period longer than 4 hours, preferably longer than 12 hours.
  • the isolated precipitate is calcined, this can be done in air at a temperature between 300 ° C to 600 ° C, preferably at 400 ° C to 500 ° C and in a period of 3 hours to 10 hours, preferably 5 to 7 hours.
  • the catalyst according to the invention is intended to be used in particular in the methanation of carbon monoxide and / or carbon dioxide.
  • the methanation of carbon dioxide can be represented by the following reaction equation:
  • the methanation of carbon monoxide can be represented by the following reaction equation:
  • the reaction gas containing carbon dioxide and / or carbon monoxide or a mixture of both is contacted with the catalyst at a temperature higher than 200 ° C.
  • FIG. 1 activity / stability diagram of the samples described.
  • the determination of the composition of the calcined catalysts was carried out by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). 50 mg of catalyst were dissolved in 50 ml of 1 molar phosphoric acid (VWR, pA) at 60 ° C. To dissolve any brownstone formed, 50 mg Na 2 S0 3 (Sigma Aldrich, pA) was added to the solution. After cooling, the solutions were diluted 1/10 and filtered by 0.1 ⁇ filters (Pall). The calibration solutions were prepared at 1, 10 and 50 mg I -1 (Merck). Determination of metal concentrations was performed using an Agilent 700 ICP-OES. Determination of the specific surface
  • the specific surface area of the catalysts was determined by N 2 -BET analysis on a NOVA 4000e (Quantachrome). For this purpose, 100 mg of catalyst were degassed for 3 hours at 120 ° C and then absorbed adsorption and Desorptionsiso- therme in the p / p 0 range of 0.007 to 1. To determine the BET surface area, the data points in the p / p 0 range of 0.007 to 0.28 were used.
  • the catalysts were prepared by coprecipitation and the atomic ratio of nickel and aluminum was adjusted to 1.
  • iron (III) nitrate was added to the salt solution of nickel and aluminum nitrate during catalyst synthesis.
  • manganese nitrate and iron (III) nitrate were added to the salt solution of nickel and aluminum nitrate during the catalyst synthesis.
  • the purity of all the chemicals used was pa Water was purified by a Millipore filter system and the degree of purity was verified by means of conductivity measurements. The synthesis was carried out in a double-walled, 3 l stirred tank.
  • the double jacket which was filled with water, controlled the temperature of the synthesis batch to 30 ° C via a thermostat, and two flow breakers provided for improved mixing.
  • a KPG stirrer with 150 revolutions min -1 was used.
  • the dosage of the mixture of dissolved nitrates was 2.5 ml min -1 .
  • the controlled addition of the precipitating reagent was used to maintain the pH.
  • T 7 5 As a measure of the activity was representative temperature T 7 5, i determined, which is necessary in order to achieve a CC conversion of 75% during the measuring step S-curve 1.
  • T 7 5 the temperature in the specified range was gradually increased by 25 ° C. Therefore, the lower T 7 5, i, the higher the activity of the catalyst.
  • the temperature T 7 5.2 was determined representative, which is necessary to achieve a CC conversion of 75% during the measuring step S-curve. 2
  • the temperature in the specified range was gradually increased by 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un catalyseur de méthanation de monoxyde de carbone et/ou de dioxyde de carbone, comprenant de l'oxyde d'aluminium, une masse active de Ni ainsi que du Fe et du Mn. Ce catalyseur est caractérisé en ce que le rapport molaire Ni/Fe dans ledit catalyseur est compris entre 5,0 et 10,0, de préférence entre 5,3 et 7,0 et de préférence encore entre 5,4 et 5,7. Ce catalyseur présente de préférence un rapport molaire Ni/Mn compris entre 5,0 et 32,0, de préférence entre 9,0 et 10,0. Ce catalyseur est caractérisé par une activité et une stabilité améliorées. L'invention concerne également un procédé de fabrication d'un catalyseur selon l'invention, comprenant les étapes suivantes : a) coprécipitation à partir d'une solution contenant les éléments Al, Ni, Mn et Fe sous forme dissoute de manière à obtenir un précipité, b) isolement du précipité obtenu à l'étape a), c) séchage du précipité isolé obtenu à l'étape b) et d) calcination du précipité séché obtenu à l'étape c).
PCT/EP2018/051993 2017-01-31 2018-01-26 Catalyseurs de méthanation au nickel dopés par le fer et le manganèse WO2018141646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017000849 2017-01-31
DE102017000849.3 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018141646A1 true WO2018141646A1 (fr) 2018-08-09

Family

ID=61188766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/051993 WO2018141646A1 (fr) 2017-01-31 2018-01-26 Catalyseurs de méthanation au nickel dopés par le fer et le manganèse

Country Status (1)

Country Link
WO (1) WO2018141646A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759061A (zh) * 2019-01-03 2019-05-17 浙江工业大学 一种γ-Fe2O3晶型的FeAl氧化物及其制备方法
CN113101930A (zh) * 2021-03-12 2021-07-13 中南大学 珊瑚状形貌的铁酸铜类芬顿催化剂的制备及其在垃圾渗滤液类芬顿催化氧化中的用途
CN115672331A (zh) * 2021-07-23 2023-02-03 国家能源投资集团有限责任公司 甲烷化催化剂及其制备方法和应用

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025691A1 (fr) 2005-09-02 2007-03-08 Haldor Topsøe A/S Procede et catalyseur pour l'hydrogenation d'oxydes de carbone
WO2008110331A1 (fr) 2007-03-13 2008-09-18 Umicore Ag & Co. Kg Oxydes de nickel dopés par un métal comme catalyseurs pour la méthanation du monoxyde de carbone
CN101537357A (zh) 2009-04-28 2009-09-23 中国科学院山西煤炭化学研究所 一种合成气制甲烷催化剂及制备方法和应用
CN101703933A (zh) 2009-11-06 2010-05-12 山西大学 一种双金属甲烷化催化剂及其制备方法
CN101745401A (zh) 2009-12-07 2010-06-23 中国科学院山西煤炭化学研究所 一种负载型耐硫甲烷化催化剂及制备方法和应用
CN102091629A (zh) 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 二氧化碳甲烷化催化剂
CN102259003A (zh) 2011-05-31 2011-11-30 武汉科林精细化工有限公司 一种焦炉气甲烷化催化剂及其制备方法
CN102463119A (zh) 2010-11-05 2012-05-23 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法
CN102463120A (zh) 2010-11-05 2012-05-23 中国石油化工股份有限公司 一种含镍和锰的催化剂及其制备方法和应用
CN102513124A (zh) 2011-12-15 2012-06-27 大连凯特利催化工程技术有限公司 一种用于焦炉煤气甲烷化的催化剂及其制备方法
CN102527405A (zh) 2012-02-15 2012-07-04 华东理工大学 一种高温合成气完全甲烷化催化剂及其制备方法
CN102553610A (zh) 2010-12-30 2012-07-11 中国科学院大连化学物理研究所 一种用于合成气制甲烷并联产油品的催化剂、其制备和应用方法
CN102600860A (zh) 2012-02-15 2012-07-25 华东理工大学 适用于中低温合成气完全甲烷化的催化剂及其制备方法
CN102872874A (zh) 2012-09-19 2013-01-16 太原理工大学 一种用于浆态床甲烷化负载型镍基催化剂及其制法和应用
CN103464163A (zh) 2013-08-27 2013-12-25 中国华能集团清洁能源技术研究院有限公司 无机铵盐燃烧法制备甲烷化催化剂的方法
CN103480375A (zh) 2013-09-29 2014-01-01 福州大学 一种一氧化碳甲烷化催化剂及其制备方法
CN103706366A (zh) 2013-12-18 2014-04-09 中国海洋石油总公司 一种新型甲烷化催化剂及其制备方法
CN103752315A (zh) 2014-01-15 2014-04-30 易高环保能源研究院有限公司 一种金属相载体负载型催化剂及其制备方法和用途
CN104028270A (zh) 2014-06-10 2014-09-10 中国华能集团清洁能源技术研究院有限公司 一种甲烷化催化剂及其制备方法
CN104043454A (zh) 2014-06-10 2014-09-17 中国华能集团清洁能源技术研究院有限公司 一种新型纳米复合甲烷化催化剂及其制备方法
CN104209127A (zh) 2013-06-05 2014-12-17 中国石油天然气股份有限公司 一种镍铁双金属甲烷化催化剂及其制备和应用
CN104399482A (zh) 2014-11-13 2015-03-11 大连理工大学 用于甲烷化的含铁天然矿石负载镍催化剂及其制备方法
CN104399466A (zh) 2014-11-13 2015-03-11 大连理工大学 一种含铁天然矿石负载镍的甲烷化催化剂及其制备方法
CN104888783A (zh) 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法和应用
CN106268858A (zh) * 2016-07-16 2017-01-04 中国科学院山西煤炭化学研究所 一种高性能二氧化碳加氢甲烷化的催化剂及制法和应用

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025691A1 (fr) 2005-09-02 2007-03-08 Haldor Topsøe A/S Procede et catalyseur pour l'hydrogenation d'oxydes de carbone
WO2008110331A1 (fr) 2007-03-13 2008-09-18 Umicore Ag & Co. Kg Oxydes de nickel dopés par un métal comme catalyseurs pour la méthanation du monoxyde de carbone
CN101537357A (zh) 2009-04-28 2009-09-23 中国科学院山西煤炭化学研究所 一种合成气制甲烷催化剂及制备方法和应用
CN101703933A (zh) 2009-11-06 2010-05-12 山西大学 一种双金属甲烷化催化剂及其制备方法
CN101745401A (zh) 2009-12-07 2010-06-23 中国科学院山西煤炭化学研究所 一种负载型耐硫甲烷化催化剂及制备方法和应用
CN102091629A (zh) 2009-12-09 2011-06-15 中国科学院兰州化学物理研究所 二氧化碳甲烷化催化剂
CN102463119A (zh) 2010-11-05 2012-05-23 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法
CN102463120A (zh) 2010-11-05 2012-05-23 中国石油化工股份有限公司 一种含镍和锰的催化剂及其制备方法和应用
CN102553610A (zh) 2010-12-30 2012-07-11 中国科学院大连化学物理研究所 一种用于合成气制甲烷并联产油品的催化剂、其制备和应用方法
CN102259003A (zh) 2011-05-31 2011-11-30 武汉科林精细化工有限公司 一种焦炉气甲烷化催化剂及其制备方法
CN102513124A (zh) 2011-12-15 2012-06-27 大连凯特利催化工程技术有限公司 一种用于焦炉煤气甲烷化的催化剂及其制备方法
CN102600860A (zh) 2012-02-15 2012-07-25 华东理工大学 适用于中低温合成气完全甲烷化的催化剂及其制备方法
CN102527405A (zh) 2012-02-15 2012-07-04 华东理工大学 一种高温合成气完全甲烷化催化剂及其制备方法
CN102872874A (zh) 2012-09-19 2013-01-16 太原理工大学 一种用于浆态床甲烷化负载型镍基催化剂及其制法和应用
CN104209127A (zh) 2013-06-05 2014-12-17 中国石油天然气股份有限公司 一种镍铁双金属甲烷化催化剂及其制备和应用
CN103464163A (zh) 2013-08-27 2013-12-25 中国华能集团清洁能源技术研究院有限公司 无机铵盐燃烧法制备甲烷化催化剂的方法
CN103480375A (zh) 2013-09-29 2014-01-01 福州大学 一种一氧化碳甲烷化催化剂及其制备方法
CN103706366A (zh) 2013-12-18 2014-04-09 中国海洋石油总公司 一种新型甲烷化催化剂及其制备方法
CN103752315A (zh) 2014-01-15 2014-04-30 易高环保能源研究院有限公司 一种金属相载体负载型催化剂及其制备方法和用途
CN104888783A (zh) 2014-03-03 2015-09-09 中国石油化工股份有限公司 一种甲烷化催化剂及其制备方法和应用
CN104028270A (zh) 2014-06-10 2014-09-10 中国华能集团清洁能源技术研究院有限公司 一种甲烷化催化剂及其制备方法
CN104043454A (zh) 2014-06-10 2014-09-17 中国华能集团清洁能源技术研究院有限公司 一种新型纳米复合甲烷化催化剂及其制备方法
CN104399482A (zh) 2014-11-13 2015-03-11 大连理工大学 用于甲烷化的含铁天然矿石负载镍催化剂及其制备方法
CN104399466A (zh) 2014-11-13 2015-03-11 大连理工大学 一种含铁天然矿石负载镍的甲烷化催化剂及其制备方法
CN106268858A (zh) * 2016-07-16 2017-01-04 中国科学院山西煤炭化学研究所 一种高性能二氧化碳加氢甲烷化的催化剂及制法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANMIN ZHAO ET AL: "Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter", JOURNAL OF NATURAL GAS CHEMISTRY., vol. 21, no. 2, 1 March 2012 (2012-03-01), US, CN, pages 170 - 177, XP055480082, ISSN: 1003-9953, DOI: 10.1016/S1003-9953(11)60350-2 *
GAO ET AL., RSC ADVANCES, vol. 5, no. 29, 2015, pages 22759 - 22776
PANDEY ET AL., JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 33, 2016, pages 99 - 107
SUNHWAN HWANG ET AL: "Methanation of Carbon Dioxide Over Mesoporous Nickel-M-Alumina (M = Fe, Zr, Ni, Y, and Mg) Xerogel Catalysts: Effect of Second Metal", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 142, no. 7, 18 May 2012 (2012-05-18), pages 860 - 868, XP035079940, ISSN: 1572-879X, DOI: 10.1007/S10562-012-0842-0 *
SUNHWAN HWANG ET AL: "Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 19, no. 6, 1 November 2013 (2013-11-01), KOREA, pages 2016 - 2021, XP055480070, ISSN: 1226-086X, DOI: 10.1016/j.jiec.2013.03.015 *
WAN AZELEE WAN ABU BAKAR ET AL: "Nickel Oxide Based Supported Catalysts for the In-situ Reactions of Methanation and Desulfurization in the Removal of Sour Gases from Simulated Natural Gas", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 128, no. 1-2, 11 November 2008 (2008-11-11), pages 127 - 136, XP019671959, ISSN: 1572-879X *
ZHAO ET AL., JOURNAL OF NATURAL GAS CHEMISTRY, vol. 21, no. 2, 2012, pages 170 - 177

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109759061A (zh) * 2019-01-03 2019-05-17 浙江工业大学 一种γ-Fe2O3晶型的FeAl氧化物及其制备方法
CN109759061B (zh) * 2019-01-03 2021-08-10 浙江工业大学 一种γ-Fe2O3晶型的FeAl氧化物及其制备方法
CN113101930A (zh) * 2021-03-12 2021-07-13 中南大学 珊瑚状形貌的铁酸铜类芬顿催化剂的制备及其在垃圾渗滤液类芬顿催化氧化中的用途
CN115672331A (zh) * 2021-07-23 2023-02-03 国家能源投资集团有限责任公司 甲烷化催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
EP3576871B1 (fr) Catalyseurs à base de nickel dopés avec du manganèse pour la méthanation du monoxyde et du dioxyde de carbone
DE69908032T2 (de) Oxidverbindung aus Spineltyp und Verfahren zur Herstellung derselben
DE69004628T2 (de) Kohlenwasserstoffdampfreformierungskatalysator.
DE3485888T2 (de) Synthetische expandierte schichtminerale und verfahren zu ihrer herstellung.
EP0011150B1 (fr) Procédé de préparation de méthanol par hydrogénation d'oxydes de carbone et procédé de préparation d'un catalyseur pour cette hydrogénation
DE69721944T2 (de) Katalysator für Dimethylether, Verfahren zur Katalysatorherstellung und Verfahren zur Herstellung von Dimethylether
EP2049249B1 (fr) Catalyseur pour transformation cryogène et procédé de transformation cryogène de monoxyde de carbone et d'eau en dioxyde de carbone et hydrogène
EP3116826B1 (fr) Catalysezr contenant de l'yttrium pour la hydrogenation de dioxid de carbone, hydrogenation de dioxid de carbone a haute temperature et/ou reformage et procede pour la hydrogenation de dioxid de carbone et/ou reformage
EP0468127A2 (fr) Catalyseur de combustion à base d'un complexe oxyde de terres rares de type pérovskite
DE69920379T2 (de) Palladium-Ceroxid-Trägerkatalysator und Verfahren zur Herstellung von Methanol
DE10393935T5 (de) Fischer-Tropsch-Katalysatoren auf Eisen-Basis und Herstellungs- und Anwendungsverfahren
DE19739773A1 (de) Verfahren und Katalysator zur Dampfreformierung von Methanol
DE10392447T5 (de) Ceroxid-basierte Mischmetall-Oxidstruktur, einschließlich des Herstellungsverfarhrens und der Verwendung
DD157669A5 (de) Katalysator und verfahren zur herstellung desselben
DE69513792T2 (de) Aktivierter und stabilisierter Kupferoxid- und Zinkoxidkatalysator und Verfahren zu seiner Herstellung
WO1994016798A1 (fr) Procede de decomposition catalytique de l'oxyde azote pur ou contenu dans des melanges gazeux
WO2018141646A1 (fr) Catalyseurs de méthanation au nickel dopés par le fer et le manganèse
WO1997003937A1 (fr) Procede de production de methanol et catalyseur utilise a cet effet
JPH062685B2 (ja) 銅、コバルト、亜鉛およびアルミニウムを含む触媒の存在下における合成ガスからの第一アルコール混合物の合成方法
DE3686235T2 (de) Hitzebestaendige zusammensetzung und verfahren zu deren herstellung.
JP4467675B2 (ja) ジメチルエーテル合成触媒及び合成方法
WO2018141648A1 (fr) Catalyseurs de méthanation au nickel dopés par le fer
DE60108114T2 (de) Auf hydrotalcit basierende oxide mit verbesserten mechanischen eigenschaften
EP2608882A1 (fr) Catalyseurs de conversion hautement actifs
CN113145127B (zh) 一种用于甲醇水蒸气重整制氢的Cu催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18703925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18703925

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载