+

WO2018035585A1 - Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine - Google Patents

Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine Download PDF

Info

Publication number
WO2018035585A1
WO2018035585A1 PCT/BR2017/000091 BR2017000091W WO2018035585A1 WO 2018035585 A1 WO2018035585 A1 WO 2018035585A1 BR 2017000091 W BR2017000091 W BR 2017000091W WO 2018035585 A1 WO2018035585 A1 WO 2018035585A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
thermodynamic
processes
adiabatic
subsystem
Prior art date
Application number
PCT/BR2017/000091
Other languages
French (fr)
Portuguese (pt)
Inventor
Marno Iockheck
LUIS Mauro MOURA
Saulo Finco
Original Assignee
Associacao Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associacao Paranaense De Cultura - Apc filed Critical Associacao Paranaense De Cultura - Apc
Publication of WO2018035585A1 publication Critical patent/WO2018035585A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers

Definitions

  • the present invention relates to a thermal motor and its eight-process thermodynamic cycle, more specifically a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four-process but interdependent thermodynamic cycle. If, forming a complex cycle of eight processes, operates with gas, the circuit of this binary system is closed in differential configuration, based on the concept of hybrid thermodynamic system or can also be called binary thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it executes at any moment of the cycle, two simultaneous and interdependent complementary processes, four of which are "isobaric" and four "adiabatic" processes with variable mass transfer, which may be null or partial.
  • thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all known motor cycles to date.
  • thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
  • the open thermodynamic system is defined as a system where energy and matter can enter and leave this system.
  • Examples of an open thermodynamic system are the Atkinson cycle Otto-cycle internal combustion engines, Sabieshe-cycle Maski-cycle Otto-cycle internal combustion engine, Rankine-cycle exhausted Brayton-cycle internal combustion engines from steam to the environment.
  • the matter that enters these systems are fuels and oxygen or working fluid or working gas.
  • the energy that enters these systems is heat.
  • the matter that comes out of these systems is the combustion or working fluid exhaust, gases, waste, the energy that comes out of these systems is the mechanical working energy and part of the heat dissipated.
  • the closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system.
  • Examples of closed thermodynamic systems are external combustion engines such as the Stiring cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Carnot cycle.
  • the energy that enters this system is heat.
  • the energy that comes out of this system is the mechanical working energy and part of the heat dissipated, but no matter comes out of these systems, as they occur in the open system.
  • thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle is completed, as can be seen from the pressure / volume graph in figure 2. So are the Otto, Aikinson, Diesel, Sabaihe, Brayton, Rankine, Stiriing, Ericsson cycle engines and Carnot's ideal theoretical cycle.
  • Equation (a) (U) represents the internal energy in “Joule”, (r?) Represents the number of mol, (R) represents the universal constant of perfect gases, (7) represents the gas temperature. in “Kelvin” and (y) represents the adiabatic coefficient of expansion,
  • the current state of the art comprises a series of motors of Internal combustion and external combustion, most of these engines require a second auxiliary engine to take them from, to operation.
  • Internal combustion engines require compression, mixing fuel with oxygen and a spark or pressure combustion, so a normally electric auxiliary starter motor is used.
  • External combustion engines such as the Stirling or Ericsson cycle in turn also require high power auxiliary engines, as they must overcome the resting state under pressure to start operating.
  • One exception is the Rankine cycle engine, which can start via the camshaft to provide the steam pressure to the motive power elements.
  • the current state of the art comprises a number of engines, most of them dependent on very specific and special conditions to operate, for example internal combustion engines, each requiring its own specific fuel, fine fuel control, oxygen and combustion time and in some cases require specific conditions including pressure, fuel flexibility is quite limited.
  • internal combustion engines each requiring its own specific fuel, fine fuel control, oxygen and combustion time and in some cases require specific conditions including pressure, fuel flexibility is quite limited.
  • the most flexible engine is the Rankine, external combustion engine, the Stirling or Ericsson, also external combustion, these are more flexible in their source.
  • the current state of the art comprises a series of engine cycles, most of which require combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
  • the current state of the art comprises a series of cycle engines, most of which require high operating temperatures, especially internal combustion engines, usually operating with working gas at temperatures above 1500 ° C.
  • External combustion engines or engines operating from external heat sources such as Rankine and Stirling cycle, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • Rankine and Stirling cycle are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • motors based on open and closed systems they often require high temperatures to operate, all of them have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend exclusively on temperatures as defined by equation (b),
  • the current state of the art based on open and closed systems, comprises basically six motor cycles and some versions thereof: Atkinson cycle Eight cycle, Sabathe cycle Otto cycle Diesel cycle similar Brayton cycle, Rankine cycle, Stiding cycle, Ericsson cycle and Carnot cycle diesel, ideal theoretical reference for open and closed engine based engines.
  • Atkinson cycle Eight cycle Sabathe cycle Otto cycle Diesel cycle similar Brayton cycle
  • Rankine cycle Stiding cycle
  • Ericsson cycle Ericsson cycle
  • Carnot cycle diesel ideal theoretical reference for open and closed engine based engines.
  • the latest developments in the current state of the art have been presented through innovations by joining more than one old cycle into combined cycles, ie: new engine systems composed of a Brayton cycle machine operating on fossil fuels, gas or oil. and a heat-dependent Rankine cycle machine rejected by the Brayton cycle machine.
  • combining a diesel engine with a Rankine cycle engine or an Otto cycle engine also joining it with a Rankine cycle engine.
  • Carnot's ideal motor figure 3, while considered the ideal motor, most perfect to date, it is in theory and within open and closed system concepts considering all ideal parameters, for example. This is the reference to date for all existing engine concepts.
  • the Carnot Engine is not found in practical use because the actual materials do not possess the properties required to make the Carnot Engine a reality, the physical dimensions for the Carnot Cycle. If it were to be performed as in theory, it would be unfeasible in a practical case, so it is an ideal Engine in open and closed system concepts, but in the theoretical concept.
  • thermodynamic cycle formed by two isothermal processes of two adiabatic processes
  • the concept of hybrid or binary thermodynamic system provides the basis for the development of a new motor family In each case, each engine will have its own characteristics according to the processes and phases that make up their respective thermodynamic cycles, such as the Otto engine and the diesel engine, both internal combustion engines, are engines based on the open thermodynamic system, but are distinct engines.
  • the Otto engine cycle consists basically of an adiabatic compression process, an isocoric combustion process, an adiabatic expansion process and an isocoric exhaust process and the diesel engine cycle. It consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an Isocoric exhaustion process, so they differ in only one of the processes that form their cycles, sufficient to give each one properties and specific and different uses.
  • the aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept so that the efficiency of the motors would not be more dependent. temperatures only and whose energy sources could be diversified and which would allow the design of engines for environments even without air (oxygen).
  • the characteristic hybrid or binary system concept that underlies this invention eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and their potential differentials, while open and closed systems generate potentials where the mass of the gas is constant and for this reason they cancel out in the equations, hybrid or binary systems the mass is not necessarily constant, so no they cancel out and their efficiencies depend on the potentials from which the driving force originates, that is, the pressures.
  • the hybrid system concept provides dependent potentials proportional to the product of the working gas mass by temperature.
  • the mass is variable, its efficiency becomes a non-temperature-dependent but mass-dependent function and for a differential cycle motor composed of four isobaric processes, four adiabatic processes. , with mass transfer between its subsystems during adiabatic processes, the efficiency is demonstrated as presented in equation (c) and figure 4.
  • ( ⁇ ) is the yield
  • (T1) is the initial temperature of the high temperature isobaric process
  • (72) is the final temperature of the isobaric process of alia temperature, this temperature tends to equalize with the hot source temperature (Tq)
  • (73) is the starting temperature of the low temperature isobaric process
  • (74) is the final temperature of the low temperature isobaric process, this temperature tends to equalize with the cold source temperature (77)
  • all temperatures in "Kelvin” (n1) is the number of moles of subsystem 1, indicated by region 21 of Figure 4
  • (n2) is the number of moles of subsystem 2, indicated by region 23 of Figure 4. 4
  • thermodynamic cycles Otto, Atkinson, Diesel, Sabathe. Brayton, Stirling, Ericsson, Rankine, and the Carnot cycle perform a single process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the driving force elements, their control being a direct function of the power supply's power.
  • the hybrid or binary differential cycles perform two processes at a time, Figure 5, enabling the control of the thermodynamic cycle separate from the mechanical cycle, the cycle can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle. and not the other way around.
  • Differential cycle motors are characterized by having two subsystems forming a hybrid or binary system, represented by (21 and 23) of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always execute two simultaneous processes. and interdependent. Otherwise, considering a hybrid or binary system with properties of both open and closed systems simultaneously, it is said that the system performs a compound thermodynamic cycle, Figure 5, that is, always executes two simultaneous processes (26 and 27). Figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems. Figure 6 shows the relationship between the hybrid or binary system and the differential thermodynamic cycle.
  • thermodynamic system The concept of hybrid thermodynamic system is new. It is characterized by a binary system, formed by two interdependent subsystems and between them there is exchange of matter and energy and both supply out of their limits, energy in the form of work and part of the energy in the form of heat dissipated. This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors.
  • the present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction.
  • Some of the main advantages that can be seen are: the total flexibility as to the energy source (heat), the independence of the atmosphere, does not need atmosphere for a differential cycle motor to operate, the flexibility regarding the temperatures, the motor of Differential cycle can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, It is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures.
  • the differential-cycle engine based on the hybrid or binary system concept may be constructed from materials and techniques similar to conventional and Stirling-cycle engines, as it is a closed-loop gas engine considering the system. complete, this is.
  • the complete system is formed by two integrated thermodynamic subsystems, 31 and 37, forming a binary or hybrid thermodynamic system, each subsystem formed by a chamber 33 and 35 containing working gas and each of these are formed by three sub-chambers.
  • Suitable materials for this technology should be noted, which are similar in this respect to Stirling cycle engine design technologies.
  • the working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as the gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others.
  • Conversion chambers items that characterize the hybrid or binary system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These cameras each have. Three sub-chambers and these should be designed keeping in mind the requirement of thermal insulation between themselves to minimize the direct flow of energy from hot to cold areas, this condition is important for overall system efficiency.
  • These chambers have internal elements that move working gas between hot, cold and insulated sub-chambers, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be disc-shaped, cylindrical or otherwise working gas movement in a controlled manner between the sub chambers.
  • the mass transfer element 34 interconnects the two chambers 33 and 35, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time during the acliabatic processes.
  • This element may be designed in various ways depending on the requirements of the project, may operate by simple pressure difference, ie valve-shaped, or may operate in a forced manner, for example turbine, piston-shaped or in another geometric shape allowing it to perform the mass transfer of part of the working gas.
  • the driving force element, 38 is responsible for performing mechanical work and making it available for use.
  • This driving force element operates by the working gas forces of the engine, this element may be designed in various ways depending on the design requirements, it may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
  • Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system
  • Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems
  • Figure 3 shows the original idea of Carnot's thermal machine, conceptualized in 1824 by Nicolas Sadi Carnot;
  • Figure 4 represents the concept of hybrid or binary thermodynamic system
  • Figure 5 represents the characteristic of differential thermodynamic cycles based on hybrid or binary system:
  • Figure 6 shows the hybrid or binary thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes
  • Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid or binary system
  • Figure 8 shows one of the subsystems, group 31, performing the high temperature isobaric process of the thermodynamic cycle and the second subsystem, group 37, performing the low temperature isobaric process of the thermodynamic cycle;
  • Figure 9 shows one of the subsystems, group 31, performing the adiabatic thermodynamic cycle expansion process and the second subsystem, group 37, performing the adiabatic thermodynamic cycle compression process;
  • Figure 10 shows in turn the first subsystem group 31 performing its low temperature isobaric process of the thermodynamic cycle and the second subsystem group 37 performing the high temperature isobaric process of the thermodynamic cycle;
  • Figure 11 shows the first subsystem, group 31, performing the adiabatic thermodynamic cycle compression process and the second subsystem, group 37, performing the adiabatic thermodynamic cycle expansion process;
  • Figure 12 shows the ideal differential thermodynamic cycle composed of two high temperature isobaric processes, two low temperature isobaric processes two adriatic expansion processes, two adiabatic compression;
  • Figure 13 shows an example of motor application for an electricity generating plant using geothermal energy as its primary source
  • Figure 14 shows an example of motor application for an electricity generating plant having thermosound energy as its primary source
  • Figure 15 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
  • the differential cycle motor consisting of two high temperature isobaric processes, two low temperature isobaric processes, two adiabatic expansion processes, two adiabatic compression processes is based on a hybrid thermodynamic system, or can also be termed a hybrid system.
  • binary thermodynamic by having two interdependent thermodynamic subsystems which each perform an interacting thermodynamic cycle, which can exchange heat, work and mass as shown in figure 4.
  • the hybrid system is shown or binary, consisting of two subsystems indicated by 21 and 23.
  • thermodynamic cycle differentiates, in this case detailing the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (ml), number mol (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), number of mol (n2), temperature (Tf).
  • mass mass
  • m2 number of mol
  • Tf temperature
  • Figure 7 shows the engine model based on the hybrid system. or binary, containing two subsystems indicated by 31 and 37. Each subsystem has its thermomechanical conversion chamber, 33 and 35, a driving force element, 38. Connecting between the subsystems for mass transfer processes, there is an element of mass transfer 34.
  • Figures 8, 9, 10 and 11 show how the eight processes, four isobaric and four mass transfer adiabatic, occur mechanically.
  • subsystem 31 exposes the working gas to the hot source at the temperature (Tq) indicated at 39, and that subsystem performs the high temperature isobaric process and simultaneously the subsystem indicated by 37 exposes the working gas to the cold source.
  • Tq temperature
  • Tf temperature
  • this subsystem executes the low temperature isobaric process.
  • the gas is exposed to a thermally insulated region, indicated by 32, the gas, initially close to the hot temperature (Tq), expands into the conversion chamber, turning the gas heat into kinetic energy into an adiabatic process tending to At cold temperature (Tf), the internal energy of the gas becomes mechanical energy.
  • Tq hot temperature
  • Tf At cold temperature
  • part of the working gas of subsystem 31 with higher pressure is transferred to subsystem 37 at lower pressure through the mass transfer element indicated in 34, thus the adiabatic process of subsystem 31 was concurrently enhanced, while subsystem 37 receives part of the working gas mass of subsystem 31, and an adiabatic compression process also occurs simultaneously, bringing the gas from the near-cold (Tf) temperature to a warmer temperature, at the end of this process the high isobaric process begins.
  • Figure 12 shows the ideal eight-process full engine differential cycle based on the concept of hybrid or binary thermodynamic system, where two simultaneous engine processes always occur, exemplified by indications 64 and 65, until the cycle is formed. of eight processes.
  • sequence (1 -2-3-4-1) shows the processes of one of the engine cycle subsystems, the sequence (abcda), all interdependent.
  • the curve indicated by 63 shows the processes (abc) of one of the subsystems, process (a ⁇ b) is high temperature isobaric where energy enters the system shown in 67, occurs simultaneously with the low temperature isobaric process (3-4) whereby the unused energy shown in 68 of the curve indicated by 82 of the other subsystem occurs.
  • Process (bc) is adiabatic of expansion, occurs simultaneously with process (4-1), also adiabatic, but of compression, in process (bc) occurs the heat transfer (energy) of the engine gas to the shaft, transforming If in kinetic energy, simultaneously in process (4-1) occurs the transfer of kinetic energy to the engine gas received from the shaft, also in an adiabatic process, while simultaneously during the adiabatic processes of the motor cycle, the transfer of mass, leaving (nl - n2) mol of gas in the adiabatic expansion process (bc) to the other subsystem during the adiabatic compression process (4-1). Processes (2-3) ⁇ (d-a) are identical to processes (b-c) and (4-1).
  • Process (c-d) is low temperature isobaric and occurs simultaneously with process (1-2), high temperature isobaric.
  • the (da) process is adiabatic with mass increment and occurs simultaneously with the adiabatic expansion process (2-3) with mass reduction, thus ending the thermodynamic cycle with eight engine processes, always two simultaneous, the The sum of the working gas mass of the two subsystems forming the engine is always constant.
  • isobaric engine cycle processes (1-2), (ab), (3-4) and (cd) are performed with gas confined to a geometry characterized by a thermal inertia where the gas has a rate of change of temperature such that it tends to equalize with hot or cold elements only at the fin! of these processes, making the pressure relatively stable, that is, isobaric.
  • This geometry shall be characterized by a depth not too small for the penetration of heat into the gas, or a gas displacement between the hot and cold elements not too fast to produce a rate of change in temperature throughout the isobaric process. that the pressure has a constant behavior.
  • the engine cycle adiabatic processes (2-3) and (bc) are carried out with the gas in a thermally insulated region of the engine, and in this process the working gas will expand by transferring the gas energy to the engine mechanical elements.
  • storing energy in the form of kinetic energy and in adiabatic engine cycle compression processes (4-1) and (da) are also performed with gas in a thermally isolated region, and in this process the mechanical elements of the compression engine , transfer the kinetic energy back to the engine gas, raising its temperature, completing the process.
  • Table 1 shows process by process that form the cycle differentiates! of eight heat engine processes shown step by step, with four isobaric processes, four adiabatic processes and mass transfer steps.
  • This differential cycle of an engine consisting of two subsystems based on the concept of hybrid or torque system, whose pressure and volume curve is shown in figure 12, has eight processes, two high temperature isobaric processes of energy input into the system, shown by 67, curves (1-2) and (ab) are represented by expressions (d) and (e), two low temperature isobaric processes of disposal of unused energy, shown by 88, curves (3-4) ) and (cd) represented by the expressions (! and (g), the internal gas energy at point (2) of process (1-2) is represented by the expression (h), the internal gas energy at point (b) ) of process (ab) is represented by expression (i), the energy transferred with the gas mass from point (2) of process (1-2) is represented by expression (j).
  • the energy transferred with the gas mass from point (b) of process (ab) is represented by expression (k)
  • adiabatic expansion process (2-3) is represented by expression (i)
  • process of adiabatic expansion (bc) is represented by the expression (m)
  • the internal energy in gas at point (3) is the resultant energy of point (2) after mass transfer and adiabatic expansion represented by the expression (n)
  • the internal energy in gas at point (c) is that resulting from the energy of point (b) after mass transfer and adiabatic expansion, represented by the expression (o)
  • the internal energy of gas at point (4) of the process (3-4) is represented by expression (p)
  • the internal energy of gas at point (d) of process (cd) is represented by expression (q)
  • the internal energy in gas at point (1) is that resulting from energy of point (4) after the introduction of mass and adiabatic compression, represented by the expression (r)
  • the internal energy n The gas at point (a) is that resulting from the energy of point (d) after
  • Hybrid or torque based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel combustion, although they can be used, so they can operate in environments with or without atmosphere.
  • the thermodynamic cycle does not require physical phase change of the working gas.
  • differential cycle motors can be designed to operate over a wide temperature range, higher than most existing open or closed system based motor cycles. Differential cycle motors are fully flexible in terms of their energy source (heat).
  • Figure 13 shows an application for the use of the differential cycle motor for power generation from geothermal sources.
  • Figure 13 shows a ground heat transfer system 76 for a manifold 74, formed basically by a pump 77 that injects a fluid, usually water, through the duct 73.
  • the collor 74 in the manifold 74 is transferred to the cycle motor.
  • differential 71 which discards part of the energy to the outside through the heat exchanger 75 and converts another part of the energy into work by operating a generator 72 which produces electricity.
  • Figure 14 shows another useful application for the differential cycle motor for producing heat from the sun's heat.
  • the sun's rays are collected through the concentrator 83, the energy (smaller) is transferred to the element 84 which directs the heat to the differential cycle motor 81, which converts part of the energy into useful work to operate an electricity generator. , part of the energy is discharged to the external environment through the exchanger 85.
  • Figure 15 shows another useful application for the differential cycle engine to improve the efficiency of internal combustion engines by forming combined cycles with them.
  • the heat rejected by the exhaust, 96, of the internal combustion engines, indicated by 92, fuel-fed, 97, Brayton cycle, Diesel cycle, Sabathe cycle, Otto cycle, Atkinson cycle, is channeled to the input of energy (heat). of the differential cycle engine 91 via a heat exchanger 93 promoting a heat flow 91 1 of the internal combustion engine 92 towards the differential cycle engine 91 and this converts part of this energy into useful mechanical force, 913 which may be integrated with the mechanical force of the internal combustion engine, 912 generating a single mechanical force, 98, or directed to produce electrical energy.
  • Discarding energy not converted by the differential cycle engine goes to the external environment indicated by 910. This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve the efficiency it generates. ! of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The present invention relates to a heat engine and the eight-process thermodynamic cycle thereof, and more specifically to a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four-process thermodynamic cycle interdependently with the other, forming a complex cycle of eight processes, operating with gas, the circuit of this binary system being closed in a differential configuration, based on the concept of a hybrid thermodynamic system, also referred to as a binary thermodynamic system, this system carrying out a thermodynamic cycle comprising eight processes so that, at any moment of the cycle, same is running two simultaneous, complementary and interdependent processes, four of the processes being "isobaric" and four of the processes being "adiabatic" with variable mass transfer, which may be zero or partial.

Description

"MOTOR TÉRMICO DE ClCLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ADIABÁTÍCOS E PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMÍCO DO MOTOR TÉRMICO"  "DIFFERENTIAL CIRCLE THERMAL MOTOR COMPOSED OF FOUR ISOBATIC PROCESSES, FOUR ADIABACTIC PROCEDURES AND CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE"
CAMPO TÉCNICO DA INVENÇÃO  TECHNICAL FIELD OF THE INVENTION
[001] Refere-se a presente invenção a um motor térmico e seu ciclo termodinâmico de oito processos, mais especificamente trata-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um opera um ciclo termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, opera com gás, o circuito deste sistema binário é fechado em configuração diferencial, baseado no conceito de sistema termodinâmico híbrido ou também pode ser chamado de sistema termodinâmico binário, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo executa em qualquer momento do ciclo, dois processos simultâneos e interdependentes, complementares, sendo quatro destes processos "isobáricos" e quatro "adiabaticos" com transferência de massa variável, podendo esta ser nula ou parcial.  [001] The present invention relates to a thermal motor and its eight-process thermodynamic cycle, more specifically a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four-process but interdependent thermodynamic cycle. If, forming a complex cycle of eight processes, operates with gas, the circuit of this binary system is closed in differential configuration, based on the concept of hybrid thermodynamic system or can also be called binary thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it executes at any moment of the cycle, two simultaneous and interdependent complementary processes, four of which are "isobaric" and four "adiabatic" processes with variable mass transfer, which may be null or partial.
ANTECEDENTES DA INVENÇÃO BACKGROUND OF THE INVENTION
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XSX nos primórdios da criação das leis da termodinâmica e fundamentam todos os ciclos motores conhecidos até o presente.  [002] Classical thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all known motor cycles to date.
[003] O sistema termodinâmico isolado é definido como um sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvolvimento de motores.  The isolated thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
[004] O sistema termodinâmico aberto é definido corno um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistema termodinâmico aberto os motores de combustão interna, de ciclo Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Dieseí, de ciclo Sabathe, semelhante ao ciclo Diesei, de ciclo Brayton de combustão interna, de ciclo Rankine com exaustão do vapor ao ambiente. A matéria que entra nestes sistemas são os combustíveis e oxigénio ou fluido de trabalho ou gás de trabalho. A energia que entra nestes sistemas é o calor. A matéria que sai destes sistemas são a exaustão da combustão ou do fluido de trabalho, gases, resíduos, a energia que saí destes sistemas são a energia mecânica de trabalho e parte do calor dissipado. [004] The open thermodynamic system is defined as a system where energy and matter can enter and leave this system. Examples of an open thermodynamic system are the Atkinson cycle Otto-cycle internal combustion engines, Sabieshe-cycle Diesei-cycle Otto-cycle internal combustion engine, Rankine-cycle exhausted Brayton-cycle internal combustion engines from steam to the environment. The matter that enters these systems are fuels and oxygen or working fluid or working gas. The energy that enters these systems is heat. The matter that comes out of these systems is the combustion or working fluid exhaust, gases, waste, the energy that comes out of these systems is the mechanical working energy and part of the heat dissipated.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em que apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stíriing, de ciclo Ericsson, de ciclo Rankine com fluído de trabaiho em circuito fechado, de ciclo Brayton de calor ou de combustão externa, de ciclo Carnot. A energia que entra neste sistema é o calor. A energia que saí deste sistema são a energia mecânica de trabalho e parte do calor dissipado, porém não saí matéria destes sistemas, como ocorrem no sistema aberto.  [005] The closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system. Examples of closed thermodynamic systems are external combustion engines such as the Stiring cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Brayton heat cycle or external combustion, Carnot cycle. The energy that enters this system is heat. The energy that comes out of this system is the mechanical working energy and part of the heat dissipated, but no matter comes out of these systems, as they occur in the open system.
[006] Ambos os sistemas, aberto e fechado, como entrada eles possuem no tempo (ti) a temperatura (Tq), a massa (m1) e o número de mol (n1) e na saída, no tempo (t2), ambos possuem a temperatura (Tf), a massa (m1) e o número de mol (nl), a massa é constante, a diferença entre ambos é que no sistema aberto a massa (m1) atravessa o sistema e no sistema fechado, a massa (m1) permanece no sistema, conforme a figura 1.  Both systems, open and closed, as input they have at time (ti) the temperature (Tq), mass (m1) and the number of mol (n1) and at output at time (t2) both have the temperature (Tf), the mass (m1) and the number of mol (nl), the mass is constant, the difference between them is that in the open system the mass (m1) goes through the system and in the closed system the mass (m1) remains in the system as shown in figure 1.
O ESTADO ÂTUAL DA TÉCNICA THE CURRENT STATE OF TECHNIQUE
[007] Os motores conhecidos até o presente são fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, eles possuem seus ciclos termodinâmicos compostos por uma série de processos sequenciais e independentes, e ocorre um único processo por vez até que o ciclo se complete, corno pode ser observado no gráfico pressão/volume na figura 2. Assim sào os motores de ciclo Otto, Aíkínson, Diesel, Sabaihe, Brayton, Rankine, Stiriing, Ericsson e o ciclo teórico ideal de Carnot. Motors known to date are based on open thermodynamic systems or closed thermodynamic systems, they have their thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle is completed, as can be seen from the pressure / volume graph in figure 2. So are the Otto, Aikinson, Diesel, Sabaihe, Brayton, Rankine, Stiriing, Ericsson cycle engines and Carnot's ideal theoretical cycle.
[008] A energia interna do gás de trabalho dos motores baseados nos sistemas aberto e fechado não é constante durante o seu ciclo, a equação que representa a energia interna é indicada na equação (a)
Figure imgf000005_0001
[008] The internal working gas energy of motors based on open and closed systems is not constant during their cycle, the equation representing internal energy is given in equation (a)
Figure imgf000005_0001
[009] Na equação (a), (U) representa a energia interna em "Joule", (r?) representa o número de mol, (R) representa a constante universal dos gases perfeitos, (7) representa a temperatura do gás em "Kelvin" e (y) representa o coeficiente de expansão adiabática,  In equation (a), (U) represents the internal energy in "Joule", (r?) Represents the number of mol, (R) represents the universal constant of perfect gases, (7) represents the gas temperature. in "Kelvin" and (y) represents the adiabatic coefficient of expansion,
[010] Como ocorre sempre um único processo por vez nos motores projetados com o conceito de sistema aberto ou fechado, a energia interna varia com o tempo, uma vez que o produto: número de moi (n) pela temperatura (7), (n. T) não é constante durante o ciclo, pois a temperatura (7) é uma variável nos processos e o número de mol (n) é uma constante nos processos.  [010] Since only one process occurs at a time in motors designed with the concept of open or closed system, the internal energy varies over time, since the product: number of moi (n) by temperature (7), ( T) is not constant during the cycle because temperature (7) is a process variable and the number of mol (n) is a process constant.
[01 1] O atual estado da técnica que caracteriza todos os motores, é caracterizado ainda pela propriedade onde a saída do processo, o trabalho, é uma consequência direta da entrada da energia, calor ou combustão, ou seja, quando é necessário mais trabalho, injeta-se mais calor ou se promove mais combustão, todos os processos que formam o ciclo do motor são igualmente Influenciados, em outras palavras, os motores sáo controiados pela alimentação direta. Por exemplo, nos motores de combustão interna, Otto, Diesel, Brayton, para se obter maior potência injeta-se mais combustível, mais oxigénio e assim se produz mais trabalho, mais rotação. Para se obter maior potência com rotação constante, normalmente utilizarn-se caixas de redução ou transformação de rotação. Por analogia, tais tecnologias podem ser comparadas na eleíricidade a motores de corrente contínua, estes, para aumentar a potência, aumenta-se a tensão de alimentação do motor. [01 1] The current state of the art that characterizes all engines is further characterized by the property where the process output, the work, is a direct consequence of the input of energy, heat or combustion, ie when more work is required. If more heat is injected or more combustion is promoted, all the processes that form the engine cycle are equally influenced. In other words, the engines are controlled by direct power. For example, in internal combustion engines, Otto, Diesel, Brayton, to get more power, more fuel, more oxygen is injected and thus more work is done, more rotation. For greater power with constant speed, gearboxes or speed transformation are normally used. By analogy, such technologies can be compared in terms of direct current motors, which, to increase horsepower, increase the motor supply voltage.
[012] O atual estado da técnica compreende uma série de motores de combustão interna e de combustão externa, a maioria destes motores exigem um segundo motor auxiliar para leva-los a partir, ao funcionamento. Os motores de combustão interna exigem a compressão, mistura de combustível com o oxigénio e uma centelha ou combustão por pressão, desta forma um motor auxiliar de partida, normalmente elètrico, é utilizado. Os motores de combustão externa, como o de ciclo Stirling ou Ericsson por sua vez também exigem motores auxiliares e de alta potência, pois eles precisam vencer o estado de repouso sob pressão para entrar em operação. Uma exceção é o motor de ciclo Rankine, este pode partir através do comando de válvulas para fornecer a pressão do vapor aos elementos de força motriz. [012] The current state of the art comprises a series of motors of Internal combustion and external combustion, most of these engines require a second auxiliary engine to take them from, to operation. Internal combustion engines require compression, mixing fuel with oxygen and a spark or pressure combustion, so a normally electric auxiliary starter motor is used. External combustion engines such as the Stirling or Ericsson cycle in turn also require high power auxiliary engines, as they must overcome the resting state under pressure to start operating. One exception is the Rankine cycle engine, which can start via the camshaft to provide the steam pressure to the motive power elements.
[013] O atuai estado da técnica compreende uma série de motores, a maioria deles, dependentes de condições muito específicas e especiais para operar, por exemplo, os motores de combustão interna, cada um deles exige seu combustível específico, controle fino de combustível, oxigénio e o tempo da combustão e em alguns casos exigem condições específicas inclusive de pressão, a flexibilidade no combustível é bem limitada. Nesta categoria, dos motores fundamentados nos sistemas aberto e fechado, o motor mais flexível é o de ciclo Rankine, de combustão externa, o Stirling ou o Ericsson, também de combustão externa, estes são mais flexíveis quanto à fonte.  [013] The current state of the art comprises a number of engines, most of them dependent on very specific and special conditions to operate, for example internal combustion engines, each requiring its own specific fuel, fine fuel control, oxygen and combustion time and in some cases require specific conditions including pressure, fuel flexibility is quite limited. In this category, of the engines based on open and closed systems, the most flexible engine is the Rankine, external combustion engine, the Stirling or Ericsson, also external combustion, these are more flexible in their source.
[014] O atuai estado da técnica compreende uma série de ciclo motores, a maioria exige combustão, isto é, a queima de algum tipo de combustível, e, portanto, a necessidade de oxigénio. The current state of the art comprises a series of engine cycles, most of which require combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
[015] O estado atuai da técnica compreende uma série de ciclo motores, a maioria exige altas temperaturas para operação, os de combustão interna especialmente, costumam operar com o gás de trabalho em temperatura superiores a 1500 °C. Os motores de combustão externa ou operante por fontes de calor externas, como de ciclo Rankine e Stirling, normalmente são projetados para operarem com temperaturas do gás de trabalho entre 400 °C e 800 °C. Além dos motores baseados nos sistemas aberto e fechado exigirem na maioria das vezes altas temperaturas para que possam operar, todos eles possuem suas eficiências limitadas ao teorema de Carnot, isto é, suas eficiências máximas dependem exclusivamente das temperaturas conforme definido peia equação (b),
Figure imgf000007_0001
[015] The current state of the art comprises a series of cycle engines, most of which require high operating temperatures, especially internal combustion engines, usually operating with working gas at temperatures above 1500 ° C. External combustion engines or engines operating from external heat sources, such as Rankine and Stirling cycle, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C. In addition to motors based on open and closed systems, they often require high temperatures to operate, all of them have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend exclusively on temperatures as defined by equation (b),
Figure imgf000007_0001
[016] Na equação (b), (q) é o rendimento, ( Τf) é a temperatura da fonte fria e ( Tq) é a temperatura cia fonte quente, ambas em "Kelvin". [016] In equation (b), (q) is the yield, (Τf) is the cold source temperature and (Tq) is the hot source temperature, both in "Kelvin".
[017] O estado atual da técnica, baseado nos sistemas aberto e fechado, compreende basicamente seis ciclos motores e aigumas versões destes: o ciclo Oito, de ciclo Atkinson, semelhante ao ciclo Otto, de ciclo Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton, de ciclo Rankine, de ciclo Stiding, de ciclo Ericsson e o de ciclo Carnot, referência teórica ideal para os motores fundamentados nos sistema aberto e fechado. As úítimas novidades do estado atual da técnica vem sendo apresentadas através de inovações juntando-se mais de um ciclo antigo formando ciclos combinados, isto é: novos sistemas de motores compostos por uma máquina de ciclo Brayton operante com combustíveis de origem fóssil, gás ou óleo e uma máquina de ciclo Rankine dependente do calor rejeitado pela máquina de ciclo Brayton. Ou a mesma filosofia, uníndo-se um motor de ciclo Diesel com um de ciclo Rankine ou ainda um motor de ciclo Otto, também unindo-o com um motor de ciclo Rankine. [017] The current state of the art, based on open and closed systems, comprises basically six motor cycles and some versions thereof: Atkinson cycle Eight cycle, Sabathe cycle Otto cycle Diesel cycle similar Brayton cycle, Rankine cycle, Stiding cycle, Ericsson cycle and Carnot cycle diesel, ideal theoretical reference for open and closed engine based engines. The latest developments in the current state of the art have been presented through innovations by joining more than one old cycle into combined cycles, ie: new engine systems composed of a Brayton cycle machine operating on fossil fuels, gas or oil. and a heat-dependent Rankine cycle machine rejected by the Brayton cycle machine. Or the same philosophy, combining a diesel engine with a Rankine cycle engine or an Otto cycle engine, also joining it with a Rankine cycle engine.
[018] O estado atual da técnica apresenta uma série de limitações e oferece também uma série de problemas, A maioria dos motores, como os de combustão interna, de ciclo Otto, Atkinson, Diesel, Sabathe e Brayton, exigem combustíveis específicos para cada conceito, por exemplo: gasolina, óleo diesel, gás, querosene, carvão, e de alto poder calorífico, precisam trabalhar sob altas temperaturas e por consequência, durante muitos anos, vem dependendo de combustíveis fósseis, trazendo danos graves ao clima e meio- ambíente, isto é, são caracterizados peia não sustentabilidade. O sistema termodinâmico sob os quais estes motores são projeíados trazem como limitação de eficiência o teorema de Carnot o qual, em função de seu princípio, impõe o limite da eficiência como função direía e exclusiva das temperaturas, conforme equação (b). [018] The current state of the art has a number of limitations and also offers a number of problems. Most engines, such as Otto, Atkinson, Diesel, Sabathe and Brayton internal combustion engines, require specific fuels for each concept. , for example: gasoline, diesel, gas, kerosene, coal, and high calorific power, need to work at high temperatures and consequently, for many years, has been relying on fossil fuels, bringing severe damage to the climate and the environment, that is, they are characterized by non-sustainability. The thermodynamic system under which these engines are designed brings as a limitation of efficiency the Carnot theorem which, due to its principle, imposes the efficiency limit as a direct and exclusive function of temperatures, according to equation (b).
[019] A maioria dos motores da alualidade exigem combustíveis refinados e poluentes com efeitos nocivos ao clima, ao ambiente e, portanto, comprometem a sustentabilidade. Uma das mais recentes tecnologias desenvolvidas para minimizar o impacto, foi a junção de dois antigos conceitos de motores, o motor de ciclo Brayton e o motor de ciclo Rankine, formando um sistema composto por dois ciclos combinados, de forma tal que o rejeito de calor da primeira máquina é utilizado pela segunda máquina para melhorar a eficiência do conjunto, porém o uso de combustíveis fósseis e seus efeitos permanecem. O ciclo combinado continua a ser caracterizado por um motor sob conceito de sistema aberto e um motor sob o conceito de sistema fechado, independentes, ou seja, é classificado como sistema combinado, dois ciclos completamente independentes, não se caracteriza como sistema híbrido ou binário.  [019] Most current engines require refined fuels and pollutants that have a detrimental effect on the climate and the environment and thus compromise sustainability. One of the latest technologies developed to minimize impact was the joining of two old engine concepts, the Brayton cycle engine and the Rankine cycle engine, forming a system composed of two combined cycles, such that the heat waste The first machine is used by the second machine to improve the efficiency of the set, but the use of fossil fuels and their effects remain. The combined cycle continues to be characterized by an open engine concept and an independent closed engine concept, ie it is classified as a combined system, two completely independent cycles, not characterized as a hybrid or binary system.
[020] Os demais motores, de ciclo Stirling e Ericsson, são motores sob o conceito de sistema fechado, são de combustão externa ou fonte de calor externo. Em função de suas propriedades, embora tenham os conceitos mais simples de motores, são difíceis de serem construídos. Exigem parâmetros de projetos casados, isto é, funcionam bem, com boa eficiência, apenas em seu regime específico de operação, temperatura, pressão, carga, fora do ponto central de operação suas eficiências caem bruscamente, ou não operam. Portanto são máquinas muito pouco utilizadas para uso industrial ou popular.  [020] The other engines, Stirling and Ericsson cycle, are engines under the closed system concept, are of external combustion or external heat source. Because of their properties, although they have the simplest motor concepts, they are difficult to build. They require married design parameters, that is, they work well, with good efficiency, only in their specific operating regime, temperature, pressure, load, outside the central point of operation their efficiencies drop sharply, or do not operate. Therefore they are machines very little used for industrial or popular use.
[021] O motor ideal de Carnot, figura 3, por sua vez, embora seja considerado o motor ideal, mais perfeito até o presente, ele o é na teoria e dentro dos conceitos de sistema aberto e fechado considerando todos os parâmetros ideais, por este motivo é a referência até hoje para todos os conceitos de motores existentes. O motor de Carnot não é encontrado no uso prático porque os materiais reais não possuem as propriedades exigidas para tornar o motor de Carnot uma realidade, as dimensões físicas para que o ciclo de Carnot possa ser executado como na teoria, seriam inviáveis em um caso prático, portanto ele é um Motor ideal nos conceitos de sistema aberto e sistema fechado, porém no conceito teórico. [021] Carnot's ideal motor, figure 3, while considered the ideal motor, most perfect to date, it is in theory and within open and closed system concepts considering all ideal parameters, for example. This is the reference to date for all existing engine concepts. The Carnot Engine is not found in practical use because the actual materials do not possess the properties required to make the Carnot Engine a reality, the physical dimensions for the Carnot Cycle. If it were to be performed as in theory, it would be unfeasible in a practical case, so it is an ideal Engine in open and closed system concepts, but in the theoretical concept.
[022] O controle de potência, rotação e torque, dos motores existentes, de ciclo Otto, Atkinson, Diesel, Sabathe, Brayíon, estes de combustão interna, são decorrentes direlamenfe da alimentação de combustíveis e oxigénio e como resultado oferecem maior rotação e torque simultaneamente. Para haver separação entre o torque e a rotação, eles exigem caixas de velocidade. Estas máquinas não pemiitem controlabilidade, ou no mínimo, oferecem dificuldades na controlabilidade através de seus ciclos termodinâmicos,  [022] Power, speed and torque control of existing Otto, Atkinson, Diesel, Sabathe, Brayion cycle engines, these internal combustion engines, derive directly from the fuel and oxygen supply and as a result offer increased engine speed and torque. simultaneously. For separation between torque and rotation, they require gearboxes. These machines do not allow controllability, or at least offer difficulties in controllability through their thermodynamic cycles,
[023] O controle de potência, rotação e torque, dos motores existentes de ciclo Rankine, este de combustão externa, são decorrentes da vazão e da pressão do vapor ou gás de trabalho, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. [023] The power, speed and torque control of existing Rankine cycle engines, which are external combustion, are due to the flow and pressure of steam or working gas, and as a result offer interdependent variations in speed and torque simultaneously, There is no separate controllability between torque and rotation.
[024] O controle de potência, rotação e torque, dos motores existentes de ciclo Stiriing e Ericsson, estes de combustão externa, são decorrentes da massa ou pressão do gás de trabalho, das temperaturas, da geometria construtiva, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. Estas máquinas possuem suas curvas de operação muito estreitas oferecendo baixa controlabilidade e uma faia estreita de operacionabiSidade. Nestes casos são comuns projetos que não funcionam porque os parâmetros, nas suas interdependências podem não oferecer as condições que levam o motor a funcionar.  [024] The power, speed and torque control of existing Stiriing and Ericsson external combustion cycle engines are due to working gas mass or pressure, temperatures, construction geometry, and as a result offer interdependent variations. of rotation and torque simultaneously, there is no separate controllability between torque and rotation. These machines have very narrow operating curves offering low controllability and a narrow operating beech. In these cases, designs that do not work are common because the parameters in their interdependencies may not offer the conditions that make the engine run.
[025] O estado atual da técnica, recentemente revelou algumas referências que já se encontram com conceitos semelhantes do sistema híbrido ou binário, são motores que apresentam características de possuírem dois ciclos termodinâmicos interdependentes constituindo um ciclo complexo formado por oito processos, sempre com dois processos operando simultaneamente em um sistema formado por dois subsistemas integrados. A patente "PI 1000624-9" registrada no Brasil definida como "Conversor de energia termomecânico" é constituído por dois subsistemas que opera por meio de um ciclo termodinâmico formado por quatro processos isotérmicos e quatro processos isocóricos, sem regeneração. A patente ' PCT/BR2013/000222" registrada nos Estados Unidos da América definida como "Máquina térmica que opera em conformidade com o ciclo termodinâmico de Carnot e processo de controle" a qual é constituída por dois subsistemas e opera em cada subsistema, um ciclo termodinâmico formado por dois processos isotérmicos de dois processos adiabáticos. A. patente "PCT/BR2014/000381 " registrada nos Estados Unidos da América definida como "Máquina térmica diferenciai com ciclo de oito transformações termodinâmicas e processo de controle" a qual é constituída por dois subsistemas e opera um ciclo termodinâmico formado por quatro processos isotérmicos de quatro processos adiabáticos. Estas referências diferem da presente invenção quanto aos processos termodinâmicos que formam seus ciclos, cada ciclo oferece ao motor características próprias. O conceito de sistema termodinâmico híbrido ou binário oferece a base para o desenvolvimento de uma nova família de motores térmicos, cada motor terá características próprias conforme os processos e fases que constituem os seus respectivos ciclos termodinâmicos, como por exemplo, o motor Otto e o motor Diesel, ambos de combustão interna, são motores fundamentados no sistema termodinâmico aberto, porém constituem motores distintos e o que os distingue são detalhes de seus ciclos termodinâmicos, o ciclo do motor Otto é constituído basicamente por um processo adíabático de compressão, um processo ísocórico de combustão, um processo adiabático de expansão e um processo ísocórico de exaustão e o ciclo do motor Diesel é constituído por um processo adiabático de compressão, um processo isobárico de combustão, um processo adíabático de expansão e um processo Ísocórico de exaustão, portanto eles diferem em apenas um dos processos que formam seus ciclos, o suficiente para conferir a cada um, propriedades e usos específicos e diferentes. Da mesma forma, o conceito de sistema híbrido ou binário oferece a base para uma nova família de motores térmicos constituídos por dois subsistemas e estes irão operar com ciclos ditos diferenciais formados por processos onde sempre ocorrerão dois processos simultâneos, cada um terá particularidades próprias as quais caracterizarão cada um dos ciclos-motores. [025] The current state of the art has recently revealed some references that already have similar concepts of the hybrid or binary system, are engines that have characteristics of having two interdependent thermodynamic cycles constituting a complex cycle formed by eight processes, always with two processes. operating simultaneously on a system formed by two integrated subsystems. The patent "PI 1000624-9" registered in Brazil defined as "Thermomechanical Energy Converter" consists of two subsystems operating through a thermodynamic cycle formed by four isothermal processes and four isochoric processes without regeneration. The 'PCT / BR2013 / 000222' patent registered in the United States of America defined as "Carnot thermodynamic cycle thermal control machine and control process" which consists of two subsystems and operates in each subsystem, one cycle. formed by two isothermal processes of two adiabatic processes A. Patent "PCT / BR2014 / 000381" filed in the United States of America defined as "Differential thermal machine with eight thermodynamic transformation cycle and control process" which consists of two subsystems and operates a thermodynamic cycle formed by four isothermal processes of four adiabatic processes.These references differ from the present invention as to the thermodynamic processes that form their cycles, each cycle gives the engine its own characteristics.The concept of hybrid or binary thermodynamic system provides the basis for the development of a new motor family In each case, each engine will have its own characteristics according to the processes and phases that make up their respective thermodynamic cycles, such as the Otto engine and the diesel engine, both internal combustion engines, are engines based on the open thermodynamic system, but are distinct engines. and what distinguishes them are details of their thermodynamic cycles, the Otto engine cycle consists basically of an adiabatic compression process, an isocoric combustion process, an adiabatic expansion process and an isocoric exhaust process and the diesel engine cycle. It consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an Isocoric exhaustion process, so they differ in only one of the processes that form their cycles, sufficient to give each one properties and specific and different uses. Gives Similarly, the concept of a hybrid or binary system provides the basis for a new family of thermal motors made up of two subsystems and these will operate with so-called differential cycles consisting of processes where two simultaneous processes will always occur, each having its own particularities which will characterize each of the motor cycles.
OBJETlVOS DA INVENÇÃO OBJECTS OF THE INVENTION
[026] Os grandes problemas do estado da técnica são, portanto, a dificuldade das tecnologias atuais a atender projetos sustentáveis, em função da dependência de combustíveis fósseis, poluentes, com impactos graves ao ambiente e ao clima, baixa eficiência, limitada exclusivamente ás temperaturas, demonstrado pelo teorema de Carnot, baixo nível de controiabilidade em função das limitações na variabilidade dos parâmetros dos modelos fundamentados nos sistemas termodinâmicos aberto e fechado, falta de flexibilidade quanto às fontes de energia, muitos exigem combustíveis refinados e específicos, alta dependência do ar (oxigénio) para combustão e muitos deles dependem de um segundo motor para leva-los à operação (um motor de partida).  [026] The major problems of the state of the art are, therefore, the difficulty of current technologies to meet sustainable projects, due to the dependence on fossil fuels, pollutants, with severe impacts on the environment and climate, low efficiency, limited exclusively to temperatures. , demonstrated by Carnot's theorem, low level of contriability due to limitations in the variability of the parameters of models based on open and closed thermodynamic systems, lack of flexibility regarding energy sources, many require refined and specific fuels, high air dependence ( oxygen) for combustion and many of them rely on a second engine to drive them into operation (a starter).
[027] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes e minimizar outros problemas, porém o maior objetivo foi em desenvolver novos ciclos-motores baseados em um novo conceito de sistema termodinâmico de forma que a eficiência dos motores não ficasse mais dependentes exclusivamente das temperaturas e cujas fontes de energia possam ser diversificadas e que permitisse projeto de motores para ambientes inclusive sem ar (oxigénio). O conceito de sistema híbrido ou binário, característica própria que fundamenta esta invenção, elimina a dependência da eficiência de forma exclusiva à temperatura, a eficiência de qualquer máquina térmica depende dos seus potenciais e de seus diferenciais de potenciais, enquanto que os sistemas aberto e fechado geram potenciais onde a massa do gás é constante e por este motivo elas se cancelam nas equações, os sistemas híbridos ou binários a massa não necessariamente é constante, portanto não se cancelam e as suas eficiências dependem dos potenciais dos quais se originam a força motriz, isto é, das pressões. O conceito de sistema híbrido proporciona potenciais dependentes, proporcionais ao produto da massa de gás de trabalho pela temperatura. Como no sistema híbrido, diferente dos sistemas aberto e fechado, a massa é variável, a sua eficiência passa a ser uma função não exclusiva da temperatura, mas dependente da massa e para um motor de ciclo diferencial composto por quatro processos isobáricos, quatro processos adiabáticos, com transferência de massa entre seus subsistemas durantes os processos adiabáticos, a eficiência é demonstrada conforme apresentado na equação (c) e figura 4.
Figure imgf000012_0001
[027] The aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept so that the efficiency of the motors would not be more dependent. temperatures only and whose energy sources could be diversified and which would allow the design of engines for environments even without air (oxygen). The characteristic hybrid or binary system concept that underlies this invention eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and their potential differentials, while open and closed systems generate potentials where the mass of the gas is constant and for this reason they cancel out in the equations, hybrid or binary systems the mass is not necessarily constant, so no they cancel out and their efficiencies depend on the potentials from which the driving force originates, that is, the pressures. The hybrid system concept provides dependent potentials proportional to the product of the working gas mass by temperature. As in the hybrid system, unlike the open and closed systems, the mass is variable, its efficiency becomes a non-temperature-dependent but mass-dependent function and for a differential cycle motor composed of four isobaric processes, four adiabatic processes. , with mass transfer between its subsystems during adiabatic processes, the efficiency is demonstrated as presented in equation (c) and figure 4.
Figure imgf000012_0001
[028] Na equação (c), (η) é o rendimento, (T1) é a temperatura iniciai do processo isobárico de alta temperatura, (72) é a temperatura final do processo isobárico de alia temperatura, esta temperatura tende a se equaiizar com a temperatura da fonte quente (Tq), (73) é a temperatura inicial do processo isobárico de baixa temperatura, (74) é a temperatura final do processo isobárico de baixa temperatura, esta temperatura fende a se equaiizar corn a temperatura da fonte fria (77), todas as temperaturas em "Kelvin", (n1) é o número de moles do subsistema 1 , indicado pela região 21 da figura 4, (n2) é o número de moles do subsistema 2, indicado pela região 23 da figura 4.  [028] In equation (c), (η) is the yield, (T1) is the initial temperature of the high temperature isobaric process, (72) is the final temperature of the isobaric process of alia temperature, this temperature tends to equalize with the hot source temperature (Tq), (73) is the starting temperature of the low temperature isobaric process, (74) is the final temperature of the low temperature isobaric process, this temperature tends to equalize with the cold source temperature (77), all temperatures in "Kelvin", (n1) is the number of moles of subsystem 1, indicated by region 21 of Figure 4, (n2) is the number of moles of subsystem 2, indicated by region 23 of Figure 4. 4
[029] A dependência de altas temperaturas da maioria dos motores do atual estado da técnica levam também à dependência de combustíveis com alto poder calorífico, dificultando o uso de fontes limpas as quais normalmente oferecem menor temperatura. O conceito de ciclo diferencial sob o sistema híbrido, e fluído de trabalho cujos processos não obriguem a troca de fase física, elimina esta obrigatoriedade da dependência de altas temperaturas, O conceito diferenciai onde o ciclo opera sempre dois processos por vez, (26 e 27) da figura 5. simultaneamente e interdependentes, viabiliza máquinas que possam operar com baixas temperaturas e por consequência, as fontes limpas renováveis, como a termossoíar, geotermai, passam a ser plenamente viáveis e suas eficiências passam a ter a massa, ou número de moles, como mostrado na equação (c), como parâmetro para a obtenção de eficiências melhores, mesmo com diferenciais de temperatura relativamente baixos. [029] The high temperature dependence of most engines of the current state of the art also leads to the dependence on high calorific fuels, making it difficult to use clean sources which normally offer lower temperatures. The concept of differential cycle under the hybrid system, and workflow whose processes do not require physical phase switching, eliminates this requirement of high temperature dependence. The concept differentiates where the cycle always operates two processes at a time, (26 and 27 ) of Figure 5. simultaneously and interdependent, enables machines that can operate at low temperatures and as a consequence, renewable clean sources such as thermoseal, geothermal, become fully viable and their efficiencies now have mass, or number of moles, as shown in equation (c), as a parameter for obtaining better efficiencies, even with relatively low temperature differentials.
[030] Os principais ciclos termodinâmicos conhecidos, Otto, Atkinson, Diesel, Sabathe. Brayton, Stirling, Ericsson, Rankine e o ciclo Carnot executam um único processo por vez sequencialmente, conforme mostrado na figura 2, referenciado ao ciclo mecânico dos elementos de força motriz, seu controle é uma função díreta da alimentação da fonte de energia, por sua vez, os ciclos diferenciais do sistema híbrido ou binário, executam dois processos por vez, figura 5, viabilizando o controle do ciclo termodinâmico separado do ciclo mecânico, o ciclo pode ser modulado e desta forma o ciclo mecânico passa a ser uma consequência do ciclo termodinâmico e não mais o contrário. [030] The main known thermodynamic cycles, Otto, Atkinson, Diesel, Sabathe. Brayton, Stirling, Ericsson, Rankine, and the Carnot cycle perform a single process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the driving force elements, their control being a direct function of the power supply's power. Instead, the hybrid or binary differential cycles perform two processes at a time, Figure 5, enabling the control of the thermodynamic cycle separate from the mechanical cycle, the cycle can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle. and not the other way around.
DESCRSÇÃO DA INVENÇÃO DESCRIPTION OF THE INVENTION
[031] Os motores de ciclos diferenciais são caracterizados por possuírem dois subsistemas, formando um sistema híbrido ou binário, representado por (21 e 23) da figura 4, cada subsistema executa um ciclo referenciado ao outro subsistema de modo a executarem sempre dois processos simultâneos e interdependentes. De outra forma, considerando um sistema híbrido ou binário com propriedades dos sistemas aberto e do fechado simultaneamente, díz-se que o sistema executa um ciclo termodinâmico composto, figura 5, isto é, executa sempre dois processos por vez simultâneos (26 e 27) da figura 5, interdependentes, inclusive com transferência de massa. Portanto trata-se de motores e ciclos completamente distintos dos motores e ciclos baseados nos sistemas aberto ou fechado. Na figura 6 pode ser observada a relação entre o sistema híbrido ou binário e o ciclo termodinâmico diferencial.  [031] Differential cycle motors are characterized by having two subsystems forming a hybrid or binary system, represented by (21 and 23) of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always execute two simultaneous processes. and interdependent. Otherwise, considering a hybrid or binary system with properties of both open and closed systems simultaneously, it is said that the system performs a compound thermodynamic cycle, Figure 5, that is, always executes two simultaneous processes (26 and 27). Figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems. Figure 6 shows the relationship between the hybrid or binary system and the differential thermodynamic cycle.
[032] O conceito de sistema termodinâmico híbrido é novo. é caracterizado por um sistema binário, formado por dois subsistemas interdependentes e entre eles há troca de matéria e energia e ambos fornecem para fora de seus limites, energia em forma de trabalho e parte da energia em forma de calor dissipada. Este sistema termodinâmico foi criado no século XXI e oferece novas possibilidades para o desenvolvimento de motores térmicos. [032] The concept of hybrid thermodynamic system is new. It is characterized by a binary system, formed by two interdependent subsystems and between them there is exchange of matter and energy and both supply out of their limits, energy in the form of work and part of the energy in the form of heat dissipated. This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors.
[033] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica seja esta para uso em geração de energia ou outro uso, como força mecânica para movimentação e tração. Algumas das principais vantagens que podem ser constatadas são: a total flexibilidade quanto à fonte da energia (calor), a independência de atmosfera, não necessita de atmosfera para que um motor do ciclo diferenciai possa operar, a flexibilidade quanto às temperaturas, o motor de ciclo diferencial pode ser projetado para funcionar em uma faixa muito extensa de temperatura, bem superior à maioria dos motores fundamentados nos sistemas aberto e fechado, inclusive, um motor de ciclo diferencial pode ser projetado para funcionar com ambas as temperaturas abaixo de zero grau Celsius, basta que as condições de projeto promovam a expansão e contração do gás de trabalho e basta que os materiais escolhidos para a sua construção tenham as propriedades para executar as suas funções operacionais nas temperaturas de projeto. Outras vantagens importantes que distinguem o motor de ciclo diferencial fundamentado no sistema híbrido ou binário é a sua controlabilidade em função da facilidade na modulação dos processos termodinâmicos e em projetos de motores que dispensam o uso de motores de partida, ou no mínimo, estes seriam de pequeno porte, em função da facilidade de gerar um íorque por meio do diferencial de forças propiciado peio sistema formado por duas câmaras de conversão, isto é, dois subsistemas. Portanto as vantagens constatadas abrangem a flexibilidade das fontes, promovendo o uso de fontes limpas e renováveis como as vantagens operacionais, podendo operar teoricamente em quaisquer faixas de temperatura e sua propriedade de controle da rotação e torque. [033] The present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction. Some of the main advantages that can be seen are: the total flexibility as to the energy source (heat), the independence of the atmosphere, does not need atmosphere for a differential cycle motor to operate, the flexibility regarding the temperatures, the motor of Differential cycle can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, It is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures. Other important advantages that distinguish the differential-cycle motor based on the hybrid or binary system is its controllability due to the ease of modulation of thermodynamic processes and engine designs that do not require the use of starters, or at least these would be small, due to the ease of generating a York by the force differential provided by the system formed by two conversion chambers, that is, two subsystems. Therefore, the advantages found include the flexibility of the sources, promoting the use of clean and renewable sources as the operational advantages, and can theoretically operate in any temperature range and its rotation and torque control property.
[034] O motor de ciclo diferencial baseado no conceito de sistema híbrido ou binário poderá ser construído com materiais e técnicas semelhantes aos motores convencionais e motores de ciclo Stirling, como se trata de um motor que trabalha com gás em circuito fechado, considerando o sistema completo, isto é. o sistema completo é formado por dois subsistemas termodinâmicos integrados, 31 e 37, configurando um sistema termodinâmico binário ou híbrido, cada subsistema é formado por uma câmara, 33 e 35, contendo gás de trabalho e cada uma destas, são formadas por três subcâmaras. uma aquecida, 33 com 39 e 35 com 42, uma resfriada, 33 com 41 e 35 com 310, e outra isolada, 33 com 32 e 35 com 36, conectado a estas duas câmaras há um elemento de força motriz, 38, entre os subsistemas há um elemento de transferência de massa, 34, portanto os subsistemas são abertos entre si, entre o sistema completo e o meio externo, é considerado fechado, estes dois subsistemas executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um ciclo termodinâmico diferencial, 61 , único, de oito processos, sendo quatro deles isobáricos, (a-b), (1 -2), (c-d) e Í3~ 4), quatro adiabáticos, (b-c), (2-3), (d-a) e (4-1), com transferência de massa variável Este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, sâo semelhantes, neste aspecto, às tecnologias de projetos de motores de ciclo Stirling. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás poderá ser vários, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros. [034] The differential-cycle engine based on the hybrid or binary system concept may be constructed from materials and techniques similar to conventional and Stirling-cycle engines, as it is a closed-loop gas engine considering the system. complete, this is. The complete system is formed by two integrated thermodynamic subsystems, 31 and 37, forming a binary or hybrid thermodynamic system, each subsystem formed by a chamber 33 and 35 containing working gas and each of these are formed by three sub-chambers. one heated, 33 with 39 and 35 with 42, one cold, 33 with 41 and 35 with 310, and one isolated, 33 with 32 and 35 with 36, connected to these two chambers is a driving force element 38 between the subsystems there is a mass transfer element, 34 so the subsystems are open to each other, between the complete system and the external environment, it is considered closed, these two subsystems simultaneously execute each other, a cycle of four interdependent processes forming a cycle differential thermodynamic, 61, single, of eight processes, four of which are isobaric, (ab), (1-2), (cd) and (3 ~ 4), four adiabatic, (bc), (2-3), (of ) and (4-1), with variable mass transfer This closed-circuit concept of working gas with respect to the external environment indicates that the system must be sealed, or in some cases leaks may be allowed, provided they are compensated. Suitable materials for this technology should be noted, which are similar in this respect to Stirling cycle engine design technologies. The working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as the gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others.
[035] As câmaras de conversão, itens que caracterizam o sistema híbrido ou binário, poderão ser construídas com diversos materiais, dependendo das temperaturas de projeto, do gás de trabalho utilizado, das pressões envolvidas, do ambiente e condições de operação. Estas câmaras possuem cada uma. três subcâmaras e estas devem ser projetadas observando a exigência de isolamento térmico entre sí para minimizar o fluxo direto de energia a partir das áreas quentes para as frias, esta condição é importante para a eficiência geral do sistema. Estas câmaras possuem internamente elementos que movimentam o gás de trabalho entre as subcamaras quente, fria e isoladas, estes elementos podem ser de diversas formas geométricas, depende da exigência e dos parâmetros do projeto, poderá, por exemplo, ser em forma de discos, em forma cilíndrica ou outra que permita a movimentação do gás de trabalho de forma controlada entre as subcamaras. [035] Conversion chambers, items that characterize the hybrid or binary system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These cameras each have. Three sub-chambers and these should be designed keeping in mind the requirement of thermal insulation between themselves to minimize the direct flow of energy from hot to cold areas, this condition is important for overall system efficiency. These chambers have internal elements that move working gas between hot, cold and insulated sub-chambers, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be disc-shaped, cylindrical or otherwise working gas movement in a controlled manner between the sub chambers.
[036] O elemento de transferência de massa, 34, interliga as duas câmaras, 33 e 35, este elemento é o responsável pela transferência de parte da massa de gás de trabalho entre as câmaras que ocorre em momento especifico durante os processos acliabáticos. Este elemento poderá ser projetado de várias formas dependendo das exigências do projeto, poderá operar peia simples diferença de pressão, isto é em forma de válvula, ou poderà operar de modo forçado, por exemplo, em forma de turbina, em forma de pistões ou em outra forma geométrica que lhe permita executar a transferência de massa de parte do gás de trabalho.  The mass transfer element 34 interconnects the two chambers 33 and 35, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time during the acliabatic processes. This element may be designed in various ways depending on the requirements of the project, may operate by simple pressure difference, ie valve-shaped, or may operate in a forced manner, for example turbine, piston-shaped or in another geometric shape allowing it to perform the mass transfer of part of the working gas.
[037] O elemento de força motriz, 38, é o responsável por executar o trabalho mecânico e disponibilizá-lo para usos. Este elemento de força motriz opera pelas forças do gás de trabalho do motor, este elemento poderá ser projetado de várias formas, dependendo das exigências de projeto, poderá, por exemplo, ser em forma de turbina, em forma cie pistões com cilindro, bielas, virabrequsns, em forma de diafragma ou em outra forma que permita a realização de trabalho a partir das forças do gás durante as conversões termodinâmicas.  [037] The driving force element, 38, is responsible for performing mechanical work and making it available for use. This driving force element operates by the working gas forces of the engine, this element may be designed in various ways depending on the design requirements, it may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
DESCRIÇÃO DOS DESENHOS DESCRIPTION OF DRAWINGS
[038] As figuras anexas demonstram as principais características e propriedades dos conceitos antigos das máquinas térmicas e as inovações propostas baseadas no sistema híbrido ou binário, sendo representadas conforme segue abaixo:  [038] The attached figures show the main characteristics and properties of the old concepts of thermal machines and the proposed innovations based on the hybrid or binary system, being represented as follows:
A figura 1 representa o conceito de sistema termodinâmico aberto e o conceito de sistema termodinâmico fechado;  Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system;
A figura 2 representa a característica de todos os ciclos termodinâmicos fundamentados nos sistemas aberto e fechado; A figura 3 mostra a ideia originai da máquina térmica de Carnot, conceituada em 1824 por Nicolas Sadi Carnot; Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems; Figure 3 shows the original idea of Carnot's thermal machine, conceptualized in 1824 by Nicolas Sadi Carnot;
A figura 4 representa o conceito de sistema termodinâmico híbrido ou binário;  Figure 4 represents the concept of hybrid or binary thermodynamic system;
A figura 5 representa a característica dos ciclos termodinâmicos diferenciais fundamentados no sistema híbrido ou binário:  Figure 5 represents the characteristic of differential thermodynamic cycles based on hybrid or binary system:
A figura 6 mostra o sistema termodinâmico híbrido ou binário e um ciclo termodinâmico diferencial e o detalhe dos dois processos termodinâmicos que ocorrem simultaneamente;  Figure 6 shows the hybrid or binary thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes;
A figura 7 mostra o modelo mecânico constituído pelos dois subsistemas termodinâmicos que formam um motor térmico sob o conceito de sistema híbrido ou binário;  Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid or binary system;
A figura 8 mostra um dos subsistemas, grupo 31 , realizando o processo isobárico de alta temperatura do ciclo termodinâmico e o segundo subsistema, grupo 37, realizando o processo isobárico de baixa temperatura do ciclo termodinâmico;  Figure 8 shows one of the subsystems, group 31, performing the high temperature isobaric process of the thermodynamic cycle and the second subsystem, group 37, performing the low temperature isobaric process of the thermodynamic cycle;
A figura 9 mostra um dos subsistemas, grupo 31 , realizando o processo adiabático de expansão do ciclo termodinâmico e o segundo subsistema, grupo 37, realizando o processo adiabático de compressão do ciclo termodinâmico;  Figure 9 shows one of the subsystems, group 31, performing the adiabatic thermodynamic cycle expansion process and the second subsystem, group 37, performing the adiabatic thermodynamic cycle compression process;
A figura 10, mostra por sua vez, o primeiro subsistema, grupo 31 , realizando o seu processo isobárico de baixa temperatura do ciclo termodinâmico e o segundo subsistema, grupo 37, realizando o processo isobárico de alta temperatura do ciclo termodinâmico;  Figure 10 shows in turn the first subsystem group 31 performing its low temperature isobaric process of the thermodynamic cycle and the second subsystem group 37 performing the high temperature isobaric process of the thermodynamic cycle;
A figura 1 1 mostra primeiro subsistema, grupo 31 , realizando o processo adiabático de compressão do ciclo termodinâmico e o segundo subsistema, grupo 37, realizando o processo adiabático de expansão do ciclo termodinâmico;  Figure 11 shows the first subsystem, group 31, performing the adiabatic thermodynamic cycle compression process and the second subsystem, group 37, performing the adiabatic thermodynamic cycle expansion process;
A figura 12 mostra o ciclo termodinâmico diferencial ideal composto por dois processos isobáricos de alta temperatura, dois processos isobáricos de baixa temperatura dois processos adíabáticos de expansão, dois processos adiabáticos de compressão; Figure 12 shows the ideal differential thermodynamic cycle composed of two high temperature isobaric processes, two low temperature isobaric processes two adriatic expansion processes, two adiabatic compression;
A figura 13 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia geotermal;  Figure 13 shows an example of motor application for an electricity generating plant using geothermal energy as its primary source;
A figura 14 mostra um exemplo de aplicação do motor para uma planta geradora de eletrícidade tendo como fonte primária a energia termossoiar;  Figure 14 shows an example of motor application for an electricity generating plant having thermosound energy as its primary source;
A figura 15 mostra um exemplo de aplicação do motor de ciclo diferencial para um projeto de um sistema combinado, formando um ciclo combinado com um motor de combustão interna do sistema aberto.  Figure 15 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
DESCRIÇÃO DETALHADA DO INVENTO DETAILED DESCRIPTION OF THE INVENTION
[039] O motor de ciclo diferencial constituído por dois processos isobáricos de alta temperatura, dois processos isobáricos de baixa temperatura, dois processos adiabáticos de expansão, dois processos adiabáticos de compressão é fundamentado em um sistema termodinâmico híbrido, ou também pode ser denominado de sistema termodinâmico binário por possuir dois subsistemas termodinâmicos interdependentes os quais cada um realiza um ciclo termodinâmico que interagem-se entre si, podendo trocar calor, trabalho e massa conforme é representado na figura 4. Em 22, da figura 4, é mostrado o sistema híbrido ou binário, composto por dois subsistemas indicados por 21 e 23.  [039] The differential cycle motor consisting of two high temperature isobaric processes, two low temperature isobaric processes, two adiabatic expansion processes, two adiabatic compression processes is based on a hybrid thermodynamic system, or can also be termed a hybrid system. binary thermodynamic by having two interdependent thermodynamic subsystems which each perform an interacting thermodynamic cycle, which can exchange heat, work and mass as shown in figure 4. In 22, figure 4, the hybrid system is shown or binary, consisting of two subsystems indicated by 21 and 23.
[040] Na figura 6 é mostrado novamente o sistema termodinâmico híbrido ou binário e o ciclo termodinâmico diferenciai, detalhando, neste caso os processos, que quando em um dos subsistemas, no tempo (t1 ) o ciclo opera com massa (ml), número de mol (n1 ) e temperatura (Tq), neste mesmo instante, simultaneamente, no outro subsistema, o ciclo opera com massa (m2), número de mol (n2), temperatura (Tf). Em uma máquina baseada em um sistema híbrido ou binário, composto por dois subsistemas, a soma da massa de gás de trabalho é sempre constante (m1 + m2 = cte), porém não necessariamente são constantes nos seus respectivos subsistemas, entre eles pode haver troca de massa.  [040] In figure 6 the hybrid or binary thermodynamic system is shown again and the thermodynamic cycle differentiates, in this case detailing the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (ml), number mol (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), number of mol (n2), temperature (Tf). In a machine based on a hybrid or binary system composed of two subsystems, the sum of the working gas mass is always constant (m1 + m2 = cte), but not necessarily constant in their respective subsystems, there may be exchange between them. of mass.
[041] Na figura 7 é mostrado o modelo de motor baseado no sistema híbrido ou binário, contendo dois subsistemas indicado por 31 e 37. Cada subsistema possui sua câmara de conversão termomecânica, 33 e 35, um elemento de força motriz, 38. Fazendo conexão entre os subsistemas para os processos de transferência de massa, há um elemento de transferência de massa 34. [041] Figure 7 shows the engine model based on the hybrid system. or binary, containing two subsystems indicated by 31 and 37. Each subsystem has its thermomechanical conversion chamber, 33 and 35, a driving force element, 38. Connecting between the subsystems for mass transfer processes, there is an element of mass transfer 34.
[042] As figuras 8, 9, 10 e 11 mostram como ocorrem mecanicamente os oito processos, quatro isobáricos e quatro adiabáticos com transferência de massa. Na figura 8, o subsistema 31 expõe o gás de trabalho â fonte quente, na temperatura (Tq), indicado em 39, esíe subsistema executa o processo isobárico de alta temperatura e simultaneamente o subsistema indicado por 37 expõe o gás de trabalho à fonte fria, na temperatura (Tf), indicado em 310, e neste instante, simultaneamente, este subsistema executa o processo isobárico de baixa temperatura. Estes processos se alternam ente os subsistemas, conforme mostrado na figura 10. Após finalização dos processos isobáricos, na figura 9 e 11 são mostrados como os subsistemas processam os seus respectivos processos adiabáticos com ou sem transferência de massa, após o subsistema 31 finalizar seu processo isobárico de alta temperatura, o gás é exposto a uma região isolada termicamente, indicado por 32, o gás, inicialmente próximo à temperatura quente (Tq), expande na câmara de conversão, transformando o calor do gás em energia cinética em um processo adiabático tendendo à temperatura fria (Tf), a energia interna do gás se transforma energia mecânica, simultaneamente, parte do gás de trabalho do subsistema 31 , com pressão maior, é transferido para o subsistema 37 em pressão menor através do elemento de transferência de massa indicado em 34, concíuí-se assim o processo adiabático de expansão do subsistema 31 , simultaneamente, o subsistema 37 recebe parte da massa de gás de trabalho do subsistema 31 , e ocorre também, simultaneamente um processo adiabático de compressão, levando o gás da temperatura próxima à fria (Tf) para uma temperatura mais quente, no final deste processo inicia-se o processo isobárico de alta temperatura e durante este processo o subsistema 37 passa a ter massa maior que o subsistema 31. [043] A figura 12 mostra o ciclo diferencial ideal do motor, cie oito processos, completo, baseado no conceito de sistema termodinâmico híbrido ou binário, onde sempre ocorrem dois processos simultâneos no motor, exemplificado peias indicações 64 e 65, até formar o ciclo completo de oito processos. Em 61 , a sequência (1 -2-3-4-1 ) mostra os processos de um dos subsistemas que formam o ciclo do motor, a sequencia (a-b-c-d-a), todos interdependentes. Figures 8, 9, 10 and 11 show how the eight processes, four isobaric and four mass transfer adiabatic, occur mechanically. In Figure 8, subsystem 31 exposes the working gas to the hot source at the temperature (Tq) indicated at 39, and that subsystem performs the high temperature isobaric process and simultaneously the subsystem indicated by 37 exposes the working gas to the cold source. , at the temperature (Tf), indicated at 310, and at this time simultaneously, this subsystem executes the low temperature isobaric process. These processes alternate between the subsystems as shown in figure 10. After completion of the isobaric processes, figures 9 and 11 show how the subsystems process their respective adiabatic processes with or without mass transfer after subsystem 31 finishes their process. isobaric, the gas is exposed to a thermally insulated region, indicated by 32, the gas, initially close to the hot temperature (Tq), expands into the conversion chamber, turning the gas heat into kinetic energy into an adiabatic process tending to At cold temperature (Tf), the internal energy of the gas becomes mechanical energy. At the same time, part of the working gas of subsystem 31 with higher pressure is transferred to subsystem 37 at lower pressure through the mass transfer element indicated in 34, thus the adiabatic process of subsystem 31 was concurrently enhanced, while subsystem 37 receives part of the working gas mass of subsystem 31, and an adiabatic compression process also occurs simultaneously, bringing the gas from the near-cold (Tf) temperature to a warmer temperature, at the end of this process the high isobaric process begins. temperature and during this process subsystem 37 becomes larger than subsystem 31. [043] Figure 12 shows the ideal eight-process full engine differential cycle based on the concept of hybrid or binary thermodynamic system, where two simultaneous engine processes always occur, exemplified by indications 64 and 65, until the cycle is formed. of eight processes. At 61, sequence (1 -2-3-4-1) shows the processes of one of the engine cycle subsystems, the sequence (abcda), all interdependent.
[044] Na figura 12, em 61 , a curva indicada por 63 mostra os processos (a-b-c- d-a) de um dos subsistemas, o processo (a~b) é isobárico de alta temperatura onde ocorre a entrada de energia no sistema mostrado em 67, ocorre simultaneamente com o processo isobárico de baixa temperatura (3-4) por onde ocorre o descarte da energia não utilizada mostrado em 68 da curva indicada por 82 do outro subsistema. O processo (b-c) é adiabático de expansão, ocorre simultaneamente com o processo (4-1 ), também adiabático, porém de compressão, no processo (b-c) ocorre a transferência de calor (energia) do gás do motor para o eixo, transformando-se em energia cinética, simultaneamente no processo (4-1 ) ocorre a transferência da energia cinética para o gás do motor recebida do eixo, também num processo adiabático, simultaneamente ainda, durante os processos adiabáticos do ciclo do motor, ocorre a transferência de massa, saindo ( nl - n2) mol de gás no processo adiabático de expansão (b-c), para o outro subsistema, durante o processo adiabático de compressão (4-1 ). Os processos (2-3) β (d-a) sáo idênticos aos processos (b-c) e (4-1 ). O processo (c-d) é isobárico de baixa temperatura e ocorre simultaneamente ao processo (1 -2), isobárico de alta temperatura. O processo (d-a) é adiabático de compressão, com incremento de massa e ocorre simultaneamente ao processo (2-3), adiabático de expansão, com redução de massa, finalizando assim o ciclo termodinâmico com oito processos do motor, sempre dois simultâneos, a soma da massa de gás de trabalho dos dois subsistemas que formam o motor é sempre constante. [044] In Figure 12, at 61, the curve indicated by 63 shows the processes (abc) of one of the subsystems, process (a ~ b) is high temperature isobaric where energy enters the system shown in 67, occurs simultaneously with the low temperature isobaric process (3-4) whereby the unused energy shown in 68 of the curve indicated by 82 of the other subsystem occurs. Process (bc) is adiabatic of expansion, occurs simultaneously with process (4-1), also adiabatic, but of compression, in process (bc) occurs the heat transfer (energy) of the engine gas to the shaft, transforming If in kinetic energy, simultaneously in process (4-1) occurs the transfer of kinetic energy to the engine gas received from the shaft, also in an adiabatic process, while simultaneously during the adiabatic processes of the motor cycle, the transfer of mass, leaving (nl - n2) mol of gas in the adiabatic expansion process (bc) to the other subsystem during the adiabatic compression process (4-1). Processes (2-3) β (d-a) are identical to processes (b-c) and (4-1). Process (c-d) is low temperature isobaric and occurs simultaneously with process (1-2), high temperature isobaric. The (da) process is adiabatic with mass increment and occurs simultaneously with the adiabatic expansion process (2-3) with mass reduction, thus ending the thermodynamic cycle with eight engine processes, always two simultaneous, the The sum of the working gas mass of the two subsystems forming the engine is always constant.
[045] Nas câmaras de conversão do motor, os processos isobáricos do ciclo do motor (1-2), (a-b), (3-4) e (c-d) são realizados com o gás confinado em uma geometria caracterizada por uma inércia térmica em que o gás tenha uma taxa de variação da temperatura tai que o mesmo tende a equalizar com os elementos quentes ou frios apenas no fina! destes processos, fazendo que a pressão fique relativamente estável, isto é, isobárica. Esta geometria deve ser caracterizada por uma profundidade não muito pequena para a penetração do calor no gás, ou por um deslocamento do gás entre os elementos quentes e frios não muito rápido de forma a produzir urna taxa de variação da temperatura em todo o processo isobárico fazendo com que a pressão tenha um comportamento constante. Os processos adiabáticos do ciclo do motor (2- 3) e (b-c) são realizados com o gás em uma região isolada termicamente do motor, e neste processo o gás cie trabalho sofrerá uma expansão transferindo a energia do gás para os elementos mecânicos do motor, armazenando a energia em forma de energia cinética e nos processos adiabáticos de compressão do ciclo do motor (4-1 ) e (d-a) são realizados também com o gás em uma região isolada termicamente, e neste processo os elementos mecânicos do motor por compressão, transferem a energia cinética de volta para o gás do motor, elevando sua temperatura, concluindo o processo. [045] In engine conversion chambers, isobaric engine cycle processes (1-2), (ab), (3-4) and (cd) are performed with gas confined to a geometry characterized by a thermal inertia where the gas has a rate of change of temperature such that it tends to equalize with hot or cold elements only at the fin! of these processes, making the pressure relatively stable, that is, isobaric. This geometry shall be characterized by a depth not too small for the penetration of heat into the gas, or a gas displacement between the hot and cold elements not too fast to produce a rate of change in temperature throughout the isobaric process. that the pressure has a constant behavior. The engine cycle adiabatic processes (2-3) and (bc) are carried out with the gas in a thermally insulated region of the engine, and in this process the working gas will expand by transferring the gas energy to the engine mechanical elements. , storing energy in the form of kinetic energy and in adiabatic engine cycle compression processes (4-1) and (da) are also performed with gas in a thermally isolated region, and in this process the mechanical elements of the compression engine , transfer the kinetic energy back to the engine gas, raising its temperature, completing the process.
[046] A tabela 1 mostra processo por processo que formam o ciclo diferencia! de oito processos do motor térmico mostrados passo a passo, com quatro processos isobáricos, quatro processos adiabáticos e etapas de transferência de massa.  [046] Table 1 shows process by process that form the cycle differentiates! of eight heat engine processes shown step by step, with four isobaric processes, four adiabatic processes and mass transfer steps.
Tabela 1  Table 1
Figure imgf000021_0001
[047] Este ciclo diferencial de um motor composto por dois subsistemas baseado no conceito de sistema híbrido ou binário, cuja curva da pressão e do volume é indicado na figura 12, possui oito processos, dois processos isobáricos de alta temperatura de entrada de energia no sistema, mostrado por 67, curvas (1 -2) e (a-b) são representadas peias expressões (d) e (e), dois processos isobáricos de baixa temperatura de descarte da energia não utiiizada, mostrada por 88, curvas (3-4) e (c-d) representados peias expressões (!) e (g), a energia interna do gás no ponto (2) do processo (1 -2) é representado pela expressão (h), a energia interna do gás no ponto (b) do processo (a-b) é representado peia expressão (i), a energia transferida com a massa de gás a partir do ponto (2) do processo (1-2) é representado pela expressão (j). a energia transferida com a massa de gás a partir do ponto (b) do processo (a-b) é representado pe!a expressão (k), o processo de expansão adiabático (2-3) é representado pela expressão (i), o processo de expansão adiabático (b-c) é representado pela expressão (m), a energia interna no gás no ponto (3) é a resultante da energia do ponto (2) após a transferência de massa e da expansão adiabática, representada peia expressão (n), a energia interna no gás no ponto (c) é a resultante da energia do ponto (b) após a transferência de massa e da expansão adiabática, representada pela expressão (o), a energia interna do gás no ponto (4) do processo (3-4) é representado pela expressão (p), a energia interna do gás no ponto (d) do processo (c-d) é representado pela expressão (q), a energia interna no gás no ponto (1) é a resultante da energia do ponto (4) após a introdução da massa e da compressão adiabática, representada pela expressão (r), a energia interna no gás no ponto (a) é a resultante da energia do ponto (d) após a introdução da massa e da compressão adiabática, representada pela expressão (s). As expressões consideram o sina! do sentido do fluxo das energias.
Figure imgf000021_0001
[047] This differential cycle of an engine consisting of two subsystems based on the concept of hybrid or torque system, whose pressure and volume curve is shown in figure 12, has eight processes, two high temperature isobaric processes of energy input into the system, shown by 67, curves (1-2) and (ab) are represented by expressions (d) and (e), two low temperature isobaric processes of disposal of unused energy, shown by 88, curves (3-4) ) and (cd) represented by the expressions (!) and (g), the internal gas energy at point (2) of process (1-2) is represented by the expression (h), the internal gas energy at point (b) ) of process (ab) is represented by expression (i), the energy transferred with the gas mass from point (2) of process (1-2) is represented by expression (j). the energy transferred with the gas mass from point (b) of process (ab) is represented by expression (k), adiabatic expansion process (2-3) is represented by expression (i), process of adiabatic expansion (bc) is represented by the expression (m), the internal energy in gas at point (3) is the resultant energy of point (2) after mass transfer and adiabatic expansion represented by the expression (n) , the internal energy in gas at point (c) is that resulting from the energy of point (b) after mass transfer and adiabatic expansion, represented by the expression (o), the internal energy of gas at point (4) of the process (3-4) is represented by expression (p), the internal energy of gas at point (d) of process (cd) is represented by expression (q), the internal energy in gas at point (1) is that resulting from energy of point (4) after the introduction of mass and adiabatic compression, represented by the expression (r), the internal energy n The gas at point (a) is that resulting from the energy of point (d) after the introduction of mass and adiabatic compression, represented by the expression (s). Expressions consider sina! of the direction of the flow of energies.
Figure imgf000022_0001
Figure imgf000022_0001
Figure imgf000023_0004
Figure imgf000023_0004
[048] Considerando que (Tl - Ta) e (72 = 7b), o total de energia de entrada no motor é a soma das energias
Figure imgf000023_0005
é representada pela expressão (!) abaixo.
Figure imgf000023_0001
Whereas (Tl - Ta) and (72 = 7b), the total input energy to the motor is the sum of the energies
Figure imgf000023_0005
is represented by the expression (!) below.
Figure imgf000023_0001
[049] Considerando que (73 = 7c) e { T4 ~ Td), o total de energia descartada para o meio exterior é a soma das energias e na sua forma
Figure imgf000023_0003
Whereas (73 = 7c) and {T4 ~ Td), the total energy discarded to the outside is the sum of the energies and in their form
Figure imgf000023_0003
positiva, é representada pela expressão (u) abaixo.
Figure imgf000023_0002
positive, is represented by the expression (u) below.
Figure imgf000023_0002
[050] O trabalho útil total do motor, considerando um modelo ideai sem perdas, é a diferença entre a entrada e a saída da energia e é representado peia expressão (v) abaixo.
Figure imgf000024_0001
[050] The total useful engine work, considering a lossless ideai model, is the difference between the input and output of the energy and is represented for expression (v) below.
Figure imgf000024_0001
[051] Os processos adiabâticos de expansão e de compressão, mostrados pelas expressões (h) até (s) são iguais, a energia é transferida no processo de expansão e recuperada no processo de compressão, isto é, a energia nos processos adiabâticos se conservam nos subsistemas.  The adiabatic expansion and compression processes shown by expressions (h) to (s) are equal, the energy is transferred in the expansion process and recovered in the compression process, ie the energy in the adiabatic processes is conserved. in the subsystems.
[052] A demonstração final teórica da eficiência do cicio diferencia! de oito processos, quatro processos isobáricos, quatro processos adiabâticos com transferência de massa é dada pela expressão (x), caracterizando que os cicios diferenciais baseados no sistema termodinâmico híbrido ou binário possuem como parâmetro da eficiência, também o número de moíes ou massa nos processos e, portanto estes cicios não possuem suas eficiências dependentes exclusivamente das temperaturas.
Figure imgf000024_0002
[052] The theoretical final demonstration of cycle efficiency differentiates! of eight processes, four isobaric processes, four adiabatic processes with mass transfer is given by the expression (x), characterizing that the differential cycles based on the hybrid or binary thermodynamic system have as parameter of efficiency, also the number of moios or mass in the processes. and therefore these cycles do not have their temperature dependent efficiencies exclusively.
Figure imgf000024_0002
EXEMPLOS DE APLICAÇÕES  APPLICATION EXAMPLES
[053] Os motores de cicio diferenciais baseados no sistema híbrido ou binário operam com calor, não exigem combustão, embora possa ser utilizada, não exige queima de combustíveis, embora possa ser utilizada, portanto podem operar em ambientes com ou sem atmosfera. O ciclo termodinâmico não exige troca de fase física do gás de trabalho. Peias suas propriedades expostas nesta descrição, os motores de ciclo diferenciais podem ser projetados para operar em uma larga faixa de temperatura, superiores à maioria dos cicios motores existentes baseados nos sistema aberto ou fechado. Os motores de ciclo diferenciais são totalmente flexíveis quanto á fonte da energia (calor), na figura 13 é mostrado uma aplicação para o emprego do motor de cicio diferencial para a geração de energia a partir de fontes geotermais. A figura 13 mostra um sistema de transferência de calor do solo 76 para um coletor 74, formado basicamente por uma bomba 77 que injefa um fluido, normalmente água, pelo duto 73. O caíor no coletor 74 é transferido para o motor de ciclo diferencial 71 , o qual descarta parte da energia para o meio externo através do trocador de calor 75 e converte outra parte da energia em trabalho, operando um gerador 72 o qual produz eletricidade. [053] Hybrid or torque based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel combustion, although they can be used, so they can operate in environments with or without atmosphere. The thermodynamic cycle does not require physical phase change of the working gas. For their properties set out in this description, differential cycle motors can be designed to operate over a wide temperature range, higher than most existing open or closed system based motor cycles. Differential cycle motors are fully flexible in terms of their energy source (heat). Figure 13 shows an application for the use of the differential cycle motor for power generation from geothermal sources. Figure 13 shows a ground heat transfer system 76 for a manifold 74, formed basically by a pump 77 that injects a fluid, usually water, through the duct 73. The collor 74 in the manifold 74 is transferred to the cycle motor. differential 71, which discards part of the energy to the outside through the heat exchanger 75 and converts another part of the energy into work by operating a generator 72 which produces electricity.
[054] A figura 14 mostra outra aplicação útil para o motor de ciclo diferencial para a produção de energia a partir do calor do sol. Os raios solares são coletados através do concentrador 83, a energia (caior) é transferida para o elemento 84 o qual direciona o calor para o motor de ciclo diferencial 81 , este converte parte da energia em trabalho útil para operar um gerador de eletricidade, 82, parte da energia é descartada ao meio externo através do trocador 85.  [054] Figure 14 shows another useful application for the differential cycle motor for producing heat from the sun's heat. The sun's rays are collected through the concentrator 83, the energy (smaller) is transferred to the element 84 which directs the heat to the differential cycle motor 81, which converts part of the energy into useful work to operate an electricity generator. , part of the energy is discharged to the external environment through the exchanger 85.
[055] A figura 15 mostra outra aplicação útil para o motor de ciclo diferencial para melhorar a eficiência de motores de combustão interna, formando ciclos combinados com estes. O calor rejeitado pelas exaustões, 96, dos motores de combustão interna, indicado por 92, alimentados por combustíveis, 97, de ciclo Brayton, ciclo Diesel, ciclo Sabathe, ciclo Otto, ciclo Atkinson, são canalizados para a entrada de energia (calor) do motor de ciclo diferenciai, 91 , através de um trocador 93, promovendo um fluxo de calor, 91 1 , do motor de combustão interna, 92. em direção ao motor de ciclo diferencial 91 e este converte parte desta energia em força mecânica útil, 913 que pode ser integrada á força mecânica do motor de combustão interna, 912 gerando uma força mecânica única, 98, ou direcíonada a produzir energia elétrica. O descarte da energia não convertida pelo motor de ciclo diferencial segue para o meio externo indicado por 910. Esta aplicação permite recuperar parte da energia que os ciclos dos motores de combustão interna não podem utilizar para a realização de trabalho útil e assim melhorar a eficiência gera! do sistema.  [055] Figure 15 shows another useful application for the differential cycle engine to improve the efficiency of internal combustion engines by forming combined cycles with them. The heat rejected by the exhaust, 96, of the internal combustion engines, indicated by 92, fuel-fed, 97, Brayton cycle, Diesel cycle, Sabathe cycle, Otto cycle, Atkinson cycle, is channeled to the input of energy (heat). of the differential cycle engine 91 via a heat exchanger 93 promoting a heat flow 91 1 of the internal combustion engine 92 towards the differential cycle engine 91 and this converts part of this energy into useful mechanical force, 913 which may be integrated with the mechanical force of the internal combustion engine, 912 generating a single mechanical force, 98, or directed to produce electrical energy. Discarding energy not converted by the differential cycle engine goes to the external environment indicated by 910. This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve the efficiency it generates. ! of the system.

Claims

REIVINDICAÇÕES
1 ) "MOTOR TÉRMICO", caracterizado por ser composto por dois subsistemas termodinâmicos, (31) e (37), configurando um sistema termodinâmico binário ou híbrido, onde cada subsistema é formado por uma câmara, (33) e (35), contendo gás de trabalho e cada uma destas duas câmaras são formadas por três subcâmaras, uma aquecida, (33 com 39) e (35 com 42), uma resfriada, (33 com 41) e (35 com 310), e outra isolada, (33 com 32) e (35 com 36), conectado a estas duas câmaras há um elemento de força motriz, (38), entre os subsistemas há um elemento de transferência de massa, (34), estes dois subsistemas executam simultaneamente cada um deles, um cicio de quatro processos interdependentes formando um ciclo termodinâmico diferencial, (61), único, de oito processos, sendo quatro deles isobáricos, (a-b), (1-2), (c- d) e (3-4), quatro adíabáticos, (b-c), (2-3), (d-a) e (4-1), com transferência de massa variável.  1) "THERMAL ENGINE", characterized by being composed of two thermodynamic subsystems, (31) and (37), configuring a binary or hybrid thermodynamic system, where each subsystem is formed by a chamber, (33) and (35), containing working gas and each of these two chambers are formed by three sub-chambers, one heated, (33 with 39) and (35 with 42), one cold, (33 with 41) and (35 with 310), and one isolated, ( 33 with 32) and (35 with 36), connected to these two chambers is a driving force element, (38), between the subsystems there is a mass transfer element, (34), these two subsystems simultaneously execute each of them a cycle of four interdependent processes forming a single differential thermodynamic cycle (61) of eight processes, four of which are isobaric, (ab), (1-2), (c- d) and (3-4), four adiabatic, (bc), (2-3), (da) and (4-1), with variable mass transfer.
2) "MOTOR TÉRMICO", de acordo com a reivindicação 1 , caracterizado por ser composto por duas câmaras, (33 e 35), cada câmara é dividida em três subcâmaras, uma subcâmara aquecida, (33 com 39) e (35 com 42), uma subcâmara resfriada, (33 com 41 ) e (35 com 310), e uma subcâmara isolada termicamente, (33 com 32) e (35 com 36), formando cada câmara, um subsistema, (31 e 37), e a junção destes dois subsistemas formam um sistema termodinâmico binário ou híbrido.  2) "THERMAL MOTOR" according to claim 1, characterized in that it consists of two chambers, (33 and 35), each chamber is divided into three sub-chambers, one heated sub-chamber, (33 with 39) and (35 with 42). ), a cooled sub-chamber, (33 with 41) and (35 with 310), and a thermally isolated sub-chamber, (33 with 32) and (35 with 36), each chamber forming a subsystem, (31 and 37), and the junction of these two subsystems form a binary or hybrid thermodynamic system.
3) "MOTOR TÉRMICO", de acordo com a reivindicação 1 , caracterizado por possuir um elemento de força motriz, (33), conectado às duas câmaras de conversão termodinâmicas, (33 e 35).  3. "THERMAL ENGINE" according to claim 1, characterized in that it has a driving force element, (33), connected to the two thermodynamic conversion chambers, (33 and 35).
4) "MOTOR TÉRMICO", de acordo com a reivindicação 1 , caracterizado por possuir um elemento de transferência de massa do gás de trabalho, (34), entre as câmaras.  A "THERMAL ENGINE" according to claim 1, characterized in that it has a working gas mass transfer element (34) between the chambers.
5) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", para o controle do ciclo termodinâmico do motor térmico das reivindicações 1 a 4, caracterizado por um processo executado pelo sistema binário ou híbrido formando um ciclo termodinâmico diferencial de oito processos termodinâmicos do motor, (81 ), sendo dois isobáricos de aíta temperatura, (a-b) e (1 -2), dois isobáricos de baixa temperatura, (c~d) e (3-4), dois adiafaáticos de expansão com transferência de massa, (b-c) e (2-3) e dois adiabáticos de compressão com recebimento de massa, (d-a) e (4-1 ). 5) "THERMAL MOTOR THERMODYNAMIC CYCLE CONTROL PROCESS" for the control of the thermodynamic cycle of the thermal motor of claims 1 to 4, characterized by a process performed by the binary or hybrid system forming a differential thermodynamic cycle of eight engine thermodynamic processes, (81), two of which being high temperature isobarics, (ab) and (1 -2), two low temperature isobarics, (c ~ d) and ( 3-4), two mass transfer expansion adiaphatics, (bc) and (2-3) and two mass receiving compression adiabatic, (da) and (4-1).
6) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com a reivindicação 5, caracterizado por possuir um processo isobárico de alta temperatura, (a-b), em um dos subsistemas o qual é executado simultaneamente a outro processo isobárico de baixa temperatura, (3-4), no outro subsistema e um processo isobárico de baixa temperatura, (c-d) no primeiro subsistema que é executado simultaneamente a outro processo isobárico de alta temperatura, (1-2), no segundo subsistema, compondo os quatro processos isobáricos do ciclo.  6. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL MOTOR" according to claim 5, characterized in that it has a high temperature isobaric process, (ab), in one of the subsystems which is performed simultaneously with another isobaric process of low temperature (3-4) in the other subsystem and a low temperature isobaric process (cd) in the first subsystem running simultaneously with another high temperature isobaric process (1-2) in the second subsystem, composing the four isobaric processes of the cycle.
7) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com a reivindicação 5, caracterizado por possuir um processo adiabático de expansão (b~c) e transferência de massa (66), em um dos subsistemas o qual é executado simultaneamente a outro processo adiabático, (4-1 ), no segundo subsistema, sendo este segundo processo, de compressão por meio da energia cinética armazenada no processo adiabático de expansão e este processo recebe a massa do processo adiabático de expansão, e um processo adiabático de compressão, com aumento de massa, (d-a), no primeiro subsistema, simultaneamente a um processo adiabático de expansão e transferência de massa, (2-3), do segundo subsistema, compondo os quatro processos adiabáticos do ciclo.  7) "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL MOTOR" according to claim 5, characterized in that it has an adiabatic expansion (b ~ c) and mass transfer (66) process in one of the subsystems which is performed simultaneously to another adiabatic process, (4-1), in the second subsystem, this second process being compression by means of the kinetic energy stored in the adiabatic expansion process and this process receives the mass of the adiabatic expansion process, and a process adiabatic mass-increasing compression system (da) in the first subsystem simultaneously with an adiabatic mass expansion and transfer process (2-3) of the second subsystem, composing the four adiabatic processes of the cycle.
8) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 5, 6 e 7, caracterizado por possuir no ciclo termodinâmico, durante os processos adiabáticos, a transferência de parte da massa, (66), de um dos subsistemas o qual estaria executando o processo adiabático de expansão para o outro subsistema o qual estaria executando o processo adiabático de compressão.  8. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claims 5, 6 and 7, characterized in that it has in the thermodynamic cycle, during adiabatic processes, the transfer of part of the mass (66) of one of the subsystems which would be running the adiabatic expansion process to the other subsystem which would be running the adiabatic compression process.
PCT/BR2017/000091 2016-08-26 2017-08-11 Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine WO2018035585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016019857-7A BR102016019857B1 (en) 2016-08-26 2016-08-26 DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR ADIABATIC PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BRBR102016019857-7 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018035585A1 true WO2018035585A1 (en) 2018-03-01

Family

ID=61246685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000091 WO2018035585A1 (en) 2016-08-26 2017-08-11 Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine

Country Status (2)

Country Link
BR (1) BR102016019857B1 (en)
WO (1) WO2018035585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026215A1 (en) * 2018-08-03 2020-02-06 Saulo Finco Integrated internal-combustion engine formed by an otto-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133172A (en) * 1977-08-03 1979-01-09 General Motors Corporation Modified Ericsson cycle engine
JPS5732038A (en) * 1980-08-04 1982-02-20 Mitsuo Okamoto Gas system external combustion engine
WO2002095192A1 (en) * 2001-05-24 2002-11-28 Samuil Naumovich Dunaevsky Method for the practically total transformation of heat into work and device for carrying out said method
GB2396887A (en) * 2003-01-06 2004-07-07 Thomas Tsoi Hei Ma Extended cycle reciprocating Stirling engine
JP2005002976A (en) * 2003-06-11 2005-01-06 Koji Kanamaru Hot air type external-combustion engine
US8590302B2 (en) * 2010-03-26 2013-11-26 Viking Heat Engines As Thermodynamic cycle and heat engine
JP2013238149A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Stirling engine
FR2998356A1 (en) * 2012-11-22 2014-05-23 Olivier Journeaux CONVERSION GROUP FOR A THERMAL SOLAR ELECTRIC POWER PLANT AND A THERMAL SOLAR ELECTRIC POWER PLANT COMPRISING AT LEAST ONE SUCH CONVERSION GROUP
KR20160069454A (en) * 2014-12-05 2016-06-16 선박안전기술공단 Displacer Piston Structure for Sterling Engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133172A (en) * 1977-08-03 1979-01-09 General Motors Corporation Modified Ericsson cycle engine
JPS5732038A (en) * 1980-08-04 1982-02-20 Mitsuo Okamoto Gas system external combustion engine
WO2002095192A1 (en) * 2001-05-24 2002-11-28 Samuil Naumovich Dunaevsky Method for the practically total transformation of heat into work and device for carrying out said method
GB2396887A (en) * 2003-01-06 2004-07-07 Thomas Tsoi Hei Ma Extended cycle reciprocating Stirling engine
JP2005002976A (en) * 2003-06-11 2005-01-06 Koji Kanamaru Hot air type external-combustion engine
US8590302B2 (en) * 2010-03-26 2013-11-26 Viking Heat Engines As Thermodynamic cycle and heat engine
JP2013238149A (en) * 2012-05-14 2013-11-28 Toyota Motor Corp Stirling engine
FR2998356A1 (en) * 2012-11-22 2014-05-23 Olivier Journeaux CONVERSION GROUP FOR A THERMAL SOLAR ELECTRIC POWER PLANT AND A THERMAL SOLAR ELECTRIC POWER PLANT COMPRISING AT LEAST ONE SUCH CONVERSION GROUP
KR20160069454A (en) * 2014-12-05 2016-06-16 선박안전기술공단 Displacer Piston Structure for Sterling Engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026215A1 (en) * 2018-08-03 2020-02-06 Saulo Finco Integrated internal-combustion engine formed by an otto-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine

Also Published As

Publication number Publication date
BR102016019857A8 (en) 2022-12-13
BR102016019857B1 (en) 2023-12-26
BR102016019857A2 (en) 2018-03-13

Similar Documents

Publication Publication Date Title
US20090000294A1 (en) Power Plant with Heat Transformation
WO2018195622A1 (en) Binary-cycle turbine engine comprising three isothermal processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
WO2018195619A1 (en) Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine
WO2018035585A1 (en) Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine
WO2018035588A1 (en) Differential-cycle heat engine with four isothermal processes, four isochoric processes with active regenerator and control method for the thermodynamic cycle of the heat engine
WO2018195618A1 (en) Differential-cycle heat engine comprising four isobaric processes and four isothermal processes and a method for controlling the thermodynamic cycle of the heat engine
WO2018035586A1 (en) Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine
WO2015054767A1 (en) Differential thermodynamic machine with a cycle of eight thermodynamic transformations, and control method
WO2018195620A1 (en) Differential-cycle heat engine with four isothermal processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine
BR102017008544B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING FOUR ISOBARIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
BR102017008548B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING FOUR ISOTHERMAL PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
BR102017008545B1 (en) DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BR102017003822A2 (en) differential cycle thermal motor consisting of two isochoric processes, four isothermal processes and two adiabatic processes and control process for the thermodynamic cycle of the thermal motor
WO2018195626A1 (en) Binary-cycle turbine engine comprising three polytropic processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
WO2018195621A1 (en) Binary-cycle turbine engine comprising three isobaric processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
BR102017003822B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING TWO ISOCHORIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND TWO ADIABATIC PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
BR102018004170A2 (en) CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED BY AN ISOCORIC PROCESS, AN ADIABATIC PROCESS AND AN ISOTHERMIC PROCESS AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BR102018004172A2 (en) CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED BY AN ISOCORIC PROCESS, TWO ISOTHERMIC PROCESSES AND AN ADIABATHIC PROCESS AND CONTROL PROCESS FOR THE THERMAL THERMAL CYCLE
BR102017008552B1 (en) BINARY CYCLE TURBINE ENGINE COMPRISING THREE ISOBARIC PROCESSES, FOUR ADIABATIC PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE TURBINE ENGINE
WO2014000072A1 (en) Heat engine operating in accordance with carnot's thermodynamic cycle and control process
BR102018068525A2 (en) BRAYTON INTEGRATED CYCLE TURBINE ENGINE WITH REGENERATIVE CLOSED CIRCUIT FOR GENERATION FROM HELIOTHERMAL OR THERMONUCLEAR SOURCE AND CONTROL PROCESS FOR THE ENGINE THERMODYNAMIC CYCLE
WO2018195634A1 (en) Combined atkinson or miller and binary isothermal-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
WO2020019048A1 (en) Integrated internal combustion engine formed by a main unit with a turbine and a secondary unit with pistons, and a method for controlling the thermodynamic cycle of the engine
WO2020026215A1 (en) Integrated internal-combustion engine formed by an otto-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine
BR102017008582A2 (en) atkinson or miller and torque-isobaric-adiabatic combined-cycle engine and control process for the thermodynamic cycle of the combined-cycle engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842468

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载