+

WO2018008365A1 - Light washing treatment device - Google Patents

Light washing treatment device Download PDF

Info

Publication number
WO2018008365A1
WO2018008365A1 PCT/JP2017/022318 JP2017022318W WO2018008365A1 WO 2018008365 A1 WO2018008365 A1 WO 2018008365A1 JP 2017022318 W JP2017022318 W JP 2017022318W WO 2018008365 A1 WO2018008365 A1 WO 2018008365A1
Authority
WO
WIPO (PCT)
Prior art keywords
template
window member
processing chamber
light
heating
Prior art date
Application number
PCT/JP2017/022318
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 吉原
廣瀬 賢一
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to JP2018525998A priority Critical patent/JP6888624B2/en
Priority to CN201780041541.0A priority patent/CN109414849B/en
Priority to KR1020187036577A priority patent/KR102162392B1/en
Publication of WO2018008365A1 publication Critical patent/WO2018008365A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0057Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to an optical cleaning apparatus for cleaning a surface of a template made of quartz glass used for nanoimprinting with ultraviolet rays.
  • optical nanoimprint technology has attracted attention as a method that can be manufactured at a lower cost than conventional pattern formation methods using photolithography and etching.
  • pattern formation method using this optical nanoimprint technology if a foreign substance such as a resist residue exists on the surface of the template made of quartz glass used, a defect is generated in the resulting pattern. is required.
  • an optical cleaning processing apparatus that decomposes and removes foreign matters adhering to the template surface by irradiating the template surface with ultraviolet rays (see Patent Document 1). ).
  • the above optical cleaning processing apparatus has a problem that it takes a considerably long time to sufficiently clean the surface of the template, and as a result, the productivity is reduced in the manufacture of semiconductor chips and the like.
  • an object of the present invention is to provide an optical cleaning processing apparatus capable of executing the cleaning processing of the surface of the template made of quartz glass in a short time.
  • the optical cleaning processing apparatus of the present invention is an optical cleaning processing apparatus for cleaning the surface of a template made of quartz glass used for nanoimprinting with ultraviolet rays, A processing chamber forming material for forming a processing chamber in which a template to be processed is arranged and a processing gas is supplied; A housing having a window member that transmits ultraviolet light, provided facing the template disposed in the processing chamber via a gap; An ultraviolet light source disposed in the housing for irradiating the template with ultraviolet light through the window member; And heating means for heating the template.
  • the heating means is disposed in the processing chamber.
  • the processing chamber forming material may include an infrared transmission window member provided to face the window member, and the heating unit may be disposed to face an outer surface of the infrared transmission window member.
  • the said heating means consists of a carbon heater or a halogen heater which irradiates infrared rays.
  • the heating means may be a heating element provided on the window member and generating heat by resistance heating.
  • the template can be heated by the heating means, so that foreign matters such as a resist residue adhering to the surface of the template are heated through the template. For this reason, the decomposition reaction of the foreign matter adhering to the template surface is promoted, and as a result, the cleaning process of the template surface can be executed in a short time.
  • FIG. 1 is an explanatory cross-sectional view showing a configuration of an optical cleaning processing apparatus according to the first embodiment of the present invention.
  • the optical cleaning processing apparatus shown in FIG. 1 is for optical cleaning processing of the surface of a template used for nanoimprinting.
  • the template to be processed is made of, for example, quartz glass.
  • This optical cleaning processing apparatus has a rectangular parallelepiped box-shaped processing chamber forming material 10 that forms a processing chamber 11 in which a template 1 to be processed is placed. Since ozone is generated in the processing chamber 11 during the optical cleaning process of the template 1, it is preferable to use a material having ultraviolet resistance and ozone resistance as the material forming the processing chamber forming material 10. .
  • the material constituting the processing chamber forming material 10 include stainless steel, aluminum subjected to hard alumite treatment, and the like.
  • An opening 12 is formed in the bottom wall portion of the processing chamber forming material 10, and a light source unit 20 is disposed so as to close the opening 12.
  • holding members (not shown) for holding the four corners of the template 1 are fixed to the inner surface of the bottom wall portion or the top wall portion of the processing chamber forming material 10.
  • the processing chamber forming material 10 is formed with a gas supply port (not shown) for supplying a processing gas to the processing chamber 11 and a gas discharge port (not shown) for discharging the gas in the processing chamber 11. Yes.
  • the light source unit 20 has a rectangular parallelepiped box-shaped housing 21.
  • a material having ultraviolet resistance and specific examples thereof include hard anodized aluminum.
  • an excimer lamp 25 is disposed as an ultraviolet light source.
  • a window member 22 that transmits ultraviolet rays from the excimer lamp 25 is fixed to the upper surface of the housing 21 by a frame-shaped fixing plate 23.
  • synthetic quartz glass can be used as a material constituting the window member 22, for example.
  • the casing 21 is provided with a purge gas supply pipe (not shown) for supplying a purge gas such as nitrogen gas in the casing 21.
  • the light source unit 20 is disposed such that the window member 22 faces the template 1 disposed in the processing chamber 11 with a gap therebetween.
  • the separation distance between the outer surface of the window member 22 and the pattern surface of the template 1 is, for example, 0.3 to 10.0 mm.
  • the excimer lamp 25 is arranged in the housing 21 so that the template 1 can be irradiated with ultraviolet rays via the window member 22.
  • 2 is a perspective view of the excimer lamp 25
  • FIG. 3 is a sectional view for explaining the excimer lamp 25 shown in FIG.
  • the excimer lamp 25 has a flat plate-like discharge vessel 26 in which a discharge space S is formed. Bases 29 are provided at both ends of the discharge vessel 26. Further, the excimer gas is hermetically sealed in the discharge space S of the discharge vessel 26.
  • a mesh-like high-voltage side electrode 27 is disposed on one surface of the discharge vessel 26, and a mesh-like ground-side electrode 28 is disposed on the other surface of the discharge vessel 26.
  • Each of the high voltage side electrode 27 and the ground side electrode 28 is electrically connected to a high frequency power source (not shown).
  • the excimer lamp 25 is disposed such that one surface of the discharge vessel 26 on which the high voltage side electrode 27 is disposed is opposed to the window member 22 in the housing 21.
  • a material that can transmit vacuum ultraviolet rays satisfactorily specifically, silica glass such as synthetic quartz glass, sapphire glass, or the like can be used.
  • silica glass such as synthetic quartz glass, sapphire glass, or the like
  • a metal material such as aluminum, nickel, gold or the like can be used.
  • the high voltage side electrode 27 and the ground side electrode 28 can also be formed by screen printing a conductive paste containing the above metal material, or by vacuum vapor deposition of the above metal material.
  • the excimer gas sealed in the discharge space S of the discharge vessel 26 can generate an excimer that emits vacuum ultraviolet rays, specifically, a rare gas such as xenon, argon, krypton, or a rare gas , Bromine, chlorine, iodine, a mixed gas mixed with a halogen gas such as fluorine, and the like can be used. Among these, xenon is preferable.
  • a specific example of the excimer gas is shown together with the wavelength of emitted ultraviolet light, it is 172 nm for xenon gas, 191 nm for a mixed gas of argon and iodine, and 193 nm for a mixed gas of argon and fluorine.
  • the sealing pressure of the excimer gas is, for example, 10 to 100 kPa.
  • an infrared transmission window member 13 that transmits infrared rays is provided on the upper wall portion of the processing chamber forming material 10.
  • a lamp heater 30 for irradiating the template 1 with infrared rays through the infrared transmission window member 13 is disposed outside the processing chamber forming material 10 as a heating unit for heating the template 1 so as to face the infrared transmission window member 13.
  • a material constituting the infrared transmitting window member 13 it is preferable to use a material that has heat resistance and does not transmit vacuum ultraviolet rays.
  • the infrared transmissive window member 13 transmits vacuum ultraviolet rays
  • ozone is generated outside the processing chamber forming material 10 by the vacuum ultraviolet rays from the excimer lamp 25 passing through the infrared transmissive window member 13.
  • the material constituting the infrared transmission window member 13 include heat-resistant glass such as Pyrex (registered trademark) glass and Tempax glass (registered trademark), fused silica glass, germanium, and silicon.
  • the window member 13 may transmit vacuum ultraviolet rays.
  • a material that transmits vacuum ultraviolet rays for example, sapphire, calcium fluoride, barium fluoride, or the like can be used.
  • the lamp heater 30 for example, a lamp that emits infrared rays having a wavelength of 0.8 to 1000 ⁇ m can be used.
  • Specific examples of the lamp heater 30 include a halogen heater and a carbon heater. Among these, a halogen heater is preferable.
  • the halogen heater a single-end type with a reflecting mirror, a double-end type, or the like can be used.
  • the lamp heater 30 may be provided with a reflection mirror for condensing infrared rays on the template 1.
  • the infrared rays radiated from the lamp heater 30 such as a halogen heater
  • specific examples of the material of the infrared transmitting window member 13 include heat-resistant glass such as Pyrex (registered trademark) glass and Tempax glass (registered trademark), fused quartz. Glass is mentioned.
  • the template 1 When the template 1 is irradiated with infrared rays from the near infrared region to the mid infrared region, sapphire is given as a specific example of the material of the infrared transmitting window member 13.
  • specific examples of the material of the infrared transmission window member 13 include germanium, silicon, calcium fluoride, and barium fluoride.
  • the infrared transmitting window member 13 is a member that transmits far infrared rays or a member that absorbs far infrared rays depending on whether the template 1 itself is heated.
  • the template 1 to be processed is held by a holding member (not shown) provided in the processing chamber forming material 10.
  • the lamp heater 30 is turned on, and a processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber forming material 10.
  • the infrared rays from the lamp heater 30 are irradiated to foreign matters such as resist residues attached to the surface of the template 1 through the infrared transmitting window member 13 and the template 1, thereby heating the foreign matters.
  • the processing chamber 11 is replaced with a processing gas.
  • the infrared transmission window member 13 when a material that absorbs far-infrared rays is selected as the material of the infrared transmission window member 13, near infrared rays having a wavelength of 0.8 to 2 ⁇ m out of infrared rays emitted from the lamp heater 30 are infrared transmission windows. As a result of passing through each of the member 13 and the template 1 and irradiating and absorbing the foreign matter adhering to the surface of the template 1, the foreign matter is heated. On the other hand, far infrared rays having a wavelength of 4 to 1000 ⁇ m are absorbed by the infrared transmitting window member 13.
  • the far infrared rays are irradiated and absorbed on the template 1 and the foreign matter attached to the surface of the template 1, so that the template together with the foreign matter is absorbed. 1 itself can be heated.
  • the processing gas a gas containing oxygen such as clean dry air, nitrogen gas, or a mixed gas of clean dry air and nitrogen gas can be used.
  • the flow rate of the processing gas supplied to the processing chamber 11 is, for example, 0 to 100 L / min.
  • the preheating time from when the lamp heater 30 is turned on to when the light cleaning process is started (when the excimer lamp 25 is turned on) is, for example, 5 to 60 seconds.
  • the temperature of the foreign matter adhering to the surface of the template 1 is, for example, 50 to 200 ° C.
  • the processing time of the light cleaning processing that is, the ultraviolet irradiation time is, for example, 3 to 600 seconds.
  • the template 1 can be heated by the lamp heater 30, so that foreign matters such as a resist residue attached to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
  • FIG. 4 is an explanatory cross-sectional view showing a configuration of an optical cleaning treatment apparatus according to the second embodiment of the present invention.
  • the optical cleaning processing apparatus shown in FIG. 4 is for performing optical cleaning processing on the surface of a template used for nanoimprinting.
  • the lamp heater 30 is disposed behind the excimer lamp 25 in the housing 21 of the light source unit 20.
  • the window member 22 is made of a material that transmits infrared rays.
  • the high voltage side electrode 27 and the ground side electrode 28 in the excimer lamp 25 are each net-like (see FIGS. 2 and 3), and therefore, the high voltage side electrode 27 and the ground side electrode 28 in the discharge vessel 26 are formed.
  • the part where there is no light becomes the infrared ray transmitting part that transmits the infrared ray from the lamp heater 30.
  • Other configurations of the light cleaning processing apparatus according to the second embodiment are the same as those of the light cleaning processing apparatus according to the first embodiment except that the processing chamber forming material 11 is not provided with an infrared transmission window member. It is the same.
  • the lamp heater 30 is turned on while the template 1 is held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material 10 is also turned on.
  • a processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber.
  • infrared rays from the lamp heater 30 are irradiated to foreign matters such as resist resist residue attached to the surface of the template 1 through the discharge vessel 26 and the window member 22 of the excimer lamp 25, so that the foreign matters are Heated.
  • the processing chamber 11 is replaced with a processing gas.
  • near infrared rays are infrared ray transmitting portions in the excimer lamp 25, that is, portions where the high voltage side electrode 27 and the ground side electrode 28 are not formed in the discharge vessel 26, and windows.
  • the foreign matter is heated.
  • far infrared rays are absorbed by the discharge vessel 26 or the window member 22.
  • the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11.
  • FIG. In the above, the preheating time by the lamp heater 30 and other light cleaning processing conditions are the same as those of the light cleaning processing apparatus according to the first embodiment.
  • the template 1 can be heated by the lamp heater 30, so that foreign matters such as a resist residue attached to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
  • FIG. 5 is an explanatory cross-sectional view showing a configuration of an optical cleaning processing apparatus according to the third embodiment of the present invention.
  • the optical cleaning processing apparatus shown in FIG. 5 is for performing optical cleaning processing on the surface of a template used for nanoimprinting.
  • a heating element 35 made of a strip-like film that generates heat by resistance heating is provided as a heating means on the inner surface of the window member 22 in the light source unit 20.
  • Such a heating element 35 can be formed by printing and baking a conductive paste on the window member 22.
  • the amount of heat generated by the heating element 35 is, for example, 0.5 to 10 kW.
  • Other configurations of the light cleaning processing apparatus according to the third embodiment are the same as those of the light cleaning processing apparatus according to the second embodiment except that the lamp heater 30 is not provided.
  • the heating element 35 is energized while the template 1 is held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material 10 is energized.
  • a processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber.
  • the heating element 35 generates heat due to resistance heating, and the radiant heat heats foreign matters such as a resist residue attached to the surface of the template 1.
  • the processing chamber 11 is replaced with a processing gas.
  • the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11.
  • the preheating time from when the heating element 35 is energized until the start of the light cleaning process (lighting of the excimer lamp 25) is, for example, 5 to 60 seconds.
  • Other optical cleaning processing conditions are the same as those of the optical cleaning processing apparatus according to the first embodiment.
  • the template 1 can be heated by the heating element 35, so that foreign matters such as a resist residue adhering to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
  • FIG. 6 is a cross-sectional view illustrating the structure of an optical cleaning processing apparatus according to the fourth embodiment of the present invention.
  • the optical cleaning processing apparatus shown in FIG. 6 is for performing optical cleaning processing on the surface of a template used for nanoimprinting.
  • a lamp heater 30 that irradiates the template 1 with infrared rays is opposed to the back surface of the template 1 as a heating means for heating the template 1 in the processing chamber 11.
  • Other configurations of the light cleaning processing apparatus according to the fourth embodiment are the same as those according to the second embodiment except that the lamp heater 30 is not provided behind the excimer lamp 25 in the housing 21. This is the same as the cleaning processing apparatus.
  • a carbon heater is preferably used as the lamp heater 30 .
  • the carbon heater is formed by arranging a heating element made of carbon fiber in a quartz tube filled with an inert gas.
  • the infrared rays emitted from the carbon heater have a peak in the mid-infrared region having a wavelength of 2.0 to 4.0 ⁇ m, for example. Since this mid-infrared light is absorbed by the quartz glass constituting the template 1, the template 1 can be efficiently heated.
  • the lamp heater 30 is turned on while the template 1 is held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material 10 is also turned on.
  • a processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber.
  • the infrared rays from the lamp heater 30 are irradiated to foreign matters such as resist residues attached to the surface of the template 1 to heat the foreign matters.
  • the processing chamber 11 is replaced with a processing gas.
  • the near infrared rays pass through the template 1 and are irradiated and absorbed by the foreign matter attached to the surface of the template 1.
  • the foreign matter is heated.
  • the mid-infrared ray and the far-infrared ray are absorbed by the template 1, so that the template 1 is heated and transferred to the foreign matter.
  • the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11.
  • FIG. In the above, the preheating time by the lamp heater 30 and other light cleaning processing conditions are the same as those of the light cleaning processing apparatus according to the first embodiment.
  • the template 1 can be heated by the lamp heater 30, so that foreign matters such as a resist residue attached to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
  • a heating means that heats the processing gas supplied to the processing chamber can be used.
  • the lamp heater 30 is turned on while being held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material is also turned on.
  • the heated processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in 10
  • the processing chamber 11 is replaced with the heated processing gas.
  • the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11.
  • the temperature of the heated processing gas is, for example, 50 to 200 ° C.
  • the processing gas since the processing gas is heated by the heating means, the processing gas heats foreign matters such as resist residues attached to the surface of the template 1 and promotes the decomposition reaction of the foreign matters. As a result, the surface of the template 1 can be cleaned in a short time.
  • the heating element 35 may be provided on the outer surface of the window member 22 (the surface facing the template 1). However, in such a configuration, the heating element 22 is exposed to the processing chamber 11, and dust due to the material constituting the heating element 35 may be mixed in the processing chamber 11. Is preferably provided on the inner surface of the window member 22.
  • Example 1 An ultraviolet treatment apparatus was produced according to the configuration shown in FIG. The specifications of this ultraviolet treatment apparatus are as follows. This is referred to as an ultraviolet treatment device [1].
  • ⁇ Heater lamp Carbon heater
  • Power of carbon heater 3kW
  • Size of carbon heater 100mm x 200mm -Diameter of carbon heater: 5mm
  • Distance from the bottom surface of the carbon heater to the top surface of the template 50mm
  • Example 2 An ultraviolet treatment apparatus was produced according to the configuration shown in FIG. The specifications of this ultraviolet treatment apparatus are as follows. This is referred to as an ultraviolet treatment device [2].
  • ⁇ Infrared transmitting window member Tempax Glass (registered trademark)
  • Size of infrared transmission window member ⁇ 50mm
  • Thickness of infrared transmitting window member 2mm
  • Distance from the lower surface of the infrared transmitting window member to the upper surface of the window member 80 mm
  • Lamp heater Halogen heater ⁇ Halogen heater power: 500W
  • the light washing process was performed.
  • ⁇ Processing gas type CDA
  • Process gas supply rate 1 L / min
  • Process gas purge time 60 seconds
  • the speed for removing the resist was 2 nm / s. Note that, with the power under the conditions of this example, the heating time by the halogen heater takes about 600 seconds, but the speed of removing the resist was equivalent to that of the ultraviolet processing apparatus of Example 1.
  • a resist coated with a specific thickness similar to that of the example was applied under the following optical cleaning treatment conditions (processing gas supply conditions, ultraviolet irradiation conditions and heating conditions).
  • the processed product (template) was subjected to a light cleaning treatment.
  • Processing gas type CDA
  • Process gas supply rate 1 L / min
  • Process gas purge time 60 seconds
  • UV light illuminance at window member 70 mW / cm 2
  • UV irradiation time 100 seconds
  • the resist removal speed was 0.7 nm / s.
  • the heating means including the carbon heater or the halogen heater is provided. It was confirmed that the removal speed can be greatly increased, and therefore the template cleaning process time can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Cleaning In General (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

The purpose of the present invention is to provide a light washing treatment device capable of performing washing treatment on a surface of a template made of quartz glass in a short period of time. A light washing treatment device according to the present invention is a light washing treatment device that performs washing treatment on a surface of a template made of quartz glass used in nanoimprint with ultraviolet rays, the light washing treatment device being characterized by comprising: a treatment chamber forming material that forms a treatment chamber in which the template to be treated is arranged and to which treatment gas is supplied; a housing provided facing the template arranged in the treatment chamber with a gap formed therebetween and having a window member allowing the ultraviolet rays to pass therethrough; a ultraviolet-ray light source arranged in the housing and irradiating the template with the ultraviolet rays via the window member; and a heating means for heating the template.

Description

光洗浄処理装置Optical cleaning equipment
 本発明は、ナノインプリントに用いられる石英ガラスよりなるテンプレートの表面を紫外線によって洗浄処理するための光洗浄処理装置に関する。 The present invention relates to an optical cleaning apparatus for cleaning a surface of a template made of quartz glass used for nanoimprinting with ultraviolet rays.
 近年、半導体チップやバイオチップの製造においては、従来のフォトリソグラフィーおよびエッチングを利用したパターン形成方法に比較して低コストで製造することが可能な方法として、光ナノインプリント技術が注目されている。
 この光ナノインプリント技術を利用したパターン形成方法においては、用いられる石英ガラスよりなるテンプレートの表面に、レジスト残渣などの異物が存在すると、得られるパターンに欠陥が生じるため、テンプレートの表面を洗浄処理することが必要である。
 従来、テンプレートの表面を洗浄処理する手段として、テンプレートの表面に紫外線を照射することによって、当該テンプレートの表面に付着した異物を分解除去する光洗浄処理装置が提案されている(特許文献1参照。)。
In recent years, in the manufacture of semiconductor chips and biochips, optical nanoimprint technology has attracted attention as a method that can be manufactured at a lower cost than conventional pattern formation methods using photolithography and etching.
In the pattern formation method using this optical nanoimprint technology, if a foreign substance such as a resist residue exists on the surface of the template made of quartz glass used, a defect is generated in the resulting pattern. is required.
Conventionally, as a means for cleaning the surface of the template, there has been proposed an optical cleaning processing apparatus that decomposes and removes foreign matters adhering to the template surface by irradiating the template surface with ultraviolet rays (see Patent Document 1). ).
特開2011-155160号公報JP 2011-155160 A
 しかしながら、上記の光洗浄処理装置においては、テンプレートの表面を十分に洗浄処理するために相当に長い時間を要し、その結果、半導体チップなどの製造において生産性が低下する、という問題がある。 However, the above optical cleaning processing apparatus has a problem that it takes a considerably long time to sufficiently clean the surface of the template, and as a result, the productivity is reduced in the manufacture of semiconductor chips and the like.
 そこで、本発明の目的は、石英ガラスよりなるテンプレートの表面の洗浄処理を短時間で実行することができる光洗浄処理装置を提供することにある。 Therefore, an object of the present invention is to provide an optical cleaning processing apparatus capable of executing the cleaning processing of the surface of the template made of quartz glass in a short time.
 本発明の光洗浄処理装置は、ナノインプリントに用いられる石英ガラスよりなるテンプレートの表面を紫外線によって洗浄処理する光洗浄処理装置であって、
 処理対象であるテンプレートが配置され、処理用ガスが供給される処理室を形成する処理室形成材と、
 前記処理室に配置された前記テンプレートに間隙を介して対向して設けられた、紫外線を透過する窓部材を有する筐体と、
 前記筐体内に配置された、前記テンプレートに前記窓部材を介して紫外線を照射する紫外線光源と、
 前記テンプレートを加熱する加熱手段と
を備えてなることを特徴とする。
The optical cleaning processing apparatus of the present invention is an optical cleaning processing apparatus for cleaning the surface of a template made of quartz glass used for nanoimprinting with ultraviolet rays,
A processing chamber forming material for forming a processing chamber in which a template to be processed is arranged and a processing gas is supplied;
A housing having a window member that transmits ultraviolet light, provided facing the template disposed in the processing chamber via a gap;
An ultraviolet light source disposed in the housing for irradiating the template with ultraviolet light through the window member;
And heating means for heating the template.
 本発明の光洗浄処理装置においては、前記加熱手段は、前記処理室内に配置されていることが好ましい。
 また、前記処理室形成材は、前記窓部材に対向して設けられた赤外線透過窓部材を有し、前記加熱手段は、前記赤外線透過窓部材の外面に対向して配置されていてもよい。
 また、前記加熱手段は、赤外線を照射するカーボンヒータまたはハロゲンヒータよりなることが好ましい。
In the photocleaning apparatus of the present invention, it is preferable that the heating means is disposed in the processing chamber.
The processing chamber forming material may include an infrared transmission window member provided to face the window member, and the heating unit may be disposed to face an outer surface of the infrared transmission window member.
Moreover, it is preferable that the said heating means consists of a carbon heater or a halogen heater which irradiates infrared rays.
 また、本発明の光洗浄処理装置においては、前記加熱手段は、前記窓部材に設けられた、抵抗加熱により発熱する発熱体よりなるものであってもよい。 Further, in the light cleaning treatment apparatus of the present invention, the heating means may be a heating element provided on the window member and generating heat by resistance heating.
 本発明の光洗浄処理装置によれば、加熱手段によって、テンプレートを加熱することができるので、テンプレートの表面に付着したレジスト残渣などの異物がテンプレートを介して加熱される。このため、テンプレートの表面に付着した異物の分解反応が促進され、その結果、テンプレートの表面の洗浄処理を短時間で実行することができる。 According to the optical cleaning apparatus of the present invention, the template can be heated by the heating means, so that foreign matters such as a resist residue adhering to the surface of the template are heated through the template. For this reason, the decomposition reaction of the foreign matter adhering to the template surface is promoted, and as a result, the cleaning process of the template surface can be executed in a short time.
本発明の第1の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the optical cleaning processing apparatus which concerns on the 1st Embodiment of this invention. 図1に示す光洗浄処理装置におけるエキシマランプの斜視図である。It is a perspective view of the excimer lamp in the optical cleaning processing apparatus shown in FIG. 図2に示すエキシマランプの説明用断面図である。It is sectional drawing for description of the excimer lamp shown in FIG. 本発明の第2の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the optical cleaning processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the optical cleaning processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the optical cleaning processing apparatus which concerns on the 4th Embodiment of this invention.
 以下、本発明の実施の形態について詳細に説明する。
 図1は、本発明の第1の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。図1に示す光洗浄処理装置は、ナノインプリントに用いられるテンプレートの表面を光洗浄処理するためのものである。処理対象であるテンプレートは、例えば石英ガラスにより構成されている。
 この光洗浄処理装置は、処理対象であるテンプレート1が配置される処理室11を形成する直方体状の箱型の処理室形成材10を有する。テンプレート1の光洗浄処理中においては、処理室11内にオゾンが発生するため、処理室形成材10を構成する材料としては、耐紫外線性を有すると共に耐オゾン性を有するものを用いることが好ましい。処理室形成材10を構成する材料の具体例としては,ステンレス、硬質アルマイト処理されたアルミニウムなどが挙げられる。
 処理室形成材10の底壁部には開口12が形成され、この開口12を塞ぐよう光源ユニット20が配置されている。また、処理室形成材10における底壁部または上壁部の内面には、テンプレート1の四隅を保持する保持部材(図示省略)が固定されている。また、処理室形成材10には、処理室11に処理用ガスを供給するためのガス供給口(図示省略)および処理室11内のガスを排出するガス排出口(図示省略)が形成されている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an explanatory cross-sectional view showing a configuration of an optical cleaning processing apparatus according to the first embodiment of the present invention. The optical cleaning processing apparatus shown in FIG. 1 is for optical cleaning processing of the surface of a template used for nanoimprinting. The template to be processed is made of, for example, quartz glass.
This optical cleaning processing apparatus has a rectangular parallelepiped box-shaped processing chamber forming material 10 that forms a processing chamber 11 in which a template 1 to be processed is placed. Since ozone is generated in the processing chamber 11 during the optical cleaning process of the template 1, it is preferable to use a material having ultraviolet resistance and ozone resistance as the material forming the processing chamber forming material 10. . Specific examples of the material constituting the processing chamber forming material 10 include stainless steel, aluminum subjected to hard alumite treatment, and the like.
An opening 12 is formed in the bottom wall portion of the processing chamber forming material 10, and a light source unit 20 is disposed so as to close the opening 12. Further, holding members (not shown) for holding the four corners of the template 1 are fixed to the inner surface of the bottom wall portion or the top wall portion of the processing chamber forming material 10. Further, the processing chamber forming material 10 is formed with a gas supply port (not shown) for supplying a processing gas to the processing chamber 11 and a gas discharge port (not shown) for discharging the gas in the processing chamber 11. Yes.
 光源ユニット20は、直方体状の箱型の筐体21を有する。筐体21を構成する材料としては、耐紫外線性を有するものを用いることが好ましく、その具体例としては、硬質アルマイト処理されたアルミニウムなどが挙げられる。
 筐体21内には、紫外線光源としてエキシマランプ25が配置されている。筐体21の上面には、エキシマランプ25からの紫外線を透過する窓部材22が、枠状の固定板23によって固定されて設けられている。窓部材22を構成する材料としては、例えば合成石英ガラスを用いることができる。また、筐体21には、当該筐体21内に、例えば窒素ガスなどのパージ用ガスを供給するためのパージ用ガス供給管(図示省略)が設けられている。
 そして、光源ユニット20は、窓部材22が処理室11に配置されたテンプレート1に間隙を介して対向するよう配置されている。窓部材22の外面とテンプレート1のパターン面との間の離間距離は、例えば0.3~10.0mmである。
The light source unit 20 has a rectangular parallelepiped box-shaped housing 21. As the material constituting the housing 21, it is preferable to use a material having ultraviolet resistance, and specific examples thereof include hard anodized aluminum.
In the housing 21, an excimer lamp 25 is disposed as an ultraviolet light source. A window member 22 that transmits ultraviolet rays from the excimer lamp 25 is fixed to the upper surface of the housing 21 by a frame-shaped fixing plate 23. As a material constituting the window member 22, for example, synthetic quartz glass can be used. The casing 21 is provided with a purge gas supply pipe (not shown) for supplying a purge gas such as nitrogen gas in the casing 21.
The light source unit 20 is disposed such that the window member 22 faces the template 1 disposed in the processing chamber 11 with a gap therebetween. The separation distance between the outer surface of the window member 22 and the pattern surface of the template 1 is, for example, 0.3 to 10.0 mm.
 エキシマランプ25は、筐体21内において、窓部材22を介してテンプレート1に紫外線を照射することができるよう配置されている。
 図2は、エキシマランプ25の斜視図であり、図3は、図2に示すエキシマランプ25の説明用断面図である。このエキシマランプ25は、内部に放電空間Sが形成された全体が扁平な板状の放電容器26を有する。この放電容器26の両端には口金29が設けられている。また、放電容器26の放電空間S内には、エキシマ用ガスが気密に封入されている。放電容器26の一面には、網状の高電圧側電極27が配置され、当該放電容器26の他面には、網状のアース側電極28が配置されている。高電圧側電極27およびアース側電極28の各々は、高周波電源(図示省略)に電気的に接続されている。そして、エキシマランプ25は、放電容器26における高電圧側電極27が配置された一面が、筐体21における窓部材22と対向するよう配置されている。
The excimer lamp 25 is arranged in the housing 21 so that the template 1 can be irradiated with ultraviolet rays via the window member 22.
2 is a perspective view of the excimer lamp 25, and FIG. 3 is a sectional view for explaining the excimer lamp 25 shown in FIG. The excimer lamp 25 has a flat plate-like discharge vessel 26 in which a discharge space S is formed. Bases 29 are provided at both ends of the discharge vessel 26. Further, the excimer gas is hermetically sealed in the discharge space S of the discharge vessel 26. A mesh-like high-voltage side electrode 27 is disposed on one surface of the discharge vessel 26, and a mesh-like ground-side electrode 28 is disposed on the other surface of the discharge vessel 26. Each of the high voltage side electrode 27 and the ground side electrode 28 is electrically connected to a high frequency power source (not shown). The excimer lamp 25 is disposed such that one surface of the discharge vessel 26 on which the high voltage side electrode 27 is disposed is opposed to the window member 22 in the housing 21.
 放電容器26を構成する材料としては、真空紫外線を良好に透過するもの、具体的には、合成石英ガラスなどのシリカガラス、サファイアガラスなどを用いることができる。
 高電圧側電極27およびアース側電極28を構成する材料としては、アルミニウム、ニッケル、金などの金属材料を用いることができる。また、高電圧側電極27およびアース側電極28は、上記の金属材料を含む導電性ペーストをスクリーン印刷することにより、或いは上記の金属材料を真空蒸着することにより、形成することもできる。
 放電容器26の放電空間S内に封入されるエキシマ用ガスとしては、真空紫外線を放射するエキシマを生成し得るもの、具体的には、キセノン、アルゴン、クリプトン等の希ガス、または、希ガスと、臭素、塩素、ヨウ素、フッ素等のハロゲンガスとを混合した混合ガスなどを用いることができ、これらの中では、キセノンが好適である。エキシマ用ガスの具体的な例を、放射される紫外線の波長と共に示すと、キセノンガスでは172nm、アルゴンとヨウ素との混合ガスでは191nm、アルゴンとフッ素との混合ガスでは193nmである。
 また、エキシマ用ガスの封入圧は、例えば10~100kPaである。
As a material constituting the discharge vessel 26, a material that can transmit vacuum ultraviolet rays satisfactorily, specifically, silica glass such as synthetic quartz glass, sapphire glass, or the like can be used.
As a material constituting the high voltage side electrode 27 and the ground side electrode 28, a metal material such as aluminum, nickel, gold or the like can be used. Further, the high voltage side electrode 27 and the ground side electrode 28 can also be formed by screen printing a conductive paste containing the above metal material, or by vacuum vapor deposition of the above metal material.
The excimer gas sealed in the discharge space S of the discharge vessel 26 can generate an excimer that emits vacuum ultraviolet rays, specifically, a rare gas such as xenon, argon, krypton, or a rare gas , Bromine, chlorine, iodine, a mixed gas mixed with a halogen gas such as fluorine, and the like can be used. Among these, xenon is preferable. When a specific example of the excimer gas is shown together with the wavelength of emitted ultraviolet light, it is 172 nm for xenon gas, 191 nm for a mixed gas of argon and iodine, and 193 nm for a mixed gas of argon and fluorine.
The sealing pressure of the excimer gas is, for example, 10 to 100 kPa.
 第1の実施の形態に係る光洗浄処理装置において、処理室形成材10の上壁部には、赤外線を透過する赤外線透過窓部材13が設けられている。処理室形成材10の外部には、テンプレート1を加熱する加熱手段として、赤外線透過窓部材13を介してテンプレート1に赤外線を照射するランプヒータ30が、当該赤外線透過窓部材13に対向するよう配置されている。
 赤外線透過窓部材13を構成する材料としては、耐熱性を有し、かつ真空紫外線を透過しないものを用いることが好ましい。赤外線透過窓部材13が真空紫外線を透過するものである場合には、エキシマランプ25からの真空紫外線が赤外線透過窓部材13を透過することにより、処理室形成材10の外部にオゾンが発生するため、好ましくない。赤外線透過窓部材13を構成する材料の具体例としては、パイレックス(登録商標)ガラス、テンパックスガラス(登録商標)等の耐熱ガラス、溶融石英ガラス、ゲルマニウム、シリコンなどが挙げられる。
 なお、窓部材22と赤外線透過窓部材13との距離が十分に離れている場合には、真空紫外線が処理室11内の大気雰囲気に吸収され、赤外線透過窓部材13まで到達しないため、赤外線透過窓部材13は真空紫外線を透過するものであってもよい。この場合には、赤外線透過窓部材13を構成する材料の具体例としては、真空紫外線を透過する材料、例えばサファイア、フッ化カルシウム、フッ化バリウムなどを使用することができる。
 ランプヒータ30としては、例えば波長が0.8~1000μmの赤外線を放射するものを用いることができる。ランプヒータ30の具体例としては、ハロゲンヒータ、カーボンヒータなどが挙げられる。これらの中では、ハロゲンヒータが好ましい。
 ハロゲンヒータとしては、反射鏡付シングルエンドタイプのもの、ダブルエンドタイプものなどを用いることができる。
 また、ランプヒータ30には、赤外線をテンプレート1に集光するための反射ミラーが設けられていてもよい。
In the light cleaning treatment apparatus according to the first embodiment, an infrared transmission window member 13 that transmits infrared rays is provided on the upper wall portion of the processing chamber forming material 10. A lamp heater 30 for irradiating the template 1 with infrared rays through the infrared transmission window member 13 is disposed outside the processing chamber forming material 10 as a heating unit for heating the template 1 so as to face the infrared transmission window member 13. Has been.
As a material constituting the infrared transmitting window member 13, it is preferable to use a material that has heat resistance and does not transmit vacuum ultraviolet rays. When the infrared transmissive window member 13 transmits vacuum ultraviolet rays, ozone is generated outside the processing chamber forming material 10 by the vacuum ultraviolet rays from the excimer lamp 25 passing through the infrared transmissive window member 13. It is not preferable. Specific examples of the material constituting the infrared transmission window member 13 include heat-resistant glass such as Pyrex (registered trademark) glass and Tempax glass (registered trademark), fused silica glass, germanium, and silicon.
When the distance between the window member 22 and the infrared transmission window member 13 is sufficiently large, vacuum ultraviolet rays are absorbed by the atmospheric atmosphere in the processing chamber 11 and do not reach the infrared transmission window member 13, so that infrared transmission is possible. The window member 13 may transmit vacuum ultraviolet rays. In this case, as a specific example of the material constituting the infrared transmitting window member 13, a material that transmits vacuum ultraviolet rays, for example, sapphire, calcium fluoride, barium fluoride, or the like can be used.
As the lamp heater 30, for example, a lamp that emits infrared rays having a wavelength of 0.8 to 1000 μm can be used. Specific examples of the lamp heater 30 include a halogen heater and a carbon heater. Among these, a halogen heater is preferable.
As the halogen heater, a single-end type with a reflecting mirror, a double-end type, or the like can be used.
Further, the lamp heater 30 may be provided with a reflection mirror for condensing infrared rays on the template 1.
 ハロゲンヒータなどのランプヒータ30から放射される赤外線のうち、どの波長域の赤外線をテンプレートに照射するかを赤外線透過窓部材13の材質の種類によって選択することができる。
 例えば近赤外線領域の赤外線をテンプレート1に照射する場合には、赤外線透過窓部材13の材質の具体例としては、パイレックス(登録商標)ガラス、テンパックスガラス(登録商標)等の耐熱ガラス、溶融石英ガラスが挙げられる。
 また、近赤外線領域から中赤外線領域の赤外線をテンプレート1に照射する場合には、赤外線透過窓部材13の材質の具体例としては、サファイアが挙げられる。
 また、近赤外線領域から遠赤外線領域の赤外線をテンプレート1に照射する場合には、赤外線透過窓部材13の材質の具体例としては、ゲルマニウム、シリコン、フッ化カルシウム、フッ化バリウムが挙げられる。
 また、テンプレート1自体を高温に加熱しても問題ない場合には、テンプレート1自体が加熱されると共に、テンプレート1の表面に付着したレジスト残渣などの異物も加熱されるため、より効率的となる。テンプレート1自体を加熱するか否かによって赤外線透過窓部材13を遠赤外線を透過する部材にするか、遠赤外線を吸収する部材にするかを選択することが好ましい。
Of the infrared rays radiated from the lamp heater 30 such as a halogen heater, it is possible to select which wavelength region of the infrared rays is irradiated to the template depending on the material type of the infrared transmission window member 13.
For example, when the template 1 is irradiated with infrared rays in the near infrared region, specific examples of the material of the infrared transmitting window member 13 include heat-resistant glass such as Pyrex (registered trademark) glass and Tempax glass (registered trademark), fused quartz. Glass is mentioned.
When the template 1 is irradiated with infrared rays from the near infrared region to the mid infrared region, sapphire is given as a specific example of the material of the infrared transmitting window member 13.
When the template 1 is irradiated with infrared rays from the near infrared region to the far infrared region, specific examples of the material of the infrared transmission window member 13 include germanium, silicon, calcium fluoride, and barium fluoride.
Further, when there is no problem even if the template 1 itself is heated to a high temperature, the template 1 itself is heated, and foreign matters such as a resist residue attached to the surface of the template 1 are also heated. . It is preferable to select whether the infrared transmitting window member 13 is a member that transmits far infrared rays or a member that absorbs far infrared rays depending on whether the template 1 itself is heated.
 上記の光洗浄処理装置においては、先ず、処理対象であるテンプレート1が、処理室形成材10内に設けられた保持部材(図示省略)に保持される。この状態で、ランプヒータ30が点灯されると共に、処理室形成材10に形成されたガス供給口(図示省略)から処理用ガスが処理室11に供給される。その結果、ランプヒータ30からの赤外線が、赤外線透過窓部材13およびテンプレート1を介して、当該テンプレート1の表面に付着したレジスト残渣などの異物に照射されることにより、当該異物が加熱される。また、処理室11は、処理用ガスに置換される。
 ここで、赤外線透過窓部材13の材質として遠赤外線を吸収する材料を選択した場合には、ランプヒータ30から放射された赤外線のうち、波長が0.8~2μmの近赤外線は、赤外線透過窓部材13およびテンプレート1の各々を透過し、テンプレート1の表面に付着した異物に照射されて吸収される結果、異物が加熱される。一方、波長が4~1000μmの遠赤外線は、赤外線透過窓部材13に吸収される。
 また、赤外線透過窓部材13の材質として遠赤外線を透過する材料を選択した場合には、遠赤外線は、テンプレート1およびテンプレート1の表面に付着した異物に照射されて吸収される結果、異物と共にテンプレート1自体を加熱することができる。
In the above optical cleaning processing apparatus, first, the template 1 to be processed is held by a holding member (not shown) provided in the processing chamber forming material 10. In this state, the lamp heater 30 is turned on, and a processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber forming material 10. As a result, the infrared rays from the lamp heater 30 are irradiated to foreign matters such as resist residues attached to the surface of the template 1 through the infrared transmitting window member 13 and the template 1, thereby heating the foreign matters. Further, the processing chamber 11 is replaced with a processing gas.
Here, when a material that absorbs far-infrared rays is selected as the material of the infrared transmission window member 13, near infrared rays having a wavelength of 0.8 to 2 μm out of infrared rays emitted from the lamp heater 30 are infrared transmission windows. As a result of passing through each of the member 13 and the template 1 and irradiating and absorbing the foreign matter adhering to the surface of the template 1, the foreign matter is heated. On the other hand, far infrared rays having a wavelength of 4 to 1000 μm are absorbed by the infrared transmitting window member 13.
Further, when a material that transmits far infrared rays is selected as the material of the infrared transmitting window member 13, the far infrared rays are irradiated and absorbed on the template 1 and the foreign matter attached to the surface of the template 1, so that the template together with the foreign matter is absorbed. 1 itself can be heated.
 そして、この状態で、光源ユニット20において、エキシマランプ25が点灯することにより、当該エキシマランプ25からの紫外線が窓部材22を介してテンプレート1の表面に照射され、テンプレート1の光洗浄処理が実行される。
 その後、エキシマランプ25およびランプヒータ30が消灯され、この状態で、処理用ガスの供給が継続されることにより、テンプレート1が風冷されると共に、処理室11内に生じたオゾンなどがガス排出口(図示省略)から排出される。
 以上のようにして、テンプレート1の光洗浄処理が達成され、その後、テンプレート1が処理室11から取り出される。
In this state, when the excimer lamp 25 is turned on in the light source unit 20, ultraviolet light from the excimer lamp 25 is irradiated to the surface of the template 1 through the window member 22, and the light cleaning process of the template 1 is executed. Is done.
Thereafter, the excimer lamp 25 and the lamp heater 30 are turned off. In this state, the supply of the processing gas is continued, whereby the template 1 is cooled by air and ozone generated in the processing chamber 11 is exhausted. It is discharged from an outlet (not shown).
As described above, the optical cleaning process of the template 1 is achieved, and then the template 1 is taken out from the processing chamber 11.
 以上において、処理用ガスとしては、クリーンドライエアーなどの酸素を含むガス、窒素ガス、またはクリーンドライエアーと窒素ガスとの混合ガスを用いることができる。
 処理室11に供給される処理用ガスの流量は、例えば0~100L/minである。
 ランプヒータ30を点灯してから光洗浄処理の開始(エキシマランプ25の点灯)までの予熱時間は、例えば5~60秒間である。
 光洗浄処理中において、テンプレート1の表面に付着した異物の温度は、例えば50~200℃である。
 また、光洗浄処理の処理時間、すなわち紫外線の照射時間は、例えば3~600秒間である。
In the above, as the processing gas, a gas containing oxygen such as clean dry air, nitrogen gas, or a mixed gas of clean dry air and nitrogen gas can be used.
The flow rate of the processing gas supplied to the processing chamber 11 is, for example, 0 to 100 L / min.
The preheating time from when the lamp heater 30 is turned on to when the light cleaning process is started (when the excimer lamp 25 is turned on) is, for example, 5 to 60 seconds.
During the light cleaning process, the temperature of the foreign matter adhering to the surface of the template 1 is, for example, 50 to 200 ° C.
Further, the processing time of the light cleaning processing, that is, the ultraviolet irradiation time is, for example, 3 to 600 seconds.
 上記の光洗浄処理装置によれば、ランプヒータ30によって、テンプレート1を加熱することができるので、テンプレート1の表面に付着したレジスト残渣などの異物がテンプレート1を介して加熱される。そのため、テンプレート1の表面に付着した異物の分解反応が促進され、その結果、テンプレート1の表面の洗浄処理を短時間で実行することができる。 According to the above optical cleaning apparatus, the template 1 can be heated by the lamp heater 30, so that foreign matters such as a resist residue attached to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
 図4は、本発明の第2の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。図4に示す光洗浄処理装置は、ナノインプリントに用いられるテンプレートの表面を光洗浄処理するためのものである。
 第2の実施の形態に係る光洗浄処理装置においては、ランプヒータ30は、光源ユニット20の筐体21内におけるエキシマランプ25の背後に配置されている。また、窓部材22は、赤外線を透過する材料により構成されている。また、エキシマランプ25における高電圧側電極27およびアース側電極28はそれぞれ網状であり(図2および図3参照)、そのため、放電容器26における高電圧側電極27およびアース側電極28が形成されていない部分が、ランプヒータ30からの赤外線を透過する赤外線透過部となる。
 第2の実施の形態に係る光洗浄処理装置におけるその他の構成は、処理室形成材11に赤外線透過窓部材が設けられていないことを除き、第1の実施の形態に係る光洗浄処理装置と同様である。
FIG. 4 is an explanatory cross-sectional view showing a configuration of an optical cleaning treatment apparatus according to the second embodiment of the present invention. The optical cleaning processing apparatus shown in FIG. 4 is for performing optical cleaning processing on the surface of a template used for nanoimprinting.
In the light cleaning processing apparatus according to the second embodiment, the lamp heater 30 is disposed behind the excimer lamp 25 in the housing 21 of the light source unit 20. The window member 22 is made of a material that transmits infrared rays. Further, the high voltage side electrode 27 and the ground side electrode 28 in the excimer lamp 25 are each net-like (see FIGS. 2 and 3), and therefore, the high voltage side electrode 27 and the ground side electrode 28 in the discharge vessel 26 are formed. The part where there is no light becomes the infrared ray transmitting part that transmits the infrared ray from the lamp heater 30.
Other configurations of the light cleaning processing apparatus according to the second embodiment are the same as those of the light cleaning processing apparatus according to the first embodiment except that the processing chamber forming material 11 is not provided with an infrared transmission window member. It is the same.
 上記の光洗浄処理装置においては、テンプレート1が、処理室形成材10内に設けられた保持部材(図示省略)に保持された状態で、ランプヒータ30が点灯されると共に、処理室形成材10に形成されたガス供給口(図示省略)から処理用ガスが処理室11に供給される。その結果、ランプヒータ30からの赤外線が、エキシマランプ25の放電容器26および窓部材22を介して、当該テンプレート1の表面に付着したレジストレジスト残渣などの異物に照射されることにより、当該異物が加熱される。また、処理室11は、処理用ガスに置換される。
 ここで、ランプヒータ30から放射された赤外線のうち、近赤外線は、エキシマランプ25における赤外線透過部、すなわち放電容器26における高電圧側電極27およびアース側電極28が形成されていない部分、並びに窓部材22の各々を透過し、テンプレート1の表面に付着した異物に照射されて吸収される結果、異物が加熱される。一方、遠赤外線は、放電容器26または窓部材22に吸収される。
 そして、第1の実施の形態に係る光洗浄処理装置と同様にして、テンプレート1の光洗浄処理が達成され、テンプレート1が処理室11から取り出される。
 以上において、ランプヒータ30による予熱時間やその他の光洗浄処理条件については、第1の実施の形態に係る光洗浄処理装置と同様である。
In the above optical cleaning processing apparatus, the lamp heater 30 is turned on while the template 1 is held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material 10 is also turned on. A processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber. As a result, infrared rays from the lamp heater 30 are irradiated to foreign matters such as resist resist residue attached to the surface of the template 1 through the discharge vessel 26 and the window member 22 of the excimer lamp 25, so that the foreign matters are Heated. Further, the processing chamber 11 is replaced with a processing gas.
Here, of the infrared rays radiated from the lamp heater 30, near infrared rays are infrared ray transmitting portions in the excimer lamp 25, that is, portions where the high voltage side electrode 27 and the ground side electrode 28 are not formed in the discharge vessel 26, and windows. As a result of passing through each member 22 and being irradiated and absorbed by the foreign matter adhering to the surface of the template 1, the foreign matter is heated. On the other hand, far infrared rays are absorbed by the discharge vessel 26 or the window member 22.
And the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11. FIG.
In the above, the preheating time by the lamp heater 30 and other light cleaning processing conditions are the same as those of the light cleaning processing apparatus according to the first embodiment.
 上記の光洗浄処理装置によれば、ランプヒータ30によって、テンプレート1を加熱することができるので、テンプレート1の表面に付着したレジスト残渣などの異物がテンプレート1を介して加熱される。そのため、テンプレート1の表面に付着した異物の分解反応が促進され、その結果、テンプレート1の表面の洗浄処理を短時間で実行することができる。 According to the above optical cleaning apparatus, the template 1 can be heated by the lamp heater 30, so that foreign matters such as a resist residue attached to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
 図5は、本発明の第3の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。図5に示す光洗浄処理装置は、ナノインプリントに用いられるテンプレートの表面を光洗浄処理するためのものである。
 第3の実施の形態に係る光洗浄処理装置においては、光源ユニット20における窓部材22の内面に、加熱手段として、抵抗加熱により発熱する帯状の膜よりなる発熱体35が設けられている。このような発熱体35は、窓部材22に導電性ペーストを印刷し焼成することによって形成することができる。発熱体35の発熱量は、例えば0.5~10kWである。
 第3の実施の形態に係る光洗浄処理装置におけるその他の構成は、ランプヒータ30が設けられていないことを除き、第2の実施の形態に係る光洗浄処理装置と同様である。
FIG. 5 is an explanatory cross-sectional view showing a configuration of an optical cleaning processing apparatus according to the third embodiment of the present invention. The optical cleaning processing apparatus shown in FIG. 5 is for performing optical cleaning processing on the surface of a template used for nanoimprinting.
In the light cleaning processing apparatus according to the third embodiment, a heating element 35 made of a strip-like film that generates heat by resistance heating is provided as a heating means on the inner surface of the window member 22 in the light source unit 20. Such a heating element 35 can be formed by printing and baking a conductive paste on the window member 22. The amount of heat generated by the heating element 35 is, for example, 0.5 to 10 kW.
Other configurations of the light cleaning processing apparatus according to the third embodiment are the same as those of the light cleaning processing apparatus according to the second embodiment except that the lamp heater 30 is not provided.
 上記の光洗浄処理装置においては、テンプレート1が、処理室形成材10内に設けられた保持部材(図示省略)に保持された状態で、発熱体35が通電されると共に、処理室形成材10に形成されたガス供給口(図示省略)から処理用ガスが処理室11に供給される。その結果、発熱体35が抵抗加熱により発熱し、その輻射熱によって、テンプレート1の表面に付着したレジスト残渣などの異物が加熱される。また、処理室11は、処理用ガスに置換される。
 そして、第1の実施の形態に係る光洗浄処理装置と同様にして、テンプレート1の光洗浄処理が達成され、テンプレート1が処理室11から取り出される。
 以上において、発熱体35に通電してから光洗浄処理の開始(エキシマランプ25の点灯)までの予熱時間は、例えば5~60秒間である。その他の光洗浄処理条件については、第1の実施の形態に係る光洗浄処理装置と同様である。
In the above optical cleaning apparatus, the heating element 35 is energized while the template 1 is held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material 10 is energized. A processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber. As a result, the heating element 35 generates heat due to resistance heating, and the radiant heat heats foreign matters such as a resist residue attached to the surface of the template 1. Further, the processing chamber 11 is replaced with a processing gas.
And the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11. FIG.
In the above, the preheating time from when the heating element 35 is energized until the start of the light cleaning process (lighting of the excimer lamp 25) is, for example, 5 to 60 seconds. Other optical cleaning processing conditions are the same as those of the optical cleaning processing apparatus according to the first embodiment.
 上記の光洗浄処理装置によれば、発熱体35によって、テンプレート1を加熱することができるので、テンプレート1の表面に付着したレジスト残渣などの異物がテンプレート1を介して加熱される。そのため、テンプレート1の表面に付着した異物の分解反応が促進され、その結果、テンプレート1の表面の洗浄処理を短時間で実行することができる。 According to the above optical cleaning processing apparatus, the template 1 can be heated by the heating element 35, so that foreign matters such as a resist residue adhering to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
 図6は、本発明の第4の実施の形態に係る光洗浄処理装置の構成を示す説明用断面図である。図6に示す光洗浄処理装置は、ナノインプリントに用いられるテンプレートの表面を光洗浄処理するためのものである。
 第4の実施の形態に係る光洗浄処理装置においては、処理室11内に、テンプレート1を加熱する加熱手段として、テンプレート1に赤外線を照射するランプヒータ30が、テンプレート1の裏面に対向するよう配置されている。
 第4の実施の形態に係る光洗浄処理装置におけるその他の構成は、筐体21内におけるエキシマランプ25の背後にランプヒータ30が設けられていないことを除き、第2の実施の形態に係る光洗浄処理装置と同様である。
FIG. 6 is a cross-sectional view illustrating the structure of an optical cleaning processing apparatus according to the fourth embodiment of the present invention. The optical cleaning processing apparatus shown in FIG. 6 is for performing optical cleaning processing on the surface of a template used for nanoimprinting.
In the light cleaning processing apparatus according to the fourth embodiment, a lamp heater 30 that irradiates the template 1 with infrared rays is opposed to the back surface of the template 1 as a heating means for heating the template 1 in the processing chamber 11. Has been placed.
Other configurations of the light cleaning processing apparatus according to the fourth embodiment are the same as those according to the second embodiment except that the lamp heater 30 is not provided behind the excimer lamp 25 in the housing 21. This is the same as the cleaning processing apparatus.
 ランプヒータ30としては、カーボンヒータを用いることが好ましい。
 カーボンヒータは、不活性ガスが封入された石英管内に炭素繊維よりなる発熱体が配置されてなるものである。カーボンヒータから放射される赤外線は、例えば波長が2.0~4.0μmの中赤外線の領域にピークを有するものである。この中赤外線は、テンプレート1を構成する石英ガラスに吸収されるので、テンプレート1を効率よく加熱することができる。
As the lamp heater 30, a carbon heater is preferably used.
The carbon heater is formed by arranging a heating element made of carbon fiber in a quartz tube filled with an inert gas. The infrared rays emitted from the carbon heater have a peak in the mid-infrared region having a wavelength of 2.0 to 4.0 μm, for example. Since this mid-infrared light is absorbed by the quartz glass constituting the template 1, the template 1 can be efficiently heated.
 上記の光洗浄処理装置においては、テンプレート1が、処理室形成材10内に設けられた保持部材(図示省略)に保持された状態で、ランプヒータ30が点灯されると共に、処理室形成材10に形成されたガス供給口(図示省略)から処理用ガスが処理室11に供給される。その結果、ランプヒータ30からの赤外線が、テンプレート1の表面に付着したレジスト残渣などの異物に照射されることにより、当該異物が加熱される。また、処理室11は、処理用ガスに置換される。
 ここで、ランプヒータ30から放射された赤外線のうち、近赤外線は、テンプレート1を透過し、テンプレート1の表面に付着した異物に照射されて吸収される結果、異物が加熱される。一方、中赤外線および遠赤外線は、テンプレート1に吸収される結果、テンプレート1が加熱され、異物に伝熱される。
 そして、第1の実施の形態に係る光洗浄処理装置と同様にして、テンプレート1の光洗浄処理が達成され、テンプレート1が処理室11から取り出される。
 以上において、ランプヒータ30による予熱時間やその他の光洗浄処理条件については、第1の実施の形態に係る光洗浄処理装置と同様である。
In the above optical cleaning processing apparatus, the lamp heater 30 is turned on while the template 1 is held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material 10 is also turned on. A processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in the processing chamber. As a result, the infrared rays from the lamp heater 30 are irradiated to foreign matters such as resist residues attached to the surface of the template 1 to heat the foreign matters. Further, the processing chamber 11 is replaced with a processing gas.
Here, of the infrared rays radiated from the lamp heater 30, the near infrared rays pass through the template 1 and are irradiated and absorbed by the foreign matter attached to the surface of the template 1. As a result, the foreign matter is heated. On the other hand, the mid-infrared ray and the far-infrared ray are absorbed by the template 1, so that the template 1 is heated and transferred to the foreign matter.
And the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11. FIG.
In the above, the preheating time by the lamp heater 30 and other light cleaning processing conditions are the same as those of the light cleaning processing apparatus according to the first embodiment.
 上記の光洗浄処理装置によれば、ランプヒータ30によって、テンプレート1を加熱することができるので、テンプレート1の表面に付着したレジスト残渣などの異物がテンプレート1を介して加熱される。そのため、テンプレート1の表面に付着した異物の分解反応が促進され、その結果、テンプレート1の表面の洗浄処理を短時間で実行することができる。 According to the above optical cleaning apparatus, the template 1 can be heated by the lamp heater 30, so that foreign matters such as a resist residue attached to the surface of the template 1 are heated through the template 1. Therefore, the decomposition reaction of the foreign matter adhering to the surface of the template 1 is promoted, and as a result, the cleaning process of the surface of the template 1 can be executed in a short time.
 以上、本発明の実施の形態を説明したが、本発明は上記の実施の形態に限定されず、種々の変更を加えることが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, A various change can be added.
(1)加熱手段としては、ランプヒータ30や発熱体35の代わりに、処理室に供給される処理用ガスを加熱するものを用いることができる。
 このような加熱手段を有する光洗浄処理装置においては、処理室形成材10内に設けられた保持部材(図示省略)に保持された状態で、ランプヒータ30が点灯されると共に、処理室形成材10に形成されたガス供給口(図示省略)から、加熱された処理用ガスが処理室11に供給されることにより、処理室11が、加熱された処理用ガスに置換される。
 そして、第1の実施の形態に係る光洗浄処理装置と同様にして、テンプレート1の光洗浄処理が達成され、テンプレート1が処理室11から取り出される。
 以上において、加熱された処理用ガスの温度は、例えば50~200℃である。
(1) Instead of the lamp heater 30 and the heating element 35, a heating means that heats the processing gas supplied to the processing chamber can be used.
In the optical cleaning processing apparatus having such a heating means, the lamp heater 30 is turned on while being held by a holding member (not shown) provided in the processing chamber forming material 10, and the processing chamber forming material is also turned on. When the heated processing gas is supplied to the processing chamber 11 from a gas supply port (not shown) formed in 10, the processing chamber 11 is replaced with the heated processing gas.
And the optical cleaning process of the template 1 is achieved similarly to the optical cleaning processing apparatus which concerns on 1st Embodiment, and the template 1 is taken out from the process chamber 11. FIG.
In the above, the temperature of the heated processing gas is, for example, 50 to 200 ° C.
 上記の光洗浄処理装置によれば、加熱手段によって処理用ガスが加熱されるので、その処理用ガスによってテンプレート1の表面に付着したレジスト残渣などの異物が加熱されて当該異物の分解反応が促進され、その結果、テンプレート1の表面の洗浄処理を短時間で実行することができる。 According to the above optical cleaning processing apparatus, since the processing gas is heated by the heating means, the processing gas heats foreign matters such as resist residues attached to the surface of the template 1 and promotes the decomposition reaction of the foreign matters. As a result, the surface of the template 1 can be cleaned in a short time.
(2)第3の実施の形態に係る光洗浄処理装置においては、発熱体35は、窓部材22の外面(テンプレート1に対向する面)に設けられていてもよい。但し、このような構成においては、発熱体22は処理室11に露出することとなり、処理室11内に、発熱体35を構成する材料に起因する塵埃が混入する虞があるため、発熱体35は、窓部材22の内面に設けられていることが好ましい。 (2) In the optical cleaning apparatus according to the third embodiment, the heating element 35 may be provided on the outer surface of the window member 22 (the surface facing the template 1). However, in such a configuration, the heating element 22 is exposed to the processing chamber 11, and dust due to the material constituting the heating element 35 may be mixed in the processing chamber 11. Is preferably provided on the inner surface of the window member 22.
〈実施例1〉
 図6に示す構成に従って紫外線処理装置を作製した。この紫外線処理装置の仕様は以下の通りである。これを紫外線処理装置〔1〕とする。
・ヒータランプ:カーボンヒータ
・カーボンヒータの電力:3kW
・カーボンヒータの大きさ:100mm×200mm
・カーボンヒータの直径:5mm
・カーボンヒータ下面からテンプレート上面までの距離:50mm
<Example 1>
An ultraviolet treatment apparatus was produced according to the configuration shown in FIG. The specifications of this ultraviolet treatment apparatus are as follows. This is referred to as an ultraviolet treatment device [1].
・ Heater lamp: Carbon heater ・ Power of carbon heater: 3kW
・ Size of carbon heater: 100mm x 200mm
-Diameter of carbon heater: 5mm
・ Distance from the bottom surface of the carbon heater to the top surface of the template: 50mm
 上記の紫外線処理装置〔1〕を用いて、下記の光洗浄処理条件(処理ガスの供給条件および紫外線の照射条件および加熱条件)により、特定の厚みでレジストが塗布された被処理物(テンプレート)の光洗浄処理を行った。
・処理ガス種:CDA
・処理ガスの供給量:1L/min
・処理ガスのパージ時間:60秒間
・窓部材における紫外線照度:70mW/cm
・紫外線の照射時間:35秒間
・カーボンヒータによる加熱時間:50秒間
・テンプレートに塗布されたレジストの温度:100℃
 その結果、レジストを除去する速度は2nm/sであった。
 なお、カーボンヒータによる加熱時間50秒間は、処理ガスのパージ時間60秒間に含まれるため、カーボンヒータによる加熱時間がテンプレートの洗浄処理においてスループットに追加されることはない。
Using the above-described ultraviolet treatment apparatus [1], an object to be treated (template) coated with a resist with a specific thickness under the following optical cleaning treatment conditions (processing gas supply conditions, ultraviolet irradiation conditions and heating conditions) The light washing process was performed.
・ Processing gas type: CDA
・ Process gas supply rate: 1 L / min
Process gas purge time: 60 seconds UV light illuminance at window member: 70 mW / cm 2
-UV irradiation time: 35 seconds-Heating time with carbon heater: 50 seconds-Temperature of resist applied to template: 100 ° C
As a result, the speed for removing the resist was 2 nm / s.
Since the heating time of 50 seconds by the carbon heater is included in the processing gas purge time of 60 seconds, the heating time by the carbon heater is not added to the throughput in the template cleaning process.
〈実施例2〉
 図1に示す構成に従って紫外線処理装置を作製した。この紫外線処理装置の仕様は以下の通りである。これを紫外線処理装置〔2〕とする。
・赤外線透過窓部材:テンパックスガラス(登録商標)
・赤外線透過窓部材の大きさ:φ50mm
・赤外線透過窓部材の厚み:2mm
・赤外線透過窓部材下面から窓部材上面までの距離:80mm
・ランプヒータ:ハロゲンヒータ
・ハロゲンヒータの電力:500W
<Example 2>
An ultraviolet treatment apparatus was produced according to the configuration shown in FIG. The specifications of this ultraviolet treatment apparatus are as follows. This is referred to as an ultraviolet treatment device [2].
・ Infrared transmitting window member: Tempax Glass (registered trademark)
・ Size of infrared transmission window member: φ50mm
・ Thickness of infrared transmitting window member: 2mm
・ Distance from the lower surface of the infrared transmitting window member to the upper surface of the window member: 80 mm
・ Lamp heater: Halogen heater ・ Halogen heater power: 500W
 上記の紫外線処理装置〔2〕を用いて、下記の光洗浄処理条件(処理ガスの供給条件および紫外線の照射条件および加熱条件)により、特定の厚みでレジストが塗布された被処理物(テンプレート)の光洗浄処理を行った。
・処理ガス種:CDA
・処理ガスの供給量:1L/min
・処理ガスのパージ時間:60秒間
・窓部材における紫外線照度:70mW/cm
・紫外線の照射時間:35秒間
・ハロゲンヒータによる加熱時間:600秒間
・テンプレートに塗布されたレジストの温度:100℃
 その結果、レジストを除去する速度は2nm/sであった。
 なお、本実施例の条件の電力では、ハロゲンヒータによる加熱時間が600秒程度かかるが、レジストを除去する速度は、実施例1の紫外線処理装置と同等であった。
An object to be processed (template) coated with a resist with a specific thickness under the following optical cleaning processing conditions (processing gas supply conditions and ultraviolet irradiation conditions and heating conditions) using the above-described ultraviolet processing apparatus [2]. The light washing process was performed.
・ Processing gas type: CDA
・ Process gas supply rate: 1 L / min
Process gas purge time: 60 seconds UV light illuminance at window member: 70 mW / cm 2
-UV irradiation time: 35 seconds-Heating time with a halogen heater: 600 seconds-Temperature of the resist applied to the template: 100 ° C
As a result, the speed for removing the resist was 2 nm / s.
Note that, with the power under the conditions of this example, the heating time by the halogen heater takes about 600 seconds, but the speed of removing the resist was equivalent to that of the ultraviolet processing apparatus of Example 1.
〈比較例〉
 赤外線透過窓部材およびハロゲンヒータを設けなかったこと以外は、紫外線処理装置〔2〕と同様の仕様の紫外線処理装置〔3〕を作製した。
<Comparative example>
An ultraviolet treatment device [3] having the same specifications as the ultraviolet treatment device [2] was prepared except that the infrared transmission window member and the halogen heater were not provided.
 上記の紫外線処理装置〔3〕を用いて、下記の光洗浄処理条件(処理ガスの供給条件および紫外線の照射条件および加熱条件)により、実施例と同様の特定の厚みでレジストが塗布された被処理物(テンプレート)の光洗浄処理を行った。
・処理ガス種:CDA
・処理ガスの供給量:1L/min
・処理ガスのパージ時間:60秒間
・窓部材における紫外線照度:70mW/cm
・紫外線の照射時間:100秒間
 その結果、レジストを除去する速度は0.7nm/sであった。
Using the above-described ultraviolet treatment apparatus [3], a resist coated with a specific thickness similar to that of the example was applied under the following optical cleaning treatment conditions (processing gas supply conditions, ultraviolet irradiation conditions and heating conditions). The processed product (template) was subjected to a light cleaning treatment.
・ Processing gas type: CDA
・ Process gas supply rate: 1 L / min
Process gas purge time: 60 seconds UV light illuminance at window member: 70 mW / cm 2
UV irradiation time: 100 seconds As a result, the resist removal speed was 0.7 nm / s.
 上記の結果から、実施例1に係る紫外線処理装置〔1〕および実施例2に係る紫外線処理装置〔2〕によれば、カーボンヒータまたはハロゲンヒータよりなる加熱手段が設けられているため、レジストを除去する速度を大幅に上げることができ、従って、テンプレートの洗浄処理時間を短縮することができることが確認された。 From the above results, according to the ultraviolet ray processing apparatus [1] according to the first embodiment and the ultraviolet ray treatment apparatus [2] according to the second embodiment, the heating means including the carbon heater or the halogen heater is provided. It was confirmed that the removal speed can be greatly increased, and therefore the template cleaning process time can be shortened.
 1 テンプレート
10 処理室形成材
11 処理室
12 開口
13 赤外線透過窓部材
20 光源ユニット
21 筐体
22 窓部材
23 固定板
25 エキシマランプ
26 放電容器
27 高電圧側電極
28 アース側電極
29 口金
30 ランプヒータ
35 発熱体
 S 放電空間
DESCRIPTION OF SYMBOLS 1 Template 10 Processing chamber forming material 11 Processing chamber 12 Opening 13 Infrared transmitting window member 20 Light source unit 21 Case 22 Window member 23 Fixing plate 25 Excimer lamp 26 Discharge vessel 27 High voltage side electrode 28 Earth side electrode 29 Base 30 Lamp heater 35 Heating element S Discharge space

Claims (5)

  1.  ナノインプリントに用いられる石英ガラスよりなるテンプレートの表面を紫外線によって洗浄処理する光洗浄処理装置であって、
     処理対象であるテンプレートが配置され、処理用ガスが供給される処理室を形成する処理室形成材と、
     前記処理室に配置された前記テンプレートに間隙を介して対向して設けられた、紫外線を透過する窓部材を有する筐体と、
     前記筐体内に配置された、前記テンプレートに前記窓部材を介して紫外線を照射する紫外線光源と、
     前記テンプレートを加熱する加熱手段と
    を備えてなることを特徴とする光洗浄処理装置。
    An optical cleaning processing apparatus for cleaning the surface of a template made of quartz glass used for nanoimprinting with ultraviolet rays,
    A processing chamber forming material for forming a processing chamber in which a template to be processed is arranged and a processing gas is supplied;
    A housing having a window member that transmits ultraviolet light, provided facing the template disposed in the processing chamber via a gap;
    An ultraviolet light source disposed in the housing for irradiating the template with ultraviolet light through the window member;
    An optical cleaning treatment apparatus comprising a heating means for heating the template.
  2.  前記加熱手段は、前記処理室内に配置されていることを特徴とする請求項1に記載の光洗浄処理装置。 2. The optical cleaning apparatus according to claim 1, wherein the heating means is disposed in the processing chamber.
  3.  前記処理室形成材は、前記窓部材に対向して設けられた赤外線透過窓部材を有し、
     前記加熱手段は、前記赤外線透過窓部材の外面に対向して配置されていることを特徴とする請求項1または請求項2に記載の光洗浄処理装置。
    The processing chamber forming material has an infrared transmission window member provided to face the window member,
    The light cleaning treatment apparatus according to claim 1, wherein the heating unit is disposed to face an outer surface of the infrared transmission window member.
  4.  前記加熱手段は、赤外線を照射するカーボンヒータまたはハロゲンヒータよりなることを特徴とする請求項1乃至請求項3のいずれかに記載の光洗浄処理装置。 4. The photo-cleaning apparatus according to claim 1, wherein the heating means comprises a carbon heater or a halogen heater that irradiates infrared rays.
  5.  前記加熱手段は、前記窓部材に設けられた、抵抗加熱により発熱する発熱体よりなることを特徴とする請求項1に記載の光洗浄処理装置。 2. The light cleaning apparatus according to claim 1, wherein the heating means is a heating element provided on the window member that generates heat by resistance heating.
PCT/JP2017/022318 2016-07-08 2017-06-16 Light washing treatment device WO2018008365A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018525998A JP6888624B2 (en) 2016-07-08 2017-06-16 Light cleaning processing equipment
CN201780041541.0A CN109414849B (en) 2016-07-08 2017-06-16 Light cleaning processing device
KR1020187036577A KR102162392B1 (en) 2016-07-08 2017-06-16 Light cleaning treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-135648 2016-07-08
JP2016135648 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008365A1 true WO2018008365A1 (en) 2018-01-11

Family

ID=60912708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022318 WO2018008365A1 (en) 2016-07-08 2017-06-16 Light washing treatment device

Country Status (5)

Country Link
JP (1) JP6888624B2 (en)
KR (1) KR102162392B1 (en)
CN (1) CN109414849B (en)
TW (1) TWI712480B (en)
WO (1) WO2018008365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949191B1 (en) * 2020-12-18 2021-10-13 ホッティーポリマー株式会社 3D printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245384A (en) * 2010-05-25 2011-12-08 Ushio Inc Light irradiation device
JP2013248841A (en) * 2012-06-04 2013-12-12 Ushio Inc Template washing method, pattern forming method, photowashing apparatus and nanoimprint apparatus
JP2017015770A (en) * 2015-06-26 2017-01-19 ウシオ電機株式会社 Optical processing apparatus and optical processing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577585B2 (en) * 1987-11-27 1997-02-05 東芝セラミックス株式会社 Manufacturing method of quartz glass tube
JPH07321046A (en) * 1994-05-23 1995-12-08 Hitachi Ltd Thin film forming apparatus and thin film forming method
JP2001155160A (en) 1999-11-30 2001-06-08 Komatsu Ltd Device for inspecting external appearance of electronic component
JP4747398B2 (en) * 2000-07-27 2011-08-17 株式会社Gsユアサ UV treatment equipment
JP2004202926A (en) * 2002-12-26 2004-07-22 Towa Corp Cleaning method of component in resin molding and apparatus therefor
US20100072671A1 (en) * 2008-09-25 2010-03-25 Molecular Imprints, Inc. Nano-imprint lithography template fabrication and treatment
CN101780699B (en) * 2009-01-20 2014-01-08 晟铭电子科技股份有限公司 Microstructure forming device and method for forming microstructure using the forming device
JP5471514B2 (en) 2010-01-28 2014-04-16 ウシオ電機株式会社 Light processing equipment
JP5906037B2 (en) * 2010-09-09 2016-04-20 キヤノン株式会社 Manufacturing method of optical components
JP5235977B2 (en) * 2010-12-16 2013-07-10 富士フイルム株式会社 Image forming apparatus and image forming method
JP2012256724A (en) * 2011-06-09 2012-12-27 Hitachi Kokusai Electric Inc Substrate processing apparatus and method for manufacturing semiconductor device
JP5987522B2 (en) 2012-07-23 2016-09-07 ウシオ電機株式会社 Template cleaning light irradiation apparatus, nanoimprint apparatus, template cleaning method, and pattern forming method
JP6111783B2 (en) * 2013-03-27 2017-04-12 大日本印刷株式会社 Imprint method and imprint apparatus
CN104308452A (en) * 2014-08-21 2015-01-28 清华大学 Amorphous alloy micro-nano structure stamping forming mould and preparation and application methods thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011245384A (en) * 2010-05-25 2011-12-08 Ushio Inc Light irradiation device
JP2013248841A (en) * 2012-06-04 2013-12-12 Ushio Inc Template washing method, pattern forming method, photowashing apparatus and nanoimprint apparatus
JP2017015770A (en) * 2015-06-26 2017-01-19 ウシオ電機株式会社 Optical processing apparatus and optical processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949191B1 (en) * 2020-12-18 2021-10-13 ホッティーポリマー株式会社 3D printer

Also Published As

Publication number Publication date
CN109414849B (en) 2022-05-10
JP6888624B2 (en) 2021-06-16
TWI712480B (en) 2020-12-11
CN109414849A (en) 2019-03-01
JPWO2018008365A1 (en) 2019-04-25
KR20190009339A (en) 2019-01-28
TW201811530A (en) 2018-04-01
KR102162392B1 (en) 2020-10-06

Similar Documents

Publication Publication Date Title
KR101689987B1 (en) Photo-irradiation device
CN102218414B (en) Optical irradiation equipment and optical irradiation method
JPH0494123A (en) Method and device for optical excitation dry cleaning
KR20080026069A (en) How to Clean the Ultraviolet Irradiation Chamber
WO2018008365A1 (en) Light washing treatment device
JP2000260396A (en) Excimer lamp, excimer irradiation device, and organic compond decomposition method
JPS6235811B2 (en)
JP7056386B2 (en) Gas treatment equipment and gas treatment method
JP4479466B2 (en) Excimer light irradiation equipment
JPH06312130A (en) Cleaning method using dielectric barrier discharge lamp
JPH06343938A (en) Adhering substance cleaning method and apparatus therefor
JP2001219053A (en) Oxidation method using dielectric barrier discharge and oxidation treatment apparatus
JP5540932B2 (en) Epitaxial growth apparatus and cleaning method thereof
JPH09120950A (en) UV cleaner
EP1158574B1 (en) Ultraviolet radiation producing apparatus
TWI588925B (en) Light irradiation device
JP3214154B2 (en) Cleaning method using dielectric barrier discharge lamp
US6787787B1 (en) Ultraviolet radiation producing apparatus
JP2005317555A (en) Excimer lamp and excimer irradiation device
JPH07308567A (en) Washing method and washing device for vessel
WO2015076030A1 (en) Ashing device and object-to-be-treated holding structure
JPH08236492A (en) Light cleaning method
JPH05243138A (en) Ultraviolet generator and processing method using the same
JP2016219656A (en) Optical processing apparatus and optical processing method
JPH10209132A (en) How to remove organic matter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525998

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036577

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823972

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载