WO2018002977A1 - X-ray generation device and analysis apparatus provided with same - Google Patents
X-ray generation device and analysis apparatus provided with same Download PDFInfo
- Publication number
- WO2018002977A1 WO2018002977A1 PCT/JP2016/068945 JP2016068945W WO2018002977A1 WO 2018002977 A1 WO2018002977 A1 WO 2018002977A1 JP 2016068945 W JP2016068945 W JP 2016068945W WO 2018002977 A1 WO2018002977 A1 WO 2018002977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- filament
- target
- control circuit
- voltage power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G1/00—X-ray apparatus involving X-ray tubes; Circuits therefor
- H05G1/08—Electrical details
- H05G1/26—Measuring, controlling or protecting
- H05G1/30—Controlling
- H05G1/34—Anode current, heater current or heater voltage of X-ray tube
Definitions
- the present invention relates to an X-ray generator that emits characteristic X-rays, and more particularly to an analyzer equipped with an X-ray generator.
- the base materials for example, Fe, Cu, Al, etc.
- Etc. It has been required to strictly control the amount of trace components contained in it, especially elements such as C, Si, S, P, Mn, Ni, etc., and production plants for steel and non-ferrous metal materials, etc.
- the steelmaking and refining processes such as, it is important to quantify the trace components contained in the base material.
- fluorescent X-rays are used for qualitative and quantitative analysis of elements contained in a sample by irradiating the sample with characteristic X-rays and detecting the intensity of the fluorescent X-rays excited and emitted by the characteristic X-rays. Analyzing devices are becoming widely used in production factories and the like.
- FIG. 4 is a diagram showing the configuration of the fluorescent X-ray analyzer
- FIG. 5 is a circuit diagram of the X-ray generator 101 shown in FIG.
- the X-ray fluorescence analyzer 160 includes an X-ray generator 101, a sample stage 61 on which a sample S is arranged, a detector 62 for detecting the energy and intensity of the fluorescent X-ray, an input device 71, a CPU 172, and the like. Having a computer 170.
- the X-ray generator 101 applies an X-ray tube 10 that emits characteristic X-rays, a high voltage generation DC power source (high voltage power source) 20 for applying a high voltage V high , and a low voltage V low.
- Filament power supply (low voltage power supply) 30, tube voltage control circuit (high voltage power supply control circuit) 140 for controlling the high voltage generating DC power supply 20, and filament current control circuit (low voltage power supply control circuit) for controlling the filament power supply 30 150) see, for example, Patent Document 1).
- FIG. 6 is a cross-sectional view of the X-ray tube 10 shown in FIG.
- the X-ray tube 10 includes a target 11 serving as an anode, a filament 12 serving as a cathode, and a substantially cylindrical housing 13 having the target 11 and the filament 12 therein.
- a circular exit window 13 a is formed on the side wall of the housing 13, and the end surface 11 a of the target 11 is disposed at a position facing the exit window 13 a and the filament is disposed at a position facing the end surface 11 a of the target 11. 12 is arranged.
- the filament power supply 30 and the filament current control circuit 150 are connected to the filament 12 via the low voltage cable 16.
- the high voltage generation DC power supply 20 and the tube voltage control circuit 140 are connected to the target 11 via the high voltage cable 15.
- the negative electrode of the high voltage generating DC power supply 20 is connected to one end of the filament 12.
- the tube voltage control circuit 140 applies a high voltage V high to the target 11 based on an input signal from the input device 71. For example, when the analyst selects the tube voltage value V high from about 1 kV to 50 kV using the input device 71, the tube voltage control circuit 140 applies the selected tube voltage value V high to the target 11. As a result, the potential of the target 11 is set to the tube voltage value V high . At this time, the tube voltage control circuit 140 performs feedback control so that the potential of the target 11 does not deviate from the tube voltage value V high .
- the filament current control circuit 150 applies a low voltage V low to the filament 12 based on an input signal from the input device 71. For example, when the analyst selects the tube current value I from the current value of about 5 mA to 100 mA using the input device 71, the filament current control circuit 150 causes the filament so that there is no deviation from the selected tube current value I. The feedback control is performed so that the filament current is supplied to 12.
- a high voltage V high is applied to the target 11 to cause the potential of the target 11. with a tube voltage value V high and by passing a filament current by applying a low voltage V low to the filament 12, to accelerate thermal electrons e emitted from the filament 12 to collide with the end face 11a of the target 11
- characteristic X-rays generated on the end surface 11a of the target 11 are emitted from the emission window 13a.
- the intensity and energy of the characteristic X-ray are controlled by changing the tube voltage value V high and the tube current value I.
- the X-ray generator 101 in order to stop the X-ray generator 101 after the analysis is completed, after applying the low voltage V low to the filament 12 is stopped, applying the high voltage V high to the target 11 is stopped.
- the potential of the target 11 needs to be decreased from the tube voltage value V high to 0 V, but the waiting time for the potential of the target 11 to decrease to 0 V is long (for example, the rate of decrease of the tube voltage value V high is 1.8 kV / s). ).
- the filament current control circuit 150 Since the filament current control circuit 150 performs feedback control so as not to deviate from the tube current value I, when the tube current stops flowing, the filament current becomes the maximum value and the temperature of the filament 12 becomes the maximum temperature. . As the temperature of the filament 12 increases, the filament 12 is consumed, so the life of the filament 12 is shortened. Therefore, when the input signal “OFF” for stopping the X-ray generator 101 is input, the filament current control circuit 150 stops applying the low voltage V low to the filament 12, and then the tube voltage control circuit 140 stops applying the high voltage V high to the target 11.
- the present applicant examined a method for reducing the potential of the target 11 in a short time. After the application of the low voltage V low to the filament 12 is stopped, and the application of the high voltage V high to the target 11 is stopped, as shown in FIG. The tube voltage value V high is released by a very small current i flowing through the resistance of the insulator of the cable 15.
- the tube current value I is not set to 0 A, but a filament current having an appropriate predetermined value (0.3 A or more and 5.0 A or less) is caused to flow through the filament 12. It has been found that by irradiating the target 11 with thermoelectrons e ′, the tube voltage value V high is released as the tube current I ′ (see FIG. 2B). As a result, the decrease rate of the tube voltage value V high became 3.0 kV / s, which was faster.
- the X-ray generation apparatus of the present invention includes a casing, a target that is an anode disposed inside the casing, and a filament that is a cathode disposed inside the casing, and the filament
- An X-ray tube that receives thermoelectrons radiated from the target and emits X-rays generated at the target, a high-voltage power source for applying a high voltage to the target, and a low voltage to the filament
- An X-ray generator comprising: a low-voltage power supply for applying; a high-voltage power supply control circuit that controls the high-voltage power supply; and a low-voltage power supply control circuit that controls the low-voltage power supply.
- the low voltage power supply control circuit applies a low voltage of a predetermined value to the filament for a predetermined time. It is to be pressurized.
- the tube voltage value V high in order to reduce the tube voltage value V high target potential, for releasing the tube voltage value V high target potential as a tube current I ', the tube voltage value V high
- the waiting time to escape can be shortened. Further, no mechanism or component (high voltage resistance or switch) for switching the circuit is required.
- the predetermined time may be a time for the potential of the target to decrease.
- the low voltage of the predetermined value may be a voltage for causing a filament current of 0.3 A or more and 5.0 A or less to flow through the filament.
- the filament current of 0.3 A or more and 5.0 A or less prevents the filament from being consumed due to an appropriate temperature of the filament.
- the analyzer of this invention is an analyzer provided with the above X-ray generators, a detector, and the input device into which the input signal for stopping the said X-ray generator is input,
- the low voltage power supply control circuit applies a predetermined voltage to the filament.
- a low voltage of a predetermined value may be applied for a time.
- the circuit diagram of the X-ray generator shown in FIG. The flowchart for demonstrating the stop method.
- the circuit diagram of the X-ray generator shown in FIG. Sectional drawing of the X-ray tube shown in FIG.
- FIG. 1 is a diagram showing a configuration of a fluorescent X-ray analyzer according to the embodiment
- FIG. 2 is a circuit diagram of the X-ray generator shown in FIG.
- the same components as those of the fluorescent X-ray analyzer 160 are denoted by the same reference numerals.
- the X-ray fluorescence analyzer 60 includes an X-ray generator 1, a sample stage 61 on which a sample S is arranged, a detector 62 that detects the energy and intensity of fluorescent X-rays, an input device 71, a CPU 72, and the like. And a computer 70.
- the X-ray generator 1 applies an X-ray tube 10 that emits characteristic X-rays, a high voltage generation DC power source (high voltage power source) 20 for applying a high voltage V high , and a low voltage V low.
- the filament current control circuit 50 applies a low voltage V low to the filament 12 based on an input signal from the input device 71. For example, when the analyst selects the tube current value I from the current value of about 5 mA to 100 mA using the input device 71, the filament current control circuit 50 ensures that the filament current control circuit 50 does not deviate from the selected tube current value I. The feedback control is performed so that the filament current is supplied to 12. In addition, when an input signal “OFF” for stopping the X-ray generator 1 is input to the filament current control circuit 50 according to the embodiment, the filament 12 is set to a predetermined value for a predetermined time (for example, 20 seconds or less).
- a filament current of a predetermined value (0.3 A or more and 5.0 A or less) is caused to flow.
- the predetermined value include not less than 0.3 A and not more than 5.0 A.
- the predetermined value is set to 3.4 A in consideration of the circuit configuration.
- the reduction speed also varies depending on the structure of the X-ray tube 10.
- 50 kV (maximum tube voltage) / 3 kV (reduction speed per second) 16.6 s. The potential dropped in seconds.
- the tube voltage control circuit 40 applies a high voltage V high to the target 11 based on an input signal from the input device 71. For example, when the analyst selects the tube voltage value V high from the voltage value of about 1 kV to 50 kV using the input device 71, the tube voltage control circuit 40 applies the selected tube voltage value V high to the target 11. As a result, the potential of the target 11 is set to the tube voltage value V high . At this time, the tube voltage control circuit 40 performs feedback control so that the potential of the target 11 does not deviate from the tube voltage value V high .
- FIG. 3 is a flowchart for explaining the stopping method.
- the CPU 72 determines whether or not an input signal “OFF” for stopping the X-ray generator 1 is input. If it is determined that the input signal “OFF” has not been input, the process of step S101 is repeated.
- the filament current control circuit 50 applies a predetermined value of the low voltage V low ′ to the filament 12 in the process of step S102, thereby determining the predetermined value (3. 4A) is applied. At this time, since the temperature of the filament 12 does not reach the maximum temperature, it is possible to prevent the filament 12 from being consumed.
- the tube voltage control circuit 40 stops applying the high voltage V high to the target 11.
- step S104 the CPU 72 determines whether or not a predetermined time (20 seconds) has elapsed. When it is determined that the predetermined time has not elapsed, the process of step S104 is repeated. At this time, the tube voltage value V high escapes as the tube current I ′ (see FIG. 2B). Next, when it is determined that the predetermined time has elapsed, the filament current control circuit 50 stops applying the predetermined low voltage V low ′ to the filament 12 in the process of step S105. Then, when the process of step S105 ends, this flowchart is ended.
- the fluorescent X-ray analysis apparatus 60 in order to reduce the tube voltage value V high potential of the target 11, the tube voltage value V high tube current I in the potential of the target 11 ' Therefore, the waiting time for releasing the tube voltage value V high can be shortened.
- the fluorescent X-ray analysis apparatus 60 has been described as an example. The invention can be applied as well.
- the fluorescent X-ray analyzer 60 using a relatively low tube voltage for surface analysis has been described as an example. You may apply.
- the present invention can be used in a fluorescent X-ray analyzer or the like that calculates the concentration of an element contained in a sample.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- X-Ray Techniques (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
An X-ray generation device (1) is provided with: an X-ray tube (10) having a housing (13), a target (11) that is an anode disposed inside the housing (13), and a filament (12) that is a cathode disposed inside the housing (13), the X-ray tube (10) accepting thermal electrons radiated from the filament (12) at the target (11) and emitting an X-ray generated at the target (11); a high-voltage power supply (20) for applying high voltage to the target (11); a low-voltage power supply (30) for applying low voltage to the filament (12); a high-voltage power supply control circuit (40) that controls the high-voltage power supply (20); and a low-voltage power supply control circuit (50) that controls the low-voltage power supply (30). In order to stop the X-ray generation device (1), after the high-voltage power supply control circuit (40) has stopped applying high voltage to the target (11), the low-voltage power supply control circuit (50) applies a predetermined value of low voltage to the filament (12) for a predetermined time period.
Description
本発明は、特性X線を出射するX線発生装置に関し、特にX線発生装置を備える分析装置に関する。
The present invention relates to an X-ray generator that emits characteristic X-rays, and more particularly to an analyzer equipped with an X-ray generator.
鉄鋼品種(例えば、低合金鋼や炭素鋼やステンレス鋼や低合鋳鉄等)や非鉄金属品種の多様化や高品質化や製鋼加工技術の発展に伴い、母材(例えば、Fe、Cu、Al等)中に含有される微量成分、特にC、Si、S、P、Mn、Ni等の元素の量を厳密にコントロールすることが要求されてきており、鉄鋼材や非鉄金属材等の生産工場等での製鋼・精練工程において、母材中に含有される微量成分を定量することが重要となってきている。
そこで、近年、試料に特性X線を照射し、特性X線により励起されて放出される蛍光X線の強度を検出することによって、その試料に含まれる元素の定性や定量分析を行う蛍光X線分析装置が生産工場等で広く利用されるようになってきている。 With the diversification of steel types (for example, low alloy steel, carbon steel, stainless steel, low cast iron, etc.) and non-ferrous metal types, the improvement of quality, and the development of steelmaking processing technology, the base materials (for example, Fe, Cu, Al, etc.) Etc.) It has been required to strictly control the amount of trace components contained in it, especially elements such as C, Si, S, P, Mn, Ni, etc., and production plants for steel and non-ferrous metal materials, etc. In the steelmaking and refining processes such as, it is important to quantify the trace components contained in the base material.
Thus, in recent years, fluorescent X-rays are used for qualitative and quantitative analysis of elements contained in a sample by irradiating the sample with characteristic X-rays and detecting the intensity of the fluorescent X-rays excited and emitted by the characteristic X-rays. Analyzing devices are becoming widely used in production factories and the like.
そこで、近年、試料に特性X線を照射し、特性X線により励起されて放出される蛍光X線の強度を検出することによって、その試料に含まれる元素の定性や定量分析を行う蛍光X線分析装置が生産工場等で広く利用されるようになってきている。 With the diversification of steel types (for example, low alloy steel, carbon steel, stainless steel, low cast iron, etc.) and non-ferrous metal types, the improvement of quality, and the development of steelmaking processing technology, the base materials (for example, Fe, Cu, Al, etc.) Etc.) It has been required to strictly control the amount of trace components contained in it, especially elements such as C, Si, S, P, Mn, Ni, etc., and production plants for steel and non-ferrous metal materials, etc. In the steelmaking and refining processes such as, it is important to quantify the trace components contained in the base material.
Thus, in recent years, fluorescent X-rays are used for qualitative and quantitative analysis of elements contained in a sample by irradiating the sample with characteristic X-rays and detecting the intensity of the fluorescent X-rays excited and emitted by the characteristic X-rays. Analyzing devices are becoming widely used in production factories and the like.
図4は、蛍光X線分析装置の構成を示す図であり、図5は、図4に示すX線発生装置101の回路図である。蛍光X線分析装置160は、X線発生装置101と、試料Sが配置される試料台61と、蛍光X線のエネルギと強度とを検出する検出器62と、入力装置71やCPU 172等を有するコンピュータ170とを備える。
FIG. 4 is a diagram showing the configuration of the fluorescent X-ray analyzer, and FIG. 5 is a circuit diagram of the X-ray generator 101 shown in FIG. The X-ray fluorescence analyzer 160 includes an X-ray generator 101, a sample stage 61 on which a sample S is arranged, a detector 62 for detecting the energy and intensity of the fluorescent X-ray, an input device 71, a CPU 172, and the like. Having a computer 170.
X線発生装置101は、特性X線を出射するX線管球10と、高電圧Vhighを印加するための高電圧生成DC電源(高電圧電源)20と、低電圧Vlowを印加するためのフィラメント用電源(低電圧電源)30と、高電圧生成DC電源20を制御する管電圧制御回路(高圧電源制御回路)140と、フィラメント用電源30を制御するフィラメント電流制御回路(低圧電源制御回路)150とを備える(例えば特許文献1参照)。
The X-ray generator 101 applies an X-ray tube 10 that emits characteristic X-rays, a high voltage generation DC power source (high voltage power source) 20 for applying a high voltage V high , and a low voltage V low. Filament power supply (low voltage power supply) 30, tube voltage control circuit (high voltage power supply control circuit) 140 for controlling the high voltage generating DC power supply 20, and filament current control circuit (low voltage power supply control circuit) for controlling the filament power supply 30 150) (see, for example, Patent Document 1).
図6は、図4に示すX線管球10の断面図である。X線管球10は、陽極であるターゲット11と、陰極であるフィラメント12と、ターゲット11とフィラメント12とを内部に有する略円筒形状の筐体13とを備える。
FIG. 6 is a cross-sectional view of the X-ray tube 10 shown in FIG. The X-ray tube 10 includes a target 11 serving as an anode, a filament 12 serving as a cathode, and a substantially cylindrical housing 13 having the target 11 and the filament 12 therein.
筐体13の側壁には、円形状の出射窓13aが形成されており、出射窓13aと対向する位置にターゲット11の端面11aが配置されるとともに、ターゲット11の端面11aと対向する位置にフィラメント12が配置されている。そして、フィラメント用電源30及びフィラメント電流制御回路150が、低電圧用ケーブル16を介してフィラメント12と接続されている。また、高電圧生成DC電源20及び管電圧制御回路140が、高電圧用ケーブル15を介してターゲット11と接続されている。さらに、高電圧生成DC電源20の負極は、フィラメント12の一端と接続されている。
A circular exit window 13 a is formed on the side wall of the housing 13, and the end surface 11 a of the target 11 is disposed at a position facing the exit window 13 a and the filament is disposed at a position facing the end surface 11 a of the target 11. 12 is arranged. The filament power supply 30 and the filament current control circuit 150 are connected to the filament 12 via the low voltage cable 16. Further, the high voltage generation DC power supply 20 and the tube voltage control circuit 140 are connected to the target 11 via the high voltage cable 15. Further, the negative electrode of the high voltage generating DC power supply 20 is connected to one end of the filament 12.
管電圧制御回路140は、入力装置71からの入力信号に基づいて、ターゲット11に高電圧Vhighを印加するようになっている。例えば、分析者が入力装置71を用いて電圧値1kV~50kV程度の内から管電圧値Vhighを選択すると、管電圧制御回路140はその選択された管電圧値Vhighをターゲット11に印加することにより、ターゲット11の電位を管電圧値Vhighとする。このとき、管電圧制御回路140は、ターゲット11の電位が管電圧値Vhighと乖離がないようにフィードバック制御を行う。
The tube voltage control circuit 140 applies a high voltage V high to the target 11 based on an input signal from the input device 71. For example, when the analyst selects the tube voltage value V high from about 1 kV to 50 kV using the input device 71, the tube voltage control circuit 140 applies the selected tube voltage value V high to the target 11. As a result, the potential of the target 11 is set to the tube voltage value V high . At this time, the tube voltage control circuit 140 performs feedback control so that the potential of the target 11 does not deviate from the tube voltage value V high .
フィラメント電流制御回路150は、入力装置71からの入力信号に基づいて、フィラメント12に低電圧Vlowを印加するようになっている。例えば、分析者が入力装置71を用いて電流値5mA~100mA程度の内から管電流値Iを選択すると、フィラメント電流制御回路150はその選択された管電流値Iと乖離がないように、フィラメント12にフィラメント電流を流すフィードバック制御を行う。
The filament current control circuit 150 applies a low voltage V low to the filament 12 based on an input signal from the input device 71. For example, when the analyst selects the tube current value I from the current value of about 5 mA to 100 mA using the input device 71, the filament current control circuit 150 causes the filament so that there is no deviation from the selected tube current value I. The feedback control is performed so that the filament current is supplied to 12.
このようなX線発生装置101によれば、分析を行うための入力信号が入力されると、図5(a)に示すように、ターゲット11に高電圧Vhighを印加してターゲット11の電位を管電圧値Vhighとするとともに、フィラメント12に低電圧Vlowを印加してフィラメント電流を流すことにより、フィラメント12から放射された熱電子eを加速して、ターゲット11の端面11aに衝突させることで、ターゲット11の端面11aで発生した特性X線を出射窓13aから出射している。なお、この特性X線の強度やエネルギは、管電圧値Vhighと管電流値Iとを変えることで制御される。
According to such an X-ray generator 101, when an input signal for performing analysis is input, as shown in FIG. 5A, a high voltage V high is applied to the target 11 to cause the potential of the target 11. with a tube voltage value V high and by passing a filament current by applying a low voltage V low to the filament 12, to accelerate thermal electrons e emitted from the filament 12 to collide with the end face 11a of the target 11 Thus, characteristic X-rays generated on the end surface 11a of the target 11 are emitted from the emission window 13a. The intensity and energy of the characteristic X-ray are controlled by changing the tube voltage value V high and the tube current value I.
ところで、分析が終了してX線発生装置101を停止するためには、フィラメント12に低電圧Vlowを印加することを停止した後、ターゲット11に高電圧Vhighを印加することを停止して、ターゲット11の電位を管電圧値Vhighから0Vに低下させる必要があるが、ターゲット11の電位が0Vに低下する待ち時間が長かった(例えば管電圧値Vhighの低下速度1.8kV/s)。
By the way, in order to stop the X-ray generator 101 after the analysis is completed, after applying the low voltage V low to the filament 12 is stopped, applying the high voltage V high to the target 11 is stopped. The potential of the target 11 needs to be decreased from the tube voltage value V high to 0 V, but the waiting time for the potential of the target 11 to decrease to 0 V is long (for example, the rate of decrease of the tube voltage value V high is 1.8 kV / s). ).
なお、フィラメント電流制御回路150は、管電流値Iと乖離がないようにフィードバック制御を行っているので、管電流が流れなくなると、フィラメント電流が最大値となり、フィラメント12の温度が最高温度となる。フィラメント12の温度が高くなるほど、フィラメント12が消耗するので、フィラメント12の寿命が短くなる。そのため、X線発生装置101を停止するための入力信号「OFF」が入力されると、フィラメント電流制御回路150が、フィラメント12に低電圧Vlowを印加することを停止した後、管電圧制御回路140が、ターゲット11に高電圧Vhighを印加することを停止している。
Since the filament current control circuit 150 performs feedback control so as not to deviate from the tube current value I, when the tube current stops flowing, the filament current becomes the maximum value and the temperature of the filament 12 becomes the maximum temperature. . As the temperature of the filament 12 increases, the filament 12 is consumed, so the life of the filament 12 is shortened. Therefore, when the input signal “OFF” for stopping the X-ray generator 101 is input, the filament current control circuit 150 stops applying the low voltage V low to the filament 12, and then the tube voltage control circuit 140 stops applying the high voltage V high to the target 11.
本出願人は、ターゲット11の電位を短時間で低下させる方法について検討した。フィラメント12に低電圧Vlowを印加することを停止した後、ターゲット11に高電圧Vhighを印加することを停止することにより、図5(b)に示すように、筐体13や高電圧用ケーブル15の絶縁体の抵抗に流れる極わずかな電流iによって管電圧値Vhighを逃がしている。
The present applicant examined a method for reducing the potential of the target 11 in a short time. After the application of the low voltage V low to the filament 12 is stopped, and the application of the high voltage V high to the target 11 is stopped, as shown in FIG. The tube voltage value V high is released by a very small current i flowing through the resistance of the insulator of the cable 15.
そこで、図7に示すように高耐圧抵抗とスイッチとを設け、入力信号「OFF」が入力されると、フィラメント12に低電圧Vlowを印加することを停止した後、ターゲット11に高電圧Vhighを印加することを停止するとともに、スイッチで高耐圧抵抗とターゲット11とを接続することにより、管電圧値Vhighを逃がすことが考えられる。しかし、高耐圧抵抗やスイッチ等の部品を設ける必要がある。
Therefore, as shown in FIG. 7, when a high voltage resistance and a switch are provided and the input signal “OFF” is input, the application of the low voltage V low to the filament 12 is stopped, and then the high voltage V is applied to the target 11. to stop applying the high, by connecting the high-voltage resistor and the target 11 by the switch, it is conceivable to escape the tube voltage value V high. However, it is necessary to provide components such as a high voltage resistance and a switch.
よって、X線発生装置101を停止する際に、まず管電流値Iを0Aとするのではなく、適切な所定値(0.3A以上5.0A以下)のフィラメント電流をフィラメント12に流すことにより熱電子e’をターゲット11に照射することで、管電圧値Vhighを管電流I’として逃がすことを見出した(図2(b)参照)。その結果、管電圧値Vhighの低下速度が3.0kV/sとなり、早くなった。
Therefore, when the X-ray generator 101 is stopped, first, the tube current value I is not set to 0 A, but a filament current having an appropriate predetermined value (0.3 A or more and 5.0 A or less) is caused to flow through the filament 12. It has been found that by irradiating the target 11 with thermoelectrons e ′, the tube voltage value V high is released as the tube current I ′ (see FIG. 2B). As a result, the decrease rate of the tube voltage value V high became 3.0 kV / s, which was faster.
すなわち、本発明のX線発生装置は、筐体と、前記筐体の内部に配置された陽極であるターゲットと、前記筐体の内部に配置された陰極であるフィラメントとを有し、前記フィラメントから放射される熱電子を前記ターゲットで受容して、前記ターゲットで発生したX線を出射するX線管と、前記ターゲットに高電圧を印加するための高電圧電源と、前記フィラメントに低電圧を印加するための低電圧電源と、前記高電圧電源を制御する高電圧電源制御回路と、前記低電圧電源を制御する低電圧電源制御回路とを備えるX線発生装置であって、前記X線発生装置を停止するために、前記高電圧電源制御回路が前記ターゲットに高電圧を印加することを停止した後、前記低電圧電源制御回路が前記フィラメントに所定時間、所定値の低電圧を印加するようにしている。
That is, the X-ray generation apparatus of the present invention includes a casing, a target that is an anode disposed inside the casing, and a filament that is a cathode disposed inside the casing, and the filament An X-ray tube that receives thermoelectrons radiated from the target and emits X-rays generated at the target, a high-voltage power source for applying a high voltage to the target, and a low voltage to the filament An X-ray generator comprising: a low-voltage power supply for applying; a high-voltage power supply control circuit that controls the high-voltage power supply; and a low-voltage power supply control circuit that controls the low-voltage power supply. In order to stop the apparatus, after the high voltage power supply control circuit stops applying a high voltage to the target, the low voltage power supply control circuit applies a low voltage of a predetermined value to the filament for a predetermined time. It is to be pressurized.
本発明のX線発生装置によれば、ターゲットの電位の管電圧値Vhighを低下させるために、ターゲットの電位の管電圧値Vhighを管電流I’として逃がすため、管電圧値Vhighを逃がす待ち時間を短くすることができる。また、回路を切替える機構や部品(高耐圧抵抗やスイッチ)を必要としない。
According to the X-ray generator of the present invention, in order to reduce the tube voltage value V high target potential, for releasing the tube voltage value V high target potential as a tube current I ', the tube voltage value V high The waiting time to escape can be shortened. Further, no mechanism or component (high voltage resistance or switch) for switching the circuit is required.
(他の課題を解決するための手段および効果)
また、上記の発明において、前記所定時間は、前記ターゲットの電位が低下するための時間であるようにしてもよい。 (Means and effects for solving other problems)
In the above invention, the predetermined time may be a time for the potential of the target to decrease.
また、上記の発明において、前記所定時間は、前記ターゲットの電位が低下するための時間であるようにしてもよい。 (Means and effects for solving other problems)
In the above invention, the predetermined time may be a time for the potential of the target to decrease.
また、上記の発明において、前記所定値の低電圧は、0.3A以上5.0A以下のフィラメント電流を前記フィラメントに流すためのものであるようにしてもよい。
なお、0.3A以上5.0A以下のフィラメント電流は、フィラメントの温度が適切な温度となり、フィラメントが消耗することを防止するものとなっている。 In the above invention, the low voltage of the predetermined value may be a voltage for causing a filament current of 0.3 A or more and 5.0 A or less to flow through the filament.
In addition, the filament current of 0.3 A or more and 5.0 A or less prevents the filament from being consumed due to an appropriate temperature of the filament.
なお、0.3A以上5.0A以下のフィラメント電流は、フィラメントの温度が適切な温度となり、フィラメントが消耗することを防止するものとなっている。 In the above invention, the low voltage of the predetermined value may be a voltage for causing a filament current of 0.3 A or more and 5.0 A or less to flow through the filament.
In addition, the filament current of 0.3 A or more and 5.0 A or less prevents the filament from being consumed due to an appropriate temperature of the filament.
そして、本発明の分析装置は、上述したようなX線発生装置と、検出器と、前記X線発生装置を停止するための入力信号が入力される入力装置とを備える分析装置であって、前記X線発生装置を停止するための入力信号が入力されると、前記高電圧電源制御回路が前記ターゲットに高電圧を印加することを停止した後、前記低電圧電源制御回路が前記フィラメントに所定時間、所定値の低電圧を印加するようにしてもよい。
And the analyzer of this invention is an analyzer provided with the above X-ray generators, a detector, and the input device into which the input signal for stopping the said X-ray generator is input, When an input signal for stopping the X-ray generator is input, after the high voltage power supply control circuit stops applying a high voltage to the target, the low voltage power supply control circuit applies a predetermined voltage to the filament. A low voltage of a predetermined value may be applied for a time.
以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.
図1は、実施形態に係る蛍光X線分析装置の構成を示す図であり、図2は、図1に示すX線発生装置の回路図である。なお、蛍光X線分析装置160と同様のものについては、同じ符号を付している。
蛍光X線分析装置60は、X線発生装置1と、試料Sが配置される試料台61と、蛍光X線のエネルギと強度とを検出する検出器62と、入力装置71やCPU 72等を有するコンピュータ70とを備える。 FIG. 1 is a diagram showing a configuration of a fluorescent X-ray analyzer according to the embodiment, and FIG. 2 is a circuit diagram of the X-ray generator shown in FIG. The same components as those of thefluorescent X-ray analyzer 160 are denoted by the same reference numerals.
TheX-ray fluorescence analyzer 60 includes an X-ray generator 1, a sample stage 61 on which a sample S is arranged, a detector 62 that detects the energy and intensity of fluorescent X-rays, an input device 71, a CPU 72, and the like. And a computer 70.
蛍光X線分析装置60は、X線発生装置1と、試料Sが配置される試料台61と、蛍光X線のエネルギと強度とを検出する検出器62と、入力装置71やCPU 72等を有するコンピュータ70とを備える。 FIG. 1 is a diagram showing a configuration of a fluorescent X-ray analyzer according to the embodiment, and FIG. 2 is a circuit diagram of the X-ray generator shown in FIG. The same components as those of the
The
X線発生装置1は、特性X線を出射するX線管球10と、高電圧Vhighを印加するための高電圧生成DC電源(高電圧電源)20と、低電圧Vlowを印加するためのフィラメント用電源(低電圧電源)30と、高電圧生成DC電源20を制御する管電圧制御回路(高圧電源制御回路)40と、フィラメント用電源30を制御するフィラメント電流制御回路(低圧電源制御回路)50とを備える。
The X-ray generator 1 applies an X-ray tube 10 that emits characteristic X-rays, a high voltage generation DC power source (high voltage power source) 20 for applying a high voltage V high , and a low voltage V low. Power supply for filament (low voltage power supply) 30, tube voltage control circuit (high voltage power supply control circuit) 40 for controlling high voltage generating DC power supply 20, and filament current control circuit (low voltage power supply control circuit for controlling filament power supply 30) 50).
フィラメント電流制御回路50は、入力装置71からの入力信号に基づいて、フィラメント12に低電圧Vlowを印加するようになっている。例えば、分析者が入力装置71を用いて電流値5mA~100mA程度の内から管電流値Iを選択すると、フィラメント電流制御回路50はその選択された管電流値Iと乖離がないように、フィラメント12にフィラメント電流を流すフィードバック制御を行う。
また、実施形態に係るフィラメント電流制御回路50は、X線発生装置1を停止するための入力信号「OFF」が入力された際には、フィラメント12に所定時間(例えば20秒以下)、所定値の低電圧Vlow’を印加することにより、所定値(0.3A以上5.0A以下)のフィラメント電流を流すようになっている。
上記所定値としては、0.3A以上5.0A以下であること等が挙げられるが、蛍光X線分析装置60では、回路構成を考慮して3.4Aとした。これにより、減少スピードもX線管球10の構造によって変わるが、蛍光X線分析装置60では、50kV(最大管電圧)/3kV(一秒あたりの減少スピード)= 16.6s となり、16.6秒で電位が低下するようになった。 The filamentcurrent control circuit 50 applies a low voltage V low to the filament 12 based on an input signal from the input device 71. For example, when the analyst selects the tube current value I from the current value of about 5 mA to 100 mA using the input device 71, the filament current control circuit 50 ensures that the filament current control circuit 50 does not deviate from the selected tube current value I. The feedback control is performed so that the filament current is supplied to 12.
In addition, when an input signal “OFF” for stopping theX-ray generator 1 is input to the filament current control circuit 50 according to the embodiment, the filament 12 is set to a predetermined value for a predetermined time (for example, 20 seconds or less). By applying a low voltage V low ′, a filament current of a predetermined value (0.3 A or more and 5.0 A or less) is caused to flow.
Examples of the predetermined value include not less than 0.3 A and not more than 5.0 A. In thefluorescent X-ray analyzer 60, the predetermined value is set to 3.4 A in consideration of the circuit configuration. As a result, the reduction speed also varies depending on the structure of the X-ray tube 10. However, in the fluorescent X-ray analyzer 60, 50 kV (maximum tube voltage) / 3 kV (reduction speed per second) = 16.6 s. The potential dropped in seconds.
また、実施形態に係るフィラメント電流制御回路50は、X線発生装置1を停止するための入力信号「OFF」が入力された際には、フィラメント12に所定時間(例えば20秒以下)、所定値の低電圧Vlow’を印加することにより、所定値(0.3A以上5.0A以下)のフィラメント電流を流すようになっている。
上記所定値としては、0.3A以上5.0A以下であること等が挙げられるが、蛍光X線分析装置60では、回路構成を考慮して3.4Aとした。これにより、減少スピードもX線管球10の構造によって変わるが、蛍光X線分析装置60では、50kV(最大管電圧)/3kV(一秒あたりの減少スピード)= 16.6s となり、16.6秒で電位が低下するようになった。 The filament
In addition, when an input signal “OFF” for stopping the
Examples of the predetermined value include not less than 0.3 A and not more than 5.0 A. In the
管電圧制御回路40は、入力装置71からの入力信号に基づいて、ターゲット11に高電圧Vhighを印加するようになっている。例えば、分析者が入力装置71を用いて電圧値1kV~50kV程度の内から管電圧値Vhighを選択すると、管電圧制御回路40はその選択された管電圧値Vhighをターゲット11に印加することにより、ターゲット11の電位を管電圧値Vhighとする。このとき、管電圧制御回路40は、ターゲット11の電位が管電圧値Vhighと乖離がないようにフィードバック制御を行う。
また、実施形態に係る管電圧制御回路40は、X線発生装置1を停止するための入力信号「OFF」が入力されると、フィラメント12に低電圧Vlow’を印加することを停止する前に、ターゲット11に高電圧Vhighを印加することを停止するようになっている。 The tubevoltage control circuit 40 applies a high voltage V high to the target 11 based on an input signal from the input device 71. For example, when the analyst selects the tube voltage value V high from the voltage value of about 1 kV to 50 kV using the input device 71, the tube voltage control circuit 40 applies the selected tube voltage value V high to the target 11. As a result, the potential of the target 11 is set to the tube voltage value V high . At this time, the tube voltage control circuit 40 performs feedback control so that the potential of the target 11 does not deviate from the tube voltage value V high .
In addition, when the input signal “OFF” for stopping theX-ray generator 1 is input to the tube voltage control circuit 40 according to the embodiment, before the application of the low voltage V low ′ to the filament 12 is stopped. In addition, the application of the high voltage V high to the target 11 is stopped.
また、実施形態に係る管電圧制御回路40は、X線発生装置1を停止するための入力信号「OFF」が入力されると、フィラメント12に低電圧Vlow’を印加することを停止する前に、ターゲット11に高電圧Vhighを印加することを停止するようになっている。 The tube
In addition, when the input signal “OFF” for stopping the
ここで、X線発生装置1を停止する停止方法について説明する。図3は、停止方法について説明するためのフローチャートである。
まず、ステップS101の処理において、CPU72はX線発生装置1を停止するための入力信号「OFF」が入力されたか否かを判定する。入力信号「OFF」が入力されていないと判定したときには、ステップS101の処理を繰り返す。 Here, a stop method for stopping theX-ray generator 1 will be described. FIG. 3 is a flowchart for explaining the stopping method.
First, in the process of step S <b> 101, theCPU 72 determines whether or not an input signal “OFF” for stopping the X-ray generator 1 is input. If it is determined that the input signal “OFF” has not been input, the process of step S101 is repeated.
まず、ステップS101の処理において、CPU72はX線発生装置1を停止するための入力信号「OFF」が入力されたか否かを判定する。入力信号「OFF」が入力されていないと判定したときには、ステップS101の処理を繰り返す。 Here, a stop method for stopping the
First, in the process of step S <b> 101, the
一方、入力信号「OFF」が入力されたと判定したときには、ステップS102の処理において、フィラメント電流制御回路50は、フィラメント12に所定値の低電圧Vlow’を印加することにより、所定値(3.4A)のフィラメント電流を流す。このとき、フィラメント12の温度が最高温度とならないので、フィラメント12の消耗を防止することができる。
次に、ステップS103の処理において、管電圧制御回路40は、ターゲット11に高電圧Vhighを印加することを停止する。 On the other hand, when it is determined that the input signal “OFF” is input, the filamentcurrent control circuit 50 applies a predetermined value of the low voltage V low ′ to the filament 12 in the process of step S102, thereby determining the predetermined value (3. 4A) is applied. At this time, since the temperature of the filament 12 does not reach the maximum temperature, it is possible to prevent the filament 12 from being consumed.
Next, in the process of step S <b> 103, the tubevoltage control circuit 40 stops applying the high voltage V high to the target 11.
次に、ステップS103の処理において、管電圧制御回路40は、ターゲット11に高電圧Vhighを印加することを停止する。 On the other hand, when it is determined that the input signal “OFF” is input, the filament
Next, in the process of step S <b> 103, the tube
次に、ステップS104の処理において、CPU72は所定時間(20秒)が経過したか否かを判定する。所定時間が経過していないと判定したときには、ステップS104の処理を繰り返す。このとき、管電圧値Vhighが管電流I’として逃げる(図2(b)参照)。
次に、所定時間が経過したと判定したときには、ステップS105の処理において、フィラメント電流制御回路50は、フィラメント12に所定値の低電圧Vlow’を印加することを停止する。
そして、ステップS105の処理が終了すると、本フローチャートを終了させることになる。 Next, in the process of step S104, theCPU 72 determines whether or not a predetermined time (20 seconds) has elapsed. When it is determined that the predetermined time has not elapsed, the process of step S104 is repeated. At this time, the tube voltage value V high escapes as the tube current I ′ (see FIG. 2B).
Next, when it is determined that the predetermined time has elapsed, the filamentcurrent control circuit 50 stops applying the predetermined low voltage V low ′ to the filament 12 in the process of step S105.
Then, when the process of step S105 ends, this flowchart is ended.
次に、所定時間が経過したと判定したときには、ステップS105の処理において、フィラメント電流制御回路50は、フィラメント12に所定値の低電圧Vlow’を印加することを停止する。
そして、ステップS105の処理が終了すると、本フローチャートを終了させることになる。 Next, in the process of step S104, the
Next, when it is determined that the predetermined time has elapsed, the filament
Then, when the process of step S105 ends, this flowchart is ended.
以上のように、本発明に係る蛍光X線分析装置60によれば、ターゲット11の電位の管電圧値Vhighを低下させるために、ターゲット11の電位の管電圧値Vhighを管電流I’として逃がすため、管電圧値Vhighを逃がす待ち時間を短くすることができる。
As described above, according to the fluorescent X-ray analysis apparatus 60 according to the present invention, in order to reduce the tube voltage value V high potential of the target 11, the tube voltage value V high tube current I in the potential of the target 11 ' Therefore, the waiting time for releasing the tube voltage value V high can be shortened.
<他の実施形態>
(1)上述した実施形態では蛍光X線分析装置60を例に説明を行ったが、連続的にX線を発生する装置(非破壊検査装置や医療用X線装置等)に対しても本発明を同様に適用することができる。また、最大管電圧は装置によって変わるため、表面分析のため比較的低い管電圧を使用している蛍光X線分析装置60を例に説明を行ったが、高い管電圧を使用している装置に適用してもよい。 <Other embodiments>
(1) In the above-described embodiment, the fluorescentX-ray analysis apparatus 60 has been described as an example. The invention can be applied as well. In addition, since the maximum tube voltage varies depending on the apparatus, the fluorescent X-ray analyzer 60 using a relatively low tube voltage for surface analysis has been described as an example. You may apply.
(1)上述した実施形態では蛍光X線分析装置60を例に説明を行ったが、連続的にX線を発生する装置(非破壊検査装置や医療用X線装置等)に対しても本発明を同様に適用することができる。また、最大管電圧は装置によって変わるため、表面分析のため比較的低い管電圧を使用している蛍光X線分析装置60を例に説明を行ったが、高い管電圧を使用している装置に適用してもよい。 <Other embodiments>
(1) In the above-described embodiment, the fluorescent
(2)上述した蛍光X線分析装置60では、所定時間(20秒)が経過したか否かを判定するような構成を示したが、ターゲット11の電位が所定値(1kV)以下となったか否かを判定するような構成としてもよい。
(2) In the fluorescent X-ray analyzer 60 described above, a configuration has been shown in which it is determined whether or not a predetermined time (20 seconds) has elapsed, but has the potential of the target 11 become a predetermined value (1 kV) or less? It may be configured to determine whether or not.
本発明は、試料中に含まれる元素の濃度を算出する蛍光X線分析装置等に利用することができる。
The present invention can be used in a fluorescent X-ray analyzer or the like that calculates the concentration of an element contained in a sample.
1 X線発生装置
10 X線管
11 ターゲット
12 フィラメント
13 筐体
15 高電圧用ケーブル
16 低電圧用ケーブル
20 高電圧電源
30 低電圧電源
40 高電圧電源制御回路
50 低電圧電源制御回路 DESCRIPTION OFSYMBOLS 1 X-ray generator 10 X-ray tube 11 Target 12 Filament 13 Case 15 High voltage cable 16 Low voltage cable 20 High voltage power supply 30 Low voltage power supply 40 High voltage power supply control circuit 50 Low voltage power supply control circuit
10 X線管
11 ターゲット
12 フィラメント
13 筐体
15 高電圧用ケーブル
16 低電圧用ケーブル
20 高電圧電源
30 低電圧電源
40 高電圧電源制御回路
50 低電圧電源制御回路 DESCRIPTION OF
Claims (4)
- 筐体と、前記筐体の内部に配置された陽極であるターゲットと、前記筐体の内部に配置された陰極であるフィラメントとを有し、前記フィラメントから放射される熱電子を前記ターゲットで受容して、前記ターゲットで発生したX線を出射するX線管と、
前記ターゲットに高電圧を印加するための高電圧電源と、
前記フィラメントに低電圧を印加するための低電圧電源と、
前記高電圧電源を制御する高電圧電源制御回路と、
前記低電圧電源を制御する低電圧電源制御回路とを備えるX線発生装置であって、
前記X線発生装置を停止するために、前記高電圧電源制御回路が前記ターゲットに高電圧を印加することを停止した後、前記低電圧電源制御回路が前記フィラメントに所定時間、所定値の低電圧を印加することを特徴とするX線発生装置。 A housing, a target that is an anode disposed inside the housing, and a filament that is a cathode disposed inside the housing, and accepts thermoelectrons emitted from the filament by the target. An X-ray tube for emitting X-rays generated at the target;
A high voltage power supply for applying a high voltage to the target;
A low voltage power supply for applying a low voltage to the filament;
A high voltage power supply control circuit for controlling the high voltage power supply;
An X-ray generator comprising a low voltage power supply control circuit for controlling the low voltage power supply,
In order to stop the X-ray generator, after the high voltage power supply control circuit stops applying a high voltage to the target, the low voltage power supply control circuit applies a low voltage of a predetermined value to the filament for a predetermined time. An X-ray generator characterized by applying - 前記所定時間は、前記ターゲットの電位が低下するための時間であることを特徴とする請求項1に記載のX線発生装置。 The X-ray generator according to claim 1, wherein the predetermined time is a time for the potential of the target to decrease.
- 前記所定値の低電圧は、0.3A以上5.0A以下のフィラメント電流を前記フィラメントに流すためのものであることを特徴とする請求項1に記載のX線発生装置。 The X-ray generator according to claim 1, wherein the low voltage of the predetermined value is for flowing a filament current of 0.3 A or more and 5.0 A or less to the filament.
- 請求項1に記載のX線発生装置と、
検出器と、
前記X線発生装置を停止するための入力信号が入力される入力装置とを備える分析装置であって、
前記X線発生装置を停止するための入力信号が入力されると、前記高電圧電源制御回路が前記ターゲットに高電圧を印加することを停止した後、前記低電圧電源制御回路が前記フィラメントに所定時間、所定値の低電圧を印加することを特徴とする分析装置。 An X-ray generator according to claim 1;
A detector;
An analysis apparatus comprising an input device to which an input signal for stopping the X-ray generation device is input,
When an input signal for stopping the X-ray generator is input, after the high voltage power supply control circuit stops applying a high voltage to the target, the low voltage power supply control circuit applies a predetermined voltage to the filament. An analyzer characterized by applying a low voltage of a predetermined value for a time.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018524590A JP6873125B2 (en) | 2016-06-27 | 2016-06-27 | X-ray generator and analyzer equipped with it |
PCT/JP2016/068945 WO2018002977A1 (en) | 2016-06-27 | 2016-06-27 | X-ray generation device and analysis apparatus provided with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/068945 WO2018002977A1 (en) | 2016-06-27 | 2016-06-27 | X-ray generation device and analysis apparatus provided with same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018002977A1 true WO2018002977A1 (en) | 2018-01-04 |
Family
ID=60787088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/068945 WO2018002977A1 (en) | 2016-06-27 | 2016-06-27 | X-ray generation device and analysis apparatus provided with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6873125B2 (en) |
WO (1) | WO2018002977A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10189286A (en) * | 1996-12-25 | 1998-07-21 | Origin Electric Co Ltd | Pulse power supply device for electron tube |
JP2001297893A (en) * | 2000-04-17 | 2001-10-26 | Shimadzu Corp | X-ray high voltage device |
JP2007059233A (en) * | 2005-08-25 | 2007-03-08 | Toshiba Corp | X-ray fluoroscopic imaging apparatus |
JP2010049974A (en) * | 2008-08-22 | 2010-03-04 | Mikasa Kk | X-ray generator and method for driving x-ray tube |
JP2012109106A (en) * | 2010-11-17 | 2012-06-07 | Canon Inc | X-ray generator and method for driving x-ray tube |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4377646B2 (en) * | 2003-10-08 | 2009-12-02 | 株式会社東芝 | Diagnostic imaging apparatus, image display apparatus, and three-dimensional image display method |
JP4744831B2 (en) * | 2004-09-09 | 2011-08-10 | 株式会社東芝 | X-ray diagnostic equipment |
-
2016
- 2016-06-27 WO PCT/JP2016/068945 patent/WO2018002977A1/en active Application Filing
- 2016-06-27 JP JP2018524590A patent/JP6873125B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10189286A (en) * | 1996-12-25 | 1998-07-21 | Origin Electric Co Ltd | Pulse power supply device for electron tube |
JP2001297893A (en) * | 2000-04-17 | 2001-10-26 | Shimadzu Corp | X-ray high voltage device |
JP2007059233A (en) * | 2005-08-25 | 2007-03-08 | Toshiba Corp | X-ray fluoroscopic imaging apparatus |
JP2010049974A (en) * | 2008-08-22 | 2010-03-04 | Mikasa Kk | X-ray generator and method for driving x-ray tube |
JP2012109106A (en) * | 2010-11-17 | 2012-06-07 | Canon Inc | X-ray generator and method for driving x-ray tube |
Also Published As
Publication number | Publication date |
---|---|
JP6873125B2 (en) | 2021-05-19 |
JPWO2018002977A1 (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6231182B2 (en) | Charged particle beam apparatus and control method thereof | |
JP6294182B2 (en) | Ion gun, ion milling apparatus, and ion milling method | |
JP4463310B2 (en) | Ion source | |
JP2015521789A (en) | Laser-sustained plasma light source with electrically induced gas flow | |
JP5000350B2 (en) | Atomic analyzer | |
US20200300769A1 (en) | Spark emission spectometer and method for operating same | |
JP2001236922A (en) | Mass spectrometer | |
WO2018002977A1 (en) | X-ray generation device and analysis apparatus provided with same | |
JP5083825B2 (en) | Plasma discharge device in liquid | |
JP2007227255A (en) | Electron beam source device | |
JP5122284B2 (en) | Corona discharge lamp | |
US20180139829A1 (en) | Generating x-ray pulses during x-ray imaging | |
JP2005259606A (en) | Filament for thermal electron emission | |
JP4974135B2 (en) | Multi-micro hollow cathode light source and multi-element simultaneous absorption spectrometer | |
JP6129982B2 (en) | electronic microscope | |
JP3825933B2 (en) | Electron beam irradiation apparatus, electron beam drawing apparatus using the electron beam irradiation apparatus, scanning electron microscope, and point light source type X-ray irradiation apparatus | |
JP2010205446A (en) | Ion source | |
JP2018049842A (en) | Ion gun, ion milling device, and ion milling method | |
JP5527693B2 (en) | Atomizer | |
JP2014056743A (en) | X-ray generator | |
JP2009187684A (en) | Electron flow control method for field emission electron source | |
JP5067652B2 (en) | Electron gun filament monitoring method and control method | |
JP2005172611A (en) | Charged particle beam apparatus and pressure measuring method for the same | |
González-Laprea et al. | Photoelectric effect measurements on a conventional neon bulb | |
JPH0822787A (en) | Field emission electron gun |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018524590 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16907211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16907211 Country of ref document: EP Kind code of ref document: A1 |