+

WO2017034122A1 - Thin film transistor and display device - Google Patents

Thin film transistor and display device Download PDF

Info

Publication number
WO2017034122A1
WO2017034122A1 PCT/KR2016/005357 KR2016005357W WO2017034122A1 WO 2017034122 A1 WO2017034122 A1 WO 2017034122A1 KR 2016005357 W KR2016005357 W KR 2016005357W WO 2017034122 A1 WO2017034122 A1 WO 2017034122A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
light
layer
region
electrode
Prior art date
Application number
PCT/KR2016/005357
Other languages
French (fr)
Korean (ko)
Inventor
이상걸
유상희
김광태
유연택
김남수
조석호
최훈
신현진
임화춘
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160053556A external-priority patent/KR102563157B1/en
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to US15/755,458 priority Critical patent/US10840274B2/en
Publication of WO2017034122A1 publication Critical patent/WO2017034122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to a thin film transistor and a display device, and more particularly, to an insulating layer configured in a pixel region of a liquid crystal panel in a structure in which specific light including a plurality of peak wavelengths is supplied to a liquid crystal panel for high resolution.
  • a display apparatus is an apparatus for displaying an image, and is used in various apparatuses such as televisions, mobile devices, laptops, vehicles, watches, and the like.
  • a liquid crystal display apparatus is driven by an image realization principle based on optical anisotropy and polarization of liquid crystals.
  • a liquid crystal display device is an essential component of a liquid crystal panel bonded through a liquid crystal layer between two substrates, and creates an electric field in the liquid crystal panel to change the arrangement direction of liquid crystal molecules to realize a difference in transmittance. do.
  • the liquid crystal panel does not have a self-luminous element, in order to display the difference in transmittance as an image, a separate light source for emitting white light is required.
  • a light source of the liquid crystal display a cold cathode fluorescent lamp (CCFL), an external electrode fluorescent lamp (EEFL), a light emitting diode (LED), or the like may be used.
  • CCFL cold cathode fluorescent lamp
  • EEFL external electrode fluorescent lamp
  • LED light emitting diode
  • light emitting diodes have advantages of small size, low power consumption, high reliability, and the like, they are widely used as light sources of liquid crystal displays.
  • the light source of the liquid crystal display including the light emitting diode is generally made of a blue light emitting diode and a yellow phosphor. More specifically, a part of the blue light emitted from the blue light emitting diode is absorbed by the yellow phosphor and converted into yellow light, and the yellow light converted by the yellow phosphor and the remaining blue light not absorbed by the phosphor are mixed with each other, whereby white light Is implemented.
  • the white light may include a blue peak wavelength and a yellow peak wavelength.
  • the white light incident on the liquid crystal panel passes through the red, green, and blue color filters, and is implemented as pixels of red, green, and blue, respectively.
  • Peak wavelength refers to a wavelength in which the intensity or intensity of light has a higher value than that of other wavelengths in a specific wavelength range. Accordingly, the white light composed of the blue peak wavelength and the yellow peak wavelength may have a higher intensity or intensity than the blue light and the yellow light.
  • the white light since the white light has a high intensity in the blue wavelength region, that is, because the intensity or intensity of the blue light is high, the light loss by the blue color filter when the white light passes through the blue color filter can be minimized. Can be.
  • white light has a relatively high intensity even in the wavelength region of yellow, that is, red or green light has a lower intensity or intensity than yellow light
  • white light is a red color filter or a green color filter.
  • Light loss may occur when passing through.
  • the red color filter or the green color filter only passes the light in the wavelength range corresponding to each other, so that high intensity yellow light is blocked by the red or green color filter, and only low intensity red or green light passes. Can be. Therefore, since the light efficiency of the red or green pixels is lowered, it may be difficult to implement high resolution or high color reproducibility of the display device.
  • the inventors of the present invention when the white light of the light source has a peak wavelength in the wavelength region corresponding to each color filter, the light loss by the color filter is minimized to facilitate the high resolution or high color reproducibility of the display device Recognized. That is, when white light has high intensity in all of the red wavelength region, the green wavelength region, and the blue wavelength region, light loss by the color filters of red, green, and blue can be minimized.
  • the inventors of the present invention have fabricated a light source that emits white light having a uniformly high intensity at peak wavelengths of red, green and blue using a blue light emitting diode, a red phosphor and a green phosphor.
  • the inventors of the present invention are difficult to control the wavelengths of the blue light emitting diodes, the wavelengths of the red phosphors, and the wavelengths of the green phosphors, or to combine colors with each other. It is recognized that implementing the characteristics of the wavelength is a difficult problem.
  • the inventors of the present invention recognized that adjusting the intensity or full width at half maximum (FWHM) of each peak wavelength to a desired value is a difficult manufacturing problem.
  • FWHM full width at half maximum
  • the half width of red light may be reduced due to material limitations of a light emitting diode or a phosphor. It may have a value that is much smaller than the half width of the green light or the blue light.
  • the half width of the light becomes small, a problem may arise in that the viewing angle dependence such as the light is greatly shifted or the intensity is decreased depending on the viewing angle of the liquid crystal panel.
  • the liquid crystal panel has a structure including a plurality of thin film layers such as a metal layer or an insulating layer.
  • the refractive index difference between the thin film layers is different.
  • the color separation phenomenon of the red light according to the viewing angle may be further increased.
  • the color separation phenomenon is a phenomenon in which the transmittance of a specific light is oscillated and color is separated according to the viewing state.
  • the color separation phenomenon may increase rapidly as the difference in refractive index between the thin film layers or the light having a narrow half width is increased. have.
  • the transmittance fluctuation according to the viewing angle due to the difference in refractive index between the thin film layers is further increased, compared to the blue light or green light having a relatively half full width, and thus the variation in color reproduction according to the viewing angle is increased. As a result, the display quality of the display device may be degraded.
  • the inventors of the present invention recognize the above-mentioned problems and have a structure in which white light including all of the characteristic of light required for high resolution, for example, peak wavelengths of red, green, and blue is supplied to the liquid crystal panel.
  • a new thin film transistor and display device having an improved display quality deterioration depending on a viewing angle, even when the half width of one of the red, green, and blue peak wavelengths is very narrow due to the material limitation of the phosphor.
  • a half width of one peak wavelength of one peak wavelength in a structure in which white light including a plurality of peak wavelengths is supplied to a liquid crystal panel In the case of having a value that is much smaller than the half width of the other peak wavelengths, the thin film transistor and the display device are improved by optimizing the insulating layer structure formed in the pixel region of the liquid crystal panel, whereby the transmittance and color reproducibility are varied depending on the viewing angle. will be.
  • a display device includes a liquid crystal panel including a pixel area and a non-pixel area, and a light source for supplying specific light to the liquid crystal panel.
  • the specific light includes a first peak wavelength and a second peak wavelength having a half width of 25% or less compared with the half width of the first peak wavelength.
  • the liquid crystal panel includes a thin film transistor including a gate electrode, an active layer, a source electrode and a drain electrode on a non-pixel region of a substrate, a first insulating layer insulating the gate electrode, the source electrode, and the drain electrode of the thin film transistor;
  • An insulating layer structure including at least one of a second insulating layer covering a source electrode and a drain electrode of the thin film transistor, a third insulating layer having a flat top surface on the second insulating layer, and the liquid crystal layer on the insulating layer structure It includes an electrode unit for driving.
  • the insulation layer structure of the pixel region and the insulation layer of the non-pixel region are minimized so that transmittance oscillation according to a viewing angle that may occur while specific light of the light source passes through the pixel region is minimized.
  • the structures are constructed differently. Accordingly, the variation of the color reproducibility of the display device according to the viewing angle may be minimized, thereby reducing the display quality of the display device.
  • a thin film transistor including a gate electrode, an active layer, a source electrode, and a drain electrode in a non-pixel region of a substrate may include a first insulating layer that insulates the gate electrode, the source electrode, and the drain electrode.
  • the first insulating layer and the second insulating layer may be provided with respect to the substrate such that transmittance oscillation is minimized according to a viewing angle that may occur while specific light of a light source passes through the pixel region. And does not extend to the pixel region.
  • a display device includes an active region including an opening configured to transmit light and a non-opening portion adjacent to the opening and not transmitting the light, and an inactive region in which the gate-in panel is disposed adjacent to the active region.
  • a first sub insulation layer having a first refractive index disposed in the non-opening portion and the inactive region of the active region, and a second refractive index disposed in the entire active region and the non-active region and having a lower refractive index than the first refractive index.
  • a second sub insulation layer Accordingly, the display device according to another embodiment of the present invention can minimize the deterioration of electrical characteristics that can be caused by the defect of the active layer made of the oxide semiconductor, and can improve the display quality of the display device.
  • the variation of the color reproducibility of the display device according to the viewing angle may be minimized, thereby reducing the display quality of the display device.
  • FIG. 1 is a cross-sectional view and an enlarged view of a display device according to an exemplary embodiment of the present invention.
  • FIG. 2 is a graph showing a spectrum of specific light of a light source according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view illustrating main components of a display device according to an exemplary embodiment of the present invention.
  • 4A and 4B are graphs illustrating variation in transmittance according to viewing angles of a comparative example and an embodiment of the present invention.
  • 5A and 5B are graphs illustrating changes in color coordinates according to viewing angles of a comparative example and an embodiment of the present invention.
  • FIG. 6 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • FIG. 7 through 9 are cross-sectional views of display devices of various exemplary embodiments taken along the line of FIG.
  • 10A and 10B are graphs illustrating a change in color coordinates according to a viewing angle according to a comparative example and another embodiment of the present invention.
  • Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items. Like reference numerals refer to like elements throughout. In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
  • temporal after-term relationship for example, if the temporal after-term relationship is described as 'after', 'following', 'after', 'before', or the like, 'directly' or 'direct' This may include cases that are not continuous unless used.
  • the first, second, etc. are used to describe various components, but these components are not limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • each of the various embodiments of the invention may be combined or combined with one another, in whole or in part, and various interlocking and driving technically may be possible, and each of the embodiments may be independently implemented with respect to each other or may be implemented in association with each other. It may be.
  • the display device 1000 includes a light source 100, a light guide plate 200, an optical sheet 300, and a liquid crystal panel 400.
  • the liquid crystal panel 400 has a structure in which a liquid crystal layer 460 is interposed between two substrates 411 and 412 as a component for displaying an image of the display device 1000.
  • the liquid crystal panel 400 uses a principle in which an arrangement direction of liquid crystal molecules of the liquid crystal layer 460 is changed by an electric field applied between two electrodes 441 and 442, and the light source 100 passing through the light guide plate 200.
  • the amount of light transmitted according to the arrangement direction of the liquid crystal molecules of the liquid crystal layer 460 may be adjusted to express a desired image.
  • the light L of the light source 100 incident on the liquid crystal panel 400 passes through the color filters 472 of the liquid crystal panel 400, for example, red, green, and blue color filters, respectively. And a blue pixel.
  • the liquid crystal layer 460 may be arranged vertically or horizontally according to the driving mode.
  • the light guide plate 200 is disposed under the liquid crystal panel 400, and the light L of the light source 100 incident to the side surface of the light guide plate 200 is dispersed to the entire upper surface of the light guide plate 200, thereby displacing the liquid crystal panel 400. Is supplied.
  • the light guide plate 200 may be made of a transparent material, and for example, polyolefine, polystyrene, polymethyl methacrylate (PMMA), polycarbonate (PC), silicon rubber, glass ( glass).
  • the optical sheet 300 is disposed between the liquid crystal panel 400 and the light guide plate 200 and is a layer for increasing the efficiency or luminance of the light L incident on the liquid crystal panel 400.
  • the optical sheet 300 may include, for example, a prism sheet or a diffuser sheet.
  • the prism sheet serves to increase the luminance of the light L incident on the liquid crystal panel 400 by refracting or condensing the light L emitted to the upper surface of the light guide plate 200 through the prism-shaped layer.
  • the diffusion sheet evenly spreads the light L emitted to the upper surface of the light guide plate 200 to make the brightness of the light L uniform.
  • the light source 100 is disposed at a side surface of the light guide plate 200, and the light L emitted from the light source 100 passes through the light guide plate 200 and the optical sheet 300. Supplied to 400.
  • the light source 100 of the display device 1000 according to the exemplary embodiment of the present invention has a structure that emits white light including a plurality of peak wavelengths. For example, a light emitting diode and at least one phosphor It can be made in combination. The characteristic of the specific light L emitted from the light source 100 will be described with reference to FIG. 2.
  • FIG. 2 is a graph illustrating a spectrum of a specific light L of the light source 100 of the display device 1000 according to an exemplary embodiment. Specifically, in FIG. 2, an intensity spectrum of each wavelength band of the specific light L emitted from the light source 100 of the display device 1000 according to the exemplary embodiment is displayed.
  • the specific light L emitted from the light source 100 includes a plurality of peak wavelengths, and specifically, a red wavelength region (eg, 600 nm or more and 650 nm or less), a green wavelength region ( For example, 520 nm or more and 560 nm or less) and a peak wavelength in a blue wavelength range (for example, 430 nm or more and 480 nm or less) are included.
  • the peak wavelength refers to a wavelength having a higher value than a region in which the intensity or intensity of light is different. That is, the specific light L of the light source 100 has a high intensity of red light, green light, and blue light, and the respective light is mixed to emit white light.
  • the color filter 471 that can be generated while the specific light L of the light source 100 passes through the color filter 471 of the liquid crystal panel 400 shown in FIG. 1, specifically, the red, green, and blue color filters. ) May be minimized, and thus it may be easy to implement high resolution or high color reproducibility of the display device 1000.
  • the light source 100 may be manufactured using a light emitting diode and at least one phosphor, for example, a blue light emitting diode, a red phosphor, and a green phosphor.
  • FWHM full width at Adjusting half maximum
  • the specific light L has a peak wavelength (G-peak) at about 447 nm, which is a blue wavelength region, and the half-width (B-FWHM) of the peak wavelength has a value of about 20 nm.
  • the specific light L has a peak wavelength (G-peak) at about 538 nm, which is a green wavelength region, and the half-width (G-FWHM) of the peak wavelength has a value of about 54 nm.
  • the specific light L has a peak wavelength (R-peak) at about 631 nm, which is a red wavelength region, and the half-width (R-FWHM) of the corresponding peak wavelength is about 4 nm, and a peak wavelength (G-peak) of green light. Or relatively narrow compared to the peak wavelength (B-peak) of blue light. That is, the half-width (R-FWHM) of the peak wavelength of the red light has a value of 25% or less compared with the half-width (G-FWHM) of the peak wavelength of the green light or the half-width (B-FWHM) of the peak wavelength of the blue light. It can be seen that it is formed very narrow.
  • the display device 1000 even when the light source 100 that emits a specific light L including the peak wavelength having a narrow half-width as described above is applied due to manufacturing difficulties, By optimizing the insulating layer structure of 400, the viewing angle dependency can be minimized. This will be described with reference to FIG. 1 again.
  • the liquid crystal panel 400 includes a first substrate 411, a thin film transistor 420, an insulating layer structure 430, an electrode unit 440, a liquid crystal layer 460, a black matrix 471, The color filter 472 and the second substrate 412 are included.
  • the first substrate 411 or the second substrate 412 of the liquid crystal panel 400 includes a pixel area (PA) and a non-pixel area (NPA).
  • the pixel area PA refers to an area of a minimum unit where actual light is emitted, and distinguishes the pixel area PA between two adjacent pixel areas PA.
  • the pixel area PA is an area in which light is emitted and may be referred to as an opening.
  • the non-pixel area NPA is a region in which light is not emitted and may be referred to as a non-opening part.
  • the pixel area PA may be referred to as a sub-pixel or a pixel.
  • the plurality of pixel areas PA may be a minimum group that represents white light.
  • three pixels may be one group, and each of the red pixels may be red.
  • a pixel, a green pixel, and a blue pixel may form a group.
  • a color filter 472 for converting the white light L of the light source 100 to each pixel is disposed in each pixel, and a red color filter, a green color filter, and a blue color filter are respectively disposed.
  • the first substrate 411 or the second substrate 412 may be made of an insulating material, and may be made of, for example, a flexible film made of glass or polyimide-based material.
  • the thin film transistor 420 is disposed on the non-pixel region NPA of the first substrate 411.
  • the thin film transistor 420 supplies a signal to the electrode unit 440 driving the liquid crystal layer 460.
  • the thin film transistor 420 includes a gate electrode 421, an active layer 422, a source electrode 423, and a drain electrode 424.
  • a gate electrode 421 is formed on a first substrate 411, and a first insulating layer 431 covers the gate electrode 421.
  • the active layer 422 is disposed on the first insulating layer 431 to overlap the gate electrode 421, and the source electrode 423 and the drain electrode 424 are spaced apart from each other on the active layer 422. do.
  • the overlapping of two objects may mean that at least a portion overlaps with each other regardless of the existence of another object in a vertical relationship between the two objects, and is also referred to by various other names. May be
  • the gate electrode 421, the source electrode 423, and the drain electrode 424 are made of a conductive material.
  • a conductive material For example, molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), and titanium ( One of Ti), nickel (Ni), neodymium (Nd), and copper (Cu) or alloys thereof, but is not limited thereto, and may be formed of various materials.
  • the active layer 422 may be formed of any one of an oxide semiconductor, for example, InGaZnO, InGaO, or InSnZnO, but is not limited thereto.
  • At least one insulating layer formed between the first substrate 411 and the electrode unit 440 may be referred to as an insulating layer structure 430.
  • the insulating layer structure 430 may include at least one of the first insulating layer 431, the second insulating layer 432, or the third insulating layer 433.
  • the first insulating layer 431 is disposed on the gate electrode 421, and insulates the gate electrode 421 and the active layer 422, or the gate electrode 421, the source electrode 423, and the drain electrode 424. do.
  • the first insulating layer 431 may be referred to as a gate insulating layer.
  • the second insulating layer 432 is a layer for protecting the thin film transistor 420 and is disposed to cover the source electrode 423 and the drain electrode 424.
  • the second insulating layer 432 may be referred to as a passivation layer.
  • the first insulating layer 431 and the second insulating layer 432 may be composed of a single layer made of an inorganic material, for example, silicon nitride (SiN x ).
  • SiN x silicon nitride
  • FIG. 1 although the first insulating layer 431 and the second insulating layer 432 of the liquid crystal panel 400 are described as being made of a single layer, the present invention is not limited thereto. In other words, the first insulating layer 431 and the second insulating layer 432 may be formed of a plurality of layers.
  • first insulating layer 431 and the second insulating layer 432 are formed of a plurality of layers, for example, a double structure of silicon nitride (SiNx) and silicon oxide (SiO 2 ) may be provided.
  • the active layer 422 is made of an oxide semiconductor
  • the electrical characteristics are also increased depending on the hydrogen (H) supplied from the moisture.
  • H hydrogen
  • silicon nitride (SiNx) having excellent barrier properties may be disposed.
  • silicon nitride (SiNx) may change the characteristics of the oxide semiconductor by hydrogen injected during the deposition process
  • silicon nitride (SiNx) may have a structure further including a silicon oxide film (SiO 2 ).
  • the third insulating layer 433 is a layer having a flat upper surface and is disposed on the second insulating layer 432.
  • the third insulating layer 433 may be composed of a single layer or a plurality of layers made of an organic material.
  • the third insulating layer 433 may be made of polyaluminum chloride (PAC), polyimide, or acryl.
  • the third insulating layer 433 may be referred to as a planarization layer.
  • the second insulating layer 432 and the third insulating layer 433 include a contact portion exposing the drain electrode 424, and the electrode portion 440 and the thin film transistor 420 are electrically connected through the contact portion.
  • the second insulating layer 432 and the third insulating layer 433 may include a contact portion exposing the source electrode 423 according to the type of the thin film transistor 420.
  • the insulating layer structure 430 of the display device 1000 includes at least one of the first insulating layer 431, the second insulating layer 432, and the third insulating layer 433.
  • the insulating layer structure 430 is configured to be different from each other in the pixel area PA and the non-pixel area NPA, so that a specific light L including a peak wavelength having a narrow half width is supplied to the liquid crystal panel 400. The viewing angle dependence at can be minimized.
  • the color separation phenomenon according to the viewing angle may be further increased by the difference in refractive index between the insulating layers.
  • the color separation phenomenon according to the viewing angle may increase rapidly with light having a peak wavelength having a narrow half width.
  • the color separation phenomenon is a phenomenon in which the transmittance of a specific light is oscillated and color is separated according to the viewing state.
  • the color separation phenomenon may increase rapidly as the difference in refractive index between the thin film layers or the light having a narrow half width is increased. have.
  • the red light having a narrow half-value width is compared with the blue light or green light having a relatively half-value width, and thus, the plurality of thin film layers. Transmittance fluctuation according to the viewing angle due to the difference in refractive index between them becomes larger. As a result, the color separation phenomenon of the red light is further increased, and the variation in the color reproducibility according to the viewing angle is also increased, which may cause a serious problem in that the display quality of the display device 1000 is degraded.
  • the insulating layer structures of the pixel area PA and the non-pixel area NPA are configured differently, so that the variation in transmittance according to the viewing angle may be minimized even when red light having a narrow half width is passed.
  • the difference in refractive index between the plurality of insulating layers corresponding to the pixel area PA may be minimized so that variation in transmittance according to the viewing angle may be minimized even when red light passes.
  • the insulating layer structure 430 of the pixel area PA may be formed of only an insulating layer made of a material that substantially matches the refractive index of the first substrate 411. The refractive index difference can be minimized.
  • the fact that the refractive indices of the two layers substantially coincide means that the difference in refractive indices between the materials constituting the two layers is substantially coincident, and specifically, when the difference in refractive indices between the two layers is 0.05 or less, It can be seen that the refractive indices of the layers are substantially coincident.
  • the refractive index of the first substrate 411 is about 1.5
  • the first insulating layer 431 and the second insulating layer 432 are made of silicon nitride (SiNx)
  • the refractive index of the first insulating layer 431 and the second insulating layer 431 is about 1.88.
  • the third insulating layer 433 is made of a photo acryl compound (PAC)
  • the refractive index of the third insulating layer 433 is about 1.5. In this case, the red light having a narrow half width passes through the first substrate 411, the first insulating layer 431, the second insulating layer 432, and the third insulating layer 433 corresponding to the pixel area PA.
  • the electrode unit 440 for driving the liquid crystal layer 460 is disposed on the insulating layer structure 430.
  • the electrode unit 440 includes a common electrode 441 and a pixel electrode 442 patterned on the common electrode 441, and a fourth insulating layer 450 between the common electrode 441 and the pixel electrode 442. ) May be arranged.
  • the pixel area PA and the non-pixel area NPA may be divided into the end Z of the common electrode 441, and the end of the common electrode 441 is the pixel area. It may be a boundary line Z that separates the PA from the non-pixel area NPA.
  • the present invention is not limited thereto, and according to the design of the liquid crystal panel 400, the pixel area PA and the non-pixel area NPA may be divided by a boundary line between the black matrix 471 and the color filter 472. It may be distinguished only by the end of the black matrix 471.
  • the pixel electrode 442 is disposed on the common electrode 441 in the drawing, the common electrode 441 is disposed on the pixel electrode 442 or the common electrode 441 depending on the driving method of the liquid crystal layer 460. ) And the pixel electrode 442 may be disposed on the same plane.
  • an end Y of the second insulating layer 432 is formed at an interface between the pixel area PA and the non-pixel area NPA than the end X of the first insulating layer 431.
  • Z, or close to the end Z of the common electrode 441, that is, the second insulating layer 432 disposed in the non-pixel region NPA covers the side surface of the first insulating layer 431. Since the path through which external moisture (H 2 O), hydrogen (H 2 ), or the like penetrates through the interface between the layers becomes long, the thin film transistor 420 may be more effectively protected.
  • the present invention is not necessarily limited thereto, and according to the manufacturing method, the first insulating layer 431 and the second insulating layer 432 are removed at the same time, whereby the end X and the second end of the first insulating layer 431 are removed.
  • the end Y of the insulating layer 432 may be located on the same plane.
  • the thin film transistor 420 of the non-pixel area NPA of the first substrate 411 is illustrated as a staggered structure, but is not limited thereto, and may be formed as a coplanar structure. have.
  • the thin film transistor 420 has a coplanar structure
  • the thin film transistor 420 has a structure in which an active layer, a gate insulating layer, a gate electrode, an interlayer insulating layer, a source electrode, and a drain electrode are sequentially stacked.
  • the gate insulating layer and the interlayer insulating layer are made of a material different from the refractive index of the first substrate 411, the gate insulating layer and the interlayer insulating layer may not be extended to the pixel area PA.
  • the gate insulating layer or the interlayer insulating layer may be referred to as a first insulating layer.
  • An embodiment of the present invention is positioned in the non-pixel region NPA of the first substrate 411 and includes a gate electrode 421, an active layer 422, a source electrode 423, and a drain electrode 424.
  • the thin film transistor 420 covers the first insulating layer 431 and the source electrode 423 and the drain electrode 424 that insulate the gate electrode 421, the source electrode 423, and the drain electrode 424. It may be regarded as including a second insulating layer 432.
  • the first insulating layer 431 to minimize transmission oscillation according to a viewing angle that may occur while the specific light L of the light source 100 passes through the pixel area PA.
  • the second insulating layer 432 do not extend to the pixel area PA. Accordingly, the color separation phenomenon of the peak wavelength having a relatively narrow half-value width included in the specific light L of the light source 100 is prevented.
  • the problem of minimizing the display quality of the display device 1000 may be improved.
  • FIG 3 is a cross-sectional view illustrating main components of the display device 1000 according to an exemplary embodiment.
  • a stacked structure of an insulating layer structure 430 of a pixel area PA and a non-pixel area NPA is illustrated. Is a cross-sectional view comparing schematically.
  • the insulating layer structure 430N of the non-pixel area NPA includes a first insulating layer 431, a second insulating layer 432, and a third insulating layer 433.
  • the first insulating layer 431 and the second insulating layer 432 made of a material having a different refractive index from that of the first substrate 411 are removed. Only the third insulating layer 433 made of a material having substantially the same refractive index as the first substrate 411 is included.
  • the first insulating layer 431 and the second insulating layer 432 may be formed of, for example, silicon nitride (SiNx).
  • the insulating layer made of a material different from the refractive index of the first substrate 411 is removed from the pixel area PA, thereby removing the pixel area PA.
  • the number of insulating layers of the insulating layer structure 430P may be smaller than the number of insulating layer structures 430N of the non-pixel area NPA. Accordingly, since the difference in refractive index between the first substrate 411 or the insulating layer corresponding to the pixel area PA is eliminated, the transmittance fluctuation according to the viewing angle of the specific light L including the peak wavelength of narrow half-width is also reduced. Can be.
  • the first peak wavelength for example, the green peak wavelength or the blue peak wavelength
  • the half width of the first peak wavelength are 25%.
  • the specific light L including the second peak wavelength for example, the red peak wavelength
  • the specific light L of the light source is the liquid crystal panel 400.
  • the insulating layer of the pixel area PA such that the transmittance fluctuation according to the viewing angle that may occur while passing through the pixel area A of the X), specifically, the transmittance fluctuation of the light of the second peak wavelength (for example, red light) is minimized.
  • the structure 430P and the insulating layer structure 430N of the non-pixel area NPA are configured differently. That is, only a layer made of a material substantially matching the refractive index of the first substrate 411 among the plurality of insulating layers included in the insulating layer structure 430 is disposed in the pixel area PA.
  • the first insulating layer 431, which insulates the gate electrode 421, the source electrode 423, and the drain electrode 424 of the thin film transistor 420, and the source electrode 423 and the drain electrode 424 are separated from each other.
  • the covering second insulating layer 432 does not extend to the pixel area PA. Accordingly, since the variation of the color reproducibility of the display apparatus 1000 according to the viewing angle is minimized, the problem of deterioration of display quality may be solved.
  • 4A and 4B are graphs illustrating variation in transmittance according to viewing angles of a comparative example and an embodiment of the present invention.
  • Figure 4a is a graph showing the change in transmittance according to the viewing angle when the structure of the comparative example is used.
  • peak wavelengths are shown in the red wavelength region, the green wavelength region, and the blue wavelength region.
  • specific light in which the half width of the peak wavelength in the red wavelength region is narrower than the half width of the peak wavelength in the other wavelength region is incident on the liquid crystal panel.
  • the structure of the comparative example is a structure of a display device in which the insulating layer structure of the pixel region and the insulating layer structure of the non-pixel region have the same structure
  • FIG. 4A shows red light (RED) and green when the above-described light is incident in this comparative example.
  • the first and second insulating layers described above with reference to FIGS. 1 to 3 are graphs showing variation in transmittance according to the viewing angle of the display device in which the non-pixel region and the pixel region are disposed.
  • the maximum transmittance is about 79%, the minimum transmittance is about 70%, and the variation range is about 9% between the viewing angles of 0 degrees to 70 degrees.
  • the maximum transmittance is about 85%, the minimum transmittance is about 69%, and the variation range is about 16% between the viewing angles of 0 degrees to 70 degrees.
  • red light has a maximum transmittance of about 90%, a minimum transmittance of about 62%, and a fluctuation range of about 28% between 0 and 70 degrees of viewing angle. It can be seen that the variation of about 3.1 times and 1.75 times occurred more significantly than the red light.
  • the vibration of the height of the transmittance of the red light RED occurs several times compared to the blue light or the green light. .
  • Figure 4b is a graph showing the transmittance variation according to the viewing angle when the structure of one embodiment of the present invention is used.
  • the incident light has a peak wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region, and the half width of the peak wavelength in the red wavelength region is configured to be smaller than the half width of the peak wavelength in the other wavelength region.
  • 4B illustrates red light RED, green light GREEN, and blue light BLUE when such specific light is incident on a display device in which the insulating layer structure of the pixel region and the insulating layer structure of the non-pixel region are different from each other.
  • the first insulating layer and the second insulating layer described with reference to FIGS. 1 to 3 are disposed only in the non-pixel region, and are graphs showing variation in transmittance according to the viewing angle of the display device configured not to extend to the pixel region.
  • the maximum transmittance is about 78%, the minimum transmittance is about 68%, and the variation range is about 10% between the viewing angles of 0 degrees to 70 degrees.
  • the maximum transmittance is about 82%, the minimum transmittance is about 69%, and the variation range is about 13% between the viewing angles of 0 degrees to 70 degrees.
  • the maximum transmittance is about 85%, the minimum transmittance is 70%, and the fluctuation range is about 15%.
  • the transmission fluctuation ranges of the blue light BLUE, the green light GREEN, and the red light RED have similar values, and as shown in FIG. 4B, as the viewing angle is changed, the blue light BLUE or green color is changed. It can be seen that the vibration curves of the heights of the transmittances of the light GREEN and the red light RED also have a similar shape.
  • the peak wavelength of the wavelength region in which the half width of the peak wavelength of the red wavelength region is different When a specific light configured to be narrower than the half width of the incident light enters the liquid crystal panel, it can be seen that the transmittance variation curves of the red wavelength region, the green wavelength region, and the blue wavelength region in the pixel region all have similar shapes.
  • the first insulating layer and the second insulating layer of the display device according to the exemplary embodiment of the present invention are configured not to extend to the pixel region, thereby including a peak wavelength having a narrow half width. It can be seen that there is an effect of reducing transmittance fluctuation according to a viewing angle that can be generated while specific light passes through the pixel region.
  • 5A and 5B are graphs illustrating changes in color coordinates according to viewing angles of a comparative example and an embodiment of the present invention.
  • the display device used in FIG. 5A has the structure of the comparative example described with reference to FIG. 4A.
  • 5A is a graph illustrating color coordinate change ⁇ u ′ according to a viewing angle of a display device in which the insulating layer structure of the pixel area and the insulating layer structure of the non-pixel area have the same structure.
  • white specific light having a peak wavelength in a red wavelength region, a green wavelength region, and a blue wavelength region, and having a half width of a peak wavelength of a red wavelength region narrower than a half width of a peak wavelength of another wavelength region,
  • the color coordinate is greatly changed as the viewing angle is changed.
  • the color separation phenomenon according to the viewing angle of the specific light is increased by the refractive index difference between the plurality of thin film layers included in the insulating layer structure of the pixel region, so that the variation of the color coordinates may be greatly increased according to the change of the viewing angle. .
  • the variation in color reproducibility according to the viewing angle is increased, which may lead to a problem in that display quality of the display device is degraded.
  • the display device used in FIG. 5B has the structure of one embodiment of the present invention described with reference to FIG. 4B.
  • 5B is a graph illustrating color coordinate change ⁇ u ′ according to a viewing angle of a display device in which the first insulating layer and the second insulating layer are disposed only in the non-pixel region and are not extended to the pixel region.
  • white specific having a peak wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region, the half width of the peak wavelength of the red wavelength region being narrower than the half width of the peak wavelength of the other wavelength region.
  • the insulation layer structure of the pixel region and the insulation layer structure of the non-pixel region are different from each other, the variation of color coordinates according to the viewing angle that can occur while specific light passes through the pixel region is hardly generated. It can be seen that the fluctuation of? Is reduced and the display quality of the display device is improved.
  • the first insulating layer and the second insulating layer of the liquid crystal panel may have a single layer made of silicon nitride (SiNx) having good barrier properties, but the first insulating layer may be used to improve the characteristics of the active layer.
  • the second insulating layer may further include silicon oxide (SiO 2 ) in addition to silicon nitride (SiNx).
  • first and second insulating layers including the plurality of layers will be described in more detail with reference to FIGS. 6 to 10.
  • FIG. 6 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • the display device 600 may include an active area AA displaying an image and an inactive area NAA disposed outside the active area AA without displaying an image. ).
  • a plurality of data lines DL and a plurality of gate lines GL are disposed in the active area AA, and the pixels P may be defined by the plurality of data lines DL and the plurality of gate lines GL. have.
  • Each pixel P includes an opening OA configured to transmit light and a non-opening portion NOA adjacent to the opening OA and to which light is not transmitted.
  • the opening OA is a region in which the pixel electrode is disposed, and refers to a region in which the actual light is transmitted from the light source, and may correspond to the pixel region PA of FIG. 1. Accordingly, a detailed description of the opening OA will be omitted.
  • the non-opening portion NOA is a region in which the driving thin film transistor for driving the pixel electrode is disposed.
  • the non-opening portion NOA is a region through which light is not transmitted and may correspond to the non-pixel region NPA of FIG. 1. Accordingly, a more detailed description of the non-opening portion NOA will be omitted.
  • the inactive region NAA is disposed adjacent to the active region AA, and a gate in panel (GIP) connected to the plurality of gate lines GL is disposed.
  • GIP gate in panel
  • the display device 600 is disposed in each of the non-opening portion NOA of the inactive region NAA and the active region AA and the opening OA of the active region AA.
  • the structures of the insulating layer structure are arranged to be configured differently from each other. As a result, variations in color coordinates according to the viewing angles that may occur while specific light passes through the opening OA are hardly generated. Therefore, the variation in color reproducibility according to the viewing angle is reduced, and the display quality of the display device can be improved, and the oxide semiconductor is disposed in the non-active area NAA and the non-opening part NOA of the active area AA. The reliability of the display device can be improved by not changing the electrical characteristics of the active layer.
  • Such a structure of the active area AA and the inactive area NAA of the display device 600 according to another exemplary embodiment of the present invention will be described in detail with reference to FIGS. 7 to 9.
  • FIG. 7 through 9 are cross-sectional views of display devices of various exemplary embodiments taken along the line of FIG.
  • a thin film transistor is disposed in the non-opening portion NOA and the inactive region NAA of the active layer AA.
  • the thin film transistor includes gate electrodes 720G and 720N, active layers 740G and 740N, source electrodes 750G and 750N, drain electrodes 760G and 760N, and an insulating film structure 730.
  • the configuration of the thin film transistor of FIG. 7 except for the insulating layer structure 730 is the same as the thin film transistor of FIG. 1, a detailed description thereof will be omitted.
  • reference numeral 770 which is not described, denotes an interlayer insulating layer for insulating the common electrode 791 and the pixel electrode 792 disposed in the opening OA
  • reference numeral 780 denotes a third insulating layer of FIG. And a planarization layer.
  • the third insulating layer is described as being included in the insulating layer structure, but in the configuration according to another exemplary embodiment, only the first insulating layer and the second insulating layer are included as the insulating layer structure.
  • the insulating layer structure 730 includes a plurality of first sub insulating layers 731 and 734 and a plurality of second sub insulating layers 732 and 733.
  • the plurality of first sub insulation layers 731 and 734 is disposed only over the non-opening portion NOA and the inactive region NAA of the active region AA.
  • the plurality of first sub insulation layers 731 and 734 may be formed of silicon nitride (SiNx) having a first refractive index.
  • the plurality of first sub insulation layers 731 and 734 may include the gate electrode 720G of the inactive region NAA and the gate electrode 720N and the inactive region NAA of the non-opening portion NOA of the active region AA.
  • the first insulating layer disposed between the active layer 740G and the active layer 740N of the non-opening portion NOA of the active region AA may be one of a plurality of sub insulating layers forming the gate insulating layer.
  • the second insulating layer may be one of a plurality of sub insulating layers forming a second insulating layer, that is, a passivation layer, for protecting the thin film transistors disposed in the inactive region NAA and the non-opening portion NOA of the active region AA.
  • the plurality of first sub insulation layers 731 and 734 includes one first sub insulation layer 731 forming a gate insulation layer throughout the non-opening portion NOA and the non-active region NAA of the active region AA. ) And one non-opening portion NOA of the active region AA and one first sub insulation layer 734 forming a passivation layer over the entire inactive region NAA. That is, a plurality of first sub insulation layers 731 and 734 may be disposed in the non-opening portion NOA and the inactive region NAA of the active region AA. This is because the active layers 740G and 740N according to the embodiment of the present invention are formed of an oxide semiconductor.
  • silicon nitride having good barrier properties SiNx is disposed above and below the active layers 740G and 740N.
  • the plurality of first sub insulation layers 731 and 734 may not be disposed in the opening OA of the active region AA, but only one first sub insulation layer 731 may be disposed. That is, the first sub insulation layer 731 is disposed over the inactive region NAA and the entire active region AA, and the second sub insulation layer 734 is disposed in the opening OA of the active region AA. It may not be. This is because the opening OA of the active area AA is a region through which light is transmitted. Therefore, when a plurality of first sub insulation layers 731 and 734 having a higher refractive index than the second sub insulation layers 732 and 733 are disposed, a plurality of openings OA are provided. This is because an interface with a difference in refractive index may increase, and light reflection may occur between the first sub insulation layers 731 and 734, which may increase color variation and deteriorate display quality.
  • the plurality of second sub insulation layers 732 and 733 are disposed over the inactive region NAA and the active region AA.
  • the plurality of second sub insulation layers 732 and 733 may be formed of silicon oxide (SiO 2 ) having a second refractive index lower than the first refractive index.
  • the difference in refractive index is substantially coincident between the third insulating layer 780 and the plurality of second sub insulating layers 732 and 733, so that the transmittance variation according to the viewing angle may be minimized even when red light is passed.
  • the second sub insulation layer 732 may be disposed between the gate electrode 720G and the active layer 740G of the inactive region NAA, and the gate electrode 720N of the non-opening portion NOA of the active region AA.
  • the first insulating layer disposed between the active layers 740N, that is, the sub insulating layer constituting the gate insulating layer may be one of the plurality of sub insulating layers.
  • the second sub insulation layer 733 includes a plurality of second insulation layers, that is, passivation layers, for protecting the thin film transistors disposed in the inactive regions NAA and the non-opening portions NOA of the active regions AA. It may be one of the sub insulation layers.
  • the plurality of second sub insulation layers 732 and 733 may be configured not to be disposed in the opening OA of the active area AA, as in the above-described embodiment.
  • the substrate 710 may be disposed in the entirety of the substrate 710 including the opening OA.
  • Silicon nitride (SiNx) constituting the first sub insulation layers 731 and 734 is generally deposited by PECVD.
  • hydrogen (H) may be injected during the deposition process.
  • the electrical characteristics of the active layers 740G and 740N made of oxide semiconductors may be deteriorated, so to prevent this, the active layers 740G and 740N are based on the active layers 740G and 740N.
  • Second sub insulation layers 732 and 733 are interposed between the first sub insulation layers 731 and 734. Meanwhile, a part of the second sub insulation layer 733 may be partially removed when the first sub insulation layer 734 is removed from the opening OA.
  • the display apparatus may be disposed even in the opening OA of the active region AA.
  • the influence on the display quality of 600 may not be large.
  • only one first sub insulation layer 731 constituting the gate insulation layer is disposed in the opening OA of the active region AA.
  • only the first sub insulation layer 734 forming the passivation layer is disposed in the opening OA of the active region AA among the plurality of first sub insulation layers 731 and 734. to be.
  • the first sub insulation layer 731 ′ forming the first insulation layer among the plurality of first sub insulation layers 731 ′ and 734 ′ may be formed in the opening OA of the active region AA.
  • the first sub insulation layer 734 'constituting the second insulation layer is also disposed in the opening OA of the active region AA.
  • the plurality of first sub insulating layers 731 'and 734' are disposed in the non-opening portion NOA of the inactive region NAA and the active region AA, and the opening of the active region AA is formed. Only one first sub insulation layer 731 'or 734' 'of the plurality of first sub insulation layers 731' and 734 'is disposed in the OA. Accordingly, an interface having a difference in refractive index between the material of the first sub insulation layers 731 ′ and 734 ′ and the second sub insulation layers 732 and 734 ′, the substrate 710, and the third insulation layer 780. The decrease in display quality of the display device 600 can be minimized.
  • a plurality of second sub insulation layers 732 and 733 are disposed on the entire inactive region NAA and the active region AA so as to form the first sub insulation layers 731 'and 734'. Deterioration of electrical characteristics of the active layers 740G and 740N may be minimized.
  • the first sub insulation layers 731 ′ and 734 having high refractive indexes are formed. It is not disposed in the opening OA of the active area AA. Accordingly, an interface having a difference in refractive index between the substrate 710, the second sub insulation layers 732 and 733, and the third insulation layer 780 may be minimized, thereby further improving display characteristics.
  • the first sub insulation layers 731 and 734 are removed only from the opening OA of the active region AA among the active region AA and the inactive region NAA on the substrate 710.
  • it may be performed by dry etching using a mask.
  • the layers to be removed among the plurality of first sub insulation layers 731 and 734 are not removed at the end of the non-opening portion NOA of the active region AA, but between the non-opening portion NOA and the opening OA. It may be arranged to extend further into the opening OA beyond the boundary.
  • the lengths of the first sub insulation layers 731 and 734, which may further extend into the opening OA may be determined based on the color coordinate values of the pixel P. That is, as long as the color coordinate value of the pixel P is within a required range, a part of the first sub insulation layers 731 and 734 may extend into the opening OA. As a result, the color coordinate of the pixel P can be satisfied and the reliability of the oxide semiconductor can be further improved.
  • 10A and 10B are graphs showing changes in color coordinates according to viewing angles of a comparative example and another embodiment of the present invention.
  • FIG. 10A illustrates a structure in which an insulating layer structure disposed in the opening portion OA of the active region AA and an inactive region NAA and an insulating layer structure disposed in the non-opening portion NOA of the active region AA have the same structure. It is a graph which shows the change of the color coordinate according to the viewing angle of the display device which has.
  • a display device having a comparative example structure white specific light having a peak wavelength in a red wavelength region, a green wavelength region, and a blue wavelength region, and having a half width of a peak wavelength of a red wavelength region narrower than a half width of a peak wavelength of another wavelength region,
  • the color coordinate is greatly changed as the viewing angle is changed. That is, as described above, the color separation phenomenon according to the viewing angle of the specific light is increased due to the difference in refractive index between the plurality of thin film layers included in the insulating layer structure of the opening OA of the active area AA. It can be seen that the fluctuation is also large. As a result, the variation in color reproducibility according to the viewing angle is increased, which may lead to a problem in that display quality of the display device is degraded.
  • FIG. 10B illustrates that the insulating layer structure disposed in the inactive region NAA and the non-opening portion NOA of the active region AA and the insulating layer structure of the opening OA of the active region AA are different from each other.
  • white specific having a peak wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region, the half width of the peak wavelength of the red wavelength region being narrower than the half width of the peak wavelength of the other wavelength region.
  • the plurality of first sub insulation layers 731 may be disposed in the non-opening portion NOA of the inactive region NAA and the active region AA.
  • 734 and the plurality of second sub insulating layers 732 and 733 are all disposed, and only the plurality of second sub insulating layers 732 and 733 are disposed in the opening OA of the active area AA, or one Only one sub insulation layer 731 or 734 is configured to be further disposed.
  • the number of interfaces having the difference in the refractive indices of the openings OA of the active layer AA is minimized so that variations in color coordinates hardly occur, thereby improving display quality of the display device and protecting characteristics and reliability of the oxide semiconductor. can do.
  • the display device 600 may include a plurality of first subs in the inactive area NAA where the active layers 740G and 740N are disposed and the non-opening part NOA of the active area AA. Since the insulating layers 731 and 734 are configured such that the active layers 740G and 740N are disposed up and down, the electrical characteristics of the active layers 740G and 740N may be minimized to reduce the reliability of the display device.
  • the display device 600 may include the active layers 740G and 740N and the active layers 740G, which are disposed in the non-opening portion NOA of the inactive region NAA and the active region AA.
  • the plurality of first sub insulation layers 731 and 734 are interposed between the plurality of first sub insulation layers 731 and 734 disposed above and below 740N. It is possible to minimize the occurrence of defects in the active layers 740G and 740N that may occur during the deposition process.
  • the half width of the peak wavelength FWHM of one of the plurality of peak wavelengths is narrow.
  • the transmittance variation and the color coordinate variation according to the viewing angle of the light of the peak wavelength having a relatively narrow half width can be minimized.
  • variations in color reproducibility of the display device according to the viewing angle may be minimized, thereby improving display quality of the display device.
  • the number of insulating layers of the insulating layer structure of the pixel area may be less than the number of insulating layers of the insulating layer structure of the non-pixel area.
  • the insulating layer structure of the pixel area may include at least one layer made of a material substantially matching the refractive index of the substrate among the first insulating layer, the second insulating layer, and the third insulating layer.
  • the electrode unit may include a common electrode and a pixel electrode patterned on the common electrode, and an end of the common electrode may define a boundary line separating the pixel area and the non-pixel area.
  • An end of the second insulating layer of the insulating layer structure of the non-pixel region may be located closer to the end of the common electrode than the end of the first insulating layer.
  • An end of the second insulating layer and an end of the first insulating layer of the insulating layer structure of the non-pixel region may be positioned on the same plane.
  • the transmittance variation curve according to the viewing angle of the light of the first peak wavelength in the pixel region and the transmittance variation curve according to the viewing angle of the light of the second peak wavelength may have a similar shape.
  • the second insulating layer of the insulating layer structure in the non-pixel region may be configured to cover the side surface of the first insulating layer.
  • the first insulation layer is a gate insulation layer or an interlayer insulation layer
  • the second insulation layer is a passivation layer
  • the third insulation layer is a planarization layer
  • the second insulation layer and the third insulation layer are formed with the electrode portion. It may include a contact unit for connecting the thin film transistor.
  • the first peak wavelength may be 430 nm or more and 480 nm or less, or 520 nm or more and 560 nm or less, and the second peak wavelength may be 600 nm or more and 650 nm or less.
  • the specific light of the light source may include a first peak wavelength and a second peak wavelength having a half width of 25% or less compared with the half width of the first peak wavelength.
  • the first peak wavelength may be 430 nm or more and 480 nm or less, or 520 nm or more and 560 nm or less, and the second peak wavelength may be 600 nm or more and 650 nm or less.
  • the second insulating layer may be configured to cover side surfaces of the first insulating layer.
  • a display device includes an active region including an opening configured to transmit light and a non-opening portion adjacent to the opening and not transmitting the light, and an inactive region adjacent to the active region and having a gate-in panel disposed thereon.
  • a substrate a first sub insulation layer having a first refractive index disposed in a non-opening portion and an inactive region of an active region, and a second refractive index disposed in the entire active region and the inactive region, and having a second refractive index lower than the first refractive index.
  • a sub insulation layer is disposed in the entire active region and the inactive region.
  • a first insulating layer which insulates the active electrode and the gate electrode disposed in the non-opening driving thin film transistor and the gate in panel of the inactive region, and the source of the driving thin film transistor of the non-opening portion and the gate in panel of the inactive region
  • a second insulating layer is disposed on the electrode and the drain electrode, and the active layer may be formed of an oxide semiconductor.
  • the first insulating layer may include a plurality of sub insulating layers, the first sub insulating layer may be one of the first insulating layers, and the first sub insulating layer may be formed of silicon nitride (SiNx).
  • the second insulating layer may be formed of a plurality of sub insulating layers, the first sub insulating layer may be one of the second insulating layers, and the first sub insulating layer may be formed of silicon nitride (SiNx).
  • the second sub insulating layer may be one of a plurality of sub insulating layers forming the first insulating layer or a plurality of sub insulating layers forming the second insulating layer, and the second sub insulating layer may be made of silicon oxide (SiO 2).
  • the first sub insulation layer further extends into the opening beyond the boundary between the non-opening portion and the opening of the active region, and the length of the first sub insulation layer further extending into the opening is the opening and the non-opening portion. It may be determined based on the color coordinate value of the configured sub-pixel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

According to an embodiment of the present invention, a thin film transistor including a gate electrode, an active layer, a source electrode, and a drain electrode in a non-pixel region of a substrate comprises: a first insulating layer for insulating the gate electrode from the source electrode and the drain electrode; and a second insulating layer for covering the source electrode and the drain electrode. According to an embodiment of the present invention, the first insulating layer and the second insulating layer are configured so as not to extend to the pixel region so that oscillation of the substrate with respect to a viewing angle which can be generated when specific light of the light source passes through the pixel region is minimized.

Description

박막 트랜지스터 및 표시 장치Thin Film Transistors and Displays
본 발명은 박막 트랜지스터 및 표시 장치에 관한 것으로, 보다 상세하게는, 고해상도의 구현을 위해 복수의 피크 파장을 포함하는 특정 광이 액정 패널로 공급되는 구조에 있어서, 액정 패널의 화소 영역에 구성된 절연층 구조를 최적화함으로써, 시야각에 따라 표시 품질이 저하되는 문제가 개선된 박막 트랜지스터 및 표시 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor and a display device, and more particularly, to an insulating layer configured in a pixel region of a liquid crystal panel in a structure in which specific light including a plurality of peak wavelengths is supplied to a liquid crystal panel for high resolution. By optimizing the structure, the problem that the display quality is deteriorated with the viewing angle is improved.
표시 장치(display apparatus)는 화상을 표시하는 장치로서, 텔레비전, 모바일 기기, 노트북, 차량, 시계 등 각종 기기에 다양하게 사용되고 있다. A display apparatus is an apparatus for displaying an image, and is used in various apparatuses such as televisions, mobile devices, laptops, vehicles, watches, and the like.
표시 장치 중 하나인 액정 표시 장치(liquid crystal display apparatus, LCD)는 액정의 광학 이방성(optical anisotropy)과 분극 성질(polarization)에 의한 화상 구현 원리로 구동된다. 액정 표시 장치는 두 개의 기판 사이에 액정층을 개재하여 합착시킨 액정 패널(liquid crystal panel)을 필수 구성 요소로 하며, 액정 패널 내에 전기장을 생성하여 액정 분자의 배열 방향을 변화시켜 투과율의 차이를 구현한다. One of the display devices, a liquid crystal display apparatus (LCD), is driven by an image realization principle based on optical anisotropy and polarization of liquid crystals. A liquid crystal display device is an essential component of a liquid crystal panel bonded through a liquid crystal layer between two substrates, and creates an electric field in the liquid crystal panel to change the arrangement direction of liquid crystal molecules to realize a difference in transmittance. do.
하지만, 액정 패널은 자체 발광 요소를 갖추지 못하므로, 투과율 차이를 화상으로 표시하기 위해서는 백색 광을 발광하는 별도의 광원이 요구된다. 액정 표시 장치의 광원으로는, 냉음극 형광램프(cold cathode fluorescent lamp, CCFL), 외부전극 형광램프(external electrode fluorescent lamp, EEFL), 또는 발광 다이오드(light emitting diode, LED) 등이 사용될 수 있다. 특히, 발광 다이오드는 소형, 저소비 전력, 고신뢰성 등의 장점을 가지므로, 액정 표시 장치의 광원으로서 널리 이용되고 있는 추세이다.However, since the liquid crystal panel does not have a self-luminous element, in order to display the difference in transmittance as an image, a separate light source for emitting white light is required. As a light source of the liquid crystal display, a cold cathode fluorescent lamp (CCFL), an external electrode fluorescent lamp (EEFL), a light emitting diode (LED), or the like may be used. In particular, since light emitting diodes have advantages of small size, low power consumption, high reliability, and the like, they are widely used as light sources of liquid crystal displays.
한편, 발광 다이오드를 포함하는 액정 표시 장치의 광원은, 일반적으로, 청색 발광 다이오드와 황색 형광체로 이루어질 수 있다. 보다 구체적으로, 청색 발광 다이오드로부터 발광된 청색 광의 일부가 황색 형광체에 흡수되어 황색 광으로 변환되고, 황색 형광체에 의해 변환된 황색 광과 형광체로 흡수되지 않은 나머지 청색 광이 서로 혼합됨으로써, 백색 광이 구현된다. 상기 백색 광은 청색의 피크 파장 및 황색의 피크 파장을 포함할 수 있다. 액정 패널로 입사된 상기 백색 광은 적색, 녹색 및 청색의 컬러 필터를 통과하여 각각 적색, 녹색 및 청색의 화소(pixel)로 구현된다. On the other hand, the light source of the liquid crystal display including the light emitting diode is generally made of a blue light emitting diode and a yellow phosphor. More specifically, a part of the blue light emitted from the blue light emitting diode is absorbed by the yellow phosphor and converted into yellow light, and the yellow light converted by the yellow phosphor and the remaining blue light not absorbed by the phosphor are mixed with each other, whereby white light Is implemented. The white light may include a blue peak wavelength and a yellow peak wavelength. The white light incident on the liquid crystal panel passes through the red, green, and blue color filters, and is implemented as pixels of red, green, and blue, respectively.
그러나, 상기와 같이 청색의 피크 파장과 황색의 피크 파장으로 구성된 백색 광을 이용하게 되면 액정 표시 장치의 고해상도 또는 고색재현율 구현이 어려운 문제가 있다. 구체적으로 설명하면 다음과 같다. However, when using white light having a blue peak wavelength and a yellow peak wavelength as described above, it is difficult to realize high resolution or high color reproducibility of the liquid crystal display. Specifically, it is as follows.
피크 파장(peak wavelength)이란, 광의 강도(intensity) 또는 광의 세기가 특정 파장 영역에서 다른 파장 영역 대비 높은 값을 갖는 파장을 말한다. 따라서, 청색의 피크 파장과 황색의 피크 파장으로 구성된 백색 광은, 청색 광 및 황색 광이 다른 색의 광 대비 높은 강도 또는 세기를 가질 수 있다. Peak wavelength refers to a wavelength in which the intensity or intensity of light has a higher value than that of other wavelengths in a specific wavelength range. Accordingly, the white light composed of the blue peak wavelength and the yellow peak wavelength may have a higher intensity or intensity than the blue light and the yellow light.
즉, 백색 광이 청색의 파장 영역에서 높은 강도를 가지므로, 다시 말하면, 청색 광의 강도 또는 세기가 높기 때문에, 백색 광이 청색의 컬러 필터를 통과할 때 청색의 컬러 필터에 의한 광 손실은 최소화될 수 있다. That is, since the white light has a high intensity in the blue wavelength region, that is, because the intensity or intensity of the blue light is high, the light loss by the blue color filter when the white light passes through the blue color filter can be minimized. Can be.
이와 비교하여, 백색 광이 황색의 파장 영역에서도 상대적으로 높은 강도를 가지므로, 즉, 적색 광이나 녹색 광이 황색 광보다 강도 또는 세기가 낮기 때문에, 백색 광이 적색의 컬러 필터나 녹색의 컬러 필터를 통과할 때 광 손실이 발생될 수 있다. 다시 말하면, 적색의 컬러 필터나 녹색의 컬러 필터는 각각에 해당되는 파장 영역의 광만 통과되므로, 강도가 높은 황색 광은 적색이나 녹색의 컬러 필터에 의해 차단되고, 강도가 낮은 적색 광이나 녹색 광만 통과될 수 있다. 따라서, 적색이나 녹색 화소의 광 효율이 저하되므로, 표시 장치의 고해상도 또는 고색재현율 구현이 어려울 수 있다.In comparison, since white light has a relatively high intensity even in the wavelength region of yellow, that is, red or green light has a lower intensity or intensity than yellow light, so white light is a red color filter or a green color filter. Light loss may occur when passing through. In other words, the red color filter or the green color filter only passes the light in the wavelength range corresponding to each other, so that high intensity yellow light is blocked by the red or green color filter, and only low intensity red or green light passes. Can be. Therefore, since the light efficiency of the red or green pixels is lowered, it may be difficult to implement high resolution or high color reproducibility of the display device.
본 발명의 발명자들은, 광원의 백색 광이 각각의 컬러 필터에 해당되는 파장 영역에서 피크 파장을 갖는 경우, 컬러 필터에 의한 광 손실이 최소화되어 표시 장치의 고해상도 또는 고색재현율 구현이 용이할 수 있다는 점을 인식하였다. 즉, 백색 광이 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역 모두에서 높은 강도를 갖는 경우, 적색, 녹색 및 청색의 컬러 필터에 의한 광 손실이 최소화될 수 있다.The inventors of the present invention, when the white light of the light source has a peak wavelength in the wavelength region corresponding to each color filter, the light loss by the color filter is minimized to facilitate the high resolution or high color reproducibility of the display device Recognized. That is, when white light has high intensity in all of the red wavelength region, the green wavelength region, and the blue wavelength region, light loss by the color filters of red, green, and blue can be minimized.
본 발명의 발명자들은, 청색의 발광 다이오드, 적색 형광체 및 녹색 형광체를 이용하여 적색, 녹색 및 청색의 피크 파장에서 균일하게 높은 강도를 포함하는 백색 광을 방출하는 광원을 제작하였다. 이 과정에서 본 발명의 발명자들은, 청색 발광 다이오드의 파장, 적색 형광체의 파장 및 녹색 형광체의 파장의 각각의 제어나, 서로 간의 색 조합이 어렵고, 적색 형광체나 녹색 형광체의 재료적인 한계로 인해 원하는 피크 파장의 특성을 구현하는 것이 어려운 문제임을 인식하였다. 구체적으로, 본 발명의 발명자들은, 피크 파장 각각의 강도(intensity)나 반치폭(full width at half maximum, FWHM)을 원하는 값으로 조절하는 것이 제조 상 어려운 문제임을 인식하였다.The inventors of the present invention have fabricated a light source that emits white light having a uniformly high intensity at peak wavelengths of red, green and blue using a blue light emitting diode, a red phosphor and a green phosphor. In this process, the inventors of the present invention are difficult to control the wavelengths of the blue light emitting diodes, the wavelengths of the red phosphors, and the wavelengths of the green phosphors, or to combine colors with each other. It is recognized that implementing the characteristics of the wavelength is a difficult problem. Specifically, the inventors of the present invention recognized that adjusting the intensity or full width at half maximum (FWHM) of each peak wavelength to a desired value is a difficult manufacturing problem.
예를 들어, 고해상도 또는 고색재현율을 구현하기 위해, 적색, 녹색 및 청색의 피크 파장을 포함하는 백색 광이 방출되는 광원을 제작함에 있어서, 발광 다이오드 또는 형광체의 재료적인 한계 등에 의해, 적색 광의 반치폭이 녹색 광이나 청색 광의 반치폭보다 매우 작은 값을 가질 수 있다. 광의 반치폭이 작아지게 되면, 액정 패널을 바라보는 시야각에 따라 광이 크게 시프트(shift)되거나 강도가 저하되는 등의 시야각 의존성이 높아지는 문제가 발생될 수 있다.For example, in the fabrication of a light source in which white light including red, green and blue peak wavelengths is emitted in order to realize high resolution or high color reproducibility, the half width of red light may be reduced due to material limitations of a light emitting diode or a phosphor. It may have a value that is much smaller than the half width of the green light or the blue light. When the half width of the light becomes small, a problem may arise in that the viewing angle dependence such as the light is greatly shifted or the intensity is decreased depending on the viewing angle of the liquid crystal panel.
특히, 액정 패널은 금속층 또는 절연층 등의 복수의 박막층을 포함하는 구조로, 상기와 같이, 좁은 반치폭을 갖는 적색의 피크 파장을 포함하는 백색 광이 액정 패널을 통과하는 경우, 박막층들 간의 굴절률 차이에 의해 시야각에 따른 적색 광의 색 분리 현상이 더욱 증가될 수 있다. 색 분리 현상이란, 보는 상태에 따라 특정 광의 투과율이 변동(oscillation)되어 색이 분리되는 것처럼 보이는 현상으로, 박막층들 간의 굴절률 차이가 클수록 또는 좁은 반치폭을 갖는 광일수록 색 분리 현상은 급격하게 증가될 수 있다. 즉, 좁은 반치폭을 갖는 적색 광은, 상대적으로 반치폭이 큰 청색 광이나 녹색 광 대비, 박막층들 간의 굴절률 차이에 의한 시야각에 따른 투과율 변동이 더욱 증가되고, 이로 인해 시야각에 따른 색재현율의 변동이 증가되어 결과적으로 표시 장치의 표시 품질이 저하되는 문제로 이어질 수 있다. In particular, the liquid crystal panel has a structure including a plurality of thin film layers such as a metal layer or an insulating layer. As described above, when white light including a red peak wavelength having a narrow half-value width passes through the liquid crystal panel, the refractive index difference between the thin film layers is different. The color separation phenomenon of the red light according to the viewing angle may be further increased. The color separation phenomenon is a phenomenon in which the transmittance of a specific light is oscillated and color is separated according to the viewing state. The color separation phenomenon may increase rapidly as the difference in refractive index between the thin film layers or the light having a narrow half width is increased. have. That is, in the red light having a narrow half width, the transmittance fluctuation according to the viewing angle due to the difference in refractive index between the thin film layers is further increased, compared to the blue light or green light having a relatively half full width, and thus the variation in color reproduction according to the viewing angle is increased. As a result, the display quality of the display device may be degraded.
이에 본 발명의 발명자들은, 위에서 언급한 문제점들을 인식하고, 고해상도의 구현을 위해 요구되는 광의 특성, 예를 들어, 적색, 녹색 및 청색의 피크 파장을 모두 포함하는 백색 광이 액정 패널로 공급되는 구조에 있어서, 형광체 등의 재료적인 한계로 인해 적색, 녹색 및 청색의 피크 파장 중 하나의 피크 파장의 반치폭이 매우 좁게 구현되더라도, 시야각에 따라 표시 품질이 저하되는 문제가 개선된 새로운 박막 트랜지스터 및 표시 장치를 발명하였다. Accordingly, the inventors of the present invention recognize the above-mentioned problems and have a structure in which white light including all of the characteristic of light required for high resolution, for example, peak wavelengths of red, green, and blue is supplied to the liquid crystal panel. A new thin film transistor and display device having an improved display quality deterioration depending on a viewing angle, even when the half width of one of the red, green, and blue peak wavelengths is very narrow due to the material limitation of the phosphor. Invented.
본 발명의 일 실시예에 따른 해결 과제는, 고해상도 또는 고색재현율의 구현을 위해, 복수의 피크 파장을 포함하는 백색 광이 액정 패널에 공급되는 구조에서, 복수의 피크 파장 중 하나의 피크 파장의 반치폭이 다른 피크 파장의 반치폭보다 매우 작은 값을 갖는 경우, 액정 패널의 화소 영역에 구성된 절연층 구조를 최적화함으로써, 시야각에 따라 투과율 및 색재현율이 변동되는 문제가 개선된 박막 트랜지스터 및 표시 장치를 제공하는 것이다. According to an embodiment of the present invention, in order to realize high resolution or high color reproducibility, a half width of one peak wavelength of one peak wavelength in a structure in which white light including a plurality of peak wavelengths is supplied to a liquid crystal panel In the case of having a value that is much smaller than the half width of the other peak wavelengths, the thin film transistor and the display device are improved by optimizing the insulating layer structure formed in the pixel region of the liquid crystal panel, whereby the transmittance and color reproducibility are varied depending on the viewing angle. will be.
본 발명의 일 실시예에 따른 해결 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Problems according to an embodiment of the present invention are not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 표시 장치는, 화소 영역 및 비 화소 영역을 포함하는 액정 패널, 상기 액정 패널로 특정 광을 공급하는 광원을 포함한다. 상기 특정 광은, 제1 피크 파장 및, 상기 제1 피크 파장의 반치폭과 비교하여 25% 이하의 반치폭을 갖는 제2 피크 파장을 포함한다. 상기 액정 패널은, 기판의 비 화소 영역 상에, 게이트 전극, 액티브층, 소스 전극 및 드레인 전극을 포함하는 박막 트랜지스터, 상기 박막 트랜지스터의 게이트 전극과 소스 전극 및 드레인 전극을 절연하는 제1 절연층, 상기 박막 트랜지스터의 소스 전극 및 드레인 전극을 덮는 제2 절연층, 상기 제2 절연층 상에 평탄한 상면을 갖는 제3 절연층 중 적어도 하나를 포함하는 절연층 구조물 및 상기 절연층 구조물 상에 상기 액정층을 구동하기 위한 전극부를 포함한다. 본 발명의 일 실시예에 따르면, 상기 광원의 특정 광이 상기 화소 영역을 통과하면서 발생 가능한 시야각에 따른 투과율 변동(oscillation)이 최소화되도록, 상기 화소 영역의 절연층 구조물과 상기 비 화소 영역의 절연층 구조물이 상이하게 구성된다. 이에 따라, 시야각에 따른 표시 장치의 색재현율의 변동이 최소화되어 표시 장치의 표시 품질이 저하되는 문제가 개선될 수 있다.A display device according to an exemplary embodiment of the present invention includes a liquid crystal panel including a pixel area and a non-pixel area, and a light source for supplying specific light to the liquid crystal panel. The specific light includes a first peak wavelength and a second peak wavelength having a half width of 25% or less compared with the half width of the first peak wavelength. The liquid crystal panel includes a thin film transistor including a gate electrode, an active layer, a source electrode and a drain electrode on a non-pixel region of a substrate, a first insulating layer insulating the gate electrode, the source electrode, and the drain electrode of the thin film transistor; An insulating layer structure including at least one of a second insulating layer covering a source electrode and a drain electrode of the thin film transistor, a third insulating layer having a flat top surface on the second insulating layer, and the liquid crystal layer on the insulating layer structure It includes an electrode unit for driving. According to an embodiment of the present invention, the insulation layer structure of the pixel region and the insulation layer of the non-pixel region are minimized so that transmittance oscillation according to a viewing angle that may occur while specific light of the light source passes through the pixel region is minimized. The structures are constructed differently. Accordingly, the variation of the color reproducibility of the display device according to the viewing angle may be minimized, thereby reducing the display quality of the display device.
본 발명의 일 실시예에 따라, 기판의 비 화소 영역에, 게이트 전극, 액티브층, 소스 전극 및 드레인 전극을 포함하는 박막 트랜지스터는, 상기 게이트 전극과, 상기 소스 전극 및 상기 드레인 전극을 절연하는 제1 절연층, 상기 소스 전극 및 상기 드레인 전극을 덮는 제2 절연층을 포함한다. 본 발명의 일 실시예에 따르면, 상기 기판에 대하여, 광원의 특정 광이 화소 영역으로 통과하면서 발생 가능한 시야각에 따른 투과율 변동(oscillation)이 최소화되도록, 상기 제1 절연층 및 상기 제2 절연층은 상기 화소 영역으로 연장되지 않도록 구성된다. According to an embodiment of the present invention, a thin film transistor including a gate electrode, an active layer, a source electrode, and a drain electrode in a non-pixel region of a substrate may include a first insulating layer that insulates the gate electrode, the source electrode, and the drain electrode. A first insulating layer, a second insulating layer covering the source electrode and the drain electrode. According to an embodiment of the present invention, the first insulating layer and the second insulating layer may be provided with respect to the substrate such that transmittance oscillation is minimized according to a viewing angle that may occur while specific light of a light source passes through the pixel region. And does not extend to the pixel region.
본 발명의 다른 실시예에 따른 표시 장치는, 광이 투과하도록 구성된 개구부 및 개구부와 인접하고 광이 투과되지 않는 비개구부를 포함하는 액티브 영역과 액티브 영역에 인접하고 게이트 인 패널이 배치된 비액티브 영역을 갖는 기판, 액티브 영역의 비개구부와 비액티브 영역에 배치되는 제1 굴절률을 갖는 제1 서브 절연층 및 액티브 영역 및 상기 비액티브 영역 전체에 배치되고, 상기 제1 굴절률보다 낮은 제2 굴절률을 갖는 제2 서브 절연층을 포함한다. 이에 따라, 본 발명의 다른 실시예에 따른 표시 장치는 산화물 반도체로 이루어지는 액티브층의 결함에 의해 발생될 수 있는 전기적 특성의 저하를 최소화하고, 표시 장치의 표시 품질을 향상시킬 수 있다.According to another exemplary embodiment, a display device includes an active region including an opening configured to transmit light and a non-opening portion adjacent to the opening and not transmitting the light, and an inactive region in which the gate-in panel is disposed adjacent to the active region. A first sub insulation layer having a first refractive index disposed in the non-opening portion and the inactive region of the active region, and a second refractive index disposed in the entire active region and the non-active region and having a lower refractive index than the first refractive index. And a second sub insulation layer. Accordingly, the display device according to another embodiment of the present invention can minimize the deterioration of electrical characteristics that can be caused by the defect of the active layer made of the oxide semiconductor, and can improve the display quality of the display device.
본 발명의 일 실시예에 따라, 고해상도 구현을 위해 복수의 피크 파장을 포함하는 특정 광이 액정 패널로 공급되는 구조에서 있어서, 특정 광의 피크 파장들 간의 반치폭(FWHM) 차이가 큰 경우, 액정 패널의 화소 영역에 구성된 절연층 구조를 최적화함으로써, 상대적으로 좁은 반치폭을 갖는 피크 파장의 색 분리 현상이 최소화될 수 있다. According to an embodiment of the present invention, in a structure in which a specific light including a plurality of peak wavelengths is supplied to the liquid crystal panel for high resolution, when the half width (FWHM) difference between the peak wavelengths of the specific light is large, By optimizing the insulating layer structure configured in the pixel region, color separation of peak wavelengths having a relatively narrow half width can be minimized.
이에 따라, 시야각에 따른 특정 광의 투과율 변동이 최소화되는 효과가 있다. Accordingly, there is an effect that the variation in transmittance of specific light according to the viewing angle is minimized.
또한, 시야각에 따른 표시 장치의 색재현율의 변동이 최소화되어 표시 장치의 표시 품질이 저하되는 문제가 해결될 수 있다. In addition, the variation of the color reproducibility of the display device according to the viewing angle may be minimized, thereby reducing the display quality of the display device.
또한, 산화물 반도체로 이루어지는 액티브층의 전기적 결함을 최소화하여 표시 장치의 신뢰성을 향상시키는 동시에 시야각에 따른 특정 광의 투과율 변동을 최소화시킬 수 있다.In addition, it is possible to minimize the electrical defect of the active layer made of the oxide semiconductor to improve the reliability of the display device and to minimize fluctuations in the transmittance of specific light according to the viewing angle.
본 발명의 효과는 이상에서 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
이상에서 해결하고자 하는 과제, 과제 해결 수단, 효과에 기재한 발명의 내용이 청구항의 필수적인 특징을 특정하는 것은 아니므로, 청구항의 권리 범위는 발명의 내용에 기재된 사항에 의하여 제한되지 않는다. Since the content of the invention described in the problem, the problem solving means, and the effect to be solved above does not specify the essential features of the claim, the scope of the claims is not limited by the matter described in the content of the invention.
도 1은 본 발명의 일 실시예에 따른 표시 장치를 나타낸 단면도 및 확대도이다.1 is a cross-sectional view and an enlarged view of a display device according to an exemplary embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 광원의 특정 광의 스펙트럼을 나타낸 그래프이다.2 is a graph showing a spectrum of specific light of a light source according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 표시 장치의 주요 구성 요소를 나타낸 단면도이다.3 is a cross-sectional view illustrating main components of a display device according to an exemplary embodiment of the present invention.
도 4a 및 도 4b는 비교예 및 본 발명의 일 실시예의 시야각에 따른 투과율 변동을 나타낸 그래프이다. 4A and 4B are graphs illustrating variation in transmittance according to viewing angles of a comparative example and an embodiment of the present invention.
도 5a 및 도 5b는 비교예 및 본 발명의 일 실시예의 시야각에 따른 색좌표 변화를 나타낸 그래프이다. 5A and 5B are graphs illustrating changes in color coordinates according to viewing angles of a comparative example and an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 표시 장치를 나타낸 평면도이다.6 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
도 7 내지 도 9는 도 6의 Ⅶ-Ⅶ'에 따른 다양한 실시예의 표시 장치들의 단면도들이다.7 through 9 are cross-sectional views of display devices of various exemplary embodiments taken along the line of FIG.
도 10a 및 도 10b는 비교예 및 본 발명의 다른 실시예에 따른 시야각에 따른 색좌표 변화를 나타낸 그래프이다.10A and 10B are graphs illustrating a change in color coordinates according to a viewing angle according to a comparative example and another embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to provide general knowledge in the technical field to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.
본 발명의 실시예를 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. Shapes, sizes, ratios, angles, numbers, and the like disclosed in the drawings for describing the embodiments of the present invention are exemplary, and the present invention is not limited to the illustrated items. Like reference numerals refer to like elements throughout. In addition, in describing the present invention, if it is determined that the detailed description of the related known technology may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.In the case where 'comprises', 'haves', 'consists of' and the like mentioned in the present specification are used, other parts may be added unless 'only' is used. In the case where the component is expressed in the singular, the plural includes the plural unless specifically stated otherwise.
구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.In interpreting a component, it is interpreted to include an error range even if there is no separate description.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다.In the case of the description of the positional relationship, for example, if the positional relationship of the two parts is described as 'on', 'upon', 'lower', 'next to', etc. Alternatively, one or more other parts may be located between the two parts unless 'direct' is used.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.In the case of a description of a temporal relationship, for example, if the temporal after-term relationship is described as 'after', 'following', 'after', 'before', or the like, 'directly' or 'direct' This may include cases that are not continuous unless used.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.The first, second, etc. are used to describe various components, but these components are not limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component mentioned below may be a second component within the technical spirit of the present invention.
도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 도시된 것이며, 본 발명이 도시된 구성의 크기 및 두께에 반드시 한정되는 것은 아니다. The size and thickness of each component shown in the drawings are shown for convenience of description, and the present invention is not necessarily limited to the size and thickness of the illustrated configuration.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시할 수도 있다.The features of each of the various embodiments of the invention may be combined or combined with one another, in whole or in part, and various interlocking and driving technically may be possible, and each of the embodiments may be independently implemented with respect to each other or may be implemented in association with each other. It may be.
이하 첨부된 도면들을 참조하여 본 발명의 실시예들을 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 표시 장치(1000)를 나타낸 단면도 및 확대도이다. 도 1을 참고하면, 표시 장치(1000)는, 광원(100), 도광판(200), 광학 시트(300) 및 액정 패널(400)을 포함한다. 1 is a cross-sectional view and an enlarged view of a display device 1000 according to an exemplary embodiment. Referring to FIG. 1, the display device 1000 includes a light source 100, a light guide plate 200, an optical sheet 300, and a liquid crystal panel 400.
액정 패널(400)은, 표시 장치(1000)의 화상 표현을 위한 구성 요소로서, 두 개의 기판(411, 412) 사이에 액정층(460)이 개재된 구조를 갖는다. 액정 패널(400)은 두 개의 전극(441, 442) 사이에 걸리는 전기장에 의해 액정층(460)의 액정 분자의 배열 방향이 변화되는 원리를 이용한 것으로, 도광판(200)을 통과한 광원(100)의 광(L)이 액정 패널(400)로 공급되면, 액정층(460)의 액정 분자의 배열 방향에 따라 투과되는 광량이 조절되어 원하는 화상이 표현될 수 있다. 액정 패널(400)로 입사된 광원(100)의 광(L)은, 액정 패널(400)의 컬러 필터(472), 예를 들어, 적색, 녹색 및 청색의 컬러 필터를 통과하면서 각각 적색, 녹색 및 청색의 화소(pixel)로 구현된다. 액정층(460)은 구동 모드에 따라, 수직 배열 또는 수평 배열될 수 있다.The liquid crystal panel 400 has a structure in which a liquid crystal layer 460 is interposed between two substrates 411 and 412 as a component for displaying an image of the display device 1000. The liquid crystal panel 400 uses a principle in which an arrangement direction of liquid crystal molecules of the liquid crystal layer 460 is changed by an electric field applied between two electrodes 441 and 442, and the light source 100 passing through the light guide plate 200. When the light L is supplied to the liquid crystal panel 400, the amount of light transmitted according to the arrangement direction of the liquid crystal molecules of the liquid crystal layer 460 may be adjusted to express a desired image. The light L of the light source 100 incident on the liquid crystal panel 400 passes through the color filters 472 of the liquid crystal panel 400, for example, red, green, and blue color filters, respectively. And a blue pixel. The liquid crystal layer 460 may be arranged vertically or horizontally according to the driving mode.
도광판(200)은 액정 패널(400)의 하부에 배치되고, 도광판(200)의 측면으로 입사된 광원(100)의 광(L)은 도광판(200)의 상면 전체로 분산되어 액정 패널(400)로 공급된다. 도광판(200)은 투명 물질로 이루어질 수 있으며, 예를 들어, 폴리올레핀(polyolefine), 폴리스틸렌(polystyrene), 폴리메타크릴산메틸(PMMA), 폴리카보네이트(PC), 실리콘 고무(silicon rubber), 유리(glass) 중 어느 하나로 이루어질 수 있다.The light guide plate 200 is disposed under the liquid crystal panel 400, and the light L of the light source 100 incident to the side surface of the light guide plate 200 is dispersed to the entire upper surface of the light guide plate 200, thereby displacing the liquid crystal panel 400. Is supplied. The light guide plate 200 may be made of a transparent material, and for example, polyolefine, polystyrene, polymethyl methacrylate (PMMA), polycarbonate (PC), silicon rubber, glass ( glass).
광학 시트(300)는, 액정 패널(400)과 도광판(200) 사이에 배치되며, 액정 패널(400)로 입사되는 광(L)의 효율 또는 휘도를 상승시키기 위한 층이다. 광학 시트(300)는, 예를 들어, 프리즘 시트(prism sheet) 또는 확산 시트(diffuser sheet)를 포함할 수 있다. 프리즘 시트는 도광판(200)의 상면으로 방출된 광(L)을 프리즘 형상의 층을 통해 굴절 또는 집광시켜 액정 패널(400)로 입사되는 광(L)의 휘도를 상승시키는 역할을 한다. 확산 시트는 도광판(200)의 상면으로 방출된 광(L)을 골고루 퍼지게 하여 광(L)의 밝기를 균일하게 해주는 역할을 한다. The optical sheet 300 is disposed between the liquid crystal panel 400 and the light guide plate 200 and is a layer for increasing the efficiency or luminance of the light L incident on the liquid crystal panel 400. The optical sheet 300 may include, for example, a prism sheet or a diffuser sheet. The prism sheet serves to increase the luminance of the light L incident on the liquid crystal panel 400 by refracting or condensing the light L emitted to the upper surface of the light guide plate 200 through the prism-shaped layer. The diffusion sheet evenly spreads the light L emitted to the upper surface of the light guide plate 200 to make the brightness of the light L uniform.
광원(100)은, 도 1에 도시된 바와 같이, 도광판(200)의 측면에 배치되며, 광원(100)으로부터 방출된 광(L)은 도광판(200) 및 광학 시트(300)를 통해 액정 패널(400)로 공급된다. 본 발명의 일 실시예에 따른 표시 장치(1000)의 광원(100)은, 복수의 피크 파장을 포함하는 백색 광을 방출하는 구조로 구성되며, 예를 들어, 서로 발광 다이오드 및 적어도 하나의 형광체의 조합으로 이루어질 수 있다. 광원(100)으로부터 방출된 특정 광(L)의 특성에 대해 도 2를 참고하여 설명한다.As shown in FIG. 1, the light source 100 is disposed at a side surface of the light guide plate 200, and the light L emitted from the light source 100 passes through the light guide plate 200 and the optical sheet 300. Supplied to 400. The light source 100 of the display device 1000 according to the exemplary embodiment of the present invention has a structure that emits white light including a plurality of peak wavelengths. For example, a light emitting diode and at least one phosphor It can be made in combination. The characteristic of the specific light L emitted from the light source 100 will be described with reference to FIG. 2.
도 2는 본 발명의 일 실시예에 따른 표시 장치(1000)의 광원(100)의 특정 광(L)의 스펙트럼을 나타낸 그래프이다. 구체적으로, 도 2에서는, 본 발명의 일 실시예에 따른 표시 장치(1000)의 광원(100)으로부터 방출된 특정 광(L)의 파장대별 강도(intensity) 스펙트럼은 표시하였다. 2 is a graph illustrating a spectrum of a specific light L of the light source 100 of the display device 1000 according to an exemplary embodiment. Specifically, in FIG. 2, an intensity spectrum of each wavelength band of the specific light L emitted from the light source 100 of the display device 1000 according to the exemplary embodiment is displayed.
도 2를 참고하면, 광원(100)으로부터 방출된 특정 광(L)은 복수의 피크 파장을 포함하며, 구체적으로, 적색 파장 영역(예를 들어, 600㎚ 이상 650㎚ 이하), 녹색 파장 영역(예를 들어, 520㎚ 이상 560㎚ 이하) 및 청색 파장 영역(예를 들어, 430㎚ 이상 480㎚ 이하)에서 피크 파장을 포함한다. 피크 파장(peak wavelength)이란, 광의 강도(intensity) 또는 광의 세기가 다른 영역 대비 높은 값을 갖는 파장을 말한다. 즉, 광원(100)의 특정 광(L)은, 적색 광, 녹색 광 및 청색 광이 높은 강도를 가지며, 각각의 광이 혼합되어 백색 광이 방출된다. 2, the specific light L emitted from the light source 100 includes a plurality of peak wavelengths, and specifically, a red wavelength region (eg, 600 nm or more and 650 nm or less), a green wavelength region ( For example, 520 nm or more and 560 nm or less) and a peak wavelength in a blue wavelength range (for example, 430 nm or more and 480 nm or less) are included. The peak wavelength refers to a wavelength having a higher value than a region in which the intensity or intensity of light is different. That is, the specific light L of the light source 100 has a high intensity of red light, green light, and blue light, and the respective light is mixed to emit white light.
따라서, 광원(100)의 특정 광(L)이 도 1에 도시된 액정 패널(400)의 컬러 필터(471), 구체적으로, 적색, 녹색 및 청색의 컬러 필터를 통과하면서 발생 가능한 컬러 필터(471)에 의한 광 손실이 최소화되어 표시 장치(1000)의 고해상도 또는 고색재현율을 구현하는 데 용이할 수 있다. 광원(100)은, 발광 다이오드와 적어도 하나의 형광체, 예를 들어, 청색의 발광 다이오드, 적색 형광체 및 녹색 형광체를 이용하여 제작될 수 있다. Accordingly, the color filter 471 that can be generated while the specific light L of the light source 100 passes through the color filter 471 of the liquid crystal panel 400 shown in FIG. 1, specifically, the red, green, and blue color filters. ) May be minimized, and thus it may be easy to implement high resolution or high color reproducibility of the display device 1000. The light source 100 may be manufactured using a light emitting diode and at least one phosphor, for example, a blue light emitting diode, a red phosphor, and a green phosphor.
앞서 언급하였듯이, 발광 다이오드의 파장 및 형광체들의 파장 각각을 제어하는 것 또는, 서로 간의 색 조합, 형광체의 재료적인 한계로 인해 원하는 피크 파장의 특성, 구체적으로, 강도(intensity)나 반치폭(full width at half maximum, FWHM)을 조절하는 것이 제조 상 어려운 문제일 수 있다. 이로 인해, 도 2에 도시된 바와 같이, 복수의 피크 파장 중 하나, 예를 들어, 적색 광의 피크 파장의 반치폭이, 다른 피크 파장들의 반치폭과 비교하여, 매우 좁은 값을 가질 수 있다. 반치폭(FWHM)은, 피크 파장의 최대 강도(intensity) 값을 기준으로, 강도가 2분의 1이 되는 지점의 파장 폭을 말한다.As mentioned above, controlling the wavelengths of the light emitting diodes and the wavelengths of the phosphors, or the combination of colors with each other, the material limitations of the phosphors, may lead to the characteristics of the desired peak wavelength, in particular intensity or full width at Adjusting half maximum (FWHM) can be a difficult manufacturing problem. For this reason, as shown in FIG. 2, one half of the plurality of peak wavelengths, for example, the half width of the peak wavelength of the red light, may have a very narrow value compared with the half width of the other peak wavelengths. The full width at half maximum (FWHM) refers to the wavelength width at a point where the intensity becomes one half of the maximum intensity value of the peak wavelength.
도 2를 참고하면, 특정 광(L)은 청색 파장 영역인 약 447㎚에서 피크 파장(G-peak)을 가지며, 해당 피크 파장의 반치폭(B-FWHM)은 약 20㎚의 값을 갖는다. 또한, 특정 광(L)은 녹색 파장 영역인 약 538㎚에서 피크 파장(G-peak)을 가지며, 해당 피크 파장의 반치폭(G-FWHM)은 약 54㎚의 값을 갖는다. 또한, 특정 광(L)은 적색 파장 영역인 약 631㎚에서 피크 파장(R-peak)을 가지며, 해당 피크 파장의 반치폭(R-FWHM)은 약 4㎚로, 녹색 광의 피크 파장(G-peak) 또는 청색 광의 피크 파장(B-peak)과 비교하여, 상대적으로 매우 좁게 형성된다. 즉, 적색 광의 피크 파장의 반치폭(R-FWHM)은 녹색 광의 피크 파장의 반치폭(G-FWHM) 또는 청색 광의 피크 파장의 반치폭(B-FWHM)과 비교하여 25% 이하의 값을 가짐으로써, 상대적으로 매우 좁게 형성된다고 볼 수 있다.Referring to FIG. 2, the specific light L has a peak wavelength (G-peak) at about 447 nm, which is a blue wavelength region, and the half-width (B-FWHM) of the peak wavelength has a value of about 20 nm. In addition, the specific light L has a peak wavelength (G-peak) at about 538 nm, which is a green wavelength region, and the half-width (G-FWHM) of the peak wavelength has a value of about 54 nm. In addition, the specific light L has a peak wavelength (R-peak) at about 631 nm, which is a red wavelength region, and the half-width (R-FWHM) of the corresponding peak wavelength is about 4 nm, and a peak wavelength (G-peak) of green light. Or relatively narrow compared to the peak wavelength (B-peak) of blue light. That is, the half-width (R-FWHM) of the peak wavelength of the red light has a value of 25% or less compared with the half-width (G-FWHM) of the peak wavelength of the green light or the half-width (B-FWHM) of the peak wavelength of the blue light. It can be seen that it is formed very narrow.
상기와 같이 광의 피크 파장의 반치폭이 상대적으로 매우 작은 값을 갖는 경우, 액정 패널(400)을 바라보는 시야각에 따라 광이 크게 시프트(shift)되거나 강도가 저하되는 등의 시야각 의존성이 높아지는 문제가 발생될 수 있다. As described above, when the half width of the peak wavelength of the light has a relatively small value, a problem arises in that the viewing angle dependency such as the light shifts greatly or the intensity decreases according to the viewing angle facing the liquid crystal panel 400. Can be.
본 발명의 일 실시예에 따른 표시 장치(1000)는, 제조 상의 어려움으로 인해 상기와 같이 좁은 반치폭의 피크 파장을 포함하는 특정 광(L)을 방출하는 광원(100)을 적용하더라도, 액정 패널(400)의 절연층 구조물을 최적화함으로써, 시야각 의존성이 최소화될 수 있다. 이에 대해 다시 도 1을 참고하여 설명하면 다음과 같다. In the display device 1000 according to the exemplary embodiment of the present invention, even when the light source 100 that emits a specific light L including the peak wavelength having a narrow half-width as described above is applied due to manufacturing difficulties, By optimizing the insulating layer structure of 400, the viewing angle dependency can be minimized. This will be described with reference to FIG. 1 again.
도 1을 참고하면, 액정 패널(400)은 제1 기판(411), 박막 트랜지스터(420), 절연층 구조물(430), 전극부(440), 액정층(460), 블랙 매트릭스(471), 컬러 필터(472) 및 제2 기판(412)을 포함한다. Referring to FIG. 1, the liquid crystal panel 400 includes a first substrate 411, a thin film transistor 420, an insulating layer structure 430, an electrode unit 440, a liquid crystal layer 460, a black matrix 471, The color filter 472 and the second substrate 412 are included.
액정 패널(400)의 제1 기판(411) 또는 제2 기판(412)은 화소 영역(pixel area, PA) 및 비 화소 영역(non-pixel area, NPA)을 포함한다. 화소 영역(PA)은, 실제 빛이 발광되는 최소 단위의 영역을 말하며, 인접하는 두 개의 화소 영역(PA) 사이에는 화소 영역(PA)을 구분한다. 또한, 이러한 화소 영역(PA)은 빛이 발광되는 영역으로 개구부로 지칭될 수 있다. 비화소 영역(NPA)은 빛이 발광되지 않는 영역으로, 비개구부로 지칭될 수 있다. 화소 영역(PA)은 서브-화소 또는 화소로 지칭될 수 있다. 도면에 도시되진 않았으나, 복수의 화소 영역(PA)이 모여 백색의 빛을 표현하는 최소의 군(group)이 될 수 있으며, 예를 들어, 세 개의 화소가 하나의 군으로서, 각각 적색 화소(red pixel), 녹색 화소(green pixel), 청색 화소(blue pixel)가 하나의 군을 이룰 수 있다. 이때, 각각의 화소에는, 광원(100)의 백색 광(L)을 각각의 화소에 맞게 변환시키기 위한 컬러 필터(472)가 배치되며, 각각 적색 컬러 필터, 녹색 컬러 필터, 청색 컬러 필터가 배치될 수 있다.The first substrate 411 or the second substrate 412 of the liquid crystal panel 400 includes a pixel area (PA) and a non-pixel area (NPA). The pixel area PA refers to an area of a minimum unit where actual light is emitted, and distinguishes the pixel area PA between two adjacent pixel areas PA. In addition, the pixel area PA is an area in which light is emitted and may be referred to as an opening. The non-pixel area NPA is a region in which light is not emitted and may be referred to as a non-opening part. The pixel area PA may be referred to as a sub-pixel or a pixel. Although not shown in the drawings, the plurality of pixel areas PA may be a minimum group that represents white light. For example, three pixels may be one group, and each of the red pixels may be red. A pixel, a green pixel, and a blue pixel may form a group. In this case, a color filter 472 for converting the white light L of the light source 100 to each pixel is disposed in each pixel, and a red color filter, a green color filter, and a blue color filter are respectively disposed. Can be.
제1 기판(411) 또는 제2 기판(412)은, 절연 물질로 이루어질 수 있으며, 예를 들어, 유리 또는 폴리이미드(polyimide) 계열의 재료로 이루어진 플렉서블 필름으로 이루어질 수 있다.The first substrate 411 or the second substrate 412 may be made of an insulating material, and may be made of, for example, a flexible film made of glass or polyimide-based material.
제1 기판(411)의 비 화소 영역(NPA) 상에는 박막 트랜지스터(420)가 배치된다. 박막 트랜지스터(420)는 액정층(460)을 구동하는 전극부(440)에 신호를 공급한다. The thin film transistor 420 is disposed on the non-pixel region NPA of the first substrate 411. The thin film transistor 420 supplies a signal to the electrode unit 440 driving the liquid crystal layer 460.
박막 트랜지스터(420)는 게이트 전극(421), 액티브층(422), 소스 전극(423) 및 드레인 전극(424)을 포함한다. 도 1을 참고하면, 제1 기판(411) 상에 게이트 전극(421)이 형성되고, 제1 절연층(431)이 게이트 전극(421)을 덮는다. 제1 절연층(431) 상에는 게이트 전극(421)과 중첩(overlap)되도록 액티브층(422)이 배치되고, 액티브층(422) 상에는 소스 전극(423) 및 드레인 전극(424)이 서로 이격되어 배치된다. The thin film transistor 420 includes a gate electrode 421, an active layer 422, a source electrode 423, and a drain electrode 424. Referring to FIG. 1, a gate electrode 421 is formed on a first substrate 411, and a first insulating layer 431 covers the gate electrode 421. The active layer 422 is disposed on the first insulating layer 431 to overlap the gate electrode 421, and the source electrode 423 and the drain electrode 424 are spaced apart from each other on the active layer 422. do.
본 명세서에서, 두 개의 객체가 중첩(overlap)된다는 것은, 두 개의 객체의 상하 관계에 있어서 그 사이에 다른 객체의 존재 유무를 떠나 적어도 일부분이 겹친다는 의미를 가질 수 있으며, 다른 다양한 명칭으로도 호칭될 수도 있다.In the present specification, the overlapping of two objects may mean that at least a portion overlaps with each other regardless of the existence of another object in a vertical relationship between the two objects, and is also referred to by various other names. May be
게이트 전극(421), 소스 전극(423) 및 드레인 전극(424)은 도전 물질로 이루어지며, 예를 들어, 몰리브덴(Mo), 알루미늄(Al), 크롬(Cr), 금(Au), 티타늄(Ti), 니켈(Ni), 네오디뮴(Nd) 및 구리(Cu) 중 어느 하나 또는 이들의 합금으로 이루어질 수 있으나, 이에 제한되지 않고, 다양한 물질로 형성될 수 있다.The gate electrode 421, the source electrode 423, and the drain electrode 424 are made of a conductive material. For example, molybdenum (Mo), aluminum (Al), chromium (Cr), gold (Au), and titanium ( One of Ti), nickel (Ni), neodymium (Nd), and copper (Cu) or alloys thereof, but is not limited thereto, and may be formed of various materials.
액티브층(422)은 산화물 반도체(oxide semiconductor), 예를 들어, InGaZnO, InGaO, InSnZnO 중 어느 하나로 이루어질 수 있으나, 이에 제한되지 않는다.The active layer 422 may be formed of any one of an oxide semiconductor, for example, InGaZnO, InGaO, or InSnZnO, but is not limited thereto.
제1 기판(411)과 전극부(440) 사이에 구성된 적어도 하나의 절연층은 절연층 구조물(430)로 지칭될 수 있다. 도 1을 참고하면, 절연층 구조물(430)은 제1 절연층(431), 제2 절연층(432) 또는 제3 절연층(433) 중 적어도 하나를 포함할 수 있다.At least one insulating layer formed between the first substrate 411 and the electrode unit 440 may be referred to as an insulating layer structure 430. Referring to FIG. 1, the insulating layer structure 430 may include at least one of the first insulating layer 431, the second insulating layer 432, or the third insulating layer 433.
제1 절연층(431)은 게이트 전극(421) 상에 배치되며, 게이트 전극(421)과 액티브층(422), 또는 게이트 전극(421)과 소스 전극(423) 및 드레인 전극(424)을 절연한다. 제1 절연층(431)은 게이트 절연층으로 지칭될 수 있다.The first insulating layer 431 is disposed on the gate electrode 421, and insulates the gate electrode 421 and the active layer 422, or the gate electrode 421, the source electrode 423, and the drain electrode 424. do. The first insulating layer 431 may be referred to as a gate insulating layer.
제2 절연층(432)은 박막 트랜지스터(420)를 보호하기 위한 층으로, 소스 전극(423) 및 드레인 전극(424)을 덮도록 배치된다. 제2 절연층(432)은 패시베이션층으로 지칭될 수 있다.The second insulating layer 432 is a layer for protecting the thin film transistor 420 and is disposed to cover the source electrode 423 and the drain electrode 424. The second insulating layer 432 may be referred to as a passivation layer.
제1 절연층(431)과 제2 절연층(432)은 무기 물질로 이루어진 단일층으로 구성될 수 있으며, 예를 들어, 실리콘 질화물(SiNx)로 이루어질 수 있다. 도 1에서는, 액정 패널(400)의 제1 절연층(431)과 제2 절연층(432)이 단일층으로 이루어지는 것으로 기술하였으나, 이에 한정되지 않는다. 다시 말해, 제1 절연층(431)과 제2 절연층(432)은 복수의 층으로 이루어질 수 있다. The first insulating layer 431 and the second insulating layer 432 may be composed of a single layer made of an inorganic material, for example, silicon nitride (SiN x ). In FIG. 1, although the first insulating layer 431 and the second insulating layer 432 of the liquid crystal panel 400 are described as being made of a single layer, the present invention is not limited thereto. In other words, the first insulating layer 431 and the second insulating layer 432 may be formed of a plurality of layers.
제1 절연층(431)과 제2 절연층(432)이 복수의 층으로 이루어진다면, 예를 들어, 실리콘 질화물(SiNx)와 실리콘 산화물(SiO2)의 이중 구조를 가질 수 있다. 특히, 액티브층(422)이 산화물 반도체로 이루어지는 경우, 산화물 반도체의 특성 상 공기 중의 산소(O2)의 흡착/탈착에 의해서, 또한, 수분에서 공급되는 수소(H)에 따라서도 전기적 특성이 많이 달라질 수 있다. 이러한 산화물 반도체의 전기적 특성의 변화를 방지하기 위해 배리어 특성이 우수한 실리콘 질화물(SiNx)이 배치될 수 있다. 그러나, 실리콘 질화물(SiNx)은 증착하는 과정에서 주입되는 수소에 의해 산화물 반도체의 특성을 변화시킬 수 있기 때문에 이를 최소화하기 위해 실리콘 산화막(SiO2)을 더 포함하는 구조를 가질 수 있다. 상술한 바와 같이, 제1 절연층(431)과 제2 절연층(432)이 복수의 층으로 구성되는 실시예에 대한 보다 상세한 설명은 도 6 내지 도 9를 참조하여 후술하기로 한다. 제3 절연층(433)은 평탄한 상면을 갖는 층으로, 제2 절연층(432) 상에 배치된다. 제3 절연층(433)은 유기 물질로 이루어진 단일층 또는 복수의 층으로 구성될 수 있으며, 예를 들어, 폴리염화알루미늄(PAC), 폴리이미드(polyimide) 또는 아크릴(acryl)로 이루어질 수 있다. 제3 절연층(433)은 평탄화층으로 지칭될 수 있다.If the first insulating layer 431 and the second insulating layer 432 are formed of a plurality of layers, for example, a double structure of silicon nitride (SiNx) and silicon oxide (SiO 2 ) may be provided. In particular, in the case where the active layer 422 is made of an oxide semiconductor, due to the characteristics of the oxide semiconductor, due to the adsorption / desorption of oxygen (O 2 ) in the air, the electrical characteristics are also increased depending on the hydrogen (H) supplied from the moisture. Can vary. In order to prevent the electrical characteristics of the oxide semiconductor from changing, silicon nitride (SiNx) having excellent barrier properties may be disposed. However, since silicon nitride (SiNx) may change the characteristics of the oxide semiconductor by hydrogen injected during the deposition process, silicon nitride (SiNx) may have a structure further including a silicon oxide film (SiO 2 ). As described above, a detailed description of an embodiment in which the first insulating layer 431 and the second insulating layer 432 are formed of a plurality of layers will be described later with reference to FIGS. 6 to 9. The third insulating layer 433 is a layer having a flat upper surface and is disposed on the second insulating layer 432. The third insulating layer 433 may be composed of a single layer or a plurality of layers made of an organic material. For example, the third insulating layer 433 may be made of polyaluminum chloride (PAC), polyimide, or acryl. The third insulating layer 433 may be referred to as a planarization layer.
제2 절연층(432)과 제3 절연층(433)은 드레인 전극(424)을 노출하는 컨택부를 포함하며, 컨택부를 통해 전극부(440)와 박막 트랜지스터(420)는 전기적으로 연결된다. 도면에 도시되진 않았으나, 제2 절연층(432)과 제3 절연층(433)은, 박막 트랜지스터(420)의 종류에 따라, 소스 전극(423)을 노출하는 컨택부를 포함할 수 있다. The second insulating layer 432 and the third insulating layer 433 include a contact portion exposing the drain electrode 424, and the electrode portion 440 and the thin film transistor 420 are electrically connected through the contact portion. Although not illustrated, the second insulating layer 432 and the third insulating layer 433 may include a contact portion exposing the source electrode 423 according to the type of the thin film transistor 420.
본 발명의 일 실시예에 따른 표시 장치(1000)의 절연층 구조물(430)은 제1 절연층(431), 제2 절연층(432) 및 제3 절연층(433) 중 적어도 하나를 포함하며, 절연층 구조물(430)이 화소 영역(PA)과 비 화소 영역(NPA)에 서로 상이하게 구성됨으로써, 좁은 반치폭의 피크 파장을 포함하는 특정 광(L)이 액정 패널(400)에 공급되는 구조에서의 시야각 의존성이 최소화될 수 있다. The insulating layer structure 430 of the display device 1000 according to the exemplary embodiment of the present invention includes at least one of the first insulating layer 431, the second insulating layer 432, and the third insulating layer 433. The insulating layer structure 430 is configured to be different from each other in the pixel area PA and the non-pixel area NPA, so that a specific light L including a peak wavelength having a narrow half width is supplied to the liquid crystal panel 400. The viewing angle dependence at can be minimized.
앞서 언급하였듯이, 광원(100)의 특정 광(L)이 액정 패널(400)을 통과하는 경우, 액정 패널(400)의 복수의 박막층들, 다시 말하면, 절연층 구조물(430)에 포함된 복수의 절연층들 간의 굴절률 차이에 의해 시야각에 따른 색 분리 현상이 더욱 증가될 수 있다. 특히, 시야각에 따른 색 분리 현상은, 좁은 반치폭을 갖는 피크 파장을 갖는 광일수록 급격하게 증가될 수 있다. 색 분리 현상이란, 보는 상태에 따라 특정 광의 투과율이 변동(oscillation)되어 색이 분리되는 것처럼 보이는 현상으로, 박막층들 간의 굴절률 차이가 클수록 또는 좁은 반치폭을 갖는 광일수록 색 분리 현상은 급격하게 증가될 수 있다. 즉, 도 2에서 설명한 광원(100)의 특정 광(L)에 포함된 복수의 피크 파장들 중 좁은 반치폭을 갖는 적색 광은, 상대적으로 반치폭이 큰 청색 광이나 녹색 광과 비교하여, 복수의 박막층들 간의 굴절률 차이에 의한 시야각에 따른 투과율 변동이 더욱 커지게 된다. 이로 인해 적색 광의 색 분리 현상은 더욱 증가되고, 시야각에 따른 색재현율의 변동 또한 증가되어 표시 장치(1000)의 표시 품질이 저하되는 심각한 문제가 발생될 수 있다.As mentioned above, when the specific light L of the light source 100 passes through the liquid crystal panel 400, the plurality of thin film layers of the liquid crystal panel 400, that is, the plurality of thin layers included in the insulating layer structure 430. The color separation phenomenon according to the viewing angle may be further increased by the difference in refractive index between the insulating layers. In particular, the color separation phenomenon according to the viewing angle may increase rapidly with light having a peak wavelength having a narrow half width. The color separation phenomenon is a phenomenon in which the transmittance of a specific light is oscillated and color is separated according to the viewing state. The color separation phenomenon may increase rapidly as the difference in refractive index between the thin film layers or the light having a narrow half width is increased. have. That is, among the plurality of peak wavelengths included in the specific light L of the light source 100 described with reference to FIG. 2, the red light having a narrow half-value width is compared with the blue light or green light having a relatively half-value width, and thus, the plurality of thin film layers. Transmittance fluctuation according to the viewing angle due to the difference in refractive index between them becomes larger. As a result, the color separation phenomenon of the red light is further increased, and the variation in the color reproducibility according to the viewing angle is also increased, which may cause a serious problem in that the display quality of the display device 1000 is degraded.
본 발명의 일 실시예에서는, 화소 영역(PA)과 비 화소 영역(NPA)의 절연층 구조물을 각각 상이하게 구성함으로써, 좁은 반치폭을 갖는 적색 광이 통과되더라도 시야각에 따른 투과율 변동이 최소화될 수 있다. 구체적으로 설명하면, 화소 영역(PA)에 대응하는 복수의 절연층들 간의 굴절률 차이를 최소화하여 적색 광이 통과되더라도 시야각에 따른 투과율 변동이 최소화되도록 구성할 수 있다. 다시 말하면, 화소 영역(PA)의 절연층 구조물(430)은 제1 기판(411)의 굴절률과 실질적으로 일치하는 물질로 이루어진 절연층으로만 구성함으로써, 화소 영역(PA)에서의 절연층들 간의 굴절률 차이를 최소화할 수 있다. 여기서, 두 개의 층의 굴절률이 실질적으로 일치하다는 것은, 두 개의 층을 이루는 각각의 물질들 간의 굴절률 차이가 실질적으로 일치하다는 것을 의미하고, 구체적으로 각각의 물질들 간의 굴절률 차이가 0.05 이하인 경우 두 개의 층의 굴절률은 실질적으로 일치한다고 볼 수 있다. According to an embodiment of the present invention, the insulating layer structures of the pixel area PA and the non-pixel area NPA are configured differently, so that the variation in transmittance according to the viewing angle may be minimized even when red light having a narrow half width is passed. . In detail, the difference in refractive index between the plurality of insulating layers corresponding to the pixel area PA may be minimized so that variation in transmittance according to the viewing angle may be minimized even when red light passes. In other words, the insulating layer structure 430 of the pixel area PA may be formed of only an insulating layer made of a material that substantially matches the refractive index of the first substrate 411. The refractive index difference can be minimized. Here, the fact that the refractive indices of the two layers substantially coincide means that the difference in refractive indices between the materials constituting the two layers is substantially coincident, and specifically, when the difference in refractive indices between the two layers is 0.05 or less, It can be seen that the refractive indices of the layers are substantially coincident.
제1 기판(411)이 유리로 이루어진 경우, 제1 기판(411)의 굴절률은 약 1.5 이고, 제1 절연층(431)과 제2 절연층(432)이 실리콘 질화물(SiNx)로 이루어진 경우, 제1 절연층(431)과 제2 절연층(431)의 굴절률은 약 1.88 이 된다. 또한, 제3 절연층(433)이 포토아크릴컴파운드(photo acryl compound, PAC)로 이루어진 경우, 제3 절연층(433)의 굴절률은 약 1.5 가 된다. 이때, 좁은 반치폭을 갖는 적색 광이 화소 영역(PA)에 대응하는 제1 기판(411), 제1 절연층(431), 제2 절연층(432) 및 제3 절연층(433)을 통과하게 되면, 제1 기판(411)과 제1 절연층(431) 간의 굴절률 차이 및 제2 절연층(432)과 제3 절연층(433) 간의 굴절률 차이에 의해서 적색 광의 시야각에 따른 투과율 변동(oscillation)이 증가되는 문제가 발생될 수 있다. When the first substrate 411 is made of glass, the refractive index of the first substrate 411 is about 1.5, and when the first insulating layer 431 and the second insulating layer 432 are made of silicon nitride (SiNx), The refractive index of the first insulating layer 431 and the second insulating layer 431 is about 1.88. In addition, when the third insulating layer 433 is made of a photo acryl compound (PAC), the refractive index of the third insulating layer 433 is about 1.5. In this case, the red light having a narrow half width passes through the first substrate 411, the first insulating layer 431, the second insulating layer 432, and the third insulating layer 433 corresponding to the pixel area PA. When the refractive index difference between the first substrate 411 and the first insulating layer 431 and the refractive index difference between the second insulating layer 432 and the third insulating layer 433 is changed, the transmittance variation according to the viewing angle of red light This increasing problem can occur.
따라서, 도 1에 도시된 바와 같이, 화소 영역(PA)에서 제1 절연층(431)과 제2 절연층(432)을 제거하게 되면, 다시 말하면 제1 절연층(431)과 제2 절연층(432)이 비 화소 영역(NPA)에만 배치되고 화소 영역(PA)으로 연장되지 않도록 구성되면, 화소 영역(PA)의 절연층들 간의 굴절률 차이가 거의 없으므로, 좁은 반치폭을 갖는 적색 광이 화소 영역(PA)을 통과하더라도 시야각에 따른 투과율 변동이 최소화될 수 있다. 이에 따라, 시야각에 따른 색 분리 현상 및 색재현율 변동이 감소되며, 표시 장치(1000)의 표시 품질이 저하되는 문제가 해결될 수 있다.Therefore, as shown in FIG. 1, when the first insulating layer 431 and the second insulating layer 432 are removed from the pixel area PA, that is, the first insulating layer 431 and the second insulating layer are removed. When 432 is disposed only in the non-pixel area NPA and is configured not to extend to the pixel area PA, since there is almost no difference in refractive index between the insulating layers of the pixel area PA, red light having a narrow half width is the pixel area. Even if it passes through (PA), the transmittance variation according to the viewing angle can be minimized. Accordingly, the color separation phenomenon and the variation in color reproducibility according to the viewing angle are reduced, and the display quality of the display device 1000 may be reduced.
절연층 구조물(430) 상에는, 액정층(460)을 구동하기 위한 전극부(440)가 배치된다. 전극부(440)는 공통 전극(441) 및, 공통 전극(441) 상에 패터닝된 화소 전극(442)을 포함하고, 공통 전극(441)과 화소 전극(442) 사이에는 제4 절연층(450)이 배치될 수 있다. 본 발명의 일 실시예에 있어서, 화소 영역(PA)과 비 화소 영역(NPA)은 공통 전극(441)의 끝 단(Z)으로 구분될 수 있으며, 공통 전극(441)의 끝 단이 화소 영역(PA)과 비 화소 영역(NPA)을 구분하는 경계선(Z)이 될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니며, 액정 패널(400)의 설계에 따라, 화소 영역(PA)과 비 화소 영역(NPA)은 블랙 매트릭스(471)와 컬러 필터(472) 사이의 경계선으로 구분될 수 있고, 블랙 매트릭스(471)의 끝 단으로만 구분될 수도 있다. 또한, 도면에는 화소 전극(442)이 공통 전극(441) 상에 배치되었으나, 액정층(460)의 구동 방법에 따라, 공통 전극(441)이 화소 전극(442) 상에 배치되거나 공통 전극(441)과 화소 전극(442)이 동일 평면 상에 배치될 수도 있다. The electrode unit 440 for driving the liquid crystal layer 460 is disposed on the insulating layer structure 430. The electrode unit 440 includes a common electrode 441 and a pixel electrode 442 patterned on the common electrode 441, and a fourth insulating layer 450 between the common electrode 441 and the pixel electrode 442. ) May be arranged. In an exemplary embodiment, the pixel area PA and the non-pixel area NPA may be divided into the end Z of the common electrode 441, and the end of the common electrode 441 is the pixel area. It may be a boundary line Z that separates the PA from the non-pixel area NPA. However, the present invention is not limited thereto, and according to the design of the liquid crystal panel 400, the pixel area PA and the non-pixel area NPA may be divided by a boundary line between the black matrix 471 and the color filter 472. It may be distinguished only by the end of the black matrix 471. In addition, although the pixel electrode 442 is disposed on the common electrode 441 in the drawing, the common electrode 441 is disposed on the pixel electrode 442 or the common electrode 441 depending on the driving method of the liquid crystal layer 460. ) And the pixel electrode 442 may be disposed on the same plane.
도 1을 참고하면, 제2 절연층(432)의 끝 단(Y)이 제1 절연층(431)의 끝 단(X)보다 화소 영역(PA)과 비 화소 영역(NPA) 사이의 경계면(Z) 또는 공통 전극(441)의 끝 단(Z)에 가깝게 위치함으로써, 다시 말하면 비 화소 영역(NPA)에 배치된 제2 절연층(432)이 제1 절연층(431)의 측면을 덮도록 구성됨으로써, 외부의 수분(H2O) 또는 수소(H2) 등이 층들간의 계면을 통해 침투되는 경로가 길어지므로, 보다 효과적으로 박막 트랜지스터(420)가 보호될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니며, 제조 방법에 따라, 제1 절연층(431)과 제2 절연층(432)이 동시에 제거됨으로써, 제1 절연층(431)의 끝 단(X)과 제2 절연층(432)의 끝 단(Y)이 동일 평면 상에 위치할 수도 있다.Referring to FIG. 1, an end Y of the second insulating layer 432 is formed at an interface between the pixel area PA and the non-pixel area NPA than the end X of the first insulating layer 431. Z, or close to the end Z of the common electrode 441, that is, the second insulating layer 432 disposed in the non-pixel region NPA covers the side surface of the first insulating layer 431. Since the path through which external moisture (H 2 O), hydrogen (H 2 ), or the like penetrates through the interface between the layers becomes long, the thin film transistor 420 may be more effectively protected. However, the present invention is not necessarily limited thereto, and according to the manufacturing method, the first insulating layer 431 and the second insulating layer 432 are removed at the same time, whereby the end X and the second end of the first insulating layer 431 are removed. The end Y of the insulating layer 432 may be located on the same plane.
도 1에서는, 제1 기판(411)의 비 화소 영역(NPA)의 박막 트랜지스터(420)가 스태거드(staggered) 구조로 도시되었으나, 이제 한정된 것은 아니며, 코플라나(coplanar) 구조로 형성될 수도 있다. 박막 트랜지스터(420)가 코플라나 구조인 경우, 액티브층, 게이트 절연층, 게이트 전극, 층간 절연층, 소스 전극 및 드레인 전극이 차례로 적층된 구조를 가진다. 이때, 게이트 절연층과 층간 절연층이 제1 기판(411)의 굴절률과 상이한 물질로 이루어진 경우, 게이트 절연층과 층간 절연층은 화소 영역(PA)으로 연장되지 않도록 구성될 수 있다. 이에 따라, 좁은 반치폭을 갖는 적색 광이 화소 영역(PA)을 통과하더라도 시야각에 따른 투과율 변동이 감소되고, 이로 인한 색재현율 변동이 감소되어 표시 장치(1000)의 표시 품질이 저하되는 문제가 최소화될 수 있다. 게이트 절연층 또는 층간 절연층은 제1 절연층으로 지칭될 수 있다.In FIG. 1, the thin film transistor 420 of the non-pixel area NPA of the first substrate 411 is illustrated as a staggered structure, but is not limited thereto, and may be formed as a coplanar structure. have. When the thin film transistor 420 has a coplanar structure, the thin film transistor 420 has a structure in which an active layer, a gate insulating layer, a gate electrode, an interlayer insulating layer, a source electrode, and a drain electrode are sequentially stacked. In this case, when the gate insulating layer and the interlayer insulating layer are made of a material different from the refractive index of the first substrate 411, the gate insulating layer and the interlayer insulating layer may not be extended to the pixel area PA. Accordingly, even if the red light having a narrow half width passes through the pixel area PA, the transmittance variation according to the viewing angle is reduced, thereby reducing the variation in color reproduction rate, thereby minimizing the problem of deterioration of the display quality of the display device 1000. Can be. The gate insulating layer or the interlayer insulating layer may be referred to as a first insulating layer.
본 발명의 일 실시예는, 제1 기판(411)의 비 화소 영역(NPA)에 위치하며, 게이트 전극(421), 액티브층(422), 소스 전극(423) 및 드레인 전극(424)을 포함하는 박막 트랜지스터(420)가, 게이트 전극(421)과 소스 전극(423) 및 드레인 전극(424)을 절연하는 제1 절연층(431) 및 소스 전극(423) 및 드레인 전극(424)을 덮는 제2 절연층(432)을 포함한다고 볼 수도 있다. 이때, 제1 기판(411)에 대하여, 광원(100)의 특정 광(L)이 화소 영역(PA)으로 통과하면서 발생 가능한 시야각에 따른 투과율 변동(oscillation)이 최소화되도록, 제1 절연층(431) 및 제2 절연층(432)이 화소 영역(PA)으로 연장되지 않도록 구성된다 이에 따라, 광원(100)의 특정 광(L)에 포함된 상대적으로 좁은 반치폭을 갖는 피크 파장의 색 분리 현상이 최소화되어 표시 장치(1000)의 표시 품질이 저하되는 문제가 개선될 수 있다. An embodiment of the present invention is positioned in the non-pixel region NPA of the first substrate 411 and includes a gate electrode 421, an active layer 422, a source electrode 423, and a drain electrode 424. The thin film transistor 420 covers the first insulating layer 431 and the source electrode 423 and the drain electrode 424 that insulate the gate electrode 421, the source electrode 423, and the drain electrode 424. It may be regarded as including a second insulating layer 432. In this case, with respect to the first substrate 411, the first insulating layer 431 to minimize transmission oscillation according to a viewing angle that may occur while the specific light L of the light source 100 passes through the pixel area PA. ) And the second insulating layer 432 do not extend to the pixel area PA. Accordingly, the color separation phenomenon of the peak wavelength having a relatively narrow half-value width included in the specific light L of the light source 100 is prevented. The problem of minimizing the display quality of the display device 1000 may be improved.
도 3는 본 발명의 일 실시예에 따른 표시 장치(1000)의 주요 구성 요소를 나타낸 단면도이며, 구체적으로, 화소 영역(PA)과 비 화소 영역(NPA)의 절연층 구조물(430)의 적층 구조를 개략적으로 비교한 단면도이다. 3 is a cross-sectional view illustrating main components of the display device 1000 according to an exemplary embodiment. In detail, a stacked structure of an insulating layer structure 430 of a pixel area PA and a non-pixel area NPA is illustrated. Is a cross-sectional view comparing schematically.
도 3을 참고하면, 비 화소 영역(NPA)의 절연층 구조물(430N)은 제1 절연층(431), 제2 절연층(432) 및 제3 절연층(433)을 포함한다. 이와 비교하여, 화소 영역(PA)의 절연층 구조물(430P)은 제1 기판(411)과 굴절률이 상이한 물질로 이루어진 제1 절연층(431)과 제2 절연층(432)은 제거되고, 제1 기판(411)과 굴절률이 실질적으로 일치하는 물질로 이루어진 제3 절연층(433)만 포함한다. 이때, 제1 절연층(431)과 제2 절연층(432)은, 예를 들어, 실리콘 질화물(SiNx)로 이루어질 수 있다.Referring to FIG. 3, the insulating layer structure 430N of the non-pixel area NPA includes a first insulating layer 431, a second insulating layer 432, and a third insulating layer 433. In comparison, in the insulating layer structure 430P of the pixel area PA, the first insulating layer 431 and the second insulating layer 432 made of a material having a different refractive index from that of the first substrate 411 are removed. Only the third insulating layer 433 made of a material having substantially the same refractive index as the first substrate 411 is included. In this case, the first insulating layer 431 and the second insulating layer 432 may be formed of, for example, silicon nitride (SiNx).
즉, 제1 기판(411) 상에 배치되는 복수의 절연층들 중에서, 제1 기판(411)의 굴절률과 상이한 물질로 이루어진 절연층을 화소 영역(PA)에서 제거함으로써, 화소 영역(PA)의 절연층 구조물(430P)의 절연층 수가 비 화소 영역(NPA)의 절연층 구조물(430N)의 수보다 적을 수 있다. 이에 따라, 화소 영역(PA)에 대응하는 제1 기판(411) 또는 절연층 사이의 굴절률 차이가 없어지므로, 좁은 반치폭의 피크 파장을 포함하는 특정 광(L)의 시야각에 따른 투과율 변동 또한 감소될 수 있다.That is, among the plurality of insulating layers disposed on the first substrate 411, the insulating layer made of a material different from the refractive index of the first substrate 411 is removed from the pixel area PA, thereby removing the pixel area PA. The number of insulating layers of the insulating layer structure 430P may be smaller than the number of insulating layer structures 430N of the non-pixel area NPA. Accordingly, since the difference in refractive index between the first substrate 411 or the insulating layer corresponding to the pixel area PA is eliminated, the transmittance fluctuation according to the viewing angle of the specific light L including the peak wavelength of narrow half-width is also reduced. Can be.
이상 도 1 내지 도 3에서 설명한 바와 같이, 고해상도 또는 고색재현율을 구현하기 위해, 제1 피크 파장(예를 들어, 녹색 피크 파장 또는 청색 피크 파장) 및, 제1 피크 파장의 반치폭과 비교하여 25% 이하의 반치폭을 갖는 제2 피크 파장(예를 들어, 적색 피크 파장)을 포함하는 특정 광(L)이 액정 패널(400)로 공급되는 구조에서, 광원의 특정 광(L)이 액정 패널(400)의 화소 영역(A)을 통과하면서 발생 가능한 시야각에 따른 투과율 변동, 구체적으로, 제2 피크 파장의 광(예를 들어, 적색 광)의 투과율 변동이 최소화되도록, 화소 영역(PA)의 절연층 구조물(430P)과 비 화소 영역(NPA)의 절연층 구조물(430N)이 상이하게 구성된다. 즉, 절연층 구조물(430)에 포함된 복수의 절연층 중 제1 기판(411)의 굴절률과 실질적으로 일치하는 물질로 이루어진 층만 화소 영역(PA)에 배치된다. 구체적으로, 박막 트랜지스터(420)의 게이트 전극(421)과 소스 전극(423) 및 드레인 전극(424)을 절연하는 제1 절연층(431)과, 소스 전극(423)과 드레인 전극(424)을 덮는 제2 절연층(432)이 화소 영역(PA)으로 연장되지 않도록 구성된다. 이에 따라, 시야각에 따른 표시 장치(1000)의 색재현율의 변동이 최소화되므로, 표시 품질이 저하되는 문제가 해결될 수 있다. As described above with reference to FIGS. 1 to 3, in order to realize high resolution or high color reproducibility, the first peak wavelength (for example, the green peak wavelength or the blue peak wavelength) and the half width of the first peak wavelength are 25%. In the structure in which the specific light L including the second peak wavelength (for example, the red peak wavelength) having the following half width is supplied to the liquid crystal panel 400, the specific light L of the light source is the liquid crystal panel 400. The insulating layer of the pixel area PA such that the transmittance fluctuation according to the viewing angle that may occur while passing through the pixel area A of the X), specifically, the transmittance fluctuation of the light of the second peak wavelength (for example, red light) is minimized. The structure 430P and the insulating layer structure 430N of the non-pixel area NPA are configured differently. That is, only a layer made of a material substantially matching the refractive index of the first substrate 411 among the plurality of insulating layers included in the insulating layer structure 430 is disposed in the pixel area PA. In detail, the first insulating layer 431, which insulates the gate electrode 421, the source electrode 423, and the drain electrode 424 of the thin film transistor 420, and the source electrode 423 and the drain electrode 424 are separated from each other. The covering second insulating layer 432 does not extend to the pixel area PA. Accordingly, since the variation of the color reproducibility of the display apparatus 1000 according to the viewing angle is minimized, the problem of deterioration of display quality may be solved.
도 4a 및 도 4b는 비교예 및 본 발명의 일 실시예의 시야각에 따른 투과율 변동을 나타낸 그래프이다. 4A and 4B are graphs illustrating variation in transmittance according to viewing angles of a comparative example and an embodiment of the present invention.
도 4a는 비교예의 구조가 이용된 경우 시야각에 따른 투과율 변동을 나타낸 그래프이다. 도 4에서는 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역에서 피크 파장이 나타내어 진다. 도 4에서는 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된 특정 광이 액정 패널에 입사된다. 비교예의 구조는 화소 영역의 절연층 구조물과 비 화소 영역의 절연층 구조물이 동일한 구조를 갖는 표시 장치의 구조이며, 도 4a는 이러한 비교예에서 전술된 광이 입사된 경우 적색 광(RED), 녹색 광(GREEN) 및 청색 광(BLUE)의 시야각에 따른 투과율 변동을 나타낸다. 다시 말하면, 앞서 도 1 내지 도 3에서 설명한 제1 절연층 및 제2 절연층이 비 화소 영역 및 화소 영역에 배치된 표시 장치의 시야각에 따른 투과율 변동을 나타낸 그래프이다. Figure 4a is a graph showing the change in transmittance according to the viewing angle when the structure of the comparative example is used. In FIG. 4, peak wavelengths are shown in the red wavelength region, the green wavelength region, and the blue wavelength region. In FIG. 4, specific light in which the half width of the peak wavelength in the red wavelength region is narrower than the half width of the peak wavelength in the other wavelength region is incident on the liquid crystal panel. The structure of the comparative example is a structure of a display device in which the insulating layer structure of the pixel region and the insulating layer structure of the non-pixel region have the same structure, and FIG. 4A shows red light (RED) and green when the above-described light is incident in this comparative example. Transmittance fluctuations according to viewing angles of the light GREEN and the blue light BLUE are shown. In other words, the first and second insulating layers described above with reference to FIGS. 1 to 3 are graphs showing variation in transmittance according to the viewing angle of the display device in which the non-pixel region and the pixel region are disposed.
도 4a를 참고하면, 청색 광(BLUE)의 경우, 시야각 0도부터 70도 사이에서, 최대 투과율이 약 79%, 최소 투과율이 약 70% 이며, 변동 폭이 약 9%의 값을 갖는다. 또한, 녹색 광(GREEN)의 경우, 시야각 0도부터 70도 사이에서, 최대 투과율이 약 85%, 최소 투과율이 약 69% 이며, 변동 폭이 약 16% 의 값을 갖는다. 이와 비교하여, 적색 광(RED)의 경우, 시야각 0도부터 70도 사이에서, 최대 투과율이 약 90%, 최소 투과율이 약 62% 이고, 변동 폭이 약 28% 로, 청색 광(BLUE)이나 적색 광(GREEN) 대비, 각각 약 3.1배, 1.75배 변동 폭이 더 크게 발생하였음을 확인할 수 있다. 뿐만 아니라, 도 4a에 도시된 바와 같이, 시야각이 변화됨에 따라, 청색 광(BLUE) 또는 녹색 광(GREEN) 대비, 적색 광(RED)의 투과율의 높낮이의 진동이 여러 번 발생하였음을 확인할 수 있다. Referring to FIG. 4A, in the case of blue light (BLUE), the maximum transmittance is about 79%, the minimum transmittance is about 70%, and the variation range is about 9% between the viewing angles of 0 degrees to 70 degrees. In addition, in the case of green light, the maximum transmittance is about 85%, the minimum transmittance is about 69%, and the variation range is about 16% between the viewing angles of 0 degrees to 70 degrees. By comparison, red light (RED) has a maximum transmittance of about 90%, a minimum transmittance of about 62%, and a fluctuation range of about 28% between 0 and 70 degrees of viewing angle. It can be seen that the variation of about 3.1 times and 1.75 times occurred more significantly than the red light. In addition, as shown in FIG. 4A, as the viewing angle is changed, it may be confirmed that the vibration of the height of the transmittance of the red light RED occurs several times compared to the blue light or the green light. .
이와 비교하여, 도 4b는 본 발명의 일 실시예의 구조가 이용된 경우 시야각에 따른 투과율 변동을 나타낸 그래프이다. 비교예 구조에 대해서와 마찬가지로, 입사광은 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역에서 피크 파장을 가지며, 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된다. 도 4b는 이러한 특정 광이 화소 영역의 절연층 구조물과 비 화소 영역의 절연층 구조물이 상이한 구조를 갖는 표시 장치에 입사되는 경우의, 적색 광(RED), 녹색 광(GREEN) 및 청색 광(BLUE)의 시야각에 따른 투과율 변동을 나타낸다. 다시 말하면, 앞서 도 1 내지 도 3에서 설명한 제1 절연층 및 제2 절연층이 비 화소 영역에만 배치되고, 화소 영역으로 연장되지 않도록 구성된 표시 장치의 시야각에 따른 투과율 변동을 나타낸 그래프이다. In comparison, Figure 4b is a graph showing the transmittance variation according to the viewing angle when the structure of one embodiment of the present invention is used. Similarly to the structure of the comparative example, the incident light has a peak wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region, and the half width of the peak wavelength in the red wavelength region is configured to be smaller than the half width of the peak wavelength in the other wavelength region. 4B illustrates red light RED, green light GREEN, and blue light BLUE when such specific light is incident on a display device in which the insulating layer structure of the pixel region and the insulating layer structure of the non-pixel region are different from each other. The change in transmittance according to the viewing angle of In other words, the first insulating layer and the second insulating layer described with reference to FIGS. 1 to 3 are disposed only in the non-pixel region, and are graphs showing variation in transmittance according to the viewing angle of the display device configured not to extend to the pixel region.
도 4b를 참고하면, 청색 광(BLUE)의 경우, 시야각 0도부터 70도 사이에서, 최대 투과율이 약 78%, 최소 투과율이 약 68%이며, 변동 폭이 약 10%의 값을 갖는다. 또한, 녹색 광(GREEN)의 경우, 시야각 0도부터 70도 사이에서, 최대 투과율이 약 82%, 최소 투과율이 약 69%로, 변동 폭이 약 13% 의 값을 갖는다. 적색 광(RED)의 경우, 시야각 0도부터 70도 사이에서, 최대 투과율이 약 85%, 최소 투과율이 70%이고, 변동 폭이 약 15%이다. 즉, 청색 광(BLUE), 녹색 광(GREEN) 및 적색 광(RED)의 투과율 변동 폭은 유사한 값을 가지며, 도 4b에 도시된 바와 같이, 시야각이 변화됨에 따라, 청색 광(BLUE) 또는 녹색 광(GREEN) 및 적색 광(RED)의 투과율의 높낮이의 진동 커브 또한 유사한 형태를 갖는 것을 확인할 수 있다. 다시 말하면, 본 발명의 일 실시예에 따라, 화소 영역의 절연층 구조물과 비 화소 영역의 절연층 구조물이 상이하게 구성된 표시 장치에 있어서, 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된 특정 광이 액정 패널에 입사되는 경우, 화소 영역에서의 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역의 광의 시야각에 따른 투과율 변동 커브가 모두 유사한 형태를 갖는 것을 확인할 수 있다.Referring to FIG. 4B, in the case of blue light (BLUE), the maximum transmittance is about 78%, the minimum transmittance is about 68%, and the variation range is about 10% between the viewing angles of 0 degrees to 70 degrees. In addition, in the case of green light, the maximum transmittance is about 82%, the minimum transmittance is about 69%, and the variation range is about 13% between the viewing angles of 0 degrees to 70 degrees. In the case of red light (RED), between 0 and 70 degrees of viewing angle, the maximum transmittance is about 85%, the minimum transmittance is 70%, and the fluctuation range is about 15%. That is, the transmission fluctuation ranges of the blue light BLUE, the green light GREEN, and the red light RED have similar values, and as shown in FIG. 4B, as the viewing angle is changed, the blue light BLUE or green color is changed. It can be seen that the vibration curves of the heights of the transmittances of the light GREEN and the red light RED also have a similar shape. In other words, in a display device in which the insulating layer structure of the pixel region and the insulating layer structure of the non-pixel region are different according to an embodiment of the present invention, the peak wavelength of the wavelength region in which the half width of the peak wavelength of the red wavelength region is different When a specific light configured to be narrower than the half width of the incident light enters the liquid crystal panel, it can be seen that the transmittance variation curves of the red wavelength region, the green wavelength region, and the blue wavelength region in the pixel region all have similar shapes.
따라서, 도 4a 및 도 4b를 참고하면, 본 발명의 일 실시예에 따른 표시 장치의 제1 절연층과 제2 절연층이 화소 영역으로 연장되지 않도록 구성됨으로써, 좁은 반치폭을 갖는 피크 파장을 포함하는 특정 광이 화소 영역으로 통과하면서 발생 가능한 시야각에 따른 투과율 변동이 감소되는 효과가 있음을 알 수 있다. Therefore, referring to FIGS. 4A and 4B, the first insulating layer and the second insulating layer of the display device according to the exemplary embodiment of the present invention are configured not to extend to the pixel region, thereby including a peak wavelength having a narrow half width. It can be seen that there is an effect of reducing transmittance fluctuation according to a viewing angle that can be generated while specific light passes through the pixel region.
도 5a 및 도 5b는 비교예 및 본 발명의 일 실시예의 시야각에 따른 색좌표 변화를 나타낸 그래프이다. 5A and 5B are graphs illustrating changes in color coordinates according to viewing angles of a comparative example and an embodiment of the present invention.
도 5a에서 사용된 표시 장치는 도 4a에서 설명한 비교예의 구조를 가진다. 도 5a는 구체적으로, 화소 영역의 절연층 구조물과 비 화소 영역의 절연층 구조물이 동일한 구조를 갖는 표시 장치의 시야각에 따른 색좌표 변화(Δu')를 나타낸 그래프이다. 비교예 구조의 표시 장치에, 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역에서 피크 파장을 가지며, 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된 백색의 특정 광이 공급되는 경우, 도 5a에 도시된 바와 같이, 시야각이 변화됨에 따라 색좌표가 크게 변동됨을 확인할 수 있다. 즉, 앞서 설명하였듯이, 화소 영역의 절연층 구조물에 포함된 복수의 박막층들 간의 굴절률 차이에 의해 특정 광의 시야각에 따른 색 분리 현상이 증가되어 시야각의 변화에 따라 색좌표의 변동 또한 크게 발생됨을 알 수 있다. 이로 인해, 시야각에 따른 색재현율의 변동이 증가되므로, 표시 장치의 표시 품질이 저하되는 문제로 이어질 수 있다.The display device used in FIG. 5A has the structure of the comparative example described with reference to FIG. 4A. 5A is a graph illustrating color coordinate change Δu ′ according to a viewing angle of a display device in which the insulating layer structure of the pixel area and the insulating layer structure of the non-pixel area have the same structure. In a display device having a comparative example structure, white specific light having a peak wavelength in a red wavelength region, a green wavelength region, and a blue wavelength region, and having a half width of a peak wavelength of a red wavelength region narrower than a half width of a peak wavelength of another wavelength region, When supplied, as shown in Figure 5a, it can be seen that the color coordinate is greatly changed as the viewing angle is changed. That is, as described above, the color separation phenomenon according to the viewing angle of the specific light is increased by the refractive index difference between the plurality of thin film layers included in the insulating layer structure of the pixel region, so that the variation of the color coordinates may be greatly increased according to the change of the viewing angle. . As a result, the variation in color reproducibility according to the viewing angle is increased, which may lead to a problem in that display quality of the display device is degraded.
이와 비교하여, 도 5b에서 사용된 표시 장치는 도 4b에서 설명한 본 발명의 일 실시예의 구조를 갖는다. 도 5b는 구체적으로, 제1 절연층과 제2 절연층이 비 화소 영역에만 배치되고, 화소 영역으로 연장되지 않도록 구성된 표시 장치의 시야각에 따른 색좌표 변화(Δu')를 나타낸 그래프이다. 마찬가지로, 실시예 구조의 표시 장치에, 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역에서 피크 파장을 가지며, 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된 백색의 특정 광이 공급되는 경우, 도 5b를 참고하면, 시야각이 변화됨에 따라 색좌표의 변동이 감소된 것을 알 수 있다. In comparison, the display device used in FIG. 5B has the structure of one embodiment of the present invention described with reference to FIG. 4B. 5B is a graph illustrating color coordinate change Δu ′ according to a viewing angle of a display device in which the first insulating layer and the second insulating layer are disposed only in the non-pixel region and are not extended to the pixel region. Similarly, in the display device of the embodiment structure, white specific having a peak wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region, the half width of the peak wavelength of the red wavelength region being narrower than the half width of the peak wavelength of the other wavelength region. When light is supplied, referring to FIG. 5B, it can be seen that variation in color coordinates is reduced as the viewing angle is changed.
이에 따라, 화소 영역의 절연층 구조물과 비 화소 영역의 절연층 구조물이 상이하게 구성됨으로써, 특정 광이 화소 영역을 통과하면서 발생 가능한 시야각에 따른 색좌표의 변동이 거의 발생되지 않으므로, 시야각에 따른 색재현율의 변동이 감소되어 표시 장치의 표시 품질이 향상됨을 알 수 있다. Accordingly, since the insulation layer structure of the pixel region and the insulation layer structure of the non-pixel region are different from each other, the variation of color coordinates according to the viewing angle that can occur while specific light passes through the pixel region is hardly generated. It can be seen that the fluctuation of? Is reduced and the display quality of the display device is improved.
한편, 상술한 바와 같이, 액정 패널의 제1 절연층과 제2 절연층이 배리어 특성이 좋은 실리콘 질화물(SiNx)로 이루어진 단층의 형태를 가질 수도 있으나, 액티브층의 특성 향상을 위해 제1 절연층과 제2 절연층은 실리콘 질화물(SiNx) 외에 실리콘 산화물(SiO2)을 더 포함하여 이루어질 수 있다. Meanwhile, as described above, the first insulating layer and the second insulating layer of the liquid crystal panel may have a single layer made of silicon nitride (SiNx) having good barrier properties, but the first insulating layer may be used to improve the characteristics of the active layer. The second insulating layer may further include silicon oxide (SiO 2 ) in addition to silicon nitride (SiNx).
이와 같이, 복수의 층으로 이루어진 제1 절연층과 제2 절연층에 대해, 다음 도 6 내지 10을 참조하여 보다 상세히 살펴보기로 한다.As such, the first and second insulating layers including the plurality of layers will be described in more detail with reference to FIGS. 6 to 10.
도 6은 본 발명의 다른 실시예에 따른 표시 장치를 나타낸 평면도이다.6 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 표시 장치(600)는 화상을 표시하는 액티브 영역(AA)과 화상을 표시하지 않고 액티브 영역(AA)의 외곽에 배치된 비액티브 영역(NAA)를 포함한다.Referring to FIG. 6, the display device 600 according to another exemplary embodiment of the present invention may include an active area AA displaying an image and an inactive area NAA disposed outside the active area AA without displaying an image. ).
액티브 영역(AA)에는 복수의 데이터 배선(DL)과 복수의 게이트 배선(GL)이 배치되고, 복수의 데이터 배선(DL)과 복수의 게이트 배선(GL)에 의해 화소(P)가 정의될 수 있다. 각각의 화소(P)는 광을 투과하도록 구성된 개구부(OA) 및 개구부(OA)와 인접하고 광이 투과되지 않는 비개구부(NOA)를 포함한다. A plurality of data lines DL and a plurality of gate lines GL are disposed in the active area AA, and the pixels P may be defined by the plurality of data lines DL and the plurality of gate lines GL. have. Each pixel P includes an opening OA configured to transmit light and a non-opening portion NOA adjacent to the opening OA and to which light is not transmitted.
개구부(OA)는, 화소 전극이 배치되는 영역으로, 실제 빛이 광원에서부터 투과되는 최소 단위의 영역을 말하며, 도 1의 화소 영역(PA)과 대응될 수 있다. 이에 따라, 개구부(OA)에 대한 보다 상세한 설명은 생략하기로 한다.The opening OA is a region in which the pixel electrode is disposed, and refers to a region in which the actual light is transmitted from the light source, and may correspond to the pixel region PA of FIG. 1. Accordingly, a detailed description of the opening OA will be omitted.
비개구부(NOA)는 화소 전극을 구동시키는 구동 박막 트랜지스터가 배치되는 영역으로, 빛이 투과되지 않는 영역이며, 도 1의 비화소 영역(NPA)과 대응될 수 있다. 이에 따라, 비개구부(NOA)에 대한 보다 상세한 설명은 생략하기로 한다.The non-opening portion NOA is a region in which the driving thin film transistor for driving the pixel electrode is disposed. The non-opening portion NOA is a region through which light is not transmitted and may correspond to the non-pixel region NPA of FIG. 1. Accordingly, a more detailed description of the non-opening portion NOA will be omitted.
비액티브 영역(NAA)은 액티브 영역(AA)과 인접하게 배치되고, 복수의 게이트 배선(GL)과 연결된 게이트 인 패널(GIP: Gate in Panel)가 배치된다. The inactive region NAA is disposed adjacent to the active region AA, and a gate in panel (GIP) connected to the plurality of gate lines GL is disposed.
이와 같은, 본 발명의 다른 실시예에 따른 표시 장치(600)는 비액티브 영역(NAA) 및 액티브 영역(AA)의 비개구부(NOA)와 액티브 영역(AA)의 개구부(OA) 각각에 배치된 절연층 구조물의 구조가 서로 상이하게 구성되도록 배치된다. 이에 따라, 특정 광이 개구부(OA)를 통과하면서 발생 가능한 시야각에 따른 색좌표의 변동이 거의 발생되지 않는다. 따라서, 시야각에 따른 색재현율의 변동이 감소되어 표시 장치의 표시 품질을 향상시킬 수 있을 뿐만 아니라, 비액티브 영역(NAA)과 액티브 영역(AA)의 비개구부(NOA)에 배치되는 산화물 반도체로 이루어진 액티브층의 전기 특성을 변화시키지 않아 표시 장치의 신뢰성을 향상시킬 수 있다.As such, the display device 600 according to another exemplary embodiment of the present invention is disposed in each of the non-opening portion NOA of the inactive region NAA and the active region AA and the opening OA of the active region AA. The structures of the insulating layer structure are arranged to be configured differently from each other. As a result, variations in color coordinates according to the viewing angles that may occur while specific light passes through the opening OA are hardly generated. Therefore, the variation in color reproducibility according to the viewing angle is reduced, and the display quality of the display device can be improved, and the oxide semiconductor is disposed in the non-active area NAA and the non-opening part NOA of the active area AA. The reliability of the display device can be improved by not changing the electrical characteristics of the active layer.
이와 같은 본 발명의 다른 실시예에 따른 표시 장치(600)의 액티브 영역(AA)과 비액티브 영역(NAA)의 구조에 대해 다음 도 7 내지 9를 참조하여 보다 상세히 살펴보기로 한다.Such a structure of the active area AA and the inactive area NAA of the display device 600 according to another exemplary embodiment of the present invention will be described in detail with reference to FIGS. 7 to 9.
도 7 내지 9는 도 6의 Ⅶ-Ⅶ'에 따른 다양한 실시예의 표시 장치의 단면도들이다.7 through 9 are cross-sectional views of display devices of various exemplary embodiments taken along the line of FIG.
먼저, 도 7을 참조하면, 액티브층(AA)의 비개구부(NOA)와 비액티브 영역(NAA)에는 박막 트랜지스터가 배치된다. 이러한 박막 트랜지스터는 게이트 전극(720G, 720N), 액티브층(740G, 740N), 소스 전극(750G, 750N), 드레인 전극(760G, 760N) 및 절연막 구조물(730)을 포함한다. 이때, 도 7의 박막 트랜지스터는 절연층 구조물(730)을 제외한 구성은 도 1의 박막 트랜지스터와 동일하므로, 자세한 설명은 생략하기로 한다. 한편, 설명되지 않은 도면부호 770은 개구부(OA)에 배치된 공통 전극(791)과 화소 전극(792)을 절연시키기 위한 층간절연층을 나타내고, 도면부호 780은 도 1의 제3 절연층, 즉, 평탄화층을 나타낸다. 또한, 도 1에서는 제3 절연층도 절연층 구조물에 포함되는 구성으로 기술하였으나, 다른 실시예에 따른 구성에서는 제1 절연층과 제2 절연층만을 절연층 구조물로 포함하여 설명하기로 한다.First, referring to FIG. 7, a thin film transistor is disposed in the non-opening portion NOA and the inactive region NAA of the active layer AA. The thin film transistor includes gate electrodes 720G and 720N, active layers 740G and 740N, source electrodes 750G and 750N, drain electrodes 760G and 760N, and an insulating film structure 730. In this case, since the configuration of the thin film transistor of FIG. 7 except for the insulating layer structure 730 is the same as the thin film transistor of FIG. 1, a detailed description thereof will be omitted. Meanwhile, reference numeral 770, which is not described, denotes an interlayer insulating layer for insulating the common electrode 791 and the pixel electrode 792 disposed in the opening OA, and reference numeral 780 denotes a third insulating layer of FIG. And a planarization layer. In addition, in FIG. 1, the third insulating layer is described as being included in the insulating layer structure, but in the configuration according to another exemplary embodiment, only the first insulating layer and the second insulating layer are included as the insulating layer structure.
절연층 구조물(730)은 복수의 제1 서브 절연층(731, 734)과 복수의 제2 서브 절연층(732, 733)을 포함한다.The insulating layer structure 730 includes a plurality of first sub insulating layers 731 and 734 and a plurality of second sub insulating layers 732 and 733.
복수의 제1 서브 절연층(731, 734)은 액티브 영역(AA)의 비개구부(NOA)와 비액티브 영역(NAA)에만 걸쳐 배치된다. 복수의 제1 서브 절연층(731, 734)은 제1 굴절률을 가진 실리콘 질화물(SiNx)로 이루어질 수 있다.The plurality of first sub insulation layers 731 and 734 is disposed only over the non-opening portion NOA and the inactive region NAA of the active region AA. The plurality of first sub insulation layers 731 and 734 may be formed of silicon nitride (SiNx) having a first refractive index.
복수의 제1 서브 절연층(731, 734)은 비액티브 영역(NAA)의 게이트 전극(720G) 및 액티브 영역(AA)의 비개구부(NOA)의 게이트 전극(720N)과 비액티브 영역(NAA)의 액티브층(740G) 및 액티브 영역(AA)의 비개구부(NOA)의 액티브층(740N) 사이에 배치된 제1 절연층, 즉 게이트 절연층을 이루는 복수의 서브 절연층 중 하나일 수 있다. 또한, 비액티브 영역(NAA)와 액티브 영역(AA)의 비개구부(NOA)에 배치된 박막 트랜지스터를 보호하기 위한 제2 절연층, 즉 패시베이션층을 이루는 복수의 서브 절연층 중 하나일 수 있다.The plurality of first sub insulation layers 731 and 734 may include the gate electrode 720G of the inactive region NAA and the gate electrode 720N and the inactive region NAA of the non-opening portion NOA of the active region AA. The first insulating layer disposed between the active layer 740G and the active layer 740N of the non-opening portion NOA of the active region AA may be one of a plurality of sub insulating layers forming the gate insulating layer. The second insulating layer may be one of a plurality of sub insulating layers forming a second insulating layer, that is, a passivation layer, for protecting the thin film transistors disposed in the inactive region NAA and the non-opening portion NOA of the active region AA.
특히, 복수의 제1 서브 절연층(731, 734)은 액티브 영역(AA)의 비개구부(NOA) 및 비액티브 영역(NAA) 전체에 걸쳐 게이트 절연층을 이루는 하나의 제1 서브 절연층(731)과 액티브 영역(AA)의 비개구부(NOA) 및 비액티브 영역(NAA) 전체에 걸쳐 패시베이션층을 이루는 하나의 제1 서브 절연층(734)으로 구성된다. 즉, 액티브 영역(AA)의 비개구부(NOA) 및 비액티브 영역(NAA)에는 제1 서브 절연층(731, 734)이 복수 개 배치될 수 있다. 이것은 본 발명의 일 실시예에 따른 액티브층(740G, 740N)이 산화물 반도체로 이루어지기 때문이다.In particular, the plurality of first sub insulation layers 731 and 734 includes one first sub insulation layer 731 forming a gate insulation layer throughout the non-opening portion NOA and the non-active region NAA of the active region AA. ) And one non-opening portion NOA of the active region AA and one first sub insulation layer 734 forming a passivation layer over the entire inactive region NAA. That is, a plurality of first sub insulation layers 731 and 734 may be disposed in the non-opening portion NOA and the inactive region NAA of the active region AA. This is because the active layers 740G and 740N according to the embodiment of the present invention are formed of an oxide semiconductor.
보다 구체적으로, 산화물 반도체(740G, 740N)는 공기 중의 산소(O2)의 흡착/탈착에 의해서나 수분에서 공급되는 수소(H)에 의해 전기적 특성이 달라지기 때문에, 배리어 특성이 좋은 실리콘 질화물(SiNx)이 액티브층(740G, 740N)의 상하에 배치된다. More specifically, since the electrical characteristics of the oxide semiconductors 740G and 740N are changed by adsorption / desorption of oxygen (O 2 ) in air or by hydrogen (H) supplied from moisture, silicon nitride having good barrier properties ( SiNx) is disposed above and below the active layers 740G and 740N.
한편, 액티브 영역(AA)의 개구부(OA)에는 복수의 제1 서브 절연층(731, 734)이 배치되는 것이 아니라, 하나의 제1 서브 절연층(731)만 배치될 수 있다. 즉, 제1 서브 절연층(731)은 비액티브 영역(NAA)과 액티브 영역(AA) 전체에 걸쳐 배치되고, 제2 서브 절연층(734)은 액티브 영역(AA)의 개구부(OA)에는 배치되지 않을 수 있다. 이는 액티브 영역(AA)의 개구부(OA)는 광이 투과되는 영역이기 때문에, 제2 서브 절연층(732, 733)보다 높은 굴절률을 가지는 제1 서브 절연층(731, 734)이 복수 개 배치되면 굴절률의 차이가 나는 계면이 증가하고, 제1 서브 절연층(731, 734) 사이에서의 광 반사가 발생할 수 있으며, 이로 인해 색감 변동이 커져 표시 품질을 악화시킬 수 있기 때문이다.The plurality of first sub insulation layers 731 and 734 may not be disposed in the opening OA of the active region AA, but only one first sub insulation layer 731 may be disposed. That is, the first sub insulation layer 731 is disposed over the inactive region NAA and the entire active region AA, and the second sub insulation layer 734 is disposed in the opening OA of the active region AA. It may not be. This is because the opening OA of the active area AA is a region through which light is transmitted. Therefore, when a plurality of first sub insulation layers 731 and 734 having a higher refractive index than the second sub insulation layers 732 and 733 are disposed, a plurality of openings OA are provided. This is because an interface with a difference in refractive index may increase, and light reflection may occur between the first sub insulation layers 731 and 734, which may increase color variation and deteriorate display quality.
복수의 제2 서브 절연층(732, 733)은 비액티브 영역(NAA)과 액티브 영역(AA) 전체에 걸쳐 배치된다. 복수의 제2 서브 절연층(732, 733)은 제1 굴절률보다 낮은 제2 굴절률을 가진 실리콘 산화물(SiO2)로 이루어질 수 있다. 제3 절연층(780) 및 복수의 제2 서브 절연층(732, 733) 사이에는 굴절률의 차가 실질적으로 일치하게 되어, 적색 광이 통과되더라도 시야각에 따른 투과율 변동이 최소화될 수 있다. The plurality of second sub insulation layers 732 and 733 are disposed over the inactive region NAA and the active region AA. The plurality of second sub insulation layers 732 and 733 may be formed of silicon oxide (SiO 2 ) having a second refractive index lower than the first refractive index. The difference in refractive index is substantially coincident between the third insulating layer 780 and the plurality of second sub insulating layers 732 and 733, so that the transmittance variation according to the viewing angle may be minimized even when red light is passed.
이와 같은, 제2 서브 절연층(732)은 비액티브 영역(NAA)의 게이트 전극(720G)과 액티브층(740G) 사이 그리고 액티브 영역(AA)의 비개구부(NOA)의 게이트 전극(720N)과 액티브층(740N) 사이에 배치된 제1 절연층, 즉 게이트 절연층을 이루는 복수의 서브 절연층 중 하나일 수 있다. 또한, 제2 서브 절연층(733)은 비액티브 영역(NAA)과 액티브 영역(AA)의 비개구부(NOA)에 배치된 박막 트랜지스터를 보호하기 위한 제2 절연층, 즉 패시베이션층을 이루는 복수의 서브 절연층 중 하나일 수 있다.The second sub insulation layer 732 may be disposed between the gate electrode 720G and the active layer 740G of the inactive region NAA, and the gate electrode 720N of the non-opening portion NOA of the active region AA. The first insulating layer disposed between the active layers 740N, that is, the sub insulating layer constituting the gate insulating layer may be one of the plurality of sub insulating layers. In addition, the second sub insulation layer 733 includes a plurality of second insulation layers, that is, passivation layers, for protecting the thin film transistors disposed in the inactive regions NAA and the non-opening portions NOA of the active regions AA. It may be one of the sub insulation layers.
또한, 복수의 제2 서브 절연층(732, 733)은, 앞서 설명된 일 실시예에서와 같이, 액티브 영역(AA)의 개구부(OA)에는 배치되지 않도록 구성할 수도 있으나, 액티브 영역(AA)의 개구부(OA)를 포함한 기판(710) 전체에 배치될 수 있다. 제1 서브 절연층(731, 734)을 이루는 실리콘 질화물(SiNx)은 일반적으로 PECVD 방식으로 증착되는데, 전술한 바와 같이 그 증착 과정 중에는 수소(H)가 주입될 수 있다. 수소(H)가 주입되면, 산화물 반도체로 이루어진 액티브층(740G, 740N)의 전기적 특성이 악화될 수 있기 때문에 이를 방지하기 위해 액티브층(740G, 740N)을 기준으로 액티브층(740G, 740N)과 제1 서브 절연층(731, 734) 사이에 제2 서브 절연층(732, 733)이 개재된다. 한편, 제2 서브 절연층(733)의 일부는 제1 서브 절연층(734)이 개구부(OA)에서 제거될 때 일부 함께 제거될 수도 있다.In addition, the plurality of second sub insulation layers 732 and 733 may be configured not to be disposed in the opening OA of the active area AA, as in the above-described embodiment. The substrate 710 may be disposed in the entirety of the substrate 710 including the opening OA. Silicon nitride (SiNx) constituting the first sub insulation layers 731 and 734 is generally deposited by PECVD. As described above, hydrogen (H) may be injected during the deposition process. When hydrogen (H) is injected, the electrical characteristics of the active layers 740G and 740N made of oxide semiconductors may be deteriorated, so to prevent this, the active layers 740G and 740N are based on the active layers 740G and 740N. Second sub insulation layers 732 and 733 are interposed between the first sub insulation layers 731 and 734. Meanwhile, a part of the second sub insulation layer 733 may be partially removed when the first sub insulation layer 734 is removed from the opening OA.
또한, 제2 복수의 서브 절연층(732, 733)은 기판(710) 및 제3 절연층(780)과 일치하는 굴절률을 가지기 때문에 액티브 영역(AA)의 개구부(OA)에 배치되어도 표시 장치(600)의 표시 품질에 미치는 영향은 크지 않을 수 있다.In addition, since the second plurality of sub insulation layers 732 and 733 have refractive indices that match those of the substrate 710 and the third insulation layer 780, the display apparatus may be disposed even in the opening OA of the active region AA. The influence on the display quality of 600 may not be large.
도 7의 실시예에서는 게이트 절연층을 이루는 하나의 제1 서브 절연층(731)만이 액티브 영역(AA)의 개구부(OA)에 배치었다. 한편, 도 8의 실시예에서는 패시베이션층을 이루는 제1 서브 절연층(734)만 복수의 제1 서브 절연층(731, 734) 중 액티브 영역(AA)의 개구부(OA)에 배치되도록 한 실시예이다.In the embodiment of FIG. 7, only one first sub insulation layer 731 constituting the gate insulation layer is disposed in the opening OA of the active region AA. Meanwhile, in the embodiment of FIG. 8, only the first sub insulation layer 734 forming the passivation layer is disposed in the opening OA of the active region AA among the plurality of first sub insulation layers 731 and 734. to be.
즉, 도 8을 참조하면, 복수의 제1 서브 절연층(731', 734') 중 제1 절연층을 이루는 제1 서브 절연층(731')은 액티브 영역(AA)의 개구부(OA)에는 배치되지 않고, 제2 절연층을 이루는 제1 서브 절연층(734')은 액티브 영역(AA)의 개구부(OA)에도 배치된다.That is, referring to FIG. 8, the first sub insulation layer 731 ′ forming the first insulation layer among the plurality of first sub insulation layers 731 ′ and 734 ′ may be formed in the opening OA of the active region AA. The first sub insulation layer 734 'constituting the second insulation layer is also disposed in the opening OA of the active region AA.
상술한 바와 같이, 비액티브 영역(NAA)과 액티브 영역(AA)의 비개구부(NOA)에는 복수의 제1 서브 절연층(731', 734')이 배치되도록 하고, 액티브 영역(AA)의 개구부(OA)에는 복수의 제1 서브 절연층(731', 734') 중 하나의 제1 서브 절연층(731' 또는 734'')만 배치되도록 한다. 이에 따라, 제1 서브 절연층(731', 734')을 이루는 물질 및 제2 서브 절연층(732, 734'), 기판(710) 및 제3 절연층(780) 사이의 굴절률 차이가 나는 계면을 감소시켜 표시 장치(600)의 표시 품질 저하를 최소화할 수 있다.As described above, the plurality of first sub insulating layers 731 'and 734' are disposed in the non-opening portion NOA of the inactive region NAA and the active region AA, and the opening of the active region AA is formed. Only one first sub insulation layer 731 'or 734' 'of the plurality of first sub insulation layers 731' and 734 'is disposed in the OA. Accordingly, an interface having a difference in refractive index between the material of the first sub insulation layers 731 ′ and 734 ′ and the second sub insulation layers 732 and 734 ′, the substrate 710, and the third insulation layer 780. The decrease in display quality of the display device 600 can be minimized.
또한, 비액티브 영역(NAA)과 액티브 영역(AA) 전체에 걸쳐 복수의 제2 서브 절연층(732, 733)이 배치되도록 하여 제1 서브 절연층(731', 734')을 이루는 물질의 특성으로 인해 발생될 수 있는 액티브층(740G, 740N)의 전기 특성 저하를 최소화할 수 있다.In addition, a plurality of second sub insulation layers 732 and 733 are disposed on the entire inactive region NAA and the active region AA so as to form the first sub insulation layers 731 'and 734'. Deterioration of electrical characteristics of the active layers 740G and 740N may be minimized.
다음으로, 도 9를 살펴보면, 도 9는 도 7 및 8과 비교했을 때, 액티브 영역(AA)의 개구부(OA)에 복수의 제2 서브 절연층(732, 733)만이 배치된다. Next, referring to FIG. 9, in comparison with FIGS. 7 and 8, only a plurality of second sub insulation layers 732 and 733 are disposed in the opening OA of the active area AA.
도 9에 도시된 바와 같이, 액티브 영역(AA)의 개구부(OA)에 복수의 제2 서브 절연층(732, 733)만이 배치되면, 고굴절률의 제1 서브 절연층(731', 734)이 액티브 영역(AA)의 개구부(OA)에 배치되지 않는다. 따라서, 기판(710), 제2 서브 절연층(732, 733) 및 제3 절연층(780) 사이에 굴절률 차이가 나는 계면이 최소화되어 표시 품질의 특성이 더욱 향상될 수 있다.As shown in FIG. 9, when only a plurality of second sub insulation layers 732 and 733 are disposed in the opening OA of the active region AA, the first sub insulation layers 731 ′ and 734 having high refractive indexes are formed. It is not disposed in the opening OA of the active area AA. Accordingly, an interface having a difference in refractive index between the substrate 710, the second sub insulation layers 732 and 733, and the third insulation layer 780 may be minimized, thereby further improving display characteristics.
한편, 도 7 내지 9에서 기판(710) 상의 액티브 영역(AA)과 비액티브 영역(NAA) 중 액티브 영역(AA)의 개구부(OA)에서만 제1 서브 절연층(731, 734)을 제거하는 것은 제한되지 않으나 마스크를 이용한 드라이 에칭(dry etching)을 통해 수행될 수 있다.7 to 9, the first sub insulation layers 731 and 734 are removed only from the opening OA of the active region AA among the active region AA and the inactive region NAA on the substrate 710. Although not limited, it may be performed by dry etching using a mask.
이때, 복수의 제1 서브 절연층(731, 734) 중 제거되는 층은 액티브 영역(AA)의 비개구부(NOA)의 끝단에 맞춰 제거되는 것이 아니라 비개구부(NOA)와 개구부(OA) 사이의 경계를 넘어 개구부(OA) 내측으로 더 연장되어 배치될 수 있다. 이때, 개구부(OA)로 더 연장될 수 있는 제1 서브 절연층(731, 734)의 길이는 화소(P)의 색좌표값에 기초하여 결정될 수 있다. 즉, 화소(P)의 색좌표값이 요구되는 범위내에 있는 한, 제1 서브 절연층(731, 734)의 일부는 개구부(OA) 내측으로 연장될 수 있다. 이에 의해 화소(P)의 색좌표를 만족시키는 동시에 산화물 반도체의 신뢰성을 더 향상시킬 수 있다.In this case, the layers to be removed among the plurality of first sub insulation layers 731 and 734 are not removed at the end of the non-opening portion NOA of the active region AA, but between the non-opening portion NOA and the opening OA. It may be arranged to extend further into the opening OA beyond the boundary. In this case, the lengths of the first sub insulation layers 731 and 734, which may further extend into the opening OA, may be determined based on the color coordinate values of the pixel P. That is, as long as the color coordinate value of the pixel P is within a required range, a part of the first sub insulation layers 731 and 734 may extend into the opening OA. As a result, the color coordinate of the pixel P can be satisfied and the reliability of the oxide semiconductor can be further improved.
도 10a 및 도 10b는 비교예 및 본 발명의 다른 실시예의 시야각에 따른 색좌표 변화를 나타낸 그래프이다. 10A and 10B are graphs showing changes in color coordinates according to viewing angles of a comparative example and another embodiment of the present invention.
도 10a에서 사용된 표시 장치는 액티브 영역(AA)의 개구부(OA)에도 복수의 제1 서브 절연층가 모두 배치된 경우이다. 즉, 도 10a는 액티브 영역(AA)의 개구부(OA)에 배치된 절연층 구조물과 비액티브 영역(NAA) 및 액티브 영역(AA)의 비개구부(NOA)에 배치된 절연층 구조물이 동일한 구조를 갖는 표시 장치의 시야각에 따른 색좌표 변화를 나타낸 그래프이다. 비교예 구조의 표시 장치에, 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역에서 피크 파장을 가지며, 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된 백색의 특정 광이 공급되는 경우, 도 10a에 도시된 바와 같이, 시야각이 변화됨에 따라 색좌표가 크게 변동됨을 확인할 수 있다. 즉, 앞서 설명하였듯이, 액티브 영역(AA)의 개구부(OA)의 절연층 구조물에 포함된 복수의 박막층들 간의 굴절률 차이에 의해 특정 광의 시야각에 따른 색 분리 현상이 증가되어 시야각의 변화에 따라 색좌표의 변동 또한 크게 발생됨을 알 수 있다. 이로 인해, 시야각에 따른 색재현율의 변동이 증가되므로, 표시 장치의 표시 품질이 저하되는 문제로 이어질 수 있다.In the display device used in FIG. 10A, a plurality of first sub insulation layers are also disposed in the opening OA of the active area AA. That is, FIG. 10A illustrates a structure in which an insulating layer structure disposed in the opening portion OA of the active region AA and an inactive region NAA and an insulating layer structure disposed in the non-opening portion NOA of the active region AA have the same structure. It is a graph which shows the change of the color coordinate according to the viewing angle of the display device which has. In a display device having a comparative example structure, white specific light having a peak wavelength in a red wavelength region, a green wavelength region, and a blue wavelength region, and having a half width of a peak wavelength of a red wavelength region narrower than a half width of a peak wavelength of another wavelength region, When supplied, as shown in Figure 10a, it can be seen that the color coordinate is greatly changed as the viewing angle is changed. That is, as described above, the color separation phenomenon according to the viewing angle of the specific light is increased due to the difference in refractive index between the plurality of thin film layers included in the insulating layer structure of the opening OA of the active area AA. It can be seen that the fluctuation is also large. As a result, the variation in color reproducibility according to the viewing angle is increased, which may lead to a problem in that display quality of the display device is degraded.
한편, 도 10b에서 사용된 표시 장치는 도 7의 구조를 갖는다. 도 10b는 구체적으로, 비액티브 영역(NAA) 및 액티브 영역(AA)의 비개구부(NOA)에 배치된 절연층 구조물과 액티브 영역(AA)의 개구부(OA)의 절연층 구조물이 상이하게 배치된 표시 장치의 시야각에 따른 색좌표 변화를 나타낸 그래프이다. 마찬가지로, 실시예 구조의 표시 장치에, 적색 파장 영역, 녹색 파장 영역 및 청색 파장 영역에서 피크 파장을 가지며, 적색 파장 영역의 피크 파장의 반치폭이 다른 파장 영역의 피크 파장의 반치폭보다 좁게 구성된 백색의 특정 광이 공급되는 경우, 도 10b를 참고하면, 시야각이 변화됨에 따라 색좌표의 변동이 감소된 것을 알 수 있다. Meanwhile, the display device used in FIG. 10B has the structure of FIG. 7. FIG. 10B illustrates that the insulating layer structure disposed in the inactive region NAA and the non-opening portion NOA of the active region AA and the insulating layer structure of the opening OA of the active region AA are different from each other. A graph showing a change in color coordinates according to the viewing angle of the display device. Similarly, in the display device of the embodiment structure, white specific having a peak wavelength in the red wavelength region, the green wavelength region, and the blue wavelength region, the half width of the peak wavelength of the red wavelength region being narrower than the half width of the peak wavelength of the other wavelength region. When light is supplied, referring to FIG. 10B, it can be seen that variation in color coordinates is reduced as the viewing angle is changed.
이에 따라, 도 7 내지 도 9에서와 같이 본 발명의 다른 실시예에 따른 표시 장치는 비액티브 영역(NAA)과 액티브 영역(AA)의 비개구부(NOA)에는 복수의 제1 서브 절연층(731, 734)과 복수의 제2 서브 절연층(732, 733)이 모두 배치되고, 액티브 영역(AA)의 개구부(OA)에는 복수의 제2 서브 절연층(732, 733)만이 배치되거나 하나의 제1 서브 절연층(731 또는 734)만이 추가로 배치되도록 구성된다. 이에 의해, 액티브층(AA)의 개구부(OA)의 광 굴절률 차이를 갖는 계면 수가 최소화되어 색좌표의 변동이 거의 발생하지 않아 표시 장치의 표시 품질을 향상시킬 수 있는 동시에 산화물 반도체의 특성과 신뢰성을 보호할 수 있다.Accordingly, as shown in FIGS. 7 through 9, in the display device according to another exemplary embodiment, the plurality of first sub insulation layers 731 may be disposed in the non-opening portion NOA of the inactive region NAA and the active region AA. , 734 and the plurality of second sub insulating layers 732 and 733 are all disposed, and only the plurality of second sub insulating layers 732 and 733 are disposed in the opening OA of the active area AA, or one Only one sub insulation layer 731 or 734 is configured to be further disposed. As a result, the number of interfaces having the difference in the refractive indices of the openings OA of the active layer AA is minimized so that variations in color coordinates hardly occur, thereby improving display quality of the display device and protecting characteristics and reliability of the oxide semiconductor. can do.
또한, 본 발명의 다른 실시예에 따른 표시 장치(600)는 액티브층(740G, 740N)이 배치되는 비액티브 영역(NAA)과 액티브 영역(AA)의 비개구부(NOA)에 복수의 제1 서브 절연층(731, 734)이 액티브층(740G, 740N)이 상하로 배치되도록 구성함으로써 액티브층(740G, 740N)의 전기적 특성을 최소화하여 표시 장치의 신뢰성 저하를 최소화할 수 있다.In addition, the display device 600 according to another exemplary embodiment of the present invention may include a plurality of first subs in the inactive area NAA where the active layers 740G and 740N are disposed and the non-opening part NOA of the active area AA. Since the insulating layers 731 and 734 are configured such that the active layers 740G and 740N are disposed up and down, the electrical characteristics of the active layers 740G and 740N may be minimized to reduce the reliability of the display device.
또한, 본 발명의 다른 실시예에 따른 표시 장치(600)는 비액티브 영역(NAA)과 액티브 영역(AA)의 비개구부(NOA)에 배치되는 액티브층(740G, 740N)과 액티브층(740G, 740N)의 상하에 배치되는 복수의 제1 서브 절연층(731, 734) 사이에 복수의 제2 서브 절연층(732, 733)이 개재되도록 함으로써 복수의 제1 서브 절연층(731, 734)의 증착 공정 중에 발생할 수 있는 액티브층(740G, 740N)의 결함 발생을 최소화할 수 있다.In addition, the display device 600 according to another exemplary embodiment of the present invention may include the active layers 740G and 740N and the active layers 740G, which are disposed in the non-opening portion NOA of the inactive region NAA and the active region AA. The plurality of first sub insulation layers 731 and 734 are interposed between the plurality of first sub insulation layers 731 and 734 disposed above and below 740N. It is possible to minimize the occurrence of defects in the active layers 740G and 740N that may occur during the deposition process.
이상 설명한 바와 같이, 고해상도 구현을 위해 복수의 피크 파장을 포함하는 특정 광이 액정 패널로 공급되는 표시 장치에 있어서, 복수의 피크 파장 중 하나의 피크 파장의 반치폭(FWHM)이 좁게 구성된 경우, 화소 영역의 절연층 구조물과 비 화소 영역의 절연층 구조물을 상이하게 구성함으로써, 상대적으로 좁은 반치폭을 갖는 피크 파장의 광의 시야각에 따른 투과율 변동 및 색좌표의 변동이 최소화될 수 있다. 이에 따라, 시야각에 따른 표시 장치의 색재현율의 변동이 최소화되어 표시 장치의 표시 품질이 향상되는 효과가 있다. As described above, in a display device in which specific light including a plurality of peak wavelengths is supplied to a liquid crystal panel for high resolution, when the half width of the peak wavelength FWHM of one of the plurality of peak wavelengths is narrow, By differently configuring the insulating layer structure and the insulating layer structure of the non-pixel region, the transmittance variation and the color coordinate variation according to the viewing angle of the light of the peak wavelength having a relatively narrow half width can be minimized. As a result, variations in color reproducibility of the display device according to the viewing angle may be minimized, thereby improving display quality of the display device.
화소 영역의 절연층 구조물의 절연층 수가 상기 비 화소 영역의 절연층 구조물의 절연층 수보다 적을 수 있다. The number of insulating layers of the insulating layer structure of the pixel area may be less than the number of insulating layers of the insulating layer structure of the non-pixel area.
화소 영역의 절연층 구조물은, 상기 제1 절연층, 상기 제2 절연층 및 상기 제3 절연층 중 상기 기판의 굴절률과 실질적으로 일치하는 물질로 이루어진 적어도 하나의 층으로 구성될 수 있다. The insulating layer structure of the pixel area may include at least one layer made of a material substantially matching the refractive index of the substrate among the first insulating layer, the second insulating layer, and the third insulating layer.
전극부는 공통 전극 및 상기 공통 전극 상에 패터닝된 화소 전극을 포함하고, 상기 공통 전극의 끝 단은 상기 화소 영역과 상기 비 화소 영역을 구분하는 경계선을 정의할 수 있다.The electrode unit may include a common electrode and a pixel electrode patterned on the common electrode, and an end of the common electrode may define a boundary line separating the pixel area and the non-pixel area.
비 화소 영역의 절연층 구조물의 제2 절연층의 끝 단은 상기 제1 절연층의 끝 단보다 상기 공통 전극의 끝 단에 가깝게 위치할 수 있다. An end of the second insulating layer of the insulating layer structure of the non-pixel region may be located closer to the end of the common electrode than the end of the first insulating layer.
비 화소 영역의 절연층 구조물의 제2 절연층의 끝 단과 상기 제1 절연층의 끝 단은 동일 평면 상에 위치할 수 있다.An end of the second insulating layer and an end of the first insulating layer of the insulating layer structure of the non-pixel region may be positioned on the same plane.
화소 영역에서의 상기 제1 피크 파장의 광의 시야각에 따른 투과율 변동 커브와 상기 제2 피크 파장의 광의 시야각에 따른 투과율 변동 커브가 유사한 형태를 가질 수 있다.The transmittance variation curve according to the viewing angle of the light of the first peak wavelength in the pixel region and the transmittance variation curve according to the viewing angle of the light of the second peak wavelength may have a similar shape.
비 화소 영역의 절연층 구조물의 제2 절연층은 상기 제1 절연층의 측면을 덮도록 구성될 수 있다.The second insulating layer of the insulating layer structure in the non-pixel region may be configured to cover the side surface of the first insulating layer.
제1 절연층은 게이트 절연층 또는 층간 절연층이고, 상기 제2 절연층은 패시베이션층이고, 상기 제3 절연층은 평탄화층이며, 상기 제2 절연층과 상기 제3 절연층은 상기 전극부와 상기 박막 트랜지스터를 연결하는 컨택부를 포함할 수 있다.The first insulation layer is a gate insulation layer or an interlayer insulation layer, the second insulation layer is a passivation layer, the third insulation layer is a planarization layer, and the second insulation layer and the third insulation layer are formed with the electrode portion. It may include a contact unit for connecting the thin film transistor.
제1 피크 파장은, 430nm 이상 480nm 이하이거나 520nm 이상 560nm 이하이고, 상기 제2 피크 파장은, 600nm 이상 650nm 이하일 수 있다.The first peak wavelength may be 430 nm or more and 480 nm or less, or 520 nm or more and 560 nm or less, and the second peak wavelength may be 600 nm or more and 650 nm or less.
광원의 특정 광은, 제1 피크 파장 및, 상기 제1 피크 파장의 반치폭과 비교하여 25% 이하의 반치폭을 갖는 제2 피크 파장을 포함할 수 있다.The specific light of the light source may include a first peak wavelength and a second peak wavelength having a half width of 25% or less compared with the half width of the first peak wavelength.
제1 피크 파장은, 430nm 이상 480nm 이하이거나 520nm 이상 560nm 이하이고, 상기 제2 피크 파장은, 600nm 이상 650nm 이하일 수 있다.The first peak wavelength may be 430 nm or more and 480 nm or less, or 520 nm or more and 560 nm or less, and the second peak wavelength may be 600 nm or more and 650 nm or less.
상기 제2 절연층은 상기 제1 절연층의 측면을 덮도록 구성될 수 있다.The second insulating layer may be configured to cover side surfaces of the first insulating layer.
다른 실시예에 따른 표시 장치는 광이 투과하도록 구성된 개구부 및 상기 개구부와 인접하고 광이 투과되지 않는 비개구부를 포함하는 액티브 영역과 상기 액티브 영역에 인접하고 게이트 인 패널이 배치된 비액티브 영역을 갖는 기판, 액티브 영역의 비개구부와 비액티브 영역에 배치되는 제1 굴절률을 갖는 제1 서브 절연층 및 액티브 영역 및 상기 비액티브 영역 전체에 배치되고, 상기 제1 굴절률보다 낮은 제2 굴절률을 갖는 제2 서브 절연층을 포함한다.According to another exemplary embodiment, a display device includes an active region including an opening configured to transmit light and a non-opening portion adjacent to the opening and not transmitting the light, and an inactive region adjacent to the active region and having a gate-in panel disposed thereon. A substrate, a first sub insulation layer having a first refractive index disposed in a non-opening portion and an inactive region of an active region, and a second refractive index disposed in the entire active region and the inactive region, and having a second refractive index lower than the first refractive index. And a sub insulation layer.
비개구부의 구동 박막 트랜지스터와 상기 비액티브 영역의 게이트 인 패널에 배치된 게이트 전극과 액티브층을 절연시키는 제1 절연층 및 비개구부의 구동 박막 트랜지스터와 상기 비액티브 영역의 게이트 인 패널에 배치된 소스 전극과 드레인 전극 상에 배치되는 제2 절연층을 포함하고, 액티브층은 산화물 반도체로 이루어질 수 있다.A first insulating layer which insulates the active electrode and the gate electrode disposed in the non-opening driving thin film transistor and the gate in panel of the inactive region, and the source of the driving thin film transistor of the non-opening portion and the gate in panel of the inactive region A second insulating layer is disposed on the electrode and the drain electrode, and the active layer may be formed of an oxide semiconductor.
제1 절연층은 복수의 서브 절연층으로 이루어지고, 제1 서브 절연층은 제1 절연층 중 하나이며, 제1 서브 절연층은 실리콘 질화물(SiNx)로 이루어질 수 있다.The first insulating layer may include a plurality of sub insulating layers, the first sub insulating layer may be one of the first insulating layers, and the first sub insulating layer may be formed of silicon nitride (SiNx).
제2 절연층은 복수의 서브 절연층으로 이루어지고, 제1 서브 절연층은 제2 절연층 중 하나이며, 제1 서브 절연층은 실리콘 질화물(SiNx)로 이루어질 수 있다.The second insulating layer may be formed of a plurality of sub insulating layers, the first sub insulating layer may be one of the second insulating layers, and the first sub insulating layer may be formed of silicon nitride (SiNx).
제2 서브 절연층은 상기 제1 절연층을 이루는 복수의 서브 절연층 또는 제2 절연층을 이루는 복수의 서브 절연층 중 하나이며, 제2 서브 절연층은 실리콘 산화물(SiO2)로 이루어질 수 있다.The second sub insulating layer may be one of a plurality of sub insulating layers forming the first insulating layer or a plurality of sub insulating layers forming the second insulating layer, and the second sub insulating layer may be made of silicon oxide (SiO 2).
제1 서브 절연층은 상기 액티브 영역의 상기 비개구부와 상기 개구부 사이의 경계를 넘어 상기 개구부로 더 연장되며, 상기 제1 서브 절연층이 상기 개구부로 더 연장되는 길이는 상기 개구부와 상기 비개구부로 구성된 서브 화소의 색좌표값에 기초하여 결정될 수 있다.The first sub insulation layer further extends into the opening beyond the boundary between the non-opening portion and the opening of the active region, and the length of the first sub insulation layer further extending into the opening is the opening and the non-opening portion. It may be determined based on the color coordinate value of the configured sub-pixel.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. . Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The protection scope of the present invention should be interpreted by the claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (20)

  1. 화소 영역 및 비 화소 영역을 포함하는 액정 패널; 및A liquid crystal panel including a pixel region and a non-pixel region; And
    상기 액정 패널로, 제1 피크 파장 및, 상기 제1 피크 파장의 반치폭과 비교하여 25% 이하의 반치폭을 갖는 제2 피크 파장을 포함하는 특정 광을 공급하는 광원을 포함하며,The liquid crystal panel includes a light source for supplying a specific light including a first peak wavelength and a second peak wavelength having a half peak width of 25% or less compared to the half peak width of the first peak wavelength,
    상기 액정 패널은,The liquid crystal panel,
    기판의 비 화소 영역 상에, 게이트 전극, 액티브층, 소스 전극 및 드레인 전극을 포함하는 박막 트랜지스터;A thin film transistor including a gate electrode, an active layer, a source electrode, and a drain electrode on a non-pixel region of the substrate;
    상기 박막 트랜지스터의 게이트 전극과 소스 전극 및 드레인 전극을 절연하는 제1 절연층, 상기 박막 트랜지스터의 소스 전극 및 드레인 전극을 덮는 제2 절연층, 상기 제2 절연층 상에 평탄한 상면을 갖는 제3 절연층 중 적어도 하나를 포함하는 절연층 구조물; 및A first insulating layer insulating the gate electrode, the source electrode and the drain electrode of the thin film transistor, a second insulating layer covering the source electrode and the drain electrode of the thin film transistor, and a third insulating layer having a flat upper surface on the second insulating layer An insulating layer structure comprising at least one of the layers; And
    상기 절연층 구조물 상에 상기 액정층을 구동하기 위한 전극부를 포함하고,An electrode part for driving the liquid crystal layer on the insulating layer structure,
    상기 광원의 특정 광이 상기 화소 영역을 통과하면서 발생 가능한 시야각에 따른 투과율 변동(oscillation)이 최소화되도록, 상기 화소 영역의 절연층 구조물과 상기 비 화소 영역의 절연층 구조물이 상이하게 구성된, 표시 장치.And an insulation layer structure of the pixel region and an insulation layer structure of the non-pixel region are different from each other so that transmission oscillation according to a viewing angle that may occur while specific light of the light source passes through the pixel region is minimized.
  2. 제1항에 있어서,The method of claim 1,
    상기 화소 영역의 절연층 구조물의 절연층 수가 상기 비 화소 영역의 절연층 구조물의 절연층 수보다 적은, 표시 장치.And a number of insulating layers of the insulating layer structure of the pixel area is less than that of the insulating layer structure of the non-pixel area.
  3. 제2항에 있어서,The method of claim 2,
    상기 화소 영역의 절연층 구조물은, 상기 제1 절연층, 상기 제2 절연층 및 상기 제3 절연층 중 상기 기판의 굴절률과 실질적으로 일치하는 물질로 이루어진 적어도 하나의 층으로 구성된, 표시 장치.The insulating layer structure of the pixel area is formed of at least one layer of the first insulating layer, the second insulating layer and the third insulating layer made of a material substantially matching the refractive index of the substrate.
  4. 제3항에 있어서,The method of claim 3,
    상기 전극부는 공통 전극 및 상기 공통 전극 상에 패터닝된 화소 전극을 포함하고, 상기 공통 전극의 끝 단은 상기 화소 영역과 상기 비 화소 영역을 구분하는 경계선을 정의하는, 표시 장치.And the electrode portion includes a common electrode and a pixel electrode patterned on the common electrode, and an end of the common electrode defines a boundary line separating the pixel area and the non-pixel area.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 비 화소 영역의 절연층 구조물의 제2 절연층의 끝 단은 상기 제1 절연층의 끝 단보다 상기 공통 전극의 끝 단에 가깝게 위치하는, 표시 장치.The end of the second insulating layer of the insulating layer structure of the non-pixel region is positioned closer to the end of the common electrode than the end of the first insulating layer.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 비 화소 영역의 절연층 구조물의 제2 절연층의 끝 단과 상기 제1 절연층의 끝 단은 동일 평면 상에 위치하는, 표시 장치.The end of the second insulating layer and the end of the first insulating layer of the insulating layer structure of the non-pixel region are located on the same plane.
  7. 제3항에 있어서,The method of claim 3,
    상기 화소 영역에서의 상기 제1 피크 파장의 광의 시야각에 따른 투과율 변동 커브와 상기 제2 피크 파장의 광의 시야각에 따른 투과율 변동 커브가 유사한 형태를 갖는, 표시 장치.And a transmittance variation curve according to a viewing angle of light of the first peak wavelength in the pixel region and a transmittance variation curve according to a viewing angle of light of the second peak wavelength in a similar form.
  8. 제3항에 있어서,The method of claim 3,
    상기 비 화소 영역의 절연층 구조물의 제2 절연층은 상기 제1 절연층의 측면을 덮도록 구성된, 표시 장치.And a second insulating layer of the insulating layer structure of the non-pixel region is configured to cover side surfaces of the first insulating layer.
  9. 제3항에 있어서,The method of claim 3,
    상기 제1 절연층은 게이트 절연층 또는 층간 절연층이고, 상기 제2 절연층은 패시베이션층이고, 상기 제3 절연층은 평탄화층이며, 상기 제2 절연층과 상기 제3 절연층은 상기 전극부와 상기 박막 트랜지스터를 연결하는 컨택부를 포함하는, 표시 장치.The first insulation layer is a gate insulation layer or an interlayer insulation layer, the second insulation layer is a passivation layer, the third insulation layer is a planarization layer, and the second insulation layer and the third insulation layer are the electrode portions. And a contact unit connecting the thin film transistor.
  10. 제3항에 있어서,The method of claim 3,
    상기 제1 피크 파장은, 430nm 이상 480nm 이하이거나 520nm 이상 560nm 이하이고, 상기 제2 피크 파장은, 600nm 이상 650nm 이하인, 표시 장치.The said 1st peak wavelength is 430 nm or more and 480 nm or less, 520 nm or more and 560 nm or less, and said 2nd peak wavelength is 600 nm or more and 650 nm or less.
  11. 기판의 비 화소 영역에, 게이트 전극, 액티브층, 소스 전극 및 드레인 전극을 포함하는 박막 트랜지스터에 있어서, In a thin film transistor including a gate electrode, an active layer, a source electrode, and a drain electrode in a non-pixel region of a substrate,
    상기 게이트 전극과, 상기 소스 전극 및 상기 드레인 전극을 절연하는 제1 절연층; 및A first insulating layer insulating the gate electrode, the source electrode and the drain electrode; And
    상기 소스 전극 및 상기 드레인 전극을 덮는 제2 절연층을 포함하며,A second insulating layer covering the source electrode and the drain electrode;
    상기 기판에 대하여, 광원의 특정 광이 화소 영역으로 통과하면서 발생 가능한 시야각에 따른 투과율 변동(oscillation)이 최소화되도록, 상기 제1 절연층 및 상기 제2 절연층은 상기 화소 영역으로 연장되지 않도록 구성된, 박막 트랜지스터.With respect to the substrate, the first insulating layer and the second insulating layer are configured not to extend to the pixel region so that transmission oscillation according to a viewing angle that may occur while specific light of a light source passes through the pixel region is minimized. Thin film transistor.
  12. 제11항에 있어서,The method of claim 11,
    상기 광원의 특정 광은, 제1 피크 파장 및, 상기 제1 피크 파장의 반치폭과 비교하여 25% 이하의 반치폭을 갖는 제2 피크 파장을 포함하는, 박막 트랜지스터.The specific light of the light source includes a first peak wavelength and a second peak wavelength having a half width of 25% or less compared with the half width of the first peak wavelength.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1 피크 파장은, 430nm 이상 480nm 이하이거나 520nm 이상 560nm 이하이고, 상기 제2 피크 파장은, 600nm 이상 650nm 이하인, 박막 트랜지스터.The first peak wavelength is 430 nm or more and 480 nm or less, or 520 nm or more and 560 nm or less, and the second peak wavelength is 600 nm or more and 650 nm or less.
  14. 제11항에 있어서,The method of claim 11,
    상기 제2 절연층은 상기 제1 절연층의 측면을 덮도록 구성된, 박막 트랜지스터.And the second insulating layer is configured to cover side surfaces of the first insulating layer.
  15. 광이 투과되도록 구성된 개구부 및 상기 개구부와 인접하고 광이 투과되지 않도록 구성된 비개구부를 포함하는 액티브 영역과 상기 액티브 영역에 인접하고 게이트 인 패널이 배치된 비액티브 영역을 갖는 기판;A substrate having an active region including an opening configured to transmit light and a non-opening portion adjacent to the opening and configured to not transmit light, and a non-active region adjacent to the active region and having a gate-in panel disposed thereon;
    상기 액티브 영역의 상기 비개구부와 상기 비액티브 영역에만 배치되는 제1 굴절률을 갖는 제1 서브 절연층; 및A first sub insulation layer having a first refractive index disposed only in the non-opening portion and the inactive region of the active region; And
    상기 액티브 영역 및 상기 비액티브 영역 전체에 배치되고,Disposed throughout the active region and the inactive region,
  16. 제15항에 있어서,The method of claim 15,
    상기 비개구부의 구동 박막 트랜지스터와 상기 비액티브 영역의 게이트 인 패널에 배치된 게이트 전극과 액티브층을 절연시키는 제1 절연층; 및A first insulating layer for insulating the driving thin film transistor of the non-opening part, the gate electrode disposed in the gate-in panel of the inactive region, and the active layer; And
    상기 비개구부의 구동 박막 트랜지스터와 상기 비액티브 영역의 게이트 인 패널에 배치된 소스 전극과 드레인 전극 상에 배치되는 제2 절연층을 더 포함하고,And a second insulating layer disposed on the driving thin film transistor of the non-opening part and the source electrode and the drain electrode disposed on the gate-in panel of the inactive region.
    상기 액티브층은 산화 반도체로 이루어진, 표시 장치.The active layer is made of an oxide semiconductor.
  17. 제16항에 있어서,The method of claim 16,
    상기 제1 절연층은 복수의 서브 절연층으로 이루어지고, The first insulating layer is composed of a plurality of sub insulating layers,
    상기 제1 서브 절연층은 상기 제1 절연층의 복수의 서브 절연층 중 하나이며,The first sub insulation layer is one of a plurality of sub insulation layers of the first insulation layer.
    상기 제1 서브 절연층은 실리콘 질화물(SiNx)로 이루어진, 표시 장치.The first sub insulation layer is made of silicon nitride (SiNx).
  18. 제17항에 있어서,The method of claim 17,
    상기 제2 절연층은 복수의 서브 절연층으로 이루어지고, The second insulating layer is composed of a plurality of sub insulating layers,
    상기 제1 서브 절연층은 상기 제2 절연층의 복수의 서브 절연층 중 하나이며,The first sub insulation layer is one of a plurality of sub insulation layers of the second insulation layer.
    상기 제1 서브 절연층은 실리콘 질화물(SiNx)로 이루어진, 표시 장치.The first sub insulation layer is made of silicon nitride (SiNx).
  19. 제17항 또는 제18항에 있어서,The method of claim 17 or 18,
    상기 제2 서브 절연층은 상기 제1 절연층을 이루는 복수의 서브 절연층 중 하나이거나 상기 제2 절연층을 이루는 복수의 서브 절연층 중 하나이며,The second sub insulation layer is one of a plurality of sub insulation layers constituting the first insulation layer or one of a plurality of sub insulation layers constituting the second insulation layer.
    상기 제2 서브 절연층은 실리콘 산화물(SiO2)로 이루어진, 표시 장치.The second sub insulation layer is made of silicon oxide (SiO 2 ).
  20. 제15항에 있어서,The method of claim 15,
    상기 제1 서브 절연층은 상기 액티브 영역의 상기 비개구부와 상기 개구부 사이의 경계를 넘어 상기 개구부로 더 연장되며, 상기 제1 서브 절연층이 상기 개구부로 더 연장되는 길이는 상기 개구부와 상기 비개구부로 구성된 화소의 색좌표값에 기초하여 결정되는, 표시 장치.The first sub insulating layer further extends into the opening beyond a boundary between the non-opening portion and the opening of the active region, and the length of the first sub insulating layer further extending into the opening is the opening and the non-opening portion. The display device determined based on the color coordinate value of the pixel comprised.
PCT/KR2016/005357 2015-08-26 2016-05-20 Thin film transistor and display device WO2017034122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/755,458 US10840274B2 (en) 2015-08-26 2016-05-20 Thin film transistor and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0120262 2015-08-26
KR20150120262 2015-08-26
KR1020160053556A KR102563157B1 (en) 2015-08-26 2016-04-29 Thin film transistor and display device
KR10-2016-0053556 2016-04-29

Publications (1)

Publication Number Publication Date
WO2017034122A1 true WO2017034122A1 (en) 2017-03-02

Family

ID=58100541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005357 WO2017034122A1 (en) 2015-08-26 2016-05-20 Thin film transistor and display device

Country Status (1)

Country Link
WO (1) WO2017034122A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195775A (en) * 2001-12-27 2003-07-09 Seiko Epson Corp Electro-optical device, method of manufacturing electro-optical device, circuit board, method of manufacturing circuit board, electronic apparatus
KR20040042274A (en) * 2002-11-13 2004-05-20 엘지.필립스 엘시디 주식회사 In plane switching mode liquid crystal display device having improved brightness
KR20070016723A (en) * 2005-08-05 2007-02-08 삼성전자주식회사 Backlight Unit and Liquid Crystal Display Using Same
KR20080024762A (en) * 2006-09-14 2008-03-19 삼성전자주식회사 Liquid crystal display
US20110090438A1 (en) * 2009-10-21 2011-04-21 Samsung Mobile Display Co., Ltd. Flat panel display device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195775A (en) * 2001-12-27 2003-07-09 Seiko Epson Corp Electro-optical device, method of manufacturing electro-optical device, circuit board, method of manufacturing circuit board, electronic apparatus
KR20040042274A (en) * 2002-11-13 2004-05-20 엘지.필립스 엘시디 주식회사 In plane switching mode liquid crystal display device having improved brightness
KR20070016723A (en) * 2005-08-05 2007-02-08 삼성전자주식회사 Backlight Unit and Liquid Crystal Display Using Same
KR20080024762A (en) * 2006-09-14 2008-03-19 삼성전자주식회사 Liquid crystal display
US20110090438A1 (en) * 2009-10-21 2011-04-21 Samsung Mobile Display Co., Ltd. Flat panel display device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
WO2021241937A1 (en) Display device and manufacturing method therefor
WO2017142315A1 (en) Display apparatus using semi-conductor light-emitting device
WO2020071614A1 (en) Light emitting device and method for manufacturing same
WO2019075815A1 (en) Display device and oled display panel
WO2020141651A1 (en) Color transformation substrate and display device
WO2020138665A1 (en) Display device
WO2022035233A1 (en) Display device
WO2022035232A1 (en) Display device
WO2022050685A1 (en) Display apparatus
KR101957145B1 (en) Organic Light Emitting diode display and method of manufacturing the same
WO2021132842A1 (en) Led display device
WO2021177510A1 (en) Light-emitting device and display comprising same
WO2023075058A1 (en) Display device using semiconductor light-emitting element
WO2022131811A1 (en) Display device and manufacturing method therefor
WO2022030763A1 (en) Display device
WO2019083162A1 (en) Organic light emitting diode (oled) display device
WO2021010672A1 (en) Conductive polarizing-color filter and display device having same
WO2017034122A1 (en) Thin film transistor and display device
KR102563157B1 (en) Thin film transistor and display device
WO2022240097A1 (en) Display device
WO2023008852A1 (en) Display device and tiled display device comprising same
JP2018018807A (en) Display device
WO2021206217A1 (en) Display device and manufacturing method therefor
KR102499080B1 (en) Organic light emitting diode display device and manufacturing method for the same
US12147138B2 (en) Active matrix substrate, liquid crystal display device, and method for manufacturing active matrix substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15755458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839413

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载